JP2005224001A - Superconducting synchronous machine - Google Patents

Superconducting synchronous machine Download PDF

Info

Publication number
JP2005224001A
JP2005224001A JP2004028642A JP2004028642A JP2005224001A JP 2005224001 A JP2005224001 A JP 2005224001A JP 2004028642 A JP2004028642 A JP 2004028642A JP 2004028642 A JP2004028642 A JP 2004028642A JP 2005224001 A JP2005224001 A JP 2005224001A
Authority
JP
Japan
Prior art keywords
superconducting
rotating
superconducting coil
rotating plate
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004028642A
Other languages
Japanese (ja)
Other versions
JP3936340B2 (en
Inventor
Hidehiko Sugimoto
本 英 彦 杉
Mitsuru Izumi
泉 充 和
Masahiro Kitano
野 雅 裕 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITANO SEIKI KK
Tokyo University of Marine Science and Technology NUC
University of Fukui NUC
Original Assignee
KITANO SEIKI KK
Tokyo University of Marine Science and Technology NUC
University of Fukui NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITANO SEIKI KK, Tokyo University of Marine Science and Technology NUC, University of Fukui NUC filed Critical KITANO SEIKI KK
Priority to JP2004028642A priority Critical patent/JP3936340B2/en
Publication of JP2005224001A publication Critical patent/JP2005224001A/en
Application granted granted Critical
Publication of JP3936340B2 publication Critical patent/JP3936340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting synchronous machine which can efficiently cool the superconductor coil and which can utilize the strong magnetic force of the superconductor coil. <P>SOLUTION: The superconducting synchronous machine has a rotary plate 3 at a rotary shaft 2, a superconducting coil 4 fixed to the rotating plate 3, and armature coils 5 arranged at both sides of the rotary track of the superconducting coil 4 so as to mutually face each other at a predetermined interval in the circumferential direction. The rotating plate 3 holds the superconducting coil 4 so that the axial end face or the center axis of the windings of the superconducting coil 4 is exposed to the outside. The rotating plate 3 and the rotary shaft 2 have refrigerant passage 6 which communicate with the refrigerant source. The superconducting coil 4 has a part of its surface opened to the internal space of the refrigerant passage 6 of the rotating plate 3 or is brought into contact with the refrigerant passage 6 of the rotating plate 3 via a partition wall 37. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は超電導体からなる超電導コイルを使用したアキシャルギャップ型超電導同期機に関する。特に、超電導コイルの冷却効率を良くするとともに、アキシャルギャップを小さくすることができる高出力の超電導同期機に関する。   The present invention relates to an axial gap type superconducting synchronous machine using a superconducting coil made of a superconductor. In particular, the present invention relates to a high-power superconducting synchronous machine capable of improving the cooling efficiency of a superconducting coil and reducing the axial gap.

また、本発明は、上記超電導同期機を利用した、推進方向に対する横断面積が小さく、かつ、推進力が大きい舶用ポッド推進機に関する。   The present invention also relates to a marine pod propulsion unit that uses the superconducting synchronous machine and has a small cross-sectional area with respect to the propulsion direction and a large propulsive force.

従来から、ステーター側にバルク超電導体を使用したアキシャルギャップ型の超電導同期機があった。   Conventionally, there has been an axial gap type superconducting synchronous machine using a bulk superconductor on the stator side.

たとえば、特開平7−87724号公報や特開平7−87724号公報には、回転電機子に関して回転軸の軸方向両側に界磁用の磁石部を設け、前記磁石部にバルク超電導体とその周囲にコイルを巻き回したものを使用したものが開示されている。   For example, in Japanese Patent Application Laid-Open Nos. 7-87724 and 7-87724, field magnet portions are provided on both axial sides of a rotating shaft of a rotary armature, and a bulk superconductor and its surroundings are provided in the magnet portion. A device using a coil wound around is disclosed.

前記磁石部は、液体ヘリウム容器に保持され、その周面の一部と底面が液体ヘリウム容器の内部空間に開放されている。   The magnet part is held in a liquid helium container, and a part of the peripheral surface and the bottom surface are open to the internal space of the liquid helium container.

この従来の超電導同期機においては、液体ヘリウム容器に液体ヘリウムを供給し、バルク超電導体とその周面のコイルを絶対温度4.2度に冷却し、バルク超電導体が超電導状態に転移した後にコイルに電流を流しバルク超電導体を着磁させる。   In this conventional superconducting synchronous machine, liquid helium is supplied to a liquid helium container, the bulk superconductor and its peripheral coil are cooled to an absolute temperature of 4.2 degrees, and the bulk superconductor transitions to the superconducting state before the coil. The bulk superconductor is magnetized by passing a current through it.

このようにバルク超電導体を着磁した状態で、ブラシを介して回転電機子のコイルに電流を流し、回転電機子のコイルに回転磁界を発生させ、着磁されたバルク超電導体との間の力の作用によって回転力を得るようにしている。
特許第2822570号公報 特開平7−87724号公報
In such a state where the bulk superconductor is magnetized, a current is passed through the coil of the rotating armature through the brush, a rotating magnetic field is generated in the coil of the rotating armature, A rotational force is obtained by the action of force.
Japanese Patent No. 2822570 JP-A-7-87724

上記従来の超電導同期機は、バルク超電導体を使用することによってその強力な磁力を利用できるが、バルク超電導体を同期機の固定子側に使用するため、バルク超電導体の2つの磁極のうち、回転電機子に面する側の一つの磁極から出る磁束しか駆動や発電に利用することができなかった。   The conventional superconducting synchronous machine can use its strong magnetic force by using a bulk superconductor, but since the bulk superconductor is used on the stator side of the synchronous machine, of the two magnetic poles of the bulk superconductor, Only the magnetic flux from one magnetic pole facing the rotating armature could be used for driving and power generation.

そこで、本発明が解決しようとする課題の一つは、バルク超電導体の両磁極から出る磁束を利用できる超電導同期機を提供することにある。   Accordingly, one of the problems to be solved by the present invention is to provide a superconducting synchronous machine that can use magnetic fluxes from both magnetic poles of a bulk superconductor.

バルク超電導体は着磁すれば永久磁石に比べれば強い磁力を生成するが、超電導コイルに電流を流した場合に比べれば磁力が弱い。   A bulk superconductor generates a stronger magnetic force than a permanent magnet when magnetized, but has a lower magnetic force than when a current is passed through a superconducting coil.

また、バルク超電導体は、製造技術上大きな結晶を得ることが難しいため、磁極面から出る磁束数に限界があった。   In addition, bulk superconductors have a limit in the number of magnetic fluxes that emerge from the magnetic pole surface because it is difficult to obtain a large crystal in terms of manufacturing technology.

これに対して、超電導コイルは超電導線材を巻いて形成するので、巻線中心軸の軸方向(以下「巻線軸方向」という。)に対する横断面の面積を大きく形成することができる。このように巻線軸方向に対する横断面の面積を大きく形成した超電導コイルによれば、磁束密度が高いばかりでなく、磁極面の面積が大きいため磁束の数が多く、きわめて有利な超電導コイルを形成することができる。   On the other hand, since the superconducting coil is formed by winding a superconducting wire, the cross-sectional area with respect to the axial direction of the winding central axis (hereinafter referred to as “winding axis direction”) can be increased. Thus, according to the superconducting coil formed with a large cross-sectional area with respect to the winding axis direction, not only the magnetic flux density is high, but also the magnetic pole surface is large, so the number of magnetic fluxes is large and a very advantageous superconducting coil is formed. be able to.

そこで、本発明が解決しようとするもう一つの課題は、超電導コイルを有利に利用した超電導同期機を提供することにある。   Therefore, another problem to be solved by the present invention is to provide a superconducting synchronous machine that advantageously uses a superconducting coil.

上記課題に対して、本発明の発明者は、超電導コイルを回転子側に使用し、超電導コイルの巻線軸方向の端面の両側に電機子を配置した構造のアキシャルギャップ型超電導同期機を考案した。   In response to the above problems, the inventors of the present invention have devised an axial gap type superconducting synchronous machine having a structure in which a superconducting coil is used on the rotor side and armatures are arranged on both sides of the end surface in the winding axis direction of the superconducting coil. .

この構成によれば、超電導コイルの巻線軸方向の両端面を電機子コイルと対面させることができ、超電導コイルの両磁極から出る磁束が電機子コイルと相互作用を及ぼし、駆動あるいは発電に利用される。   According to this configuration, both end surfaces of the superconducting coil in the winding axis direction can face the armature coil, and the magnetic flux emitted from both magnetic poles of the superconducting coil interacts with the armature coil and is used for driving or power generation. The

しかし、上記構造の超電導同期機において、超電導コイルを超電導状態に転移する臨界温度以下の温度に冷却し、その超伝導状態を維持するため、固定された冷媒源から回転運動をする回転子の超電導コイルに常時冷媒を供給するための構造を提供しなければならない。   However, in the superconducting synchronous machine with the above structure, the superconducting coil is cooled to a temperature lower than the critical temperature at which it is transferred to the superconducting state, and the superconducting state is maintained. A structure must be provided for constantly supplying refrigerant to the coil.

そこで、本発明が解決しようとする他の課題は、超電導コイルを効率よく冷却することができ、且つ、超電導コイルの磁束を効率よく利用することができる超電導同期機を提供することにある。   Therefore, another problem to be solved by the present invention is to provide a superconducting synchronous machine that can efficiently cool a superconducting coil and can efficiently use the magnetic flux of the superconducting coil.

さらに、本発明は、本発明の超電導同期機を利用した舶用ポッド推進機に関する。   Furthermore, the present invention relates to a marine pod propulsion device using the superconducting synchronous machine of the present invention.

従来、円筒状の回転子の外周面にバルク超電導体を固定し、その外周に回転子と同軸の円筒状の電機子コイルを配設したラジアルギャップ型の舶用ポッド推進機は提案されていた。   Conventionally, a radial gap marine pod propulsion machine has been proposed in which a bulk superconductor is fixed to the outer peripheral surface of a cylindrical rotor and a cylindrical armature coil coaxial with the rotor is disposed on the outer periphery thereof.

ラジアルギャップ型の舶用ポッド推進機は、回転子の外周に設けられたバルク超電導体とさらにその外周に設けられた電機子コイルとの間で力が発生し、回転軸に関して離れたところで力が発生するため、回転トルクが大きいという利点がある。   A radial gap type marine pod propulsion machine generates a force between a bulk superconductor provided on the outer periphery of the rotor and an armature coil provided on the outer periphery of the rotor. Therefore, there is an advantage that the rotational torque is large.

しかし、ラジアルギャップ型の舶用ポッド推進機は、同一のバルク超電導体の磁力によって大きな回転トルクを得ようとすると、回転子の半径を大きくし、力の作用点から回転軸までの距離をさらに大きくしなければならなかった。   However, the radial gap type marine pod propulsion unit increases the rotor radius and increases the distance from the point of action of the force to the rotation axis when trying to obtain a large rotational torque by the magnetic force of the same bulk superconductor. Had to do.

ところが、回転子の半径を大きくすれば、舶用ポッド推進機の半径が増大し、推進方向に対する舶用ポッド推進機の横断面積が増大する結果、推進抵抗も増大することになる。このため、ラジアルギャップ型舶用ポッド推進機において出力を大きくすることには限界があった。   However, if the radius of the rotor is increased, the radius of the marine pod propulsion unit is increased, and the cross-sectional area of the marine pod propulsion unit with respect to the propulsion direction is increased, resulting in an increase in propulsion resistance. For this reason, there was a limit to increasing the output in the radial gap type marine pod propulsion device.

そこで、本発明が解決しようとするさらに他の課題は、推進抵抗が小さく、且つ、推進力が大きい舶用ポッド推進機を提供することにある。   Accordingly, still another problem to be solved by the present invention is to provide a marine pod propulsion device having a small propulsion resistance and a large propulsive force.

本発明の超電導同期機は、回転軸に回転板を設け、該回転板に超電導コイルを固定し、前記超電導コイルの回転軌道の両側に周方向に所定間隔で互いに対向するように電機子コイルを配設した超電導同期機において、前記回転板は、前記超電導コイルの巻線中心軸の軸方向端面が外部に露出するように前記超電導コイルを保持し、前記回転板と前記回転軸は冷媒源に連通する冷媒流路を有し、前記超電導コイルは、その表面の一部が回転板の冷媒流路の内部空間に開放され、あるいは、仕切壁を介して前記回転板の冷媒流路に接している、ことを特徴とするものである。   In the superconducting synchronous machine of the present invention, a rotating plate is provided on a rotating shaft, a superconducting coil is fixed to the rotating plate, and armature coils are arranged on both sides of the rotating track of the superconducting coil so as to face each other at a predetermined interval in the circumferential direction. In the disposed superconducting synchronous machine, the rotating plate holds the superconducting coil so that the axial end surface of the winding central axis of the superconducting coil is exposed to the outside, and the rotating plate and the rotating shaft serve as a refrigerant source. The superconducting coil has a communicating refrigerant flow path, and a part of the surface of the superconducting coil is opened to an internal space of the refrigerant flow path of the rotating plate, or is in contact with the refrigerant flow path of the rotating plate through a partition wall. It is characterized by that.

前記超電導コイルは、電機子コイルの対向面と正面ほぼ同一形状に巻成されるのが好ましい。   The superconducting coil is preferably wound in substantially the same shape as the front surface of the armature coil.

前記超電導コイルと電機子コイルは、正面形状が扇状になるように巻成されていることが好ましい。   The superconducting coil and the armature coil are preferably wound so that the front shape is a fan shape.

前記回転軸は、冷媒の供給側と回収側の流路を形成する2重以上の多重管からなり、前記回転軸の供給側冷媒流路は前記回転板の冷媒流路に連通し、前記超電導コイルの巻線の外周面を周回し、前記回転軸の回収側冷媒流路に連通するようにすることができる。   The rotating shaft is composed of a double or more multiple tube forming a refrigerant supply side and a recovery side flow path, and the supply side refrigerant flow path of the rotating shaft communicates with the refrigerant flow path of the rotating plate, and the superconducting The outer circumferential surface of the coil winding can be circulated to communicate with the recovery-side refrigerant flow path of the rotating shaft.

本発明による超電導同期機は、回転軸に回転板を設け、該回転板に超電導コイルを固定し、前記超電導コイルの回転軌道の両側に周方向に所定間隔で互いに対向するように電機子コイルを配設した超電導同期機において、前記回転板は空洞部を有し、前記空洞部は前記超電導コイルの巻線中心軸の軸方向端面が前記回転軸と平行になるように前記超電導コイルをその内部に収容固定し、前記回転軸は冷媒源に連通する冷媒流路を有し、前記回転軸の冷媒流路は前記回転板の空洞部に連通し、前記超電導コイルの外表面は固定部材との接触部分を除いて前記空洞部内の空間に開放されている、ことを特徴とするものである。   In the superconducting synchronous machine according to the present invention, a rotating plate is provided on a rotating shaft, a superconducting coil is fixed to the rotating plate, and armature coils are arranged on both sides of the rotating track of the superconducting coil so as to face each other at a predetermined interval in the circumferential direction. In the arranged superconducting synchronous machine, the rotating plate has a hollow portion, and the hollow portion has the superconducting coil disposed therein so that an axial end surface of a winding central axis of the superconducting coil is parallel to the rotating shaft. The rotating shaft has a refrigerant flow path communicating with a refrigerant source, the refrigerant flow path of the rotating shaft communicates with a cavity of the rotating plate, and the outer surface of the superconducting coil is connected to a fixing member. Except for the contact portion, it is open to the space in the cavity.

前記回転軸は、冷媒の供給側と回収側の流路を形成する2重以上の多重管からなり、前記回転軸の供給側冷媒流路は前記回転板の空洞部に連通し、前記回転板の空洞部は前記回転軸の回収側冷媒流路に連通するようにすることができる。
前記電機子コイルは冷媒容器によって保持され、前記電機子コイルは前記超電導コイルと対向する面及び前記冷媒容器によって保持される外表面を除く外表面が前記冷媒容器の内部空間に開放され、あるいは仕切壁を介して前記冷媒容器内の空間と接しているようにすることができる。
The rotating shaft is composed of a double or more multiple tube forming a refrigerant supply side and a recovery side flow path, and the supply side refrigerant flow path of the rotating shaft communicates with a cavity of the rotating plate, and the rotating plate The cavity portion can communicate with the recovery-side refrigerant flow path of the rotating shaft.
The armature coil is held by a refrigerant container, and the armature coil has an outer surface excluding a surface facing the superconducting coil and an outer surface held by the refrigerant container open to an internal space of the refrigerant container, or a partition. It can be in contact with the space in the refrigerant container through a wall.

前記回転軸の少なくとも一部と回転板と電機子と電機子の冷媒容器を内包するハウジングを有し、前記ハウジングは、ハウジングの内部空間と真空装置とを接続する減圧ダクトまたは減圧ノズルを有するようにすることができる。   A housing including at least a part of the rotating shaft, a rotating plate, an armature, and a refrigerant container for the armature, wherein the housing includes a decompression duct or a decompression nozzle that connects an internal space of the housing and a vacuum device; Can be.

前記ハウジングは真空室かつ防爆室を構成するようにすることができる。   The housing may constitute a vacuum chamber and an explosion-proof chamber.

前記回転板は前記回転軸上に複数枚固定され、隣接する回転板の間、及び回転板の列方向の両端外側に前記電機子コイルを設けるようにすることができる。   A plurality of the rotating plates may be fixed on the rotating shaft, and the armature coils may be provided between adjacent rotating plates and outside both ends in the row direction of the rotating plates.

前記ハウジングに前記ハウジングから突出した前記回転軸を内包する付加ハウジングを取り付け、前記付加ハウジングに真空装置に連通する減圧ダクトまたは減圧ノズルを設けるとともに、冷媒源と連通する冷媒配管を前記付加ハウジングに挿通固定し、前記冷媒配管の挿入端部に、前記回転軸の端部を前記付加ハウジングと非接触の状態で支持するとともに前記回転軸の冷媒流路と前記冷媒配管に連通する流路を有する支承部材を固定するようにすることができる。   An additional housing containing the rotating shaft protruding from the housing is attached to the housing, a decompression duct or a decompression nozzle communicating with a vacuum device is provided in the additional housing, and a refrigerant pipe communicating with a refrigerant source is inserted into the additional housing. A support having a flow path that is fixed and supports the end of the rotating shaft in a non-contact state with the additional housing at the insertion end of the refrigerant pipe and communicates with the refrigerant flow path of the rotating shaft and the refrigerant pipe. The member can be fixed.

本発明による舶用ポッド推進機は、回転軸に複数枚の回転板を所定間隔に設け、該回転板に超電導コイルを固定し、前記回転板の間および前記回転板の列方向の両端外側に前記超電導コイルの回転軌道の近傍に周方向に所定間隔で電機子コイルを配設し、前記回転板は、前記超電導コイルの巻線中心軸の軸方向端面が外部に露出するように前記超電導コイルを保持し、前記回転板と前記回転軸は冷媒源に連通する冷媒流路を有し、前記超電導コイルはその表面の一部が回転板の冷媒流路の内部空間に開放され、あるいは、仕切壁を介して前記回転板の冷媒流路に接しており、前記電機子コイルと前記回転板と前記回転軸の一部を内包するポッドを有し、前記回転軸の一端部はポッドから突出し先端部にプロペラを有する、ことを特徴とするものである。   In the marine pod propulsion apparatus according to the present invention, a plurality of rotating plates are provided at predetermined intervals on a rotating shaft, a superconducting coil is fixed to the rotating plate, and the superconducting coils are disposed between the rotating plates and outside both ends in the row direction of the rotating plates. The armature coils are arranged at predetermined intervals in the circumferential direction in the vicinity of the rotation track of the coil, and the rotating plate holds the superconducting coil so that the axial end surface of the winding central axis of the superconducting coil is exposed to the outside. The rotary plate and the rotary shaft have a refrigerant flow path communicating with a refrigerant source, and a part of the surface of the superconducting coil is opened to an internal space of the refrigerant flow path of the rotary plate, or through a partition wall. A pod that is in contact with the refrigerant flow path of the rotating plate and includes the armature coil, the rotating plate, and a part of the rotating shaft, one end portion of the rotating shaft protruding from the pod and a propeller at the tip portion Also characterized by having It is.

本発明の舶用ポッド推進機は、回転軸に複数枚の回転板を所定間隔に設け、該回転板に超電導コイルを固定し、前記回転板の間および前記回転板の列方向の両端外側に前記超電導コイルの回転軌道の近傍に周方向に所定間隔で電機子コイルを配設し、前記回転板は空洞部を有し、前記空洞部は前記超電導コイルの巻線中心軸の軸方向端面が前記回転軸と平行になるように前記超電導コイルをその内部に収容固定し、前記回転軸は冷媒源に連通する冷媒流路を有し、前記回転軸の冷媒流路は前記回転板の空洞部に連通し、前記超電導コイルの外表面は固定部材との接触部分を除いて前記空洞部内の空間に開放されており、
前記電機子と前記回転板と前記回転軸の一部を内包するポッドを有し、前記回転軸の一端部はポッドから突出し先端部にプロペラを有する、ことを特徴とするものである。
In the marine pod propulsion device according to the present invention, a plurality of rotating plates are provided at predetermined intervals on a rotating shaft, a superconducting coil is fixed to the rotating plate, and the superconducting coils are arranged between the rotating plates and outside both ends in the row direction of the rotating plates. The armature coils are arranged at predetermined intervals in the circumferential direction in the vicinity of the rotation track of the coil, the rotating plate has a hollow portion, and the hollow portion has an axial end surface of the winding central axis of the superconducting coil. The superconducting coil is housed and fixed in the coil so as to be parallel to the rotary coil, the rotary shaft has a refrigerant flow path communicating with a refrigerant source, and the refrigerant flow path of the rotary shaft communicates with a cavity of the rotary plate. The outer surface of the superconducting coil is open to the space in the cavity except for the contact portion with the fixing member.
The armature, the rotating plate, and a pod that includes a part of the rotating shaft are included, and one end of the rotating shaft protrudes from the pod and has a propeller at the tip.

本発明の一つの超電導同期機によれば、超電導コイルが回転板によってその巻線軸方向の端面が外部に露出するように保持される。これにより、超電導コイルの巻線軸方向端面と電機子コイルの間の距離を可能な限り小さくすることができ、その結果、超電導コイルと電機子コイルの間に強い力が働き、強い回転力あるいは誘導起電力を発生させることができる。   According to one superconducting synchronous machine of the present invention, the superconducting coil is held by the rotating plate so that the end surface in the winding axis direction is exposed to the outside. As a result, the distance between the end surface in the winding axis direction of the superconducting coil and the armature coil can be made as small as possible. As a result, a strong force acts between the superconducting coil and the armature coil, resulting in a strong rotational force or induction. An electromotive force can be generated.

また、本発明は、超電導コイルを用いることにより、バルク超電導体よりも強い磁力を発生することができる。さらに、超電導コイルを用いることにより、巻線軸方向に垂直な横断面の面積を大きくすることができ、磁極の面積を大きくすることができる。したがって、高い磁束密度と広い磁極面の面積の相乗効果により、強い回転力あるいは誘導起電力を発生させる超電導同期機を得ることができる
本発明の一つの超電導同期機によれば、超電導コイルを回転板の空洞部に収容・固定し、空洞部に冷媒流路を連通させ、超電導コイルの外表面は固定部材との接触部分を除いて空洞部内の空間に開放されている。
Moreover, the present invention can generate a magnetic force stronger than that of the bulk superconductor by using the superconducting coil. Furthermore, by using a superconducting coil, the area of the cross section perpendicular to the winding axis direction can be increased, and the area of the magnetic pole can be increased. Therefore, a superconducting synchronous machine that generates a strong rotational force or induced electromotive force can be obtained by a synergistic effect of a high magnetic flux density and a wide magnetic pole surface area. According to one superconducting synchronous machine of the present invention, a superconducting coil can be rotated. The plate is accommodated and fixed in the cavity of the plate, and the refrigerant flow path is communicated with the cavity. The outer surface of the superconducting coil is open to the space in the cavity except for the contact portion with the fixing member.

本発明によれば、超電導コイルの外表面は固定部材との接触部分を除いて空洞部内の空間に開放されているので、超電導コイルの外表面のほぼ全部が冷媒によって冷却され、冷却効率が高い超電導同期機を得ることができる。   According to the present invention, since the outer surface of the superconducting coil is open to the space in the cavity except for the contact portion with the fixing member, almost all of the outer surface of the superconducting coil is cooled by the refrigerant, and the cooling efficiency is high. A superconducting synchronous machine can be obtained.

本発明の舶用ポッド推進機によれば、回転軸方向に複数の回転板を配設し、その数に比例して強い回転力を得ることができる。その一方、かかる回転力の増大を図っても、回転板の半径、ひいては舶用ポッド推進機の推進方向に対する横断面積が増大しないので、推進抵抗の増大が緩やかである。その結果、推力が強く推進抵抗が少ない舶用ポッド推進機を得ることができる。   According to the marine pod propulsion device of the present invention, a plurality of rotating plates can be arranged in the direction of the rotation axis, and a strong rotational force can be obtained in proportion to the number of the rotating plates. On the other hand, even if such an increase in rotational force is attempted, the increase in propulsion resistance is moderate because the radius of the rotating plate and thus the cross-sectional area with respect to the propulsion direction of the marine pod propulsion device does not increase. As a result, a marine pod propulsion device having a strong thrust and a low propulsion resistance can be obtained.

以下に本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は本発明の一実施形態による超電導同期機の縦断面を示している。   FIG. 1 shows a longitudinal section of a superconducting synchronous machine according to an embodiment of the present invention.

本実施形態による超電導同期機1は、回転軸2上に回転板3を設け、回転板3上に超電導コイル4を固定している。   In the superconducting synchronous machine 1 according to the present embodiment, a rotating plate 3 is provided on a rotating shaft 2, and a superconducting coil 4 is fixed on the rotating plate 3.

超電導コイル4の回転軌道の両側に周方向に一定の間隔で互いに対向するように電機子コイル5が設けられている。   Armature coils 5 are provided on both sides of the rotation track of the superconducting coil 4 so as to face each other at regular intervals in the circumferential direction.

回転板3は内部に冷媒を流通させる冷媒流路6を有している。   The rotating plate 3 has a refrigerant flow path 6 through which the refrigerant flows.

また、回転軸2は多重管からなり、図示しない冷媒源に接続する、供給側の冷媒流路7と回収側の冷媒流路8を有している。   The rotating shaft 2 is composed of multiple tubes, and has a supply-side refrigerant channel 7 and a recovery-side refrigerant channel 8 connected to a refrigerant source (not shown).

電機子コイル5は、冷媒容器9によって保持されている。電機子コイルの冷媒容器9は、冷媒配管10,11によって図示しない冷媒源に接続されている。   The armature coil 5 is held by a refrigerant container 9. The refrigerant container 9 of the armature coil is connected to a refrigerant source (not shown) by refrigerant pipes 10 and 11.

前記回転軸2の一部と回転板3と電機子コイル5はハウジング12によって囲まれている。   A part of the rotating shaft 2, the rotating plate 3 and the armature coil 5 are surrounded by a housing 12.

ハウジング12は、図示しない真空装置とを接続する減圧ダクトまたは減圧ノズル13を有している。また、本実施形態のハウジング12は内部を観察できる窓14を有している。   The housing 12 has a decompression duct or decompression nozzle 13 that connects to a vacuum device (not shown). Moreover, the housing 12 of this embodiment has a window 14 through which the inside can be observed.

回転軸2とハウジング12の間には、構造的に十分強度を有するスリーブ15,16が介挿されている。   Between the rotary shaft 2 and the housing 12, sleeves 15 and 16 having sufficient structural strength are inserted.

スリーブ15,16は、内端部がフランジになっており、回転板3に固定でき、回転軸2と回転板3とを支持している。   The sleeves 15 and 16 have flanges at their inner ends, can be fixed to the rotating plate 3, and support the rotating shaft 2 and the rotating plate 3.

スリーブ15,16とハウジング12の間にはベアリング17,18が介装され、スリーブ15,16と回転軸2の間にはシール材19,20が介装されている。   Bearings 17 and 18 are interposed between the sleeves 15 and 16 and the housing 12, and seal materials 19 and 20 are interposed between the sleeves 15 and 16 and the rotary shaft 2.

本実施形態では、ハウジング12の側壁に付加ハウジング21が取り付けられている。   In the present embodiment, the additional housing 21 is attached to the side wall of the housing 12.

付加ハウジング21には図示しない真空装置に連通する減圧ダクトまたは減圧ノズル22が設けられている。付加ハウジング21には、冷媒源と連通する供給側冷媒配管23と回収側冷媒配管24が挿通され、固定されている。供給側冷媒配管23と回収側冷媒配管24の挿入端部には、付加ハウジング21と非接触状態で支承部材25が固定されている。支承部材25は、回転軸2の端部を回転可能に支持している。また、支承部材25には、回転軸の冷媒流路7,8と冷媒配管23,24とを連通させる冷媒用の流路26が設けられている。支承部材25は適宜複数の部材によって構成することができ、本実施形態では、外筒と内筒の2部材からなる。また、本実施形態の支承部材25は、回転軸2と支承部材25の回転支承部から漏れる可能性がある冷媒を外部に排出するドレン配管27,28が設けられている。ドレン配管27,28はやはり付加ハウジング21に挿通され、固定され、それらの先端で支承部材25を支持するようになっている。   The additional housing 21 is provided with a decompression duct or decompression nozzle 22 communicating with a vacuum device (not shown). A supply-side refrigerant pipe 23 and a recovery-side refrigerant pipe 24 that are in communication with the refrigerant source are inserted and fixed in the additional housing 21. A support member 25 is fixed to the insertion end portions of the supply side refrigerant pipe 23 and the recovery side refrigerant pipe 24 in a non-contact state with the additional housing 21. The support member 25 supports the end of the rotary shaft 2 so as to be rotatable. In addition, the support member 25 is provided with a refrigerant flow path 26 that allows the refrigerant flow paths 7 and 8 of the rotating shaft to communicate with the refrigerant pipes 23 and 24. The support member 25 can be configured by a plurality of members as appropriate, and in this embodiment, the support member 25 includes two members, an outer cylinder and an inner cylinder. Further, the support member 25 of the present embodiment is provided with drain pipes 27 and 28 for discharging refrigerant that may leak from the rotary support portion of the rotary shaft 2 and the support member 25 to the outside. The drain pipes 27 and 28 are inserted through the additional housing 21 and fixed, and support the support member 25 at their tips.

本実施形態の超電導同期機1においては、冷媒は付加ハウジングに取り付けられている供給側冷媒配管23から回転軸の供給側の冷媒流路7を通り、回転板の冷媒流路6に流れ、超電導コイル4を冷却した後に回転軸の回収側の冷媒流路8に流れ、付加ハウジングの回収側冷媒配管24を通って冷媒源に戻る。   In the superconducting synchronous machine 1 of the present embodiment, the refrigerant flows from the supply side refrigerant pipe 23 attached to the additional housing through the refrigerant flow path 7 on the supply side of the rotary shaft to the refrigerant flow path 6 of the rotary plate, and is thus superconductive. After the coil 4 is cooled, it flows into the refrigerant flow path 8 on the collection side of the rotating shaft, and returns to the refrigerant source through the collection side refrigerant pipe 24 of the additional housing.

また、同一系統で異系統でもよい冷媒源から冷媒が、冷媒配管10,11を通って電機子の冷媒容器9の内部空間に流れ、電機子コイル5を冷却した後に冷媒源に戻るようになっている。   In addition, the refrigerant flows from the refrigerant source, which may be the same system or a different system, through the refrigerant pipes 10 and 11 to the internal space of the armature refrigerant container 9, cools the armature coil 5, and then returns to the refrigerant source. ing.

ハウジング12は、減圧ダクトまたは減圧ノズル13から真空装置によって減圧され、運転時には内部が真空の状態になる。   The housing 12 is decompressed by a vacuum device from a decompression duct or a decompression nozzle 13, and the inside is in a vacuum state during operation.

また、付加ハウジング21も、減圧ダクトまたは減圧ノズル22から真空装置によって減圧され、運転時には内部が真空の状態になる。   The additional housing 21 is also decompressed by the vacuum device from the decompression duct or the decompression nozzle 22, and the inside is in a vacuum state during operation.

図2は、正面から見た回転板3の内部の冷媒流路6を示している。   FIG. 2 shows the refrigerant flow path 6 inside the rotating plate 3 as viewed from the front.

図2に示すように、本実施形態の回転板の冷媒流路6は左右両系統に別れ、導入部は回転軸2の供給側の冷媒流路7と連通し、それらは超電導コイル4の周囲を可能な限り周回し、回転軸2の回収側の冷媒流路8に戻るように形成されている。   As shown in FIG. 2, the refrigerant flow path 6 of the rotating plate of the present embodiment is divided into both left and right systems, and the introduction part communicates with the refrigerant flow path 7 on the supply side of the rotating shaft 2, which is around the superconducting coil 4. Is made as much as possible to return to the refrigerant flow path 8 on the recovery side of the rotating shaft 2.

超電導コイル4は、回転板3に設けられた孔に嵌着されるようになっている。   The superconducting coil 4 is fitted into a hole provided in the rotating plate 3.

図3は、回転板3の内部の冷媒流路6の斜視図を示している。   FIG. 3 shows a perspective view of the refrigerant flow path 6 inside the rotating plate 3.

図3から明らかなように、回転板3の冷媒流路6は、好ましくは回転板3に設けられた溝からなる。回転板3は、図3に示していない平面同形状の蓋を有し、その蓋をすることによって冷媒流路6が閉じられ、流路が形成される。蓋にも超電導コイル4の端面を露出させる孔が設けられており、これによって蓋をした状態でも、超電導コイル4はその両端面が回転板3の外部に露出するようになっている。   As is clear from FIG. 3, the refrigerant flow path 6 of the rotating plate 3 is preferably a groove provided in the rotating plate 3. The rotating plate 3 has a flat cover that is not shown in FIG. 3, and the refrigerant flow path 6 is closed by forming the cover to form a flow path. The lid is also provided with a hole for exposing the end face of the superconducting coil 4, so that both end faces of the superconducting coil 4 are exposed to the outside of the rotating plate 3 even when the lid is covered.

図4は、超電導コイル4の保持状態を示している。   FIG. 4 shows the holding state of the superconducting coil 4.

図4に示すように、本発明においては、超電導コイル4は、巻線軸方向が回転軸2と平行になるように保持される。冷媒流路6は超電導コイル4の巻線の外周側面で保持されている。   As shown in FIG. 4, in the present invention, the superconducting coil 4 is held so that the winding axis direction is parallel to the rotating shaft 2. The refrigerant flow path 6 is held on the outer peripheral side surface of the winding of the superconducting coil 4.

本実施形態によれば、超電導コイル4の巻線軸方向の両端面は回転板3の外部に露出している。   According to the present embodiment, both end surfaces of the superconducting coil 4 in the winding axis direction are exposed to the outside of the rotating plate 3.

上記構造により、本実施形態の超電導同期機1によれば、超電導コイル4の巻線軸方向両端面を可能な限り電機子コイル5に近づけることができ、アキシャルギャップを可能な限り小さくすることができる。   With the above structure, according to the superconducting synchronous machine 1 of the present embodiment, both end surfaces in the winding axis direction of the superconducting coil 4 can be brought as close to the armature coil 5 as possible, and the axial gap can be made as small as possible. .

なお、図4に示した断面図では、超電導コイル4と冷媒流路6の間は、回転板3と一体の部材からなる仕切壁によって仕切られている。しかし、これに限られず、図5に示すように、超電導コイル4と冷媒流路6の間は、回転板3と別部材29からなる仕切壁によって仕切られるようにしてもよい。   In the cross-sectional view shown in FIG. 4, the superconducting coil 4 and the refrigerant flow path 6 are partitioned by a partition wall made of a member integral with the rotating plate 3. However, the present invention is not limited to this, and as shown in FIG. 5, the superconducting coil 4 and the refrigerant flow path 6 may be partitioned by a partition wall composed of the rotating plate 3 and the separate member 29.

さらに、図示していないが、超電導コイル4は、その巻線の周方向の側面が冷媒流路6の内部空間に開放され、冷媒によって直接冷やされるようにしても良い。   Further, although not shown, the superconducting coil 4 may have its circumferential side surface opened to the internal space of the refrigerant flow path 6 and directly cooled by the refrigerant.

別部材29によって超電導コイル4と冷媒流路6とを仕切る場合は、伝熱性の高い金属を仕切壁に用いることにより、高い冷却効率を得ることができる。   When the superconducting coil 4 and the refrigerant flow path 6 are partitioned by the separate member 29, high cooling efficiency can be obtained by using a metal having high heat conductivity for the partition wall.

なお、図5においては、超電導コイル4は、一つの超電導コイル4からなるが、巻線軸方向に短い一対の超電導コイル4をそれぞれ回転板3の両側面に配置することもできる。その場合には、冷媒流路6は両超電導コイル4の間にも流れるようにすることにより、さらに高い冷却効果を得られる。   In FIG. 5, the superconducting coil 4 is composed of one superconducting coil 4, but a pair of superconducting coils 4 that are short in the winding axis direction can be disposed on both side surfaces of the rotating plate 3, respectively. In that case, a higher cooling effect can be obtained by allowing the refrigerant flow path 6 to flow between both the superconducting coils 4.

なお、回転軸2は、2重以上の多重管とすることができる。2重以上の多重管にすれば、回転板3の各冷媒流路6ごとに回転軸の冷媒流路を確保でき、より冷媒が安定的に流通するようにすることができる。   In addition, the rotating shaft 2 can be made into a double tube or more. If the multiple pipes are double or more, it is possible to secure the refrigerant flow path of the rotating shaft for each refrigerant flow path 6 of the rotating plate 3, so that the refrigerant can flow more stably.

また、本実施形態によれば、回転軸2、回転板3、電機子コイル5が全体としてハウジング12の内部に収納される。前述したように、ハウジング12の内部は真空状態に減圧される。これにより、回転軸2、回転板3、電機子コイル5に対して優れた断熱性を発揮することができる。また、好ましくは、ハウジング12は、真空室と防爆室を兼ねる強度とすることが好ましい。ハウジング12が防爆室を兼ねる場合、万一冷媒が大量に漏れて急激に蒸発するような異常事態が生じても、爆発を防止し、安全な超電導同期機を得ることができる。   Further, according to the present embodiment, the rotating shaft 2, the rotating plate 3, and the armature coil 5 are accommodated inside the housing 12 as a whole. As described above, the inside of the housing 12 is decompressed to a vacuum state. Thereby, the heat insulation excellent in the rotating shaft 2, the rotating plate 3, and the armature coil 5 can be exhibited. In addition, the housing 12 is preferably strong enough to serve as a vacuum chamber and an explosion-proof chamber. When the housing 12 also serves as an explosion-proof chamber, even if an abnormal situation occurs in which a large amount of refrigerant leaks and rapidly evaporates, explosion can be prevented and a safe superconducting synchronous machine can be obtained.

本実施形態の付加ハウジング21は真空に減圧されることにより、ハウジング12から突出した部分の回転軸2の断熱に寄与することができる。また、付加ハウジング21は、回転軸2の末端の振れを防止する効果を有する。   The additional housing 21 of the present embodiment can contribute to the heat insulation of the rotating shaft 2 at the portion protruding from the housing 12 by being decompressed to a vacuum. Further, the additional housing 21 has an effect of preventing the end of the rotating shaft 2 from shaking.

すなわち、付加ハウジング21は、基部がハウジング12に固定され、供給側冷媒配管23、回収側冷媒配管24を介して支承部材25を支持している(好ましくはドレン配管27,28も支承部材25を支持するようにする)。支承部材25は、回転軸2の末端部を回転可能に把持しているので、回転軸2の末端の振れ回りが効果的に防止される。さらに、回転軸2の全体が真空層によって断熱されるので、きわめて冷却効率の高い超電導同期機を得ることができる。   That is, the base of the additional housing 21 is fixed to the housing 12 and supports the support member 25 via the supply side refrigerant pipe 23 and the recovery side refrigerant pipe 24 (preferably the drain pipes 27 and 28 also support the support member 25. Support it). Since the support member 25 grips the end portion of the rotating shaft 2 in a rotatable manner, the end of the rotating shaft 2 is effectively prevented from swinging. Furthermore, since the entire rotating shaft 2 is insulated by the vacuum layer, a superconducting synchronous machine with extremely high cooling efficiency can be obtained.

なお、図1〜図5は、超電導コイル4は円形あるいは円環状に巻いたものを示している。しかし、本発明の超電導体コイル4は、円形あるいは円環状に限られない。本発明においては、超電導コイルの巻数を多くし、巻線軸方向に対する横断面の面積を大きくすることが好ましい。また、図6に示すように、電機子コイル5と正面ほぼ同一形状にするのが好ましい。特に超電導体コイル4を図6に示すように正面形状が扇状になるように巻装し、回転板3の全面を覆うようにすることにより、電機子コイル5と隙間無く作用し合うことができ、高い出力の超電導同期機を得ることができる。   1 to 5 show the superconducting coil 4 wound in a circular or annular shape. However, the superconductor coil 4 of the present invention is not limited to a circular shape or an annular shape. In the present invention, it is preferable to increase the number of turns of the superconducting coil and increase the area of the cross section with respect to the winding axis direction. Moreover, as shown in FIG. 6, it is preferable to make it the front substantially the same shape as the armature coil 5. In particular, the superconductor coil 4 is wound so that the front shape is a fan shape as shown in FIG. 6 so as to cover the entire surface of the rotating plate 3, so that it can interact with the armature coil 5 without any gap. A high-power superconducting synchronous machine can be obtained.

次に本発明の第2の実施形態について説明する。この実施形態は、超電導コイルの全体を回転板に収納し、超電導コイルの全周面から超電導コイルを冷却するものである。   Next, a second embodiment of the present invention will be described. In this embodiment, the entire superconducting coil is housed in a rotating plate, and the superconducting coil is cooled from the entire peripheral surface of the superconducting coil.

図7は本発明の第2の実施形態による回転板を正面から見たものである。   FIG. 7 is a front view of a rotating plate according to the second embodiment of the present invention.

なお、図1〜6と同一部分については同一の符号を用いて示す。   In addition, about the same part as FIGS. 1-6, it shows using the same code | symbol.

図7に示すように、本実施形態の回転板30は、内部に比較的大きな空洞部31を有している。図7に例示する空洞部31は円環状の形状を有しているが、空洞部の形状は円環に限られない。   As shown in FIG. 7, the rotating plate 30 of this embodiment has a relatively large cavity 31 inside. The cavity portion 31 illustrated in FIG. 7 has an annular shape, but the shape of the cavity portion is not limited to the annular shape.

本実施形態では、円環状の空洞部31に周方向に8個の超電導コイル4を収納し、固定している。   In the present embodiment, eight superconducting coils 4 are housed and fixed in the annular cavity 31 in the circumferential direction.

超電導コイル4は、第1実施形態と同様に、巻線軸方向が回転軸2と平行になるように配置されている。   Similar to the first embodiment, the superconducting coil 4 is arranged so that the winding axis direction is parallel to the rotating shaft 2.

超電導コイル4は、固定部材32によって回転板30のケーシングに固定されている。   The superconducting coil 4 is fixed to the casing of the rotating plate 30 by a fixing member 32.

回転軸2の供給側の冷媒流路7からは、4本の供給配管33が放射状に設けられている。また、4本の回収配管34が空洞部31から回転軸2の回収側の冷媒流路8に連通されている。なお、供給配管33と回収配管34の長短も図6に示した場合の逆でもよい。また、供給配管33と回収配管34の数は図7に示したものに限られない。   Four supply pipes 33 are provided radially from the refrigerant flow path 7 on the supply side of the rotary shaft 2. Further, four recovery pipes 34 communicate with the refrigerant flow path 8 on the recovery side of the rotary shaft 2 from the cavity 31. Note that the lengths of the supply pipe 33 and the recovery pipe 34 may be opposite to those shown in FIG. Further, the number of supply pipes 33 and recovery pipes 34 is not limited to that shown in FIG.

図8は、第2実施形態の超電導コイル4の収容固定状態を示す断面図である。   FIG. 8 is a cross-sectional view showing a housed and fixed state of the superconducting coil 4 of the second embodiment.

回転板30は、その内部に空洞部31を有し、超電導コイル4は固定部材32によって回転板30のケーシングに固定され、空洞部31の内部に収容されている。超電導コイル4の巻線軸方向端面は、回転板30のケーシングからわずかに離され、該端面も冷媒によって冷やされるようにすることができる。   The rotating plate 30 has a hollow portion 31 therein, and the superconducting coil 4 is fixed to the casing of the rotating plate 30 by a fixing member 32 and is accommodated in the hollow portion 31. The end surface in the winding axis direction of the superconducting coil 4 is slightly separated from the casing of the rotating plate 30, and the end surface can be cooled by the refrigerant.

また、図8に示すように、回転板30の外側をさらにケーシング35を設けることができる。ケーシング35は、回転板30の外表面を覆い、その内部を真空にすることができる。これにより、回転板30の外表面は真空室36によって覆われ、高い断熱効果によって高い冷却効率を得ることができる。   Further, as shown in FIG. 8, a casing 35 can be further provided outside the rotating plate 30. The casing 35 can cover the outer surface of the rotating plate 30 and make the inside vacuum. Thereby, the outer surface of the rotating plate 30 is covered with the vacuum chamber 36, and high cooling efficiency can be obtained by a high heat insulating effect.

ケーシング35は、電機子と回転板と回転軸の全体を内包するハウジングを設けることができない場合に有用である。   The casing 35 is useful when a housing that encloses the entire armature, the rotating plate, and the rotating shaft cannot be provided.

図7と8から明らかなように、本第2実施形態によれば、超電導コイル4は固定部材32を除く外表面が冷媒に直接接触し、高い冷却効率を得ることができる。   As is apparent from FIGS. 7 and 8, according to the second embodiment, the outer surface of the superconducting coil 4 except for the fixing member 32 is in direct contact with the refrigerant, and high cooling efficiency can be obtained.

また、ケーシング35により、回転板30を個々に断熱することができる。   In addition, the rotating plate 30 can be individually insulated by the casing 35.

図9は、電機子コイル5の冷却室の変形例を示している。図1と同一部分については同一の符号を用いて示す。   FIG. 9 shows a modification of the cooling chamber of the armature coil 5. The same parts as those in FIG. 1 are denoted by the same reference numerals.

図1の例では電機子コイル5の表面の一部が冷媒容器9の内部空間に直接開放されているが、図9の例では、電機子コイル5と冷媒容器9の内部空間は仕切壁37によって仕切られている。   In the example of FIG. 1, a part of the surface of the armature coil 5 is directly opened to the internal space of the refrigerant container 9, but in the example of FIG. 9, the internal space of the armature coil 5 and the refrigerant container 9 is a partition wall 37. It is partitioned by.

これにより、冷媒容器9の内部の冷媒が電機子を介して外部に漏れることを完全に防止することができる。また、電機子コイル5との接触面積を大きくすることにより高い冷却効果を奏する。   Thereby, it is possible to completely prevent the refrigerant inside the refrigerant container 9 from leaking outside through the armature. Moreover, a high cooling effect is achieved by increasing the contact area with the armature coil 5.

このように電機子コイル5を低温に冷却することにより、電機子コイル5の電気抵抗が低下し、強い着磁電流や回転磁界を生じることができる。   Thus, by cooling the armature coil 5 to a low temperature, the electric resistance of the armature coil 5 is reduced, and a strong magnetizing current and a rotating magnetic field can be generated.

図10は、本発明の変形例およびそれを応用した舶用ポッド推進機を概念的に示したものである。   FIG. 10 conceptually shows a modification of the present invention and a marine pod propulsion machine to which the modification is applied.

本発明の第1実施形態と第2実施形態による超電導同期機は、いずれも図10のように直列の構造にすることができる。   Each of the superconducting synchronous machines according to the first and second embodiments of the present invention can have a series structure as shown in FIG.

本発明による舶用ポッド推進機は、回転板と電機子を複数枚直列的に配置した超電導同期機を舶用ポッド推進機のポッド内に収納し、ポッドから突出した回転軸の先端にプロペラ等の推進手段を設けたものである。この場合に、上述したハウジング12の代わりにポッドを用いることができる。   The marine pod propulsion device according to the present invention stores a superconducting synchronous machine in which a plurality of rotating plates and armatures are arranged in series in the pod of the marine pod propulsion device, and propulsion of a propeller or the like at the tip of a rotating shaft protruding from the pod. Means are provided. In this case, a pod can be used instead of the housing 12 described above.

図10に示すように直列構造とすることにより、電機子の間に配置された超電導コイル4はすべて両磁極から出る磁束が無駄なく利用される。   By using a series structure as shown in FIG. 10, all the superconducting coils 4 arranged between the armatures use the magnetic flux from both magnetic poles without waste.

また、本発明による超電導同期機を直列構造にすることにより、推進抵抗が少なく、且つ、推進力が強い舶用ポッド推進機を得ることができる。   Further, by making the superconducting synchronous machine according to the present invention in a series structure, it is possible to obtain a marine pod propulsion machine with low propulsion resistance and strong propulsion.

すなわち、従来の舶用ポッド推進機は、限界があったバルク超電導体の磁界を補って強いトルクを得るために、バルク超電導体を筒状の回転子の周面に配置し、その外側に円筒状の電機子を設けたラジアルギャップ型の超電導同期機を用いていた。ラジアルギャップ型の超電導同期機によれば、広い面積のバルク超電導体を利用し、かつ、回転軸から離れたところで電機子との力の作用を生じることができる。   That is, the conventional marine pod propulsion unit has a bulk superconductor arranged on the circumferential surface of the cylindrical rotor and a cylindrical shape on the outer side in order to obtain a strong torque by supplementing the magnetic field of the bulk superconductor which has been limited. A radial gap superconducting synchronous machine with an armature was used. According to the radial gap type superconducting synchronous machine, a bulk superconductor having a large area can be used, and an action of a force with an armature can be generated at a distance from the rotating shaft.

しかし、回転軸から離れたところで電機子との力の作用を生じるということは、強いトルクを得られる反面、舶用ポッド推進機の外径の増大を招き、推進抵抗が増大した。   However, the fact that the force acts with the armature at a distance from the rotating shaft can provide a strong torque, but also causes an increase in the outer diameter of the marine pod propulsion device, which increases the propulsion resistance.

これに対して、図10の構造のラジアルギャップ型の超電導同期機を用いた舶用ポッド推進機は、回転子と電機子の数を多くすれば比例して出力が大きくなり、にもかかわらず、舶用ポッド推進機の外径が変わらないので、推進抵抗の増加が緩やかである。   On the other hand, the marine pod propulsion unit using the radial gap type superconducting synchronous machine having the structure of FIG. 10 has a proportionally larger output if the number of rotors and armatures is increased. Since the outer diameter of the marine pod propulsion unit does not change, the increase in propulsion resistance is moderate.

このように、本発明の舶用ポッド推進機によれば、推進抵抗が小さく、推進力が強い舶用ポッド推進機を得ることができる。   Thus, according to the marine pod propulsion device of the present invention, a marine pod propulsion device having a small propulsion resistance and a strong propulsive force can be obtained.

本発明の一実施形態による超電導同期機の縦断面図。1 is a longitudinal sectional view of a superconducting synchronous machine according to an embodiment of the present invention. 本発明の一実施形態による回転板の正面図。The front view of the rotating plate by one Embodiment of this invention. 本発明の一実施形態による回転板の斜視図。The perspective view of the rotating plate by one Embodiment of this invention. 本発明の一実施形態による超電導コイルの周辺の縦断面図。The longitudinal cross-sectional view of the periphery of the superconducting coil by one Embodiment of this invention. 本発明の一実施形態の変形例の縦断面図。The longitudinal cross-sectional view of the modification of one Embodiment of this invention. 本発明の一実施形態による回転板の正面図。The front view of the rotating plate by one Embodiment of this invention. 本発明の第二の実施形態による回転板の正面図。The front view of the rotating plate by 2nd embodiment of this invention. 本発明の第二の実施形態による超電導コイルの周辺の縦断面図。The longitudinal cross-sectional view of the periphery of the superconducting coil by 2nd embodiment of this invention. 本発明の電機子コイルの周辺の構造の変形例を示す縦断面図。The longitudinal cross-sectional view which shows the modification of the structure of the periphery of the armature coil of this invention. 回転板と電機子を直列構造とした本発明による舶用ポッド推進機の概略断面図。1 is a schematic cross-sectional view of a marine pod propulsion device according to the present invention in which a rotating plate and an armature are in series.

符号の説明Explanation of symbols

1 超電導同期機
2 回転軸
3 回転板
4 超電導コイル
5 電機子コイル
6 回転板の冷媒流路
7 回転軸の供給側の冷媒流路
8 回転軸の回収側の冷媒流路
9 電機子の冷媒容器
10 冷媒配管
11 冷媒配管
12 ハウジング
13 減圧ダクトまたは減圧ノズル
14 窓
15 スリーブ
16 スリーブ
17 ベアリング
18 ベアリング
19 シール材
20 シール材
21 付加ハウジング
22 減圧ダクトまたは減圧ノズル
23 供給側冷媒配管
24 回収側冷媒配管
25 支承部材
26 冷媒用の流路
27 ドレン配管
28 ドレン配管
29 仕切壁
30 回転板
31 空洞部
32 固定部材
33 供給配管
34 回収配管
35 ケーシング
36 真空室
37 仕切壁
DESCRIPTION OF SYMBOLS 1 Superconducting synchronous machine 2 Rotating shaft 3 Rotating plate 4 Superconducting coil 5 Armature coil 6 Refrigerant flow path of rotating plate 7 Refrigerant flow path on supply side of rotating shaft 8 Refrigerant flow path on collecting side of rotating shaft 9 Refrigerant container of armature DESCRIPTION OF SYMBOLS 10 Refrigerant piping 11 Refrigerant piping 12 Housing 13 Pressure reduction duct or pressure reduction nozzle 14 Window 15 Sleeve 16 Sleeve 17 Bearing 18 Bearing 19 Sealing material 20 Sealing material 21 Additional housing 22 Pressure reduction duct or pressure reduction nozzle 23 Supply side refrigerant piping 24 Recovery side refrigerant piping 25 Support member 26 Refrigerant flow path 27 Drain pipe 28 Drain pipe 29 Partition wall 30 Rotating plate 31 Cavity 32 Fixing member 33 Supply pipe 34 Recovery pipe 35 Casing 36 Vacuum chamber 37 Partition wall

Claims (13)

回転軸に回転板を設け、該回転板に超電導コイルを固定し、前記超電導コイルの回転軌道の両側に周方向に所定間隔で互いに対向するように電機子コイルを配設した超電導同期機において、
前記回転板は、前記超電導コイルの巻線中心軸の軸方向端面が外部に露出するように前記超電導コイルを保持し、
前記回転板と前記回転軸は冷媒源に連通する冷媒流路を有し、
前記超電導コイルは、その表面の一部が回転板の冷媒流路の内部空間に開放され、あるいは、仕切壁を介して前記回転板の冷媒流路に接している、ことを特徴とする超電導同期機。
In a superconducting synchronous machine in which a rotating plate is provided on a rotating shaft, a superconducting coil is fixed to the rotating plate, and armature coils are arranged so as to face each other at predetermined intervals in the circumferential direction on both sides of the rotating track of the superconducting coil.
The rotating plate holds the superconducting coil such that the axial end surface of the winding central axis of the superconducting coil is exposed to the outside.
The rotating plate and the rotating shaft have a refrigerant flow path communicating with a refrigerant source,
The superconducting coil is characterized in that a part of the surface of the superconducting coil is open to the internal space of the refrigerant flow path of the rotating plate, or is in contact with the refrigerant flow path of the rotating plate through a partition wall. Machine.
前記超電導コイルは、電機子コイルの対向面と正面ほぼ同一形状に巻成されていることを特徴とする請求項1に記載の超電導同期機。   The superconducting synchronous machine according to claim 1, wherein the superconducting coil is wound in substantially the same shape as the front surface of the armature coil. 前記超電導コイルと電機子コイルは、正面形状が扇状になるように巻成されていることを特徴とする請求項1に記載の超電導同期機。   2. The superconducting synchronous machine according to claim 1, wherein the superconducting coil and the armature coil are wound so that the front shape is a fan shape. 3. 前記回転軸は、冷媒の供給側と回収側の流路を形成する2重以上の多重管からなり、
前記回転軸の供給側冷媒流路は前記回転板の冷媒流路に連通し、前記超電導コイルの巻線の外周面を周回し、前記回転軸の回収側冷媒流路に連通する、ことを特徴とする請求項1に記載の超電導同期機。
The rotating shaft is composed of two or more multiple tubes forming a refrigerant supply side and a recovery side flow path,
The supply-side refrigerant flow path of the rotating shaft communicates with the refrigerant flow path of the rotating plate, circulates around the outer peripheral surface of the winding of the superconducting coil, and communicates with the recovery-side refrigerant flow path of the rotating shaft. The superconducting synchronous machine according to claim 1.
回転軸に回転板を設け、該回転板に超電導コイルを固定し、前記超電導コイルの回転軌道の両側に周方向に所定間隔で互いに対向するように電機子コイルを配設した超電導同期機において、
前記回転板は空洞部を有し、前記空洞部は前記超電導コイルの巻線中心軸の軸方向端面が前記回転軸と平行になるように前記超電導コイルをその内部に収容固定し、
前記回転軸は冷媒源に連通する冷媒流路を有し、
前記回転軸の冷媒流路は前記回転板の空洞部に連通し、前記超電導コイルの外表面は固定部材との接触部分を除いて前記空洞部内の空間に開放されている、ことを特徴とする超電導同期機。
In a superconducting synchronous machine in which a rotating plate is provided on a rotating shaft, a superconducting coil is fixed to the rotating plate, and armature coils are arranged so as to face each other at predetermined intervals in the circumferential direction on both sides of the rotating track of the superconducting coil.
The rotating plate has a hollow portion, and the hollow portion accommodates and fixes the superconducting coil therein so that an axial end surface of a winding central axis of the superconducting coil is parallel to the rotating shaft,
The rotating shaft has a refrigerant flow path communicating with a refrigerant source;
The refrigerant flow path of the rotating shaft communicates with the cavity of the rotating plate, and the outer surface of the superconducting coil is open to the space in the cavity except for the contact portion with the fixing member. Superconducting synchronous machine.
前記回転軸は、冷媒の供給側と回収側の流路を形成する2重以上の多重管からなり、
前記回転軸の供給側冷媒流路は前記回転板の空洞部に連通し、前記回転板の空洞部は前記回転軸の回収側冷媒流路に連通する、ことを特徴とする請求項5に記載の超電導同期機。
The rotating shaft is composed of two or more multiple tubes forming a refrigerant supply side and a recovery side flow path,
The supply-side refrigerant flow path of the rotary shaft communicates with a cavity portion of the rotary plate, and the cavity portion of the rotary plate communicates with a recovery-side refrigerant flow channel of the rotary shaft. Superconducting synchronous machine.
前記電機子コイルは冷媒容器によって保持され、前記電機子コイルは前記超電導コイルと対向する面及び前記冷媒容器によって保持される外表面を除く外表面が前記冷媒容器の内部空間に開放され、あるいは仕切壁を介して前記冷媒容器内の空間と接している、ことを特徴とする請求項1〜6のいずれか一項に記載の超電導体同期機。   The armature coil is held by a refrigerant container, and the armature coil has an outer surface excluding a surface facing the superconducting coil and an outer surface held by the refrigerant container open to an internal space of the refrigerant container, or a partition. The superconductor synchronous machine according to any one of claims 1 to 6, wherein the superconductor synchronous machine is in contact with a space in the refrigerant container through a wall. 前記回転軸の少なくとも一部と回転板と電機子と電機子の冷媒容器を内包するハウジングを有し、
前記ハウジングは、ハウジングの内部空間と真空装置とを接続する減圧ダクトまたは減圧ノズルを有する、ことを特徴とする請求項7に記載の超電導同期機。
A housing containing at least a part of the rotating shaft, a rotating plate, an armature, and a refrigerant container of the armature;
The superconducting synchronous machine according to claim 7, wherein the housing has a decompression duct or a decompression nozzle that connects an internal space of the housing and a vacuum device.
前記ハウジングは真空室かつ防爆室を構成する、ことを特徴とする請求項8に記載の超電導同期機。   The superconducting synchronous machine according to claim 8, wherein the housing constitutes a vacuum chamber and an explosion-proof chamber. 前記回転板は前記回転軸上に複数枚固定され、隣接する回転板の間、及び回転板の列方向の両端外側に前記電機子コイルを設けた、ことを特徴とする請求項1〜9のいずれか一項に記載の超電導同期機。   The plurality of rotating plates are fixed on the rotating shaft, and the armature coils are provided between adjacent rotating plates and outside both ends in the row direction of the rotating plates. The superconducting synchronous machine according to one item. 前記ハウジングに前記ハウジングから突出した前記回転軸を内包する付加ハウジングを取り付け、前記付加ハウジングに真空装置に連通する減圧ダクトまたは減圧ノズルを設けるとともに、冷媒源と連通する冷媒配管を前記付加ハウジングに挿通固定し、前記冷媒配管の挿入端部に、前記回転軸の端部を前記付加ハウジングと非接触の状態で支持するとともに前記回転軸の冷媒流路と前記冷媒配管に連通する流路を有する支承部材を固定した、ことを特徴とする請求項8,9.10のいずれか一項に記載の超電導同期機。   An additional housing containing the rotating shaft protruding from the housing is attached to the housing, a pressure reducing duct or a pressure reducing nozzle communicating with a vacuum device is provided in the additional housing, and a refrigerant pipe communicating with a refrigerant source is inserted into the additional housing. A support having a flow path that is fixed and supported at an insertion end of the refrigerant pipe in a state where the end of the rotary shaft is not in contact with the additional housing and communicates with the refrigerant flow path of the rotary shaft and the refrigerant pipe. The superconducting synchronous machine according to claim 8, wherein the member is fixed. 回転軸に複数枚の回転板を所定間隔に設け、該回転板に超電導コイルを固定し、前記回転板の間および前記回転板の列方向の両端外側に前記超電導コイルの回転軌道の近傍に周方向に所定間隔で電機子コイルを配設し、
前記回転板は、前記超電導コイルの巻線中心軸の軸方向端面が外部に露出するように前記超電導コイルを保持し、
前記回転板と前記回転軸は冷媒源に連通する冷媒流路を有し、
前記超電導コイルはその表面の一部が回転板の冷媒流路の内部空間に開放され、あるいは、仕切壁を介して前記回転板の冷媒流路に接しており、
前記電機子コイルと前記回転板と前記回転軸の一部を内包するポッドを有し、
前記回転軸の一端部はポッドから突出し先端部にプロペラを有する、ことを特徴とする舶用ポッド推進機。
A plurality of rotating plates are provided at a predetermined interval on the rotating shaft, a superconducting coil is fixed to the rotating plate, and in the circumferential direction between the rotating plates and outside both ends in the row direction of the rotating plates in the vicinity of the rotating track of the superconducting coils. Armature coils are arranged at predetermined intervals,
The rotating plate holds the superconducting coil such that the axial end surface of the winding central axis of the superconducting coil is exposed to the outside.
The rotating plate and the rotating shaft have a refrigerant flow path communicating with a refrigerant source,
A part of the surface of the superconducting coil is opened to the internal space of the refrigerant flow path of the rotating plate, or is in contact with the refrigerant flow path of the rotating plate via a partition wall,
A pod containing the armature coil, the rotating plate, and a part of the rotating shaft;
One end of the rotating shaft protrudes from the pod and has a propeller at the tip.
回転軸に複数枚の回転板を所定間隔に設け、該回転板に超電導コイルを固定し、前記回転板の間および前記回転板の列方向の両端外側に前記超電導コイルの回転軌道の近傍に周方向に所定間隔で電機子コイルを配設し、
前記回転板は空洞部を有し、前記空洞部は前記超電導コイルの巻線中心軸の軸方向端面が前記回転軸と平行になるように前記超電導コイルをその内部に収容固定し、
前記回転軸は冷媒源に連通する冷媒流路を有し、
前記回転軸の冷媒流路は前記回転板の空洞部に連通し、前記超電導コイルの外表面は固定部材との接触部分を除いて前記空洞部内の空間に開放されており、
前記電機子と前記回転板と前記回転軸の一部を内包するポッドを有し、
前記回転軸の一端部はポッドから突出し先端部にプロペラを有する、ことを特徴とする舶用ポッド推進機。
A plurality of rotating plates are provided at a predetermined interval on the rotating shaft, a superconducting coil is fixed to the rotating plate, and in the circumferential direction between the rotating plates and outside both ends in the row direction of the rotating plates in the vicinity of the rotating track of the superconducting coils. Armature coils are arranged at predetermined intervals,
The rotating plate has a hollow portion, and the hollow portion accommodates and fixes the superconducting coil therein so that an axial end surface of a winding central axis of the superconducting coil is parallel to the rotating shaft,
The rotating shaft has a refrigerant flow path communicating with a refrigerant source;
The refrigerant flow path of the rotating shaft communicates with the cavity portion of the rotating plate, and the outer surface of the superconducting coil is open to the space in the cavity portion except for the contact portion with the fixed member,
A pod containing the armature, the rotating plate, and a part of the rotating shaft;
One end of the rotating shaft protrudes from the pod and has a propeller at the tip.
JP2004028642A 2004-02-04 2004-02-04 Superconducting synchronous machine Expired - Lifetime JP3936340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028642A JP3936340B2 (en) 2004-02-04 2004-02-04 Superconducting synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028642A JP3936340B2 (en) 2004-02-04 2004-02-04 Superconducting synchronous machine

Publications (2)

Publication Number Publication Date
JP2005224001A true JP2005224001A (en) 2005-08-18
JP3936340B2 JP3936340B2 (en) 2007-06-27

Family

ID=34999213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028642A Expired - Lifetime JP3936340B2 (en) 2004-02-04 2004-02-04 Superconducting synchronous machine

Country Status (1)

Country Link
JP (1) JP3936340B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145778A (en) * 1997-07-28 1999-02-16 Fuji Electric Co Ltd Organic electroluminescent element and its manufacture
WO2006068039A1 (en) * 2004-12-24 2006-06-29 Sumitomo Electric Industries, Ltd. Axial-gap superconducting motor
JP2007060747A (en) * 2005-08-22 2007-03-08 Sumitomo Electric Ind Ltd Superconducting motor and vehicle equipped with that motor
JP2007245948A (en) * 2006-03-16 2007-09-27 Ihi Corp Water jet propulsion device
JP2007245947A (en) * 2006-03-16 2007-09-27 Ihi Corp Pod type propulsion unit
WO2007148736A1 (en) * 2006-06-23 2007-12-27 Ihi Corporation Inductor type synchronizer
JP2008001280A (en) * 2006-06-23 2008-01-10 Ihi Corp Marine propulsion apparatus
KR101014689B1 (en) * 2008-09-09 2011-02-16 두산중공업 주식회사 Rotary type ultralow temperature refrigerant supplier
KR101062599B1 (en) * 2009-10-21 2011-09-06 두산중공업 주식회사 Cooling flow path structure of superconducting rotary machine
US20110309699A1 (en) * 2009-02-13 2011-12-22 Isis Innovation Ltd Electric machine-cooling
KR101417508B1 (en) * 2012-12-26 2014-07-08 두산엔진주식회사 Super conducting electric power generation system
WO2015133015A1 (en) * 2014-03-04 2015-09-11 株式会社神戸製鋼所 Axial gap type power generator
US10784035B2 (en) 2015-08-25 2020-09-22 Ihi Corporation Coil device and coil system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145778A (en) * 1997-07-28 1999-02-16 Fuji Electric Co Ltd Organic electroluminescent element and its manufacture
WO2006068039A1 (en) * 2004-12-24 2006-06-29 Sumitomo Electric Industries, Ltd. Axial-gap superconducting motor
JP2006204085A (en) * 2004-12-24 2006-08-03 Sumitomo Electric Ind Ltd Axial gap type superconducting motor
US7872393B2 (en) 2004-12-24 2011-01-18 Sumitomo Electric Industries, Ltd. Axial gap type superconducting motor
JP2007060747A (en) * 2005-08-22 2007-03-08 Sumitomo Electric Ind Ltd Superconducting motor and vehicle equipped with that motor
JP2007245948A (en) * 2006-03-16 2007-09-27 Ihi Corp Water jet propulsion device
JP2007245947A (en) * 2006-03-16 2007-09-27 Ihi Corp Pod type propulsion unit
US7977844B2 (en) 2006-06-23 2011-07-12 Ihi Corporation Inductor-type synchronous machine
WO2007148736A1 (en) * 2006-06-23 2007-12-27 Ihi Corporation Inductor type synchronizer
JP2008001280A (en) * 2006-06-23 2008-01-10 Ihi Corp Marine propulsion apparatus
JP2008005654A (en) * 2006-06-23 2008-01-10 Ihi Corp Inductor type synchronous machine
KR101024625B1 (en) 2006-06-23 2011-03-25 스미토모 덴키 고교 가부시키가이샤 Inductor type synchronizer
KR101014689B1 (en) * 2008-09-09 2011-02-16 두산중공업 주식회사 Rotary type ultralow temperature refrigerant supplier
US20110309699A1 (en) * 2009-02-13 2011-12-22 Isis Innovation Ltd Electric machine-cooling
US9496776B2 (en) * 2009-02-13 2016-11-15 Oxford University Innovation Limited Cooled electric machine
KR101062599B1 (en) * 2009-10-21 2011-09-06 두산중공업 주식회사 Cooling flow path structure of superconducting rotary machine
US8338995B2 (en) 2009-10-21 2012-12-25 Doosan Heavy Industries & Construction Co., Ltd. Cooling fluid path structure for superconduction rotating machine
KR101417508B1 (en) * 2012-12-26 2014-07-08 두산엔진주식회사 Super conducting electric power generation system
WO2015133015A1 (en) * 2014-03-04 2015-09-11 株式会社神戸製鋼所 Axial gap type power generator
JP2015171161A (en) * 2014-03-04 2015-09-28 株式会社神戸製鋼所 axial gap type generator
US10784035B2 (en) 2015-08-25 2020-09-22 Ihi Corporation Coil device and coil system

Also Published As

Publication number Publication date
JP3936340B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP4890119B2 (en) Superconducting coil device and inductor type synchronous machine
KR101104499B1 (en) Inductor-type synchronous machine
US7667358B2 (en) Cooling structure of superconducting motor
JP3936340B2 (en) Superconducting synchronous machine
JP4758703B2 (en) Superconducting device and axial gap type superconducting motor
US6700297B2 (en) Superconducting PM undiffused machines with stationary superconducting coils
JP2007089345A (en) Cooling structure of superconducting motor
JP4920322B2 (en) Inductor type synchronous machine
JP2013183465A (en) Field rotator of superconduction rotary machine
JP2015061978A (en) Cryogenic temperature liquid pump
JP3938572B2 (en) Superconducting synchronous machine
KR20180026093A (en) Motor rotor with cooling
JP4680708B2 (en) Axial type motor
JP2008001280A (en) Marine propulsion apparatus
JP2007060749A (en) Motor for both inductor type power generation/driving and car equipped with that motor
WO2022196193A1 (en) Superconducting motor
JP2007037341A (en) Cooling structure of superconducting apparatus
JP6086225B2 (en) Superconducting rotating machine
JP2006345661A (en) Radial gap motor
JP6455259B2 (en) Superconducting rotating electrical machine
JPH0431815Y2 (en)
JP2009123970A (en) Support frame for superconductive coil, and superconductive coil unit
JPS605768A (en) Stator of rotary field type superconductive electric machine
JP2007252106A (en) Inductor-type synchronous machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350