JP2005224022A - Superconducting motor device - Google Patents

Superconducting motor device

Info

Publication number
JP2005224022A
JP2005224022A JP2004029898A JP2004029898A JP2005224022A JP 2005224022 A JP2005224022 A JP 2005224022A JP 2004029898 A JP2004029898 A JP 2004029898A JP 2004029898 A JP2004029898 A JP 2004029898A JP 2005224022 A JP2005224022 A JP 2005224022A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
cooling
medium
superconducting
coil
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004029898A
Other languages
Japanese (ja)
Other versions
JP4419588B2 (en )
JP2005224022A5 (en )
Inventor
Shingo Oohashi
紳悟 大橋
Original Assignee
Sumitomo Electric Ind Ltd
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies for applications in electromobilty
    • Y02T10/641Electric machine technologies for applications in electromobilty characterised by aspects of the electric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7005Batteries

Abstract

PROBLEM TO BE SOLVED: To effectively cool a converter that converts AC obtained on a rotor side to a DC, by performing non-contact power feeding to a superconducting coil installed in a rotor.
SOLUTION: The field superconducting coil 15 is fixed to the rotor 12, an armature coil 14 is fixed to a stator 11; a non-contact power feed means 16 that leads and feeds power to the rotor 12 side from the stator 11 side is arranged; an AC received by the non-contact power feed means 16 at the rotor 12 side is converted into a DC by the converter 19 and fed to the superconducting coil 15, the superconducting coil 15 is arranged at a cooled space 23 in the rotor 12; a cooling medium lead-in passage 22, to which a cooling medium is fed from the outside and a cooling medium lead-out passage 24, to which the cooling medium whose temperature is raised by heat exchange with the superconducting coil 15 is discharged are arranged in the cooling space 23; and the converter 19 is cooled by the temperature-raised cooling medium of the cooling medium lead-out passage 24.
COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超電導モータ装置に関し、詳しくは、電気自動車やハイブリッド車に用いられる超電導モータ装置においてロータに設けた超電導コイルへ非接触給電を行い且つ高効率に冷却するものに関する。 The present invention relates to a superconducting motor device, more particularly to those for cooling the and efficiency performs non-contact power supply to the superconducting coil which is provided on the rotor in a superconducting motor apparatus used for electric and hybrid vehicles.

近年、ガソリン等の燃料資源の枯渇や内燃機関の排気ガスによる環境悪化を改善すべく、電気によりモータを駆動して走行する電気自動車やハイブリッド車の開発が進められている。 Recently, to improve the environmental deterioration due to exhaust gas exhaustion and an internal combustion engine fuel resources such as gasoline, development of electric vehicles and hybrid vehicle traveling by driving a motor has been advanced by electricity. 常電導モータを使用した場合には、電気抵抗による銅損が発生して低効率となると共に通電電流が限られるため高出力化が困難な問題があった。 When using the normal conducting motor copper loss due to electrical resistance was a high output difficult problem because the energizing current is limited with a low efficiency occurs. そこで、特開平6−6907号公報に開示されているように、超電導モータを採用すれば、超電導コイルでの銅損がなくなり高効率になると共に、モータ自身を小型化および高出力化することができる。 Therefore, as disclosed in JP-A-6-6907, by adopting the superconducting motor, the copper loss in a superconducting coil with disappears becomes high efficiency, the motor itself be reduced in size and higher output it can.

上記超電導モータについては、特に、ロータの界磁を強化する目的で超電導コイルをロータに配置する構成の研究が進められており、この構成によると回転を伴うロータの超電導コイルに給電する構造が必要となる。 The superconducting motor in particular, the study of construction of arranging the superconducting coil to the rotor in order to enhance the field of the rotor has been promoted, is necessary structure for feeding the superconducting coil of the rotor with the rotating According to this configuration to become. その給電方法としては、摺動部分にブラシを用いて給電する方法や、最近では非接触給電(誘導給電ともいう)を用いてロータに電力を供給する方法が考えられている。 As the feeding method, and a method for feeding with a brush sliding portion, it is recently considered a method for supplying power to the rotor by using a non-contact power supply (induction also called feed) is.

ロータ側において非接触で受信される誘導給電は交流であるため、この交流を交換器を用いて直流に整流する必要がある。 Since the inductive power supply to be received in a non-contact at the rotor side is an alternating current, it is necessary to rectify the DC using the exchanger of this AC. この交換器には半導体素子が用いられており、半導体素子は発熱するため冷却する必要があるが、半導体が最も効率的に作動する温度は一般に常温より低く、水冷や空冷等の通常の冷却方法では十分な冷却が難しい問題がある。 This exchanger is a semiconductor device is used, but the semiconductor element needs to be cooled to the heat generation, the semiconductor is the most efficient temperature for operation generally lower than room, conventional methods of cooling such as water cooling or air cooling In there is a sufficient cooling is difficult problem.
特開平6−6907号公報 JP 6-6907 JP

本発明は、上記問題に鑑みてなされたもので、超電導モータのロータに超電導コイルを設けた場合において、該超電導コイルへ非接触給電を行い、ロータ側で得られた交流を直流へ変化する変換器を高効率に冷却することを課題としている。 The present invention has been made in view of the above problems, in the case of providing the superconducting coil in a rotor of the superconducting motor, converting said to the superconducting coil performs contactless power supply, changing the AC obtained by the rotor side to the DC It has an object to cool vessel with high efficiency.

上記課題を解決するため、本発明は、ロータとステータとの間で誘導給電を行う非接触給電手段を設けていると共に、該ロータには交流を直流に変換する変換器と超電導コイルとが固定されており、上記非接触給電手段により上記ロータ側で受電された交流を上記変換器により直流に変換して上記超電導コイルに給電している超電導モータ装置であって、 To solve the above problems, the present invention is to provide is provided a non-contact power supply means for performing inductively powered between the rotor and the stator, the said rotor and the converter and the superconducting coil for converting an AC into DC fixing are, a superconducting motor device that supplies power to the superconducting coil and converts the alternating current that has been received at the rotor side to the DC by the converter by the non-contact power supply means,
上記超電導コイルは上記ロータ内の冷却空間に配置されており、該冷却空間には外部から冷媒が供給される冷媒導入路と、上記超電導コイルとの熱交換により温度上昇した冷媒が排出される冷媒導出路とが設けられ、該冷媒導出路の昇温した冷媒により上記変換器を冷却する構成としていることを特徴とする超電導モータ装置を提供している。 The superconducting coil is disposed in the cooling space in the rotor, the refrigerant and the refrigerant inlet passage in which the refrigerant is supplied from the outside to the cooling space, the refrigerant temperature rises by heat exchange with the superconducting coil is discharged outlet passage and is provided, which provides a superconducting motor apparatus characterized by being configured to cool the transducer by heating the refrigerant of the refrigerant outlet passage.

上記構成とすると、非接触給電後の交流を超電導コイルに給電するために直流へと変換する変換器の動作特性を好適に維持するために、超電導コイルを冷却した後の昇温した冷媒を流用して冷却することで、変換器専用に別途冷却手段を設ける必要がなくなり、超電導コイルよりは冷却温度が高くてもよい変換器の冷却を効率良く行うことができる。 Diverting With such a configuration, the AC after the non-contact power supply in order to maintain the operational characteristics of the transducer be converted into a direct current to power the superconducting coil preferably, the heating refrigerant after the superconducting coil is cooled to by cooling, it is not necessary to separately provide cooling means to the transducer only, from the superconducting coil can be cooled conversion may be higher cooling temperature instrument efficiently.

上記ロータに固定された上記超電導コイルは界磁用とすると共に、上記ステータ側には周方向に間隔をあけて複数の電機子コイルを固定し、 Together with the superconducting coils fixed to the rotor and magnetic-field, in the above stator side at intervals in the circumferential direction to fix the plurality of armature coils,
上記超電導コイルに給電して励磁することで上記ロータ側を電磁石とし、上記複数の電機子コイルの各々に順次給電することで回転磁界を発生させて上記ロータを回転駆動している。 The superconducting coil to the power supply and to the rotor side and the electromagnet by energizing, by generating a rotating magnetic field by sequentially feeding to each of the plurality of armature coils are driven rotating the rotor.

上記構成とすると、界磁コイルとなる上記超電導コイルが励磁されて電磁石となることで、上記ステータ側の複数の電機子コイルに周方向に順次給電することで生じる回転磁界が、ロータを同期回転させて回転駆動力を得ることができる。 With such a configuration, by the superconducting coil to be the field coil is energized electromagnet, rotating magnetic field generated by sequentially feeding a plurality of armature coils of the stator side in the circumferential direction, rotation synchronization rotor it is not able to obtain the rotational driving force.

上記冷媒導出路には、上記超電導コイルとの熱交換で昇温した冷媒を特定温度に調節する調温ユニットが介設されている。 Above refrigerant outlet path, temperature control units to adjust the refrigerant temperature was raised by heat exchange with the superconducting coil to a specific temperature is interposed.

上記構成とすると、上記変換器を過冷却してしまったり或いは冷却不足とならないように、超電導コイルを冷却済みの冷媒を変換器の最適動作温度に調温してから、変換器へと供給することができる。 Supplies With such a structure, so as not to the transducer subcooled gone or or insufficient cooling and, after the superconducting coil regulating the cooling already refrigerant optimum operating temperature of the transducer was raised, to the transducer be able to.

上記変換器は炭化ケイ素(SiC)半導体素子を用いている。 It said transducer is used silicon carbide (SiC) semiconductor device.

上記構成とすると、従来のシリコン基板からなる半導体素子に比べて、炭化ケイ素(SiC)はバンドギャップが大きくまた非電解強度が大きいことから耐高電圧であるので、超電導モータのように大電流が流れる場合の変換器の半導体素子として最適である。 With such a configuration, as compared with the semiconductor element composed of a conventional silicon substrate, since silicon carbide (SiC) is a high voltage resistance since a large band gap also electroless strength is large, a large current as of the superconducting motor it is optimal as a semiconductor element of the transducer when flowing.

上記冷媒導出路から上記変換器への供給される冷媒の温度は、上記調温ユニットにより−100℃〜0℃に調節されている。 The temperature of refrigerant supplied to the converter from the refrigerant outlet path is adjusted to -100 ° C. ~0 ° C. by the temperature control unit.

上記したSiC半導体素子を最も電気抵抗の少ない状態で動作させることができる温度領域が−100℃〜0℃の範囲であることは、後述する本発明者の鋭意研究により知得することができたものであり、上記のように調節ユニットにより冷媒導出路の冷媒温度をこの−100℃〜0℃の範囲に制御することで、変換器の性能を最適化することが可能となる。 The temperature region that can be operated with less most electrical resistance SiC semiconductor device described above is in the range of -100 ° C. ~0 ° C. are those that could be learned by extensive studies of the present inventors described below , and the refrigerant temperature of the refrigerant outlet passage by adjusting unit as described above by controlling the range of the -100 ° C. ~0 ° C., it becomes possible to optimize the performance of the transducer.

上記非接触給電手段は、電磁シールド材により囲繞されている。 The non-contact power supply means is surrounded by an electromagnetic shielding material.

このように、電磁誘導により給電する非接触給電手段を電磁シールド材で囲繞することにより、非接触給電手段で発生する磁界が周囲の電子機器や各種通信機器等へ悪影響を及ぼさないように防止することができる。 Thus, by surrounding the non-contact power supply means for feeding by electromagnetic induction in an electromagnetic shielding material, a magnetic field generated by the non-contact power supply means is prevented so as not to adversely affect the electronic device and various communication devices such as ambient be able to.

上記電磁シールド材は上記ステータの外面を覆っている構成とすると好ましい。 The electromagnetic shield material is preferably a structure that covers the outer surface of the stator.
こうすれば、非接触給電手段で発生する磁界と共に、超電導コイルおよび電機子コイルで発生する磁界も外部へ漏れないように一括してシールドすることができる。 In this way, the magnetic field generated by the non-contact power supply means, can be shielded collectively as the magnetic field also does not leak to the outside generated in the superconducting coil and armature coils.

上記冷媒は、液体水素あるいは液体窒素としている。 The refrigerant is directed to liquid hydrogen or liquid nitrogen.
上記超電導コイルは極低温に冷却する必要があるが、上記構成とすると、液体水素の沸点温度は約−252.8℃で、液体窒素の沸点温度は約−195.8℃であるので、液体状態の水素あるいは窒素を冷媒とすることで超電導性能を好適に発揮することができる。 Is the superconducting coils must be cooled to cryogenic, but when the above configuration, the boiling point temperature of liquid hydrogen at approximately -252.8 ° C., since the boiling temperature of liquid nitrogen is about -195.8 ° C., liquid the state of the hydrogen or nitrogen can be preferably exhibit superconductivity by a refrigerant.

液体水素タンクに貯留された水素を燃料電池により酸素と反応させて発電する電気自動車に搭載されるものであって、 Hydrogen stored in a liquid hydrogen tank be one that is mounted on an electric vehicle to the power generation is reacted with oxygen by the fuel cell,
上記冷媒として上記液体水素タンクの液体水素を用いており、上記冷媒導入路、上記冷媒空間、上記冷媒導出路および上記変換器を通過して気化された水素ガスを上記燃料電池に供給して発電し、該電力を上記超電導コイルおよび上記電機子コイルに給電している。 It uses a liquid hydrogen the liquid hydrogen tank as the refrigerant, the refrigerant introduction path, and the refrigerant space, the refrigerant outlet passage and the transducer hydrogen gas vaporized by passing through were supplied to the fuel cell power generation and, and the electric power to supply power to the superconducting coil and the armature coil.

上記構成とすると、水素と酸素を反応させる燃料電池を搭載した電気自動車の駆動用として超電導モータ装置を搭載することで、超電導コイルおよび変換器の冷却用の冷媒として車載済の液体水素を兼用させることができる。 With such a configuration, by mounting the superconducting motor device as a drive of an electric vehicle equipped with a fuel cell for reacting hydrogen and oxygen, it is also used liquid hydrogen vehicle already as a coolant for cooling the superconducting coil and transducer be able to. また、超電導コイルおよび変換器を冷却することにより昇温気化した水素ガスを燃料電池に供給することで、液体水素タンクの液体水素を気化させる装置を別途設ける必要がなくなり効率的となる。 Further, the Atsushi Nobori vaporized hydrogen gas by cooling the superconducting coil and the transducer by supplying to the fuel cell, separately it is required eliminates efficiently providing a device for vaporizing the liquid hydrogen in the liquid hydrogen tank. さらには、燃料電池で発電された電力を超電導コイルおよび電機子コイルに給電することで、超電導モータ装置の駆動力を得ることができる。 Furthermore, by feeding the power generated by the fuel cell to the superconducting coil and armature coils, it is possible to obtain a driving force of the superconducting motor device.

以上の説明より明らかなように、本発明によれば、交流を直流に変換する変換器の動作特性を好適に維持するために、超電導コイルを冷却した後の昇温した冷媒を流用して冷却することで変換器の冷却を効率良く行うことができる。 As apparent from the above description, according to the present invention, in order to favorably maintain the operational characteristics of the converter for converting alternating current into direct current, cooled by diverting the heating refrigerant after the superconducting coil is cooled the cooling of the transducer can be efficiently performed by. また、SiC(炭化ケイ素)半導体素子を用いた変換器には、−100℃〜0℃に調温された冷媒を供給することで、最も電気抵抗の少ない状態で最適動作させることができる。 Also, SiC in the converter using the (silicon carbide) semiconductor devices, by supplying the refrigerant controlled at -100 ° C. ~0 ° C., can be optimally operate with less the least electrical resistance. さらに、非接触給電手段を電磁シールド材により囲繞することで、誘導給電により発生する磁界が周囲の電子機器や各種通信機器等へ悪影響を及ぼすのを防止することができる。 Furthermore, the non-contact power supply means that surrounds the electromagnetic shield material, a magnetic field generated by the induction power supply can be prevented from adversely affecting the electronic devices and various communication devices such as the surrounding.

また、燃料電池を搭載した電気自動車の駆動用として超電導モータ装置を搭載することで、既設の液体水素を超電導コイルおよび変換器の冷却用の冷媒として兼用できると共に、超電導コイルおよび変換器の冷却後の気化した水素ガスを燃料電池に供給することで、気化用の装置を別途設ける必要もなくなる。 Further, by mounting the superconducting motor device as a drive of an electric vehicle equipped with a fuel cell, it is possible to alternate the existing liquid hydrogen as coolant for cooling the superconducting coil and transducer, after cooling of the superconducting coil and transducer of vaporized hydrogen gas by supplying the fuel cell also eliminates required to separately provide a device for vaporizing.

本発明の実施形態を図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.
図1に示すように、本実施形態の超電導モータ装置10は、水素と酸素を反応させて発電する燃料電池を搭載した電気自動車の駆動用に用いられるもので、該水素の供給源として搭載された極低温の液体水素(沸点:約−252.8℃)を超電導モータ装置10の超電導コイル15および変換器の冷却用の冷媒として兼用している。 As shown in FIG. 1, a superconducting motor apparatus 10 of the present embodiment is used for a drive of an electric vehicle equipped with a fuel cell for generating electricity by reacting hydrogen and oxygen, it is mounted as a source of hydrogen liquid hydrogen (boiling point: about -252.8 ℃) cryogenic also serves as a coolant for cooling the superconducting coil 15 and the transducer of the superconducting motor device 10.

超電導モータ装置10は、ハウジングとなるステータ11に複数の電機子コイル14を周方向に間隔をあけて固定しており、ステータ11内において軸受21を介して設けられた回転駆動軸20と固定されたロータ12に界磁用の超電導コイル15を設けている。 Superconducting motor device 10 is fixed at intervals a plurality of armature coils 14 in the circumferential direction on the stator 11 as a housing, is fixed to the rotary drive shaft 20 provided through a bearing 21 in the stator 11 It is provided with a superconducting coil 15 of the magnetic-field to the rotor 12.
外部の電力供給制御部30からの電力をロータ12の超電導コイル15に供給する手段として、ステータ11とロータ12との間の空間を非接触で電磁誘導により給電する非接触給電手段16が設けられており、非接触給電手段16は、ステータ11側に取り付けられた誘導給電送信部17と、ロータ12側に取り付けられた誘導給電受信部18とを備えている。 Power from an external power supply control unit 30 as a means for supplying the superconducting coil 15 of the rotor 12, the non-contact power feeding means 16 for feeding by electromagnetic induction is provided a space between the stator 11 and the rotor 12 in a non-contact and, a non-contact power supply unit 16 includes an inductive power supply transmission unit 17 mounted on the stator 11 side, an inductive power supply receiving portion 18 attached to the rotor 12 side.
誘導給電受信部18で受電される電流は交流であるため、ロータ12側において誘導給電受信部18と超電導コイル15との間に炭化ケイ素(SiC)半導体素子を用いた変換器19を介設し、該交流を直流に変換して超電導コイル15に給電している。 Since current received at inductively powered receiving unit 18 is an AC, interposed the transducer 19 using silicon carbide (SiC) semiconductor element between the inductively powered receiving unit 18 and the superconducting coil 15 in the rotor 12 side , and feeding the superconducting coil 15 to convert the alternating current into direct current.

超電導コイル15は、冷媒導入路22と冷媒導出路24とが連通された冷却空間23の内部に設置されている。 Superconducting coil 15 is installed inside the refrigerant introduction path 22 and the coolant outlet passage 24 communicate with each other through the cooling space 23. 冷媒導入路22へは、車載された液体水素タンク27の液体水素をポンプ28を介して供給しており、超電導コイル15との熱交換により昇温気化された水素ガスが冷媒導出路24に排出される。 To the refrigerant introduction path 22, discharge the vehicle liquid hydrogen the liquid hydrogen tank 27 is supplied through the pump 28, heating the vaporized hydrogen gas by heat exchange with the superconducting coil 15 to the coolant outlet passage 24 It is.
冷媒導出路24は、調温ユニット25を介して変換器19へと連通されており、調温ユニット25において、後述する変換器19の炭化ケイ素半導体素子が最適動作するための温度である−100℃〜0℃に水素ガスを温度制御してから変換器19へ供給冷却している。 Coolant outlet passage 24 is communicated with to the transducer 19 via the temperature control unit 25, the temperature control unit 25, the temperature for the silicon carbide semiconductor device of the converter 19 which will be described later, optimum operating -100 and supplies cooling to the converter 19 ° C. ~0 ° C. in a hydrogen gas under the control of the temperature.

変換器19を冷却した水素ガスは、変換器19と外部の燃料電池29とを結ぶ冷媒排出路26を通過して燃料電池29へと発電用として供給している。 Hydrogen gas was cooled converter 19 is supplied as power generation to the fuel cell 29 through the coolant discharge passage 26 connecting the converter 19 and the outside of the fuel cell 29.
ロータ12内には、超電導コイル15を収容した冷却空間23と、調温ユニット25、変換器19および誘導給電受信部18とを隔離するように断熱層が設けられている。 The rotor 12 has a heat insulating layer is provided so as to isolate the cooling space 23 accommodating the superconducting coil 15, temperature control unit 25, a converter 19 and inductively powered receiving unit 18.
ステータ11の外面は電磁シールド材31で囲繞しており、非接触給電手段16で発生する磁界と共に、超電導コイル23および電機子コイル14で発生する磁界も外部に漏れないようにシールドして、車載された周囲の電子機器や各種通信機器等へ悪影響を及ぼさないようしている。 The outer surface of the stator 11 is surrounded by an electromagnetic shield material 31, the magnetic field generated by the non-contact power supply unit 16, the magnetic field generated by the superconducting coil 23 and armature coils 14 be shielded so as not to leak to the outside, vehicle It is as not to adversely affect the ambient of the electronic device and various communication devices.

燃料電池29で発電された電力は、電力供給制御部30へ供給されるように電線で接続されている。 Power generated by the fuel cell 29 are connected by wires so as to supply to the power supply control unit 30. 電力供給制御部30は、燃料電池29から電線を介して供給される電力を入力とする一方、誘導給電送信部17および各電機子コイル14へ電線を介して供給する電力を出力としており、各出力のタイミングや電圧等を電子制御している。 Power supply control unit 30, while the input power from the fuel cell 29 is supplied through an electric wire, has an output power supplied inductively powered transmitter 17 and via the wire to the armature coils 14, each and electronically controlling the timing and voltage and the output.

次に、超電導モータ装置10の回転原理について説明する。 Next, a description will be given rotation principle of the superconducting motor apparatus 10.
電力供給制御部30から非接触給電手段16および変換器19を介して超電導コイル15に給電することで、図2に示すように、ロータ12にN極、S極を有する電磁石となる。 By feeding the superconducting coil 15 via the non-contact power supply unit 16 and the transducer 19 from the power supply control unit 30, as shown in FIG. 2, N pole on the rotor 12, the electromagnet having an S pole. そして、電力供給制御部30において、ステータ11側の周方向に間隔をあけて配置された4つの電機子コイル14に対して、S1→S2→S3→S4→S1・・と順次、電流を給電することで回転磁界が発生する。 Then, power supply in the power supply control unit 30, the four armature coils 14 disposed at intervals in the circumferential direction of the stator 11 side, sequentially and S1 → S2 → S3 → S4 → S1 ··, the current rotating magnetic field is generated by. この回転磁界は電磁石となったロータ12を引っ張って同期回転させて回転駆動軸20を駆動させる。 The rotating magnetic field drives the rotary drive shaft 20 is rotated synchronously to pull the rotor 12 becomes an electromagnet. そして、回転駆動軸20のトルクが電気自動車の車輪の回転動力として伝達される。 The torque of the rotary drive shaft 20 is transmitted as rotational power of the electric vehicle wheels.

なお、本実施形態では電機子コイル14を4つ設けているが、周方向に3つ設けて夫々の電機子コイルに三相交流を供給して回転磁界を発生させてもよい。 In the present exemplary embodiment is provided four armature coils 14, the three provided respective armature coils in the circumferential direction may be a rotating magnetic field is generated by supplying three-phase AC. また、超電導コイル15にはビスマス系超電導線材を使用しているが、イットリウム系、タリウム系、ビスマス系の酸化物等のセラミック材を用いてもよい。 Further, although the superconducting coil 15 using bismuth-based superconducting wires, yttrium-based, thallium-based, may be a ceramic material such as oxides of bismuth. また、本実施形態では冷媒として液体水素を用いているが、液体窒素を用いても構わない。 Further, although the present embodiment uses a liquid hydrogen as coolant, it may be used liquid nitrogen.

以下、変換器19に用いられる炭化ケイ素半導体素子に関する抵抗率と温度との相関関係を表す実験例を図3および図4を用いて説明する。 Hereinafter will be described with reference to FIGS. 3 and 4 the experimental examples representing the correlation between the resistivity and the temperature for the silicon carbide semiconductor element used in the converter 19.
実験装置は、図3に示すように、冷媒通路41の上面に炭化ケイ素半導体素子42を載置すると共に、炭化ケイ素半導体素子42に熱電対43を当接させており、外部を断熱チャンバー40で覆うことにより内部を真空にしている。 Experimental apparatus, as shown in FIG. 3, while placing a silicon carbide semiconductor device 42 on the upper surface of the refrigerant passage 41, and is brought into contact with the thermocouple 43 to the silicon carbide semiconductor device 42, the outside heat insulation chamber 40 is the vacuum inside the covering.

炭化ケイ素半導体素子42は、4H−SiC型の炭化ケイ素半導体素子42に窒素イオンが1cm 3当たり10 13 〜10 17ドーピングされたn型半導体からなる半導体基板を用いている。 Silicon carbide semiconductor device 42 using the semiconductor substrate nitrogen ions in the silicon carbide semiconductor device 42 of the 4H-SiC type made of n-type semiconductor which is 1013 1017 doping per 1 cm 3. その炭化ケイ素半導体素子22にDC1Vを印加して電流を計測し温度と抵抗率の関係を調べている。 And examining the relationship of the measured temperature and the resistivity of current by applying a DC1V to the silicon carbide semiconductor device 22. 図4に示す実験結果によると、50℃から−130℃にかけて抵抗率が10 -1以下と低くなっていると共に、約60℃近傍で最も抵抗率が低減できることが分かる。 According to the experimental results shown in FIG. 4, it can be seen that the resistance ratio toward -130 ° C. from 50 ° C. is as low as 10 -1 or less, may best resistivity reduced by about 60 ° C. vicinity. つまり、極低温の冷媒を使用して炭化ケイ素半導体素子を冷却することを考慮すると、0℃〜−100℃の範囲に雰囲気温度を設定することで、炭化ケイ素半導体素子を有効に動作させることができる。 That is, considering cooling the silicon carbide semiconductor device using the refrigerant cryogenic, by setting the ambient temperature in the range of 0 ℃ ~-100 ℃, it is effectively operated silicon carbide semiconductor device it can.

したがって、上述した超電導モータ装置10においては、冷却空間23で超電導コイル15を冷却することにより気化して冷媒導出路24に排出された水素ガスを、調温ユニット25で0℃〜−100℃に温度調節してから変換器19に送ることで、変換器19を効率良く動作させることができる。 Therefore, the superconducting motor 10 described above, hydrogen gas discharged to the refrigerant outlet passage 24 is vaporized by cooling the superconducting coil 15 in the cooling space 23, temperature control unit 25 at 0 ℃ ~-100 ℃ by sending from the temperature controller to the transducer 19 can be a transducer 19 efficiently operated.
また、超電導コイル15を冷却した後の昇温した水素ガスを変換器19の冷却用の冷媒として流用することで、変換器19専用に別の冷却手段を設ける必要がなくなり、超電導コイル15よりは冷却温度が高くてもよい変換器19の冷却を効率良く且つ低コストで行うことができる。 Also, by diverting the heating hydrogen gas after the superconducting coil 15 is cooled as a coolant for cooling the converter 19, it is not necessary to provide a separate cooling means dedicated to the transducer 19, rather than the superconducting coils 15 the cooling of the or transducer 19 even at high cooling temperature can be carried out efficiently and at low cost.

本発明の実施形態の超電導モータ装置の概略断面図である。 It is a schematic cross-sectional view of a superconducting motor apparatus of an embodiment of the present invention. 超電導モータ装置の動作原理を示す説明図である。 Is an explanatory diagram showing the operating principle of the superconducting motor device. 炭化ケイ素半導体素子の抵抗率と温度の調べる実験装置の概略図である。 It is a schematic diagram of a resistivity and temperature of examining experimental apparatus of the silicon carbide semiconductor device. 炭化ケイ素半導体素子の抵抗率と温度の関係を示すグラフである。 Is a graph showing the relationship between resistivity and temperature of the silicon carbide semiconductor device.

符号の説明 DESCRIPTION OF SYMBOLS

10 超電導モータ装置11 ステータ12 ロータ13 断熱層14 電機子コイル15 超電導コイル16 非接触給電手段17 誘導給電送信部18 誘導給電受信部19 変換器20 回転駆動軸21 軸受22 冷媒導入部23 冷却空間24 冷媒導出路25 調温ユニット26 冷媒排出路27 液体水素タンク28 ポンプ29 燃料電池30 電力供給制御部 10 superconducting motor 11 stator 12 rotor 13 heat insulating layer 14 armature coil 15 superconducting coil 16 non-contact power supply unit 17 inductively powered transmitter 18 inductively powered receiving unit 19 converter 20 the rotation drive shaft 21 bearing 22 refrigerant inlet portion 23 cooling space 24 coolant outlet passage 25 tempering unit 26 coolant discharge passage 27 a liquid hydrogen tank 28 pump 29 fuel cell 30 power supply controller

Claims (9)

  1. ロータとステータとの間で誘導給電を行う非接触給電手段を設けていると共に、該ロータには交流を直流に変換する変換器と超電導コイルとが固定されており、上記非接触給電手段により上記ロータ側で受電された交流を上記変換器により直流に変換して上記超電導コイルに給電している超電導モータ装置であって、 Together is provided a non-contact power supply means for performing inductively powered between the rotor and the stator, the said rotor being fixed and the converter and the superconducting coil for converting alternating current to direct current, said by the non-contact power supply means the power receiving alternating current in the rotor side into a DC by the converter to a superconducting motor device that supplies power to the superconducting coil,
    上記超電導コイルは上記ロータ内の冷却空間に配置されており、該冷却空間には外部から冷媒が供給される冷媒導入路と、上記超電導コイルとの熱交換により温度上昇した冷媒が排出される冷媒導出路とが設けられ、該冷媒導出路の昇温した冷媒により上記変換器を冷却する構成としていることを特徴とする超電導モータ装置。 The superconducting coil is disposed in the cooling space in the rotor, the refrigerant and the refrigerant inlet passage in which the refrigerant is supplied from the outside to the cooling space, the refrigerant temperature rises by heat exchange with the superconducting coil is discharged outlet passage and are provided, superconducting motor apparatus characterized by being configured to cool the transducer by heating the refrigerant of the refrigerant outlet passage.
  2. 上記ロータに固定された上記超電導コイルは界磁用とすると共に、上記ステータ側には周方向に間隔をあけて複数の電機子コイルを固定し、 Together with the superconducting coils fixed to the rotor and magnetic-field, in the above stator side at intervals in the circumferential direction to fix the plurality of armature coils,
    上記超電導コイルに給電して励磁することで上記ロータ側を電磁石とし、上記複数の電機子コイルの各々に順次給電することで回転磁界を発生させて上記ロータを回転駆動している請求項1に記載の超電導モータ装置。 The superconducting coil to the power supply and to the rotor side and the electromagnet by exciting, in claim 1, by generating a rotating magnetic field by sequentially feeding to each of the plurality of armature coils are driven rotating said rotor superconducting motor apparatus according.
  3. 上記冷媒導出路には、上記超電導コイルとの熱交換で昇温した冷媒を特定温度に調節する調温ユニットが介設されている請求項1に記載の超電導モータ装置。 The aforementioned refrigerant outlet passage, superconducting motor according to claim 1, temperature control unit for adjusting the refrigerant that has heated by heat exchange with the superconducting coil to a specific temperature is interposed.
  4. 上記変換器は炭化ケイ素(SiC)半導体素子を用いている請求項1乃至請求項3のいずれか1項に記載の超電導モータ装置。 It said transducer superconducting motor apparatus according to any one of claims 1 to 3 is used silicon carbide (SiC) semiconductor device.
  5. 上記冷媒導出路から上記変換器への供給される冷媒の温度は、上記調温ユニットにより−100℃〜0℃に調節されている請求項3または請求項4に記載の超電導モータ装置。 The temperature of the refrigerant supplied from the refrigerant outlet passage into the converter, a superconducting motor according to claim 3 or claim 4 is adjusted to -100 ° C. ~0 ° C. by the temperature control unit.
  6. 上記非接触給電手段は、電磁シールド材により囲繞されている請求項1乃至請求項5のいずれか1項に記載の超電導モータ装置。 The non-contact power supply means, a superconducting motor apparatus according to any one of claims 1 to 5 is surrounded by an electromagnetic shielding material.
  7. 上記電磁シールド材は上記ステータの外面を覆っている請求項6に記載の超電導モータ装置。 The electromagnetic shield material is superconducting motor according to claim 6 covering the outer surface of the stator.
  8. 上記冷媒は、液体水素あるいは液体窒素としている請求項1乃至請求項7のいずれか1項に記載の超電導モータ装置。 The refrigerant is superconducting motor apparatus according to any one of claims 1 to 7 are the liquid hydrogen or liquid nitrogen.
  9. 液体水素タンクに貯留された水素を燃料電池により酸素と反応させて発電する電気自動車に搭載されるものであって、 Hydrogen stored in a liquid hydrogen tank be one that is mounted on an electric vehicle to the power generation is reacted with oxygen by the fuel cell,
    上記冷媒として上記液体水素タンクの液体水素を用いており、上記冷媒導入路、上記冷媒空間、上記冷媒導出路および上記変換器を通過して気化された水素ガスを上記燃料電池に供給して発電し、該電力を上記超電導コイルおよび上記電機子コイルに給電している請求項1乃至請求項8のいずれか1項に記載の超電導モータ装置。 It uses a liquid hydrogen the liquid hydrogen tank as the refrigerant, the refrigerant introduction path, and the refrigerant space, the refrigerant outlet passage and the transducer hydrogen gas vaporized by passing through were supplied to the fuel cell power generation and, superconducting motor apparatus according to any one of the superconducting coils and the armature coils to the power supply to which claims 1 to 8 to said power.
JP2004029898A 2004-02-05 2004-02-05 Superconducting motor device Expired - Fee Related JP4419588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029898A JP4419588B2 (en) 2004-02-05 2004-02-05 Superconducting motor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029898A JP4419588B2 (en) 2004-02-05 2004-02-05 Superconducting motor device

Publications (3)

Publication Number Publication Date
JP2005224022A true true JP2005224022A (en) 2005-08-18
JP2005224022A5 true JP2005224022A5 (en) 2006-09-28
JP4419588B2 JP4419588B2 (en) 2010-02-24

Family

ID=34999231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029898A Expired - Fee Related JP4419588B2 (en) 2004-02-05 2004-02-05 Superconducting motor device

Country Status (1)

Country Link
JP (1) JP4419588B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117459A2 (en) * 2009-04-09 2010-10-14 Goodzeit Carl L Dual armature motor/generator with flux linkage between dual armatures and a superconducting field coil
US8084909B2 (en) 2009-04-09 2011-12-27 Goodzeit Carl L Dual armature motor/generator with flux linkage
JP2012164734A (en) * 2011-02-04 2012-08-30 Omron Corp Non-contact rotation type power transmission device
KR200473549Y1 (en) 2012-12-28 2014-07-09 두산엔진주식회사 Super conducting electric power generation system
WO2017060509A1 (en) * 2015-10-09 2017-04-13 Oswald Elektromotoren Gmbh Electrical machine
WO2017094420A1 (en) * 2015-12-04 2017-06-08 日本精工株式会社 Rolling bearing unit for drive wheel support

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117459A2 (en) * 2009-04-09 2010-10-14 Goodzeit Carl L Dual armature motor/generator with flux linkage between dual armatures and a superconducting field coil
WO2010117459A3 (en) * 2009-04-09 2011-01-06 Goodzeit Carl L Dual armature motor/generator with flux linkage between dual armatures and a superconducting field coil
US7956503B2 (en) 2009-04-09 2011-06-07 Goodzeit Carl L Dual armature motor/generator with flux linkage
US8084909B2 (en) 2009-04-09 2011-12-27 Goodzeit Carl L Dual armature motor/generator with flux linkage
JP2012164734A (en) * 2011-02-04 2012-08-30 Omron Corp Non-contact rotation type power transmission device
KR200473549Y1 (en) 2012-12-28 2014-07-09 두산엔진주식회사 Super conducting electric power generation system
WO2017060509A1 (en) * 2015-10-09 2017-04-13 Oswald Elektromotoren Gmbh Electrical machine
WO2017094420A1 (en) * 2015-12-04 2017-06-08 日本精工株式会社 Rolling bearing unit for drive wheel support

Also Published As

Publication number Publication date Type
JP4419588B2 (en) 2010-02-24 grant

Similar Documents

Publication Publication Date Title
US5678646A (en) Propulsion system and kit for hybrid motor vehicle
US4797602A (en) Dynamo electric machines
US7561429B2 (en) Power converter unit
US4694654A (en) Exhaust energy recovery and generator for use with an engine
US5304883A (en) Ring wound stator having variable cross section conductors
US5543703A (en) Generator motor for vehicles
US6489701B1 (en) Superconducting rotating machines
US20100164428A1 (en) Method and systems for an engine starter/generator
US20060131974A1 (en) Electrical machine and use thereof
US20020031693A1 (en) Fuel cell system having cooling apparatus
JP2007282309A (en) Vehicle motor drive unit
US20030011253A1 (en) Thermally-conductive stator support structure
US20100295301A1 (en) Aircraft engine starting/generating system and method of control
US20050009418A1 (en) Boat propulsion system
US7683499B2 (en) Natural gas turbine generator
US20030052568A1 (en) Axially-expandable EM shield
JP2004328870A (en) Motor-generator for vehicle
US20090224550A1 (en) Systems involving superconducting direct drive generators for wind power applications
JPH1198788A (en) Ac generator for vehicle
US6914354B2 (en) Assembly and method for direct cooling of motor end-winding
JP2004336845A (en) Onboard power converter
JPH10284105A (en) Package type fuel cell power generating device
JPH08331818A (en) Ac generator
JPH11243658A (en) Liquid-cooled alternator
Gubser Superconducting motors and generators for naval applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060811

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20121211

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees