JP2005207764A - Seal performance evaluation method for bearing - Google Patents

Seal performance evaluation method for bearing Download PDF

Info

Publication number
JP2005207764A
JP2005207764A JP2004011912A JP2004011912A JP2005207764A JP 2005207764 A JP2005207764 A JP 2005207764A JP 2004011912 A JP2004011912 A JP 2004011912A JP 2004011912 A JP2004011912 A JP 2004011912A JP 2005207764 A JP2005207764 A JP 2005207764A
Authority
JP
Japan
Prior art keywords
bearing
ring
evaluation
water
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004011912A
Other languages
Japanese (ja)
Inventor
Tatsuo Kawase
達夫 川瀬
Original Assignee
Ntn Corp
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn Corp, Ntn株式会社 filed Critical Ntn Corp
Priority to JP2004011912A priority Critical patent/JP2005207764A/en
Publication of JP2005207764A publication Critical patent/JP2005207764A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seal performance evaluation method for a bearing capable of evaluating easily, precisely and quantitatively water-proofness of a seal bearing. <P>SOLUTION: A micro sludge component is intruded into a bearing space together with water, by conducting a sludge-resistant test wherein a lower half of one end face of the testing bearing 1 attached to a rotary shaft 11 is rotated for a prescribed time under the condition where the lower half is immersed into sludge water A in a sludge vessel 12, an inner ring 3 is rotated at a prescribed rotation speed under the condition where an outer ring 2 of the testing bearing 1 is fixed, a ratio of Andy Ron values in before and after the sludge-resistant test, using an Andy Ron meter for measuring a vibration displacement of the outer ring 2, and the water-proofness of the bearing is thereby evaluated easily, precisely and quantitatively, based on a change in the vibration displacement of the outer ring 2 accompanying the intrusion of the sludge component increased in proportion to an intrusion amount of the water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、グリースが封入された軸受空間をシールした転がり軸受のシール性能を評価する方法に関し、特に、外部から軸受空間への液体の浸入を防止する防水性を評価する方法に関する。   The present invention relates to a method for evaluating the sealing performance of a rolling bearing that seals a bearing space filled with grease, and more particularly to a method for evaluating waterproofness that prevents liquid from entering the bearing space from the outside.
自動車や各種産業機械に用いられる転がり軸受には、グリースが封入された軸受空間をシールしたシール軸受が多く用いられている。このようなシール軸受に要求される主なシール性能としては、封入されたグリースを密封するグリース密封性、外部からの微小な塵の侵入を防止する防塵性、および外部からの水の浸入を防止する防水性がある。これらのシール性能の評価方法を確立することは、シール機構の開発や製品の工程管理をする上で重要であり、各シール性能を比較的容易に定量評価できる方法が望まれている。   As rolling bearings used in automobiles and various industrial machines, many sealed bearings that seal bearing spaces filled with grease are used. The main sealing performance required for such sealed bearings is the grease sealing property that seals the enclosed grease, the dust prevention property that prevents the entry of minute dust from the outside, and the prevention of water from entering from the outside. Waterproof. Establishing these seal performance evaluation methods is important in developing a seal mechanism and managing the product process, and a method capable of quantitatively evaluating each seal performance relatively easily is desired.
上述したシール性能のうちグリース密封性に関しては、軸受を所定時間回転させたときに漏洩するグリースの重量を測定する評価方法が、容易に定量評価できる方法として定着している。また、防塵性に関しては、アルミナ粉等を浮遊させたダスト環境で軸受を回転させて、その音色や音圧の変化を測定する方法が多く採用されている(例えば、非特許文献1参照。)。非特許文献1に記載された方法では、音色や音圧の測定精度を高めるために、ダスト環境で回転させた軸受を数時間毎に取り出し、音響室で回転時の音色や音圧の変化を測定して、音圧が2〜3dB上昇したときをもって有効防塵時間としている。   Among the sealing performances described above, with regard to grease sealing performance, an evaluation method for measuring the weight of grease that leaks when a bearing is rotated for a predetermined time has been established as a method that can be easily quantitatively evaluated. As for dust resistance, many methods are employed in which the bearing is rotated in a dust environment in which alumina powder or the like is suspended, and changes in the tone and pressure are measured (for example, see Non-Patent Document 1). . In the method described in Non-Patent Document 1, in order to improve the measurement accuracy of timbre and sound pressure, a bearing rotated in a dust environment is taken out every few hours, and changes in timbre and sound pressure during rotation in an acoustic chamber are detected. The effective dustproof time is determined when the sound pressure rises by 2 to 3 dB.
一方、防水性の評価方法に関しては、噴霧状水滴を発生させた環境で軸受を所定時間回転させたときの重量変化で軸受内部への浸水量を測定する方法(例えば、非特許文献2参照。)、回転する軸受に水を吹きつけて、水の浸入による潤滑油膜の厚さ変化を軌道輪間の電気抵抗で測定する方法(例えば、非特許文献3参照。)、回転する軸受の軸方向に注水ノズルから水を噴出させて、軸受を貫通する水量を測定する方法(例えば、特許文献1参照。)等、様々な方法が提案されている。   On the other hand, with respect to the waterproof evaluation method, a method of measuring the amount of water infiltrated into the bearing by a change in weight when the bearing is rotated for a predetermined time in an environment where sprayed water droplets are generated (for example, see Non-Patent Document 2). ), A method in which water is blown to the rotating bearing, and the change in the thickness of the lubricating oil film due to the ingress of water is measured by the electrical resistance between the races (for example, see Non-Patent Document 3), the axial direction of the rotating bearing Various methods have been proposed, such as a method of ejecting water from a water injection nozzle and measuring the amount of water penetrating the bearing (for example, see Patent Document 1).
特開2001−304280号公報(第3頁、第3−4図)JP 2001-304280 A (page 3, FIG. 3-4)
上述した防水性に対する従来の評価方法のうち、軸受の重量変化で浸水量を測定する方法や、電気抵抗で潤滑油膜の厚さを測定する方法は、測定値がグリースの漏洩による重量変化や潤滑油膜の厚さ変化の影響を受けるので、防水性を単独で精度よく評価できない問題がある。また、軸受を貫通する水量を測定する方法は、他の噴出水が混ざらないように軸受を貫通する水を抽出するのに手間がかかり、精度のよい測定が難しい問題がある。   Of the conventional evaluation methods for waterproofness described above, the method of measuring the amount of water immersion by changing the weight of the bearing and the method of measuring the thickness of the lubricating oil film by electric resistance are the values measured by the weight change or lubrication due to grease leakage. Since it is affected by changes in the thickness of the oil film, there is a problem that waterproofness cannot be evaluated accurately alone. In addition, the method of measuring the amount of water penetrating the bearing is problematic in that it takes time to extract the water penetrating the bearing so that other spouted water is not mixed, and accurate measurement is difficult.
そこで、本発明の課題は、シール軸受の防水性を容易に精度よく定量評価できる軸受のシール性能評価方法を提供することである。   Thus, an object of the present invention is to provide a seal performance evaluation method for a bearing that can easily and accurately quantitatively evaluate the waterproofness of a seal bearing.
上記の課題を解決するために、本発明は、グリースが封入された軌道輪間の軸受空間をシールした転がり軸受のシール性能を評価する軸受のシール性能評価方法において、前記転がり軸受を微小な異物を混入した液体に触れる状態で所定時間回転させたのち、前記軌道輪の一方を固定して他方を所定の回転速度で回転させ、前記固定した軌道輪の振動変位を測定して、この測定した振動変位に基づく評価値で前記転がり軸受のシール性能を評価する方法を採用した。   In order to solve the above-described problems, the present invention provides a bearing performance evaluation method for evaluating the sealing performance of a rolling bearing that seals the bearing space between bearing rings filled with grease. After rotating for a predetermined time while in contact with the liquid mixed, the one of the race rings is fixed and the other is rotated at a predetermined rotation speed, and the vibration displacement of the fixed race rings is measured and measured. A method of evaluating the sealing performance of the rolling bearing with an evaluation value based on vibration displacement was adopted.
すなわち、転がり軸受を微小な異物を混入した液体に触れる状態で所定時間回転させて、軸受空間に液体と一緒に微小な異物を侵入させ、この異物を侵入させた軸受軌道輪の一方を固定して他方を所定の回転速度で回転させ、固定した軌道輪の振動変位を測定することにより、液体の浸入量に比例して増加する異物の侵入に伴う固定軌道輪の振動変位の変化で、軸受の防水性を精度よく定量評価できるようにした。また、固定軌道輪の振動変位は、音色や音圧の測定のように音響室等に入れなくても精度よく測定できるので、従来行われている防塵性の評価方法よりも容易に行うことができる。   In other words, the rolling bearing is rotated for a predetermined time in a state where it is in contact with the liquid mixed with minute foreign matter, the fine foreign matter enters the bearing space together with the liquid, and one of the bearing races into which this foreign matter has entered is fixed. The other is rotated at a predetermined rotational speed, and the vibration displacement of the fixed race is measured by measuring the vibration displacement of the fixed race. Quantitative evaluation of the waterproofness of the water was made possible. In addition, the vibration displacement of the fixed track ring can be measured with high accuracy without being put into a sound room or the like as in the measurement of timbre and sound pressure, so it can be performed more easily than the conventional dustproof evaluation method. it can.
前記微小な異物を混入した液体を泥水とすることにより、異物混入液体を容易に準備することができる。なお、泥水の泥分には関東ローム等の成分が調整されたものを用い、使用中の泥水は泥分が沈殿しないように撹拌することが望ましい。   By using muddy water as the liquid mixed with the minute foreign matter, the foreign matter mixed liquid can be easily prepared. In addition, it is desirable to use a muddy water whose components are adjusted, such as Kanto Loam, and to stir the muddy water in use so that the mud does not settle.
前記評価値をアンデロン値とすることにより、固定軌道輪の振動変位を精度よく評価することができる。アンデロン値はベアリングメーカが品質管理のために使用いている標準単位(MIL規格)で、内輪を1800rpmで回転させたときの外輪(固定軌道輪)の半径方向の振動変位(inch)を内輪の回転速度(rad)で微分した量の実効値を、測定した周波数帯域のオクターブ数の平方根で割ったものである。オクターブ数は、測定した周波数帯域がf1〜f2のとき、log(f1/f2)/log2で表される。 By making the evaluation value an Anderon value, the vibration displacement of the fixed race can be evaluated with high accuracy. The Anderon value is a standard unit (MIL standard) used by bearing manufacturers for quality control. When the inner ring is rotated at 1800 rpm, the radial displacement (inch) of the outer ring (fixed raceway) is rotated in the inner ring. The effective value of the amount differentiated by speed (rad) is divided by the square root of the octave number of the measured frequency band. The number of octaves is represented by log (f 1 / f 2 ) / log 2 when the measured frequency band is f 1 to f 2 .
前記アンデロン値は、300〜1800Hzの周波数帯域、または1800〜10000Hzの周波数帯域で測定するのが好適である。   The Anderon value is preferably measured in a frequency band of 300 to 1800 Hz or a frequency band of 1800 to 10000 Hz.
本発明の軸受のシール性能評価方法は、転がり軸受を微小な異物を混入した液体に触れる状態で所定時間回転させて、軸受空間に液体と一緒に微小な異物を侵入させ、この異物を侵入させた軸受軌道輪の一方を固定して他方を所定の回転速度で回転させ、固定した軌道輪の振動変位を測定するようにしたので、液体の浸入量に比例して増加する異物の侵入に伴う固定軌道輪の振動変位の変化で、軸受の防水性を精度よく定量評価することができる。また、固定軌道輪の振動変位は、音色や音圧の測定のように音響室等に入れなくても精度よく測定できるので、従来行われている防塵性の評価方法よりも容易に行うことができる。   The bearing sealing performance evaluation method of the present invention is a method in which a rolling bearing is rotated for a predetermined time in contact with a liquid mixed with minute foreign matter, and the foreign matter enters the bearing space together with the liquid. Since one of the bearing rings is fixed and the other is rotated at a predetermined rotational speed, the vibration displacement of the fixed bearing ring is measured, so that the intrusion of foreign matter increases in proportion to the amount of liquid intrusion. With the change in the vibration displacement of the fixed race, the waterproofness of the bearing can be quantitatively evaluated accurately. In addition, the vibration displacement of the fixed track ring can be measured with high accuracy without being put into a sound room or the like as in the measurement of timbre and sound pressure, so it can be performed more easily than the conventional dustproof evaluation method. it can.
前記微小な異物を混入した液体を泥水とすることにより、異物混入液体を容易に準備することができる。   By using muddy water as the liquid mixed with the minute foreign matter, the foreign matter mixed liquid can be easily prepared.
前記評価値をアンデロン値とすることにより、固定軌道輪の振動変位を精度よく評価することができる。   By making the evaluation value an Anderon value, the vibration displacement of the fixed race can be evaluated with high accuracy.
以下、図面に基づき、本発明の実施形態を説明する。図1は、本発明に係る軸受のシール性能評価方法を適用した試験軸受1を示す。この試験軸受は、外輪2と内輪3の間の軸受空間に複数のボール4を保持器5で保持した玉軸受であり、グリースを封入した軸受空間の両側がシール部材6でシールされている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a test bearing 1 to which a bearing sealing performance evaluation method according to the present invention is applied. This test bearing is a ball bearing in which a plurality of balls 4 are held by a cage 5 in a bearing space between an outer ring 2 and an inner ring 3, and both sides of the bearing space filled with grease are sealed with seal members 6.
図2は、本発明に係る軸受のシール性能評価方法に用いた内輪回転耐泥水試験機を示す。この試験機は、試験軸受1が取り付けられる水平な回転軸11と泥水槽12とからなり、泥水槽12に挿入された回転軸11の先端部には、泥水Aを撹拌する撹拌羽根13が取り付けられている。回転軸11は、試験軸受1と別の軸受14とでケーシング15に支持され、試験軸受1は、一方の軸端面の下半分が泥水Aに浸漬されるように、内輪3が回転軸11に取り付けられ、外輪2はケーシング15に固定される。なお、図示は省略するが、外輪を回転軸の筒部内面に取り付け、内輪を固定するようにした外輪回転耐泥水試験機もある。   FIG. 2 shows an inner ring rotating muddy water tester used in the bearing seal performance evaluation method according to the present invention. This testing machine includes a horizontal rotating shaft 11 and a muddy water tank 12 to which the test bearing 1 is attached, and a stirring blade 13 for stirring the muddy water A is attached to the tip of the rotating shaft 11 inserted into the muddy water tank 12. It has been. The rotating shaft 11 is supported on the casing 15 by the test bearing 1 and another bearing 14. The inner ring 3 is attached to the rotating shaft 11 so that the lower half of one shaft end surface is immersed in the muddy water A. The outer ring 2 is attached to the casing 15. In addition, although illustration is abbreviate | omitted, there also exists an outer ring | wheel rotation muddy water test machine which attached the outer ring | wheel to the cylinder part inner surface of a rotating shaft, and fixed the inner ring | wheel.
前記試験軸受のシール部材のシール形式が異なるものを15種類(A〜O)用意し、本発明に係る軸受のシール性能評価方法を実施した。実施例の評価方法は、前記内輪回転耐泥水試験機を用いて耐泥水試験を行い、耐泥水試験前後における各試験軸受のアンデロン値をアンデロンメータを用いて測定して、耐泥水試験前後のアンデロン値の比で軸受の防水性を評価したものである。なお、耐泥水試験を行うに際しては、グリースの初期封入状態の影響をなくすために、別途の回転試験機を用いて、各試験軸受を所定時間回転させる慣らし運転を行った。   Fifteen types (A to O) having different seal types of the seal member of the test bearing were prepared, and the seal performance evaluation method for the bearing according to the present invention was carried out. The evaluation method of the examples is to perform a muddy water test using the inner ring rotating muddy water resistance tester, measure the Anderon value of each test bearing before and after the muddy water resistance test using an anderon meter, and before and after the muddy water resistance test. The waterproofness of the bearing is evaluated by the ratio of the Anderon value. In conducting the muddy water resistance test, a break-in operation was performed in which each test bearing was rotated for a predetermined time using a separate rotation tester in order to eliminate the influence of the initial state of grease filling.
前記アンデロンメータは、アンデロン値の説明で述べたように、内輪を1800rpmで回転させたときの外輪の半径方向の振動変位を測定し、これを内輪の回転速度で微分した量の実効値を、測定した周波数帯域のオクターブ数の平方根で割ってアンデロン値を算出するものである。本実施例では、測定周波数帯域を300〜1800Hzと1800〜10000Hzの2種類とした。   As described in the explanation of the Anderon value, the Anderon meter measures the vibration displacement in the radial direction of the outer ring when the inner ring is rotated at 1800 rpm, and calculates the effective value of the amount obtained by differentiating this by the rotational speed of the inner ring. The Anderon value is calculated by dividing by the square root of the octave number of the measured frequency band. In this embodiment, two types of measurement frequency bands, 300 to 1800 Hz and 1800 to 10,000 Hz, were used.
また、前記耐泥水試験の試験条件は、以下の通りとした。
・泥水:試験用ダストJIS8種(関東ローム)を5質量%含むもの
・回転数:2000rpm
・試験時間:2.5時間
・荷重:無負荷(泥水槽の自重のみ)
・繰り返し数:4回
The test conditions for the muddy water test were as follows.
・ Muddy water: 5% by mass of JIS 8 test dust (Kanto loam) ・ Rotation speed: 2000 rpm
・ Test time: 2.5 hours ・ Load: No load (muddy tank weight only)
・ Number of repetitions: 4 times
比較例Comparative example
比較例として、実施例と同じ15種類の試験軸受について、前記耐泥水試験を同じ条件で行ったものの重量増分を測定し、泥水の浸水量で評価する方法(比較例1)と、同じ耐泥水試験前後の各試験軸受を音響室に入れて、JISB1548に準ずる方法で騒音レベルを測定し、騒音レベルの増分で評価する方法(比較例2)とを行った。   As a comparative example, for the same 15 types of test bearings as in the example, the same muddy water resistance as in the method (comparative example 1) of measuring the weight increment of the muddy water resistance test performed under the same conditions and evaluating the muddy water immersion amount Each test bearing before and after the test was put in an acoustic chamber, and the noise level was measured by a method according to JISB1548, and the evaluation was performed by incrementing the noise level (Comparative Example 2).
図3(a)は、比較例1の評価方法による各試験軸受の重量増分を、図3(b)は、比較例2の評価方法による騒音レベル増分を示す。比較例2の評価方法は、試験軸受の騒音レベルを音響室に入れて測定する手間がかかるが、防塵性の評価方法として精度のよい定量評価ができる実績がある。したがって、防塵性の評価方法とは水分が浸入している違いはあるが、泥分(塵)の侵入量をある程度精度よく評価しているものと思われる。これに対して、比較例1の評価方法は、容易に軸受の重量増分を測定できるが、グリースの漏洩が外乱となるので評価精度が悪く、防水性に対する各試験軸受の優劣の順位が、比較例2の評価方法とあまり合致していない。   FIG. 3A shows the weight increment of each test bearing by the evaluation method of Comparative Example 1, and FIG. 3B shows the noise level increment by the evaluation method of Comparative Example 2. Although the evaluation method of Comparative Example 2 takes time and effort to put the noise level of the test bearing in the acoustic chamber and measure it, there is a track record of accurate quantitative evaluation as a dustproof evaluation method. Therefore, although there is a difference in moisture intrusion from the dustproof evaluation method, it seems that the intrusion amount of mud (dust) is evaluated with a certain degree of accuracy. On the other hand, the evaluation method of Comparative Example 1 can easily measure the weight increment of the bearing, but since the leakage of grease becomes a disturbance, the evaluation accuracy is poor, and the order of superiority or inferiority of each test bearing with respect to waterproofness is compared. Not very consistent with the evaluation method of Example 2.
図4(a)、(b)は、実施例の評価方法による各試験軸受のアンデロン値の比を示す。図4(a)は、アンデロン値の測定周波数帯域を300〜1800Hzとした場合、図4(b)は、測定周波数帯域を1800〜10000Hzとした場合である。両者における各試験軸受の防水性に対する優劣順位はよく一致しており、これらの優劣順位は比較例2の評価方法ともよく合致している。したがって、本発明に係る軸受のシール性能評価方法は、防水性を容易に精度よく定量評価できることが分かる。なお、図示は省略するが、前記外輪回転耐泥水試験機を用いて耐泥水試験を行った各試験軸受についても、実施例の評価方法を適用したが、図4(a)、(b)の結果とよく一致する防水性の優劣順位が確認された。   4 (a) and 4 (b) show the ratio of the Anderon value of each test bearing by the evaluation method of the example. 4A shows a case where the measurement frequency band of the Anderon value is 300 to 1800 Hz, and FIG. 4B shows a case where the measurement frequency band is 1800 to 10000 Hz. The superiority and inferiority order of the waterproofness of each test bearing in both agree well, and these superiority and inferiority ranks well with the evaluation method of Comparative Example 2. Therefore, it can be seen that the sealing performance evaluation method for a bearing according to the present invention can easily and accurately quantitatively evaluate waterproofness. In addition, although illustration is abbreviate | omitted, although the evaluation method of an Example was applied also to each test bearing which performed the muddy water resistance test using the said outer ring | wheel rotation muddy water resistance test machine, FIG.4 (a), (b) of FIG. The superiority and inferiority of waterproofness, which agrees well with the results, was confirmed.
上述した実施例では、試験軸受を泥水に浸漬させて泥水を軸受空間へ浸入させるようにしたが、泥水を試験軸受に噴射して泥水を浸入させるようにしてもよく、泥水の替りに他の微小な異物を混入させた液体を用いてもよい。   In the above-described embodiment, the test bearing is immersed in the muddy water so that the muddy water enters the bearing space. A liquid mixed with minute foreign matter may be used.
また、固定軌道輪の振動変位の測定方法は、必ずしもアンデロンメータでアンデロン値を測定する方法に限定されることはなく、例えば、一般的な回転試験機を用いて試験軸受の内輪または外輪を回転させ、加速度計等を用いて固定軌道輪の振動変位を測定することもできる。実施例で用いた内輪回転耐泥水試験機または外輪回転耐泥水試験機の泥水を排出して、そのまま振動変位測定用の回転試験機とすることもできる。   In addition, the measurement method of the vibration displacement of the fixed raceway is not necessarily limited to the method of measuring the Anderon value with an Anderon meter. For example, the inner ring or the outer ring of the test bearing can be measured using a general rotation tester. It is also possible to measure the vibration displacement of the fixed race by rotating and using an accelerometer or the like. It is also possible to discharge the muddy water from the inner ring rotating mud resistance tester or the outer ring rotating mud resistance test machine used in the examples and directly use it as a rotational test machine for measuring vibration displacement.
本発明に係る軸受のシール性能評価方法を適用した試験軸受を示す縦断面図The longitudinal cross-sectional view which shows the test bearing which applied the sealing performance evaluation method of the bearing which concerns on this invention 本発明に係る軸受のシール性能評価方法に用いた内輪回転耐泥水試験機を示す縦断面図The longitudinal cross-sectional view which shows the inner ring | wheel rotation muddy water test machine used for the sealing performance evaluation method of the bearing which concerns on this invention a、bは、それぞれ比較例の評価方法による試験軸受の評価結果を示すグラフa and b are graphs showing the evaluation results of the test bearings by the evaluation method of the comparative example, respectively. a、bは、それぞれ実施例の評価方法による試験軸受の評価結果を示すグラフa and b are graphs showing the evaluation results of the test bearings according to the evaluation methods of the examples.
符号の説明Explanation of symbols
1 試験軸受
2 外輪
3 内輪
4 ボール
5 保持器
6 シール部材
11 回転軸
12 泥水槽
13 撹拌羽根
14 軸受
15 ケーシング
DESCRIPTION OF SYMBOLS 1 Test bearing 2 Outer ring 3 Inner ring 4 Ball 5 Cage 6 Seal member 11 Rotating shaft 12 Muddy water tank 13 Stirring blade 14 Bearing 15 Casing

Claims (4)

  1. グリースが封入された軌道輪間の軸受空間をシールした転がり軸受のシール性能を評価する軸受のシール性能評価方法において、前記転がり軸受を微小な異物を混入した液体に触れる状態で所定時間回転させたのち、前記軌道輪の一方を固定して他方を所定の回転速度で回転させ、前記固定した軌道輪の振動変位を測定して、この測定した振動変位に基づく評価値で前記転がり軸受のシール性能を評価するようにしたことを特徴とする軸受のシール性能評価方法。   In a seal performance evaluation method for a bearing that evaluates the seal performance of a rolling bearing that seals a bearing space between bearing rings filled with grease, the rolling bearing is rotated for a predetermined time in a state where it is in contact with a liquid mixed with minute foreign matter. Thereafter, one of the bearing rings is fixed and the other is rotated at a predetermined rotational speed, the vibration displacement of the fixed bearing ring is measured, and the seal performance of the rolling bearing is evaluated based on the measured vibration displacement. A method for evaluating the sealing performance of a bearing, characterized in that:
  2. 前記微小な異物を混入した液体を泥水とした請求項1に記載の軸受のシール性能評価方法。   The bearing sealing performance evaluation method according to claim 1, wherein the liquid in which the minute foreign matter is mixed is muddy water.
  3. 前記評価値をアンデロン値とした請求項1または2に記載の軸受のシール性能評価方法。   The bearing sealing performance evaluation method according to claim 1, wherein the evaluation value is an Anderon value.
  4. 前記アンデロン値を、300〜1800Hzの周波数帯域、または1800〜10000Hzの周波数帯域で測定するようにした請求項3に記載の軸受のシール性能評価方法。   The bearing performance evaluation method according to claim 3, wherein the Anderon value is measured in a frequency band of 300 to 1800 Hz or a frequency band of 1800 to 10000 Hz.
JP2004011912A 2004-01-20 2004-01-20 Seal performance evaluation method for bearing Pending JP2005207764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011912A JP2005207764A (en) 2004-01-20 2004-01-20 Seal performance evaluation method for bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011912A JP2005207764A (en) 2004-01-20 2004-01-20 Seal performance evaluation method for bearing

Publications (1)

Publication Number Publication Date
JP2005207764A true JP2005207764A (en) 2005-08-04

Family

ID=34898458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011912A Pending JP2005207764A (en) 2004-01-20 2004-01-20 Seal performance evaluation method for bearing

Country Status (1)

Country Link
JP (1) JP2005207764A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749195A (en) * 2012-07-06 2012-10-24 东南大学 High-speed water bearing performance test device with air seal
CN103063434A (en) * 2012-12-28 2013-04-24 瓦房店轴承集团有限责任公司 Automobile hub bearing multifunctional testing machine
CN103196631A (en) * 2013-04-01 2013-07-10 洛阳轴研科技股份有限公司 Sealed deep groove ball bearing waterproofness testing method and testing device
CN104198129A (en) * 2014-09-15 2014-12-10 无锡双益精密机械有限公司 Bearing sealing detecting device
CN104569303A (en) * 2014-11-27 2015-04-29 浙江工业大学 Water seal endurance test device
CN104729799A (en) * 2015-04-02 2015-06-24 国电联合动力技术有限公司 Test platform and method for new energy power generation device sealing structure tests
CN105527081A (en) * 2015-12-24 2016-04-27 北京金风科创风电设备有限公司 Dynamic seal testing device
CN106370354A (en) * 2016-10-12 2017-02-01 浙江工业大学 Automobile hub bearing unit sealing ring sealing performance tester
CN106679898A (en) * 2016-12-30 2017-05-17 南京理工大学 Device used for testing high-speed revolution clearance seal performance
KR20180016760A (en) * 2016-08-08 2018-02-20 대한민국(해양경비안전정비창장) Apparatus of testing hub seal and method of testing hub seal using the same
CN109470425A (en) * 2018-11-23 2019-03-15 中国航发沈阳黎明航空发动机有限责任公司 A kind of device checking graphite grazing component leakproofness
CN109506852A (en) * 2018-12-27 2019-03-22 盐城工学院 A kind of automobile bearing sealing ring air-tightness detection method
CN109506853A (en) * 2018-12-27 2019-03-22 盐城工学院 A kind of automobile bearing sealing ring air-tightness detection device
CN109632207A (en) * 2018-12-25 2019-04-16 人本集团有限公司 Detect the detection device of bearing seal leakproofness
CN109916559A (en) * 2019-02-20 2019-06-21 嘉兴福可吉精密机械有限公司 Hub bearing shock resistance sealing test device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749195A (en) * 2012-07-06 2012-10-24 东南大学 High-speed water bearing performance test device with air seal
CN103063434A (en) * 2012-12-28 2013-04-24 瓦房店轴承集团有限责任公司 Automobile hub bearing multifunctional testing machine
CN103196631A (en) * 2013-04-01 2013-07-10 洛阳轴研科技股份有限公司 Sealed deep groove ball bearing waterproofness testing method and testing device
CN104198129A (en) * 2014-09-15 2014-12-10 无锡双益精密机械有限公司 Bearing sealing detecting device
CN104569303A (en) * 2014-11-27 2015-04-29 浙江工业大学 Water seal endurance test device
CN104729799A (en) * 2015-04-02 2015-06-24 国电联合动力技术有限公司 Test platform and method for new energy power generation device sealing structure tests
CN105527081A (en) * 2015-12-24 2016-04-27 北京金风科创风电设备有限公司 Dynamic seal testing device
KR20180016760A (en) * 2016-08-08 2018-02-20 대한민국(해양경비안전정비창장) Apparatus of testing hub seal and method of testing hub seal using the same
CN106370354A (en) * 2016-10-12 2017-02-01 浙江工业大学 Automobile hub bearing unit sealing ring sealing performance tester
CN106679898A (en) * 2016-12-30 2017-05-17 南京理工大学 Device used for testing high-speed revolution clearance seal performance
CN109470425A (en) * 2018-11-23 2019-03-15 中国航发沈阳黎明航空发动机有限责任公司 A kind of device checking graphite grazing component leakproofness
CN109632207A (en) * 2018-12-25 2019-04-16 人本集团有限公司 Detect the detection device of bearing seal leakproofness
CN109506852A (en) * 2018-12-27 2019-03-22 盐城工学院 A kind of automobile bearing sealing ring air-tightness detection method
CN109506853A (en) * 2018-12-27 2019-03-22 盐城工学院 A kind of automobile bearing sealing ring air-tightness detection device
CN109916559A (en) * 2019-02-20 2019-06-21 嘉兴福可吉精密机械有限公司 Hub bearing shock resistance sealing test device

Similar Documents

Publication Publication Date Title
JP2005207764A (en) Seal performance evaluation method for bearing
US7813906B2 (en) Method of predicting residual service life for rolling bearings and a device for predicting residual service life for rolling bearings
KR100993048B1 (en) Condition-detecting device, method, and information-recording medium
Darlow et al. Application of high-frequency resonance techniques for bearing diagnostics in helicopter gearboxes
WO2012005202A1 (en) Rolling bearing
JP2008064640A (en) Bearing function evaluating method
CN106610260B (en) Grease lubrication rolling bearing film thickness measuring device and testing method thereof
Prasad et al. Life estimation of shafts using vibration based fatigue analysis
JP2007263136A (en) Rolling bearing
JP2007040815A (en) Method for evaluating antifriction bearing component
RU2709238C1 (en) Diagnostic method of turbomachine rotor rolling bearing technical state
RU2432560C1 (en) Procedure for diagnosis of radial gap in ball bearings
US20210156763A1 (en) Condition monitoring for plain bearings by means of structure-borne noise
Furch et al. Identification of the Technical Condition of Roller Bearings by means of Vibrodiagnostics and Tribodiagnostics
Darlow et al. Early detection of defects in rolling-element bearings
KR101745805B1 (en) Apparatus and Method for machine condition monitoring
Toersen Application of an envelope technique in the detection of ball bearing defects in a laboratory experiment
RU2087889C1 (en) Reference spectrum for vibration diagnostics of mechanisms
Vazhappilly et al. Experimental Analysis of Vibration of Ball Bearing Considering Solid Contaminants in Lubricants
RU2138046C1 (en) Method of vibration diagnostics of lubricating power of oils for units of mechanisms
SU1272142A1 (en) Method of diagnostic checking of bearing balls and rollers
RU2719715C1 (en) Method of reducing micro-corrugation of rings of rolling bearings
SU1580206A1 (en) Method of checking gas-dynamic bearing assemblies
JP2020003026A (en) Seal for rotation
JPWO2018221727A1 (en) Sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310