JP2005201268A - Air pressure accumulating structure to be used in water - Google Patents

Air pressure accumulating structure to be used in water Download PDF

Info

Publication number
JP2005201268A
JP2005201268A JP2005003692A JP2005003692A JP2005201268A JP 2005201268 A JP2005201268 A JP 2005201268A JP 2005003692 A JP2005003692 A JP 2005003692A JP 2005003692 A JP2005003692 A JP 2005003692A JP 2005201268 A JP2005201268 A JP 2005201268A
Authority
JP
Japan
Prior art keywords
air
floating body
movable rod
piston
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005003692A
Other languages
Japanese (ja)
Inventor
Tatsujun Rin
達順 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2005201268A publication Critical patent/JP2005201268A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/004Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for driven by floating elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air pressure accumulating structure, which makes use of a buoyancy exerted on a hollow floating body to compress air for utilizing the same as a power source, for example, as a useful energy source for generating electricity. <P>SOLUTION: The air pressure accumulating structure to be used in water comprises an air pressure accumulating unit 2 having an air chamber 21 and an air storage unit 3 having an air storage tank 31 in a main floating body 1. A piston 22 having a movable rod 20 is fitted into the air chamber and the movable rod is extended vertically downward and a hollow auxiliary floating body 25 is attached to its tip end. As the surface of water rises, the auxiliary floating body rises following the water surface to raise the movable rod and the piston so that air in the air chamber is supplied from the air storage tank to a compressed air container. It is preferable to amplify the upstroke of the auxiliary floating body by an amplifying mechanism and transmit the amplified upstroke to the movable rod. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水中で用いる空気圧蓄積構造体に関し、詳しくは、中空の球体に水中で作用する浮力を利用して、空気を圧縮し、これを動力源として、例えば、発電のための有用なエネルギー源として利用する空気圧蓄積構造体に関する。   The present invention relates to a pneumatic storage structure used in water, and in particular, compresses air using buoyancy acting on a hollow sphere in water and uses this as a power source, for example, useful energy for power generation. The present invention relates to a pneumatic storage structure used as a source.

従来、種々のエネルギー源が知られており、また、それらエネルギー源の利用設備にも種々のものがある。その主要なものは発電設備であり、これにも、種々のものがある。水(海洋又は河川)は、地球の表面の十分の七の面積を占めると共に、水面も随時に波となって上下に動くので、巨大なエネルギーの貯蔵庫であるといえる。このように、海洋の波を利用して発電する方式は、主として、潮汐の差を利用する方式と海水を蓄積して利用する方式の二種類に分けられるが、いずれも、水の位置エネルギーの差を利用し、水の流れを形成させて、これによって直接にタービンを回転させ、発電するものである。   Conventionally, various energy sources are known, and there are various facilities for using these energy sources. The main thing is a power generation facility, and there are various types of this as well. Water (ocean or river) occupies a sufficient seven areas of the earth's surface, and the water surface moves up and down as needed, so it can be said to be a huge energy storage. In this way, power generation methods using ocean waves are mainly divided into two types: a method that uses the difference in tides and a method that uses and accumulates seawater. The difference is used to form a flow of water, thereby directly rotating the turbine to generate electricity.

従って、このようにして発電するには、大量の水の重量に耐えるために巨大な設備が必要であり、従って、莫大な設備費用が必要であるが、従来、商業化の動きは殆どみられない。本発明者は、従来、このように、海洋に波は存在しても、それが利用されていないという問題を解決するために鋭意研究した結果、上述した種々の問題を解決して、これを利用する方法を見出して、本発明を完成したものである。 従って、本発明の主な目的は、水中で用いる空気圧蓄積構造体を提供することにある。   Therefore, in order to generate electricity in this way, a huge facility is required to withstand the weight of a large amount of water, and thus a huge facility cost is required, but there has been little commercialization in the past. Absent. As a result of diligent research in order to solve the problem that waves have existed in the ocean but are not used in the past, the present inventor has solved the various problems described above, and The present invention has been completed by finding a method of use. Accordingly, it is a primary object of the present invention to provide a pneumatic storage structure for use in water.

本発明による水中で用いる空気圧力蓄積構造体は、底部に貫通孔を有する主浮体内に、空気室を有する空気圧蓄積ユニットと空気貯蔵槽を有する空気貯蔵ユニットとを設け、上記空気室にはピストンを嵌め込み、空気室内にてこのピストンを弾性部材にて鉛直下方に付勢し、このピストンのピストンロッドを鉛直下方向に延ばして前記貫通孔から主浮体の底部を貫通させて、これに中空の副浮体を取付け、上記空気室には吸入用逆止め弁を介して吸入管を有せしめると共に、排気用逆止め弁を介して排気管によって上記空気室を前記空気貯蔵槽に接続してなり、前記空気貯蔵槽は内部の空気圧が所定値に達したとき、これを検知して、圧縮空気容器への排気用逆止め弁を開放する手段を備えてなる水中で用いる空気圧蓄積構造体であって、水面が上昇するとき、それに伴って前記副浮体をこれに作用する浮力を利用して上昇させ、これによって前記ピストンを上昇させ、かくして、空気室内の空気を上記排気用逆止め弁を有する排気管を経て前記空気貯蔵槽中に送るようにしたことを特徴とするものである。   An air pressure accumulation structure for use in water according to the present invention is provided with a pneumatic storage unit having an air chamber and an air storage unit having an air storage tank in a main floating body having a through hole at the bottom, and a piston is provided in the air chamber. The piston is urged vertically downward by an elastic member in the air chamber, and the piston rod of the piston extends vertically downward to penetrate the bottom of the main floating body from the through hole, A sub-floating body is attached, and the air chamber is provided with a suction pipe via a suction check valve, and the air chamber is connected to the air storage tank via an exhaust check valve. The air storage tank is a pneumatic pressure accumulation structure used in water comprising means for detecting when the internal air pressure reaches a predetermined value and opening a check valve for exhausting into the compressed air container. ,water Accordingly, the sub-floating body is lifted by utilizing the buoyancy acting on the sub-floating body, thereby raising the piston, and thus, the exhaust pipe having the exhaust check valve is removed from the air in the air chamber. Then, it is sent into the air storage tank.

特に、本発明による好ましい空気圧力蓄積構造体は、底部に貫通孔を有する主浮体内に、空気室を有する空気圧蓄積ユニットと空気貯蔵槽を有する空気貯蔵ユニットとを設け、上記空気室にはピストンを嵌め込み、空気室内にてこのピストンを弾性部材にて鉛直下方に付勢し、このピストンのピストンロッドを鉛直下方向に延ばし、上記ピストンロッドと平行に可動ロッドを設け、この可動ロッドを鉛直下方向に延ばして前記貫通孔から主浮体の底部を貫通させて、これに中空の副浮体を取付け、上記ピストンロッドと可動ロッドとの間に増幅機構を設けて、上記ピストンロッドと可動ロッドを係合させ、上記空気室には吸入用逆止め弁を介して吸入管を有せしめると共に、排気用逆止め弁を介して排気管によって上記空気室を前記空気貯蔵槽に接続してなり、前記空気貯蔵槽は内部の空気圧が所定値に達したとき、これを検知して、圧縮空気容器への排気用逆止め弁を開放する手段を備えてなる水中で用いる空気圧蓄積構造体であって、水面が上昇するとき、それに伴って前記副浮体を上昇させ、これによって前記可動ロッドを上昇させ、この可動ロッドの上昇を前記増幅機構を介して前記ピストンロッドに増幅して伝えて上昇させ、かくして、空気室内の空気を上記排気用逆止め弁を有する排気管を経て前記空気貯蔵槽中に送るようにしたことを特徴とするものである。   In particular, a preferred air pressure accumulation structure according to the present invention is provided with a pneumatic accumulation unit having an air chamber and an air storage unit having an air storage tank in a main floating body having a through hole at the bottom, and a piston is provided in the air chamber. The piston is urged vertically downward by an elastic member in the air chamber, the piston rod of this piston is extended vertically downward, a movable rod is provided in parallel with the piston rod, and the movable rod is vertically lowered. The bottom of the main floating body is penetrated through the through hole, a hollow sub-floating body is attached thereto, an amplification mechanism is provided between the piston rod and the movable rod, and the piston rod and the movable rod are engaged. The air chamber is provided with a suction pipe via a check valve for suction, and the air chamber is stored in the air storage by an exhaust pipe via a check valve for exhaust. The air storage tank is provided with means for detecting when the internal air pressure reaches a predetermined value and opening a check valve for exhausting into the compressed air container. When the water surface rises, the accumulating structure raises the auxiliary floating body accordingly, thereby raising the movable rod, and amplifying the rise of the movable rod to the piston rod through the amplification mechanism. Thus, the air in the air chamber is sent to the air storage tank through the exhaust pipe having the exhaust check valve.

本発明による水中で用いる空気圧蓄積構造体は、主浮体内に空気室を有する空気圧蓄積ユニットと空気貯蔵槽を有する空気貯蔵ユニットとを設け、上記空気室には可動ロッドを有するピストンを嵌め込み、この可動ロッドの鉛直下方向に延ばして、その先端に中空の副浮体25を取付けてなり、水面が上昇するとき、それに伴って上記副浮体を上昇させ、これによって上記可動ロッドと上記ピストンを上昇させ、かくして、空気室内の空気を空気貯蔵槽から圧縮空気容器に送るようにしたものであり、好ましくは、副浮体の上昇運動は、増幅機構によって、増幅して、可動ロッドの上昇運動として伝えられる。   The pneumatic storage structure used in water according to the present invention includes a pneumatic storage unit having an air chamber and an air storage unit having an air storage tank in a main floating body, and a piston having a movable rod is fitted into the air chamber. The movable rod extends vertically downward, and a hollow sub-floating body 25 is attached to the tip of the movable rod. When the water surface rises, the sub-floating body is raised accordingly, thereby raising the movable rod and the piston. Thus, the air in the air chamber is sent from the air storage tank to the compressed air container. Preferably, the ascending motion of the auxiliary floating body is amplified by the amplifying mechanism and transmitted as the ascending motion of the movable rod. .

このように、本発明による水中で用いる空気圧蓄積構造体は、主浮体に取付けた副浮体の受ける浮力を利用して空気を圧縮し、得られた圧縮空気を利用して、例えば、タービンを回転させて、電気エネルギーを得るものであり、構造が簡単であり、有用である。   As described above, the pneumatic storage structure used in water according to the present invention compresses air using the buoyancy received by the sub-floating body attached to the main floating body, and rotates the turbine, for example, using the obtained compressed air. Thus, electric energy is obtained, and the structure is simple and useful.

先ず、図1に示すように、本発明による水中で用いる空気圧蓄積構造体は、水面上に位置させる主浮体(フロート)1を備えている。この主浮体は複数の空気圧蓄積ユニット2を有しており、それぞれの空気圧蓄積ユニットはそれぞれ空気室21を有している。この空気室内には鉛直下方向に付勢された弾性部材23とこれに固定されたピストン22が設けられている。図1においては、上記弾性部材23としてスプリングが示されている。上記ピストン22のピストンロッドは可動ロッド20を兼ねており、これは鉛直下方向に延びて、空気室の底部の貫通孔11を水密的に貫通し、その先端に副浮体25を有している。上記貫通孔には止水用の環体(図示せず)が取付けられていて、上記可動ロッド20の上下方向の運動を許しつつ、浮体内への浸水を防止している。   First, as shown in FIG. 1, the pneumatic storage structure used in water according to the present invention includes a main floating body (float) 1 positioned on the water surface. The main floating body has a plurality of air pressure accumulation units 2, and each air pressure accumulation unit has an air chamber 21. An elastic member 23 biased vertically downward and a piston 22 fixed thereto are provided in the air chamber. In FIG. 1, a spring is shown as the elastic member 23. The piston rod of the piston 22 also serves as the movable rod 20, which extends vertically downward, penetrates the through hole 11 at the bottom of the air chamber in a watertight manner, and has a sub-floating body 25 at its tip. . A water stop ring (not shown) is attached to the through hole to prevent the movable rod 20 from entering the floating body while allowing the movable rod 20 to move in the vertical direction.

前記主浮体は、上記副浮体が、例えば、海水の浮力を受けて、上方に運動することができるように水面上に位置せしめられる。従って、主浮体は、上記副浮体が、例えば、海水の浮力を受けて、上方に運動することができるように、適宜の手段にて、海底に固定されていてもよいが、好ましくは、潮汐に応じて、海面上で位置が上下に適宜に調節されてもよい。   The main floating body is positioned on the water surface so that the sub-floating body can move upward by receiving, for example, the buoyancy of seawater. Therefore, the main floating body may be fixed to the seabed by an appropriate means so that the sub-floating body can move upward, for example, under the buoyancy of seawater. Depending on the situation, the position on the sea surface may be adjusted appropriately up and down.

上記副浮体25は、例えば、中空の球体である。但し、ピストンロッド(可動ロッド)と副浮体の結合関係については、図2や図3に示すように、ピストンロッド24がその側面にて、後述する複数のラックと複数の歯車との組合わせからなる増幅機構4を介して、鉛直下方向に延びて、その先端に副浮体25を有する可動ロッド20と係合していてもよい。   The sub-floating body 25 is, for example, a hollow sphere. However, as for the coupling relationship between the piston rod (movable rod) and the sub-floating body, as shown in FIGS. 2 and 3, the piston rod 24 is formed on the side surface from the combination of a plurality of racks and a plurality of gears described later. It may be engaged with a movable rod 20 that extends vertically downward and has a sub-floating body 25 at the tip thereof.

また、前記空気室21には吸気用逆止め弁26を備えた吸気管29を有し、この吸気管は主浮体内を上方に延びて、その先端は逆U字状に曲げられて開口している。また、前記空気室は空気出口30から排気用逆止め弁27を有する排気管28にて空気貯蔵ユニット3の空気貯蔵槽31に接続されている。かくして、水面が上昇するとき、前記副浮体25が前記可動ロッド20を介して空気室内のピストン22を上昇させて、空気室内の空気を空気出口30から排気用逆止め弁27を経て排気管28にて空気貯蔵槽31に送る。この空気貯蔵槽31は吸気口32と排気用逆止め弁33を経て導管37にて圧縮空気容器5に接続されている。必要に応じて、空気貯蔵槽31には、ほぼその断面形状に一致するピストン状の栓体34がスプリングのような弾性体35にて付勢されつつ、空気貯蔵槽内の空気圧に応じて空気貯蔵槽の軸方向に可動的に支持されている。このように、空気貯蔵槽31が弾性体35にて付勢された上記栓体を有するときは、空気貯蔵槽も一種の圧縮空気容器として機能する。   The air chamber 21 has an intake pipe 29 having an intake check valve 26. The intake pipe extends upward through the main floating body, and its tip is bent into an inverted U shape and opened. ing. The air chamber is connected from an air outlet 30 to an air storage tank 31 of the air storage unit 3 through an exhaust pipe 28 having an exhaust check valve 27. Thus, when the water surface rises, the sub-floating body 25 raises the piston 22 in the air chamber via the movable rod 20, and the air in the air chamber passes from the air outlet 30 through the exhaust check valve 27 to the exhaust pipe 28. To the air storage tank 31. The air storage tank 31 is connected to the compressed air container 5 by a conduit 37 through an intake port 32 and an exhaust check valve 33. If necessary, the air storage tank 31 is urged by an elastic body 35 such as a spring with a piston-like plug body 34 that substantially matches the cross-sectional shape of the air storage tank 31, and air according to the air pressure in the air storage tank. It is movably supported in the axial direction of the storage tank. Thus, when the air storage tank 31 has the said plug body urged | biased by the elastic body 35, an air storage tank also functions as a kind of compressed air container.

このようにして、波面の上昇運動に対応して、絶えず、空気が空気圧蓄積ユニット2の空気室21から空気貯蔵ユニット3の空気貯蔵槽31に送られ、ここで、空気貯蔵槽における空気圧を所定値に達せしめて、圧縮空気(風力エネルギー)を動力源として得ることができる。   In this way, air is constantly sent from the air chamber 21 of the air pressure accumulation unit 2 to the air storage tank 31 of the air storage unit 3 in response to the rising motion of the wave front, where the air pressure in the air storage tank is predetermined. By reaching the value, compressed air (wind energy) can be obtained as a power source.

本発明によれば、主浮体内において、空気圧蓄積ユニットの複数を並列的に単一の空気貯蔵ユニットに接続してもよく、また、空気貯蔵ユニットの複数を並列的に、又は直列的に圧縮空気容器に接続してもよい。例えば、図4に示す例では、二つの空気圧蓄積ユニット2のそれぞれの空気室21が排気管28によって並列的に空気貯蔵槽31に接続されている。図5に示す例では、それぞれ空気貯蔵槽31を有する二つの空気貯蔵ユニット3が接続管50にて圧縮空気容器5に並列的に接続されている。図6に示す例では、空気圧蓄積ユニットを有する第1の空気貯蔵ユニットの空気貯蔵槽が案内接続管36によって第2の空気貯蔵ユニットの空気貯蔵槽に接続され、この第2の空気貯蔵ユニットの空気貯蔵槽が圧縮空気容器に接続されている。即ち、二つの空気貯蔵槽が直列的に圧縮空気容器に接続されている。図7に示す例では、三つの空気貯蔵槽が直列的に圧縮空気容器5に接続されている。   According to the present invention, a plurality of pneumatic storage units may be connected in parallel to a single air storage unit in the main float, and a plurality of air storage units may be compressed in parallel or in series. You may connect to an air container. For example, in the example shown in FIG. 4, the air chambers 21 of the two air pressure accumulation units 2 are connected to the air storage tank 31 in parallel by the exhaust pipe 28. In the example shown in FIG. 5, two air storage units 3 each having an air storage tank 31 are connected in parallel to the compressed air container 5 through a connecting pipe 50. In the example shown in FIG. 6, the air storage tank of the first air storage unit having the air pressure accumulation unit is connected to the air storage tank of the second air storage unit by the guide connection pipe 36. An air storage tank is connected to the compressed air container. That is, two air storage tanks are connected in series to the compressed air container. In the example shown in FIG. 7, three air storage tanks are connected to the compressed air container 5 in series.

前述した増幅機構4の一例を図3に詳細に示す。この例においては、前記空気室21から鉛直下方向に延びるピストンロッド24の側面上に第1のラック48が設けられており、他方、前記可動ロッド20の側面上にも第2のラック42が上記第1のラックに対面して設けられている。前記主浮体1に適宜に、例えば、その底部に固定された水平な枠体41に一対の平行な回転軸43と49が上記第1と第2のラック間に支持されていると共に、空気室21からのピストンロッド24上の第1のラック48に噛み合うようにピストンロッド側の回転軸49に大歯車47が取付けられており、この大歯車と同軸に小歯車46が回転軸49に取付けられている。他方、可動ロッド20上の第2のラック42に噛み合うように可動ロッド側の回転軸43に小歯車44が取付けられており、この小歯車と同軸に大歯車45が回転軸43に取付けられており、更に、ピストンロッド側の小歯車46と可動ロッド側の大歯車45が噛み合っている。   An example of the amplifying mechanism 4 described above is shown in detail in FIG. In this example, a first rack 48 is provided on the side surface of the piston rod 24 that extends vertically downward from the air chamber 21, while the second rack 42 is also provided on the side surface of the movable rod 20. It is provided facing the first rack. For example, a pair of parallel rotating shafts 43 and 49 are supported between the first and second racks on a horizontal frame 41 fixed to the bottom of the main floating body 1 as appropriate. A large gear 47 is attached to the rotary shaft 49 on the piston rod side so as to mesh with the first rack 48 on the piston rod 24 from the No. 21, and a small gear 46 is attached to the rotary shaft 49 coaxially with the large gear. ing. On the other hand, a small gear 44 is attached to the rotary shaft 43 on the movable rod side so as to mesh with the second rack 42 on the movable rod 20, and a large gear 45 is attached to the rotary shaft 43 coaxially with the small gear. Furthermore, the small gear 46 on the piston rod side and the large gear 45 on the movable rod side mesh with each other.

しかし、ラックと歯車の組合わせによる増幅機構は、上記例示に限定されるものではなく、上記例示以外にも種々の構成が可能であることは明らかである。例えば、図2に示す例では、ピストンロッド側の回転軸49に単一の歯車46が取付けられており、可動ロッド側の回転軸43上の大歯車45が上記歯車46に噛み合っている。その他の構成、即ち、第1と第2のラックと一対の回転軸と可動ロッド側の歯車については、前述したと同じである。   However, the amplification mechanism based on the combination of the rack and the gear is not limited to the above example, and it is obvious that various configurations other than the above example are possible. For example, in the example shown in FIG. 2, a single gear 46 is attached to the rotating shaft 49 on the piston rod side, and the large gear 45 on the rotating shaft 43 on the movable rod side meshes with the gear 46. Other configurations, that is, the first and second racks, the pair of rotating shafts, and the gear on the movable rod side are the same as described above.

このように、本発明による水中で用いる空気圧蓄積構造体がピストンロッドと可動ロッドとの間に増幅機構を有するときは、前述したように、可動ロッド20は、主浮体1の底部を貫通し、鉛直下方向に延びて、その先端に副浮体25を有しているので、水面の上昇によって副浮体が上昇するとき、可動ロッドの上昇運動は第2のラック42によって小歯車44に回転運動として伝えられ、この回転運動は、上記小歯車と同軸の大歯車45によって、ピストンロッド側の小歯車46に伝えられ、この小歯車の回転は、これと同軸の大歯車47によって第1のラック48に伝えられるので、可動ロッドの上昇運動は、増幅機構を介して、大幅に増幅して、ピストンロッドに上昇運動として伝えられ、かくして、ピストンはより大きい圧縮力を得ることができる。   Thus, when the pneumatic storage structure used in water according to the present invention has an amplification mechanism between the piston rod and the movable rod, as described above, the movable rod 20 penetrates the bottom of the main floating body 1, Since the sub-floating body 25 extends vertically downward and has a sub-floating body 25 at the tip thereof, when the sub-floating body rises due to the rise of the water surface, the ascending movement of the movable rod is caused by the second rack 42 as a rotational movement to the small gear 44. This rotational motion is transmitted to the small gear 46 on the piston rod side by the large gear 45 coaxial with the small gear, and the rotation of the small gear is transmitted to the first rack 48 by the large gear 47 coaxial therewith. Therefore, the upward movement of the movable rod is greatly amplified via the amplification mechanism and transmitted to the piston rod as an upward movement, and thus the piston obtains a larger compressive force. It is possible.

しかし、本発明においては、その効率は大きくはなく、得られる圧縮力も大きくはないが、上記増幅機構なしでも、副浮体の上昇運動は直接に可動ロッドに伝えることができる。図1に基づいて説明した本発明の最も簡単な構成によれば、増幅機構は含まれていない。   However, in the present invention, the efficiency is not large and the compression force obtained is not large, but even without the amplification mechanism, the ascending motion of the sub-floating body can be directly transmitted to the movable rod. According to the simplest configuration of the present invention described with reference to FIG. 1, no amplification mechanism is included.

前記主浮体1は、適宜の連結手段、例えば、簡単な場合にはロープや、また、従来より知られている種々の連結器を用いて相互に連結し、海岸に繋いでもよいし、また、大型の油井作業台のように海上に位置を定めて固定してもよい。水面が上昇するとき、これに連動して副浮体25がピストン22を上昇させるが、ピストンは弾性部材23にて反発される。空気室21の吸気管は、図1に示すように、上方に延び、先端で曲がって、開口しており、場合によっては、主浮体1の外部において開口していてもよ。   The main floating body 1 may be connected to each other using appropriate connecting means, for example, a rope in a simple case, or various conventionally known connectors, and connected to the coast. You may fix and fix a position on the sea like a large oil well work table. When the water surface rises, the auxiliary floating body 25 raises the piston 22 in conjunction with this, but the piston is repelled by the elastic member 23. As shown in FIG. 1, the intake pipe of the air chamber 21 extends upward, bends at the tip, opens, and may open outside the main floating body 1 in some cases.

そこで、空気が絶えず空気貯蔵槽に送られる間に空気貯蔵槽内の空気圧は次第に高められて、例えば、その圧力が前記栓体34を前記弾性部材に抗して上方に所定位置まで運動させるに足りるまでに至ったとき、即ち、空気貯蔵槽内の空気圧が所定値に達したとき、適宜の手段、例えば、空気貯蔵槽内の空気圧や上記栓体の移動距離や位置等に基づいて、前記排気用逆止め弁33を開放するように電気信号をその逆止め弁33に送り、この排気用逆止め弁を開けて、上記空気貯蔵槽内の圧縮空気を圧縮空気容器に送り、更に、この圧縮空気容器から圧縮空気を開放して、空気タービン(図示せず)を駆動させれば、圧縮空気(風力エネルギー)を利用して、電気エネルギーに変換することができる。勿論、本発明においては、上記圧縮空気をその他のエネルギーに変換することもできる。例えば、本発明の構造体を海上の油田のボーリング作業台に設置すれば、直接に機械動力を得ることができるので、エネルギーの転換損失を軽減することができる。   Therefore, the air pressure in the air storage tank is gradually increased while the air is constantly sent to the air storage tank. For example, the pressure causes the plug 34 to move upward to a predetermined position against the elastic member. When it is sufficient, that is, when the air pressure in the air storage tank reaches a predetermined value, based on appropriate means, for example, the air pressure in the air storage tank, the movement distance and position of the plug body, etc. An electrical signal is sent to the check valve 33 to open the exhaust check valve 33, the exhaust check valve is opened, and the compressed air in the air storage tank is sent to the compressed air container. If compressed air is released from the compressed air container and an air turbine (not shown) is driven, the compressed air (wind energy) can be used to convert it into electrical energy. Of course, in the present invention, the compressed air can be converted into other energy. For example, if the structure of the present invention is installed in a boring work table of an offshore oil field, mechanical power can be obtained directly, so that energy conversion loss can be reduced.

本発明においては、前述したように、空気貯蔵槽31を適宜の導管にて多数を並列又は直列に接続してもよいし、また、それらを海岸に設けてもよい。従って、主浮体1の設置数は何ら限定されるものではなく、また、主浮体の大きさ、即ち、寸法も特に限定されるものではない。   In the present invention, as described above, a large number of air storage tanks 31 may be connected in parallel or in series with appropriate conduits, or they may be provided on the coast. Accordingly, the number of main floating bodies 1 to be installed is not limited at all, and the size of the main floating body, that is, the size is not particularly limited.

本発明によれば、主浮体1は、前述したように、副浮体が水面の上昇によって浮力を受けるように、利用する潮汐や水面の高さに応じて、水面に対する高さ乃至位置が適宜に定められる。即ち、本発明による構造体は、水面の上下運動のほか、潮汐による潮位の変動に対しても有用である。本発明による構造体は、水面上にあって、長期間にわたって利用することができる。   According to the present invention, as described above, the main floating body 1 has an appropriate height or position relative to the water surface in accordance with the tide used and the height of the water surface so that the sub-floating body receives buoyancy due to the rise of the water surface. Determined. That is, the structure according to the present invention is useful not only for the vertical movement of the water surface but also for fluctuations in the tide level due to tides. The structure according to the present invention is on the water surface and can be used for a long time.

以上のように、本発明による水中で用いる空気圧蓄積構造体は、例えば、海洋の波、即ち、回数の波面の上下運動を利用して、空気を空気室にて圧縮して空気貯蔵槽を経て圧縮空気容器に送って、利用に供するものである。図7に示すように、複数の空気室又は空気貯蔵槽を連結し、一段ずつ、複数段にわたって、空気圧を所定圧まで高めて、これを用いれば、空気タービンを回転させることができ、発電することができる。   As described above, the pneumatic storage structure used in water according to the present invention uses, for example, the ocean wave, that is, the vertical motion of the wavefront of the number of times, compresses the air in the air chamber and passes through the air storage tank. It is sent to a compressed air container for use. As shown in FIG. 7, a plurality of air chambers or air storage tanks are connected, and the air pressure is increased to a predetermined pressure over a plurality of stages one by one. By using this, the air turbine can be rotated to generate power. be able to.

本発明による水中で用いる空気圧蓄積構造体から得られる圧縮空気は、発電への利用に限られるものではなく、別のエネルギーに直接に転換することができる。例えば、水流の流れを促進するために用いることができる。要すれば、本発明による水中で用いる空気圧蓄積構造体は、海洋や河川の日々、年々の水面の上下運動によって空気を圧縮し、この圧縮空気力を動力として用いて空気タービンを回転させて電気エネルギーを得ることができ、また、その他のエネルギーに変換することもできる。   The compressed air obtained from the pneumatic storage structure used in water according to the present invention is not limited to use for power generation, but can be directly converted to another energy. For example, it can be used to promote water flow. In short, the air pressure accumulation structure used in water according to the present invention compresses air by the vertical movement of the water surface every day of the ocean or river, and uses this compressed air force as power to rotate the air turbine to generate electricity. Energy can be obtained and converted to other energy.

本発明による水中で用いる空気圧蓄積構造体は、構造が簡単であり、水力発電におけるような大きい水位差の環境も必要でなく、原子力発電のような複雑な装置も必要ではなく、所望すれば、小さな河辺にも設置することができる。このような場合には、いわば、補助の発電設備であるが、非常に有用である。   The pneumatic storage structure used in water according to the present invention is simple in structure, does not require a large water level difference environment as in hydroelectric power generation, and does not require a complicated device such as nuclear power generation, if desired. It can be installed on a small riverside. In such a case, it is an auxiliary power generation facility, which is very useful.

増幅機構をもたない本発明による水中で用いる空気圧蓄積構造体の一実施例を示す要部断面図である。It is principal part sectional drawing which shows one Example of the pneumatic pressure accumulation structure used in the water by this invention which does not have an amplification mechanism. 増幅機構の一例を備えた本発明による水中で用いる空気圧蓄積構造体の一実施例を示す要部断面図である。It is principal part sectional drawing which shows one Example of the pneumatic pressure accumulation structure used in the water by this invention provided with an example of the amplification mechanism. 増幅機構の別の一例を備えた本発明による水中で用いる空気圧蓄積構造体の一実施例を示す要部断面図である。It is principal part sectional drawing which shows one Example of the pneumatic storage structure used in the water by this invention provided with another example of the amplification mechanism. 二つの空気圧蓄積ユニットのそれぞれの空気室を単一の空気貯蔵ユニットの空気貯蔵槽に並列に連結してなる本発明による水中で用いる空気圧蓄積構造体の一実施例を示す要部断面図である。It is principal part sectional drawing which shows one Example of the pneumatic storage structure used in the water by this invention formed by connecting each air chamber of two pneumatic storage units in parallel with the air storage tank of a single air storage unit. . 空気圧蓄積ユニットと空気貯蔵ユニットとからなるユニットの二つを圧縮空気容器に並列して連結してなる本発明による水中で用いる空気圧蓄積構造体の一実施例を示す要部断面図である。It is principal part sectional drawing which shows one Example of the pneumatic storage structure used in the water by this invention formed by connecting two units which consist of a pneumatic storage unit and an air storage unit in parallel with a compressed air container. 第1の空気貯蔵槽と第二の空気貯蔵槽を直列して圧縮空気容器に連結してなる本発明による水中で用いる空気圧蓄積構造体の一実施例を示す要部断面図である。It is principal part sectional drawing which shows one Example of the pneumatic storage structure used in the water by this invention formed by connecting a 1st air storage tank and a 2nd air storage tank in series with a compressed air container. 空気圧蓄積ユニットと空気貯蔵ユニットとからなるユニットの三つを圧縮空気容器に直列して連結してなる本発明による水中で用いる空気圧蓄積構造体の一実施例を示す断面図である。It is sectional drawing which shows one Example of the pneumatic storage structure used in the water by this invention formed by connecting three units which consist of a pneumatic storage unit and an air storage unit in series with a compressed air container.

符号の説明Explanation of symbols

1…主浮体
11…貫通孔
2…空気圧蓄積ユニット
20…可動ロッド
21…空気室
22…ピストン
23、35…弾性部材
24…ピストンロッド
25…副浮体
26…吸気用逆止め弁
27…排気用逆止め弁
29…吸気管
3…空気貯蔵ユニット
30…空気出口
31…空気貯蔵槽
32…吸気口
33…排気口
34…栓体
36…案内接続管
37…導管
4…増幅機構
43、49…回転軸
42、48…ラック
43、45、46、47…歯車
5…圧縮空気容器
50…連結管

DESCRIPTION OF SYMBOLS 1 ... Main floating body 11 ... Through-hole 2 ... Air pressure accumulation unit 20 ... Movable rod 21 ... Air chamber 22 ... Piston 23, 35 ... Elastic member 24 ... Piston rod 25 ... Sub-floating body 26 ... Intake check valve 27 ... Exhaust reverse Stop valve 29 ... Intake pipe 3 ... Air storage unit 30 ... Air outlet 31 ... Air storage tank 32 ... Intake port 33 ... Exhaust port 34 ... Plug body 36 ... Guide connection pipe 37 ... Conduit 4 ... Amplifying mechanism 43, 49 ... Rotating shaft 42, 48 ... racks 43, 45, 46, 47 ... gear 5 ... compressed air container 50 ... connecting pipe

Claims (7)

底部に貫通孔11を有する主浮体1内に、空気室21を有する空気圧蓄積ユニット2と空気貯蔵槽31を有する空気貯蔵ユニット3とを設け、上記空気室にはピストン22を嵌め込み、空気室内にてこのピストンを弾性部材23にて鉛直下方向に付勢し、このピストンのピストンロッド20を鉛直下方向に延ばして前記貫通孔から主浮体の底部を貫通させて、これに中空の副浮体25を取付け、上記空気室には吸入用逆止め弁26を介して吸入管29を有せしめると共に、排気用逆止め弁27を介して排気管28によって上記空気室を前記空気貯蔵槽に接続してなり、前記空気貯蔵槽は内部の空気圧が所定値に達したとき、これを検知して、圧縮空気容器5への排気用逆止め弁33を開放する手段を備えてなる水中で用いる空気圧蓄積構造体であって、水面が上昇するとき、それに伴って前記副浮体をこれに作用する浮力を利用して上昇させ、これによって前記ピストンを上昇させ、かくして、空気室内の空気を上記排気用逆止め弁27を有する排気管28を経て前記空気貯蔵槽中に送るようにしたことを特徴とする水中で用いる空気圧蓄積構造体。   A pneumatic storage unit 2 having an air chamber 21 and an air storage unit 3 having an air storage tank 31 are provided in a main floating body 1 having a through hole 11 at the bottom, and a piston 22 is fitted in the air chamber, The piston is urged vertically downward by the elastic member 23, the piston rod 20 of the piston is extended vertically downward, and the bottom of the main floating body is penetrated from the through hole. The air chamber is provided with a suction pipe 29 through a suction check valve 26, and the air chamber is connected to the air storage tank through an exhaust check valve 27 through an exhaust pipe 28. The air storage tank is provided with a means for detecting when the internal air pressure reaches a predetermined value and opening the exhaust check valve 33 to the compressed air container 5. body Then, when the water surface rises, the sub-floating body is raised using the buoyancy acting on the water surface, thereby raising the piston, and thus the air in the air chamber is sent to the exhaust check valve 27. A pneumatic storage structure used in water, wherein the pneumatic storage structure is sent to the air storage tank through an exhaust pipe 28 having 底部に貫通孔11を有する主浮体1内に、空気室21を有する空気圧蓄積ユニット2と空気貯蔵槽31を有する空気貯蔵ユニット3とを設け、上記空気室にはピストン22を嵌め込み、空気室内にてこのピストンを弾性部材23にて鉛直下方向に付勢し、このピストンのピストンロッド24を鉛直下方に延ばし、上記ピストンロッド24と平行に可動ロッド20を設け、この可動ロッドを鉛直下方向に延ばして前記貫通孔から主浮体の底部を貫通させて、これに中空の副浮体25を取付け、上記ピストンロッドと可動ロッドとの間に増幅機構4を設けて、上記ピストンロッド24と可動ロッドを係合させ、上記空気室には吸入用逆止め弁26を介して吸入管29を有せしめると共に、排気用逆止め弁27を介して排気管28によって上記空気室を前記空気貯蔵槽に接続してなり、前記空気貯蔵槽は内部の空気圧が所定値に達したとき、これを検知して、圧縮空気容器5への排気用逆止め弁33を開放する手段を備えてなる水中で用いる空気圧蓄積構造体であって、水面が上昇するとき、それに伴って前記副浮体を上昇させ、これによって前記可動ロッドを上昇させ、この可動ロッドの上昇を前記増幅機構を介して前記ピストンロッドに増幅して伝えて上昇させ、かくして、空気室内の空気を上記排気用逆止め弁27を有する排気管28を経て前記空気貯蔵槽中に送るようにしたことを特徴とする水中で用いる空気圧蓄積構造体。   A pneumatic storage unit 2 having an air chamber 21 and an air storage unit 3 having an air storage tank 31 are provided in a main floating body 1 having a through hole 11 at the bottom, and a piston 22 is fitted in the air chamber, The piston is urged vertically downward by the elastic member 23, the piston rod 24 of the piston is extended vertically downward, a movable rod 20 is provided in parallel with the piston rod 24, and the movable rod is moved vertically downward. The bottom of the main floating body is extended through the through hole, a hollow sub-floating body 25 is attached to the bottom, and an amplifying mechanism 4 is provided between the piston rod and the movable rod so that the piston rod 24 and the movable rod are connected to each other. The air chamber is provided with a suction pipe 29 via a suction check valve 26, and the air is exhausted by an exhaust pipe 28 via an exhaust check valve 27. Is connected to the air storage tank, and when the air pressure inside the air storage tank reaches a predetermined value, means for detecting this and opening the exhaust check valve 33 to the compressed air container 5 is provided. An air pressure accumulating structure used in water, wherein when the water surface rises, the sub-floating body is raised accordingly, thereby raising the movable rod, and the movable rod is lifted via the amplification mechanism. And amplifying and transmitting the piston rod to the piston rod, thus sending the air in the air chamber into the air storage tank through the exhaust pipe 28 having the exhaust check valve 27. Pneumatic storage structure used in. ピストンロッド24上の側面に長手方向に第1のラック48を設け、この第1のラックに対面して、可動ロッド上の側面に長手方向に第2のラック42を設けると共に、主浮体に水平な枠体41を固定し、上記第1のラックと第2のラックとの間でこの枠体に一対の平行な回転軸43と49を支持させて、上記第1のラック48に噛み合うようにピストンロッド側の回転軸49に歯車46を取付け、上記第2のラック42に噛み合うように可動ロッド側の回転軸43に小歯車44を取付け、この小歯車と同軸に大歯車45を回転軸43に取付け、更に、前記ピストンロッド側の歯車と可動ロッド側の大歯車45を噛み合わせ、かくして、増幅機構を構成してなる請求項2に記載の水中で用いる空気圧蓄積構造体。   A first rack 48 is provided on the side surface on the piston rod 24 in the longitudinal direction, and a second rack 42 is provided on the side surface on the movable rod in the longitudinal direction so as to face the first rack. A frame 41 is fixed, and a pair of parallel rotating shafts 43 and 49 are supported between the first rack and the second rack so as to mesh with the first rack 48. A gear 46 is attached to the rotary shaft 49 on the piston rod side, a small gear 44 is attached to the rotary shaft 43 on the movable rod side so as to mesh with the second rack 42, and the large gear 45 is coaxially connected to this small gear. The pneumatic pressure accumulation structure for use in water according to claim 2, further comprising an amplifying mechanism configured by meshing the gear on the piston rod side and the large gear 45 on the movable rod side. ピストンロッド24上の側面に長手方向に第1のラック48を設け、可動ロッドの側面上に長手方向に第2のラック42を設けると共に、主浮体に水平な枠体41を固定し、上記第1のラックと第2のラックとの間でこの枠体に一対の平行な回転軸43と49を支持させて、上記第1のラック48に噛み合うようにピストンロッド側の回転軸49に大歯車47を取付け、この大歯車と同軸に小歯車46を回転軸49に取付け、上記第2のラック42に噛み合うように可動ロッド側の回転軸43に小歯車44を取付け、この小歯車と同軸に大歯車45を回転軸43に取付け、更に、前記ピストンロッド側の小歯車と可動ロッド側の大歯車45を噛み合わせ、かくして、増幅機構を構成してなる請求項2に記載の水中で用いる空気圧蓄積構造体。   A first rack 48 is provided in the longitudinal direction on the side surface of the piston rod 24, a second rack 42 is provided in the longitudinal direction on the side surface of the movable rod, and a horizontal frame 41 is fixed to the main floating body. A pair of parallel rotary shafts 43 and 49 are supported on the frame body between the first rack and the second rack, and the rotary shaft 49 on the piston rod side is engaged with the first rack 48 so as to mesh with the large gear. 47, and a small gear 46 is attached to the rotary shaft 49 coaxially with the large gear, and a small gear 44 is attached to the rotary shaft 43 on the movable rod side so as to mesh with the second rack 42, and coaxial with the small gear. The large gear 45 is attached to the rotating shaft 43, and the small gear on the piston rod side and the large gear 45 on the movable rod side are engaged with each other, thus constituting an amplifying mechanism. Storage structure. 二つの空気圧蓄積ユニット2を配設し、それぞれの空気圧蓄積ユニットの空気室21を空気貯蔵ユニット3の空気貯蔵槽31に並列に接続してなる請求項2又は3に記載の水中で用いる空気圧蓄積構造体。   The air pressure accumulation used in the water according to claim 2 or 3, wherein two air pressure accumulation units 2 are arranged, and the air chambers 21 of the respective air pressure accumulation units are connected in parallel to the air storage tank 31 of the air storage unit 3. Structure. それぞれ空気圧蓄積ユニット2に接続した二つの空気貯蔵ユニット3の空気貯蔵槽31を圧縮空気容器5に並列に接続してなる請求項2又は3に記載の水中で用いる空気圧蓄積構造体。   The pneumatic storage structure used in water according to claim 2 or 3, wherein the air storage tanks 31 of two air storage units 3 connected to the pneumatic storage unit 2 are connected in parallel to the compressed air container 5. それぞれ空気圧蓄積ユニット2を有する空気貯蔵ユニット3の空気貯蔵槽31を圧縮空気容器に直列に接続してなる請求項2又は3に記載の水中で用いる空気圧蓄積構造体。

The pneumatic storage structure used in water according to claim 2 or 3, wherein the air storage tank 31 of the air storage unit 3 having the pneumatic storage unit 2 is connected in series to a compressed air container.

JP2005003692A 2004-01-15 2005-01-11 Air pressure accumulating structure to be used in water Pending JP2005201268A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093101191A TW200523468A (en) 2004-01-15 2004-01-15 Pressure reservoir structure for use in water

Publications (1)

Publication Number Publication Date
JP2005201268A true JP2005201268A (en) 2005-07-28

Family

ID=34748366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003692A Pending JP2005201268A (en) 2004-01-15 2005-01-11 Air pressure accumulating structure to be used in water

Country Status (3)

Country Link
US (1) US20050158184A1 (en)
JP (1) JP2005201268A (en)
TW (1) TW200523468A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915200A (en) * 2010-07-26 2010-12-15 王少林 Reciprocating type hydrodynamic force water drawing rotating machinery power converting machine
JP2012506516A (en) * 2008-10-24 2012-03-15 ヴィトリオ ペレグリニ An integrated generator device for generating energy from renewable zero-emission alternative energy sources that respects and preserves the environment
US20130242522A1 (en) * 2012-03-16 2013-09-19 Lg Electronics Inc. Mobile terminal
WO2020009031A1 (en) * 2018-07-06 2020-01-09 立岡 哲治 Power generation plant using buoyancy body and power generation method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7980832B2 (en) * 2007-04-19 2011-07-19 Ahdoot Ned M Wave energy converter
NZ599275A (en) * 2009-09-23 2014-07-25 Bright Energy Storage Technologies Llp System for underwater compressed fluid energy storage and method of deploying same
US20110211916A1 (en) * 2010-03-01 2011-09-01 Scott Raymond Frazier Apparatus for storage vessel deployment and method of making same
JP5928841B2 (en) 2010-07-14 2016-06-01 ブライト エナジー ストレージ テクノロジーズ,エルエルピー.Bright Energy Storage Technologies,LLP. Thermal energy storage system and method
TWI567299B (en) * 2010-07-30 2017-01-21 解岡 Power generation device
CN101968026B (en) * 2010-11-18 2012-10-03 杨辉雄 Sea wave energy storage and power generation device
CN102943957B (en) * 2012-10-25 2014-06-18 浙江大学宁波理工学院 Tidal energy gas supply apparatus
ES2527699B1 (en) * 2013-06-12 2015-11-12 Ecosistemas De Ahorro S.L Procedure for generating drinking water and tidal power
CN105443504B (en) * 2015-12-18 2018-09-04 南京晨光集团有限责任公司 Accumulator oil end permeation detection device
CN110496433A (en) * 2018-05-20 2019-11-26 宁波大学 A kind of self-filtering type water purifying tank of circulation offer clear water
CN109707674A (en) * 2018-12-14 2019-05-03 兰州凯兰德科技实业有限公司 A kind of energy-storage pressure energy recycle device
CN111878289B (en) * 2020-07-31 2021-06-25 大连海事大学 Magnetic field modulation lamp buoy wave energy power generation device
CN113982810A (en) * 2021-09-09 2022-01-28 曹越 Device for generating jet thrust by converting wave energy into water pressure
CN114158856A (en) * 2021-11-23 2022-03-11 刘家豪 Intelligent compact shelf
CN114674279A (en) * 2022-04-20 2022-06-28 孙京宁 Integration house ground settlement monitoring devices
CN115506941B (en) * 2022-09-30 2023-06-16 南通大学 Wave energy power generation facility float

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3028727A (en) * 1959-04-21 1962-04-10 Anston George Gravitational power generator
US3216529A (en) * 1963-09-23 1965-11-09 John H Hartman Jr Spring motor drive
FR1446419A (en) * 1965-06-09 1966-07-22 S A T A M Sa Appareillages Mec Adjustable volume automatic mixing dispenser
US3701216A (en) * 1971-12-22 1972-10-31 California R & D Center Wheel apparatus and rack and pinion launcher enabling repeated strokes and having automatic ejector
US4560884A (en) * 1979-07-16 1985-12-24 Whittecar William C Wave power energizer
US4454429A (en) * 1982-12-06 1984-06-12 Frank Buonome Method of converting ocean wave action into electrical energy
US4598211A (en) * 1984-01-16 1986-07-01 John Koruthu Tidal energy system
US4754157A (en) * 1985-10-01 1988-06-28 Windle Tom J Float type wave energy extraction apparatus and method
US4883411A (en) * 1988-09-01 1989-11-28 Windle Tom J Wave powered pumping apparatus and method
US5179837A (en) * 1991-04-02 1993-01-19 Sieber J D Wave powered energy generator
US6574957B2 (en) * 2001-05-04 2003-06-10 Donald U. Brumfield Tidal/wave compressed air electricity generation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506516A (en) * 2008-10-24 2012-03-15 ヴィトリオ ペレグリニ An integrated generator device for generating energy from renewable zero-emission alternative energy sources that respects and preserves the environment
CN101915200A (en) * 2010-07-26 2010-12-15 王少林 Reciprocating type hydrodynamic force water drawing rotating machinery power converting machine
US20130242522A1 (en) * 2012-03-16 2013-09-19 Lg Electronics Inc. Mobile terminal
US9137906B2 (en) * 2012-03-16 2015-09-15 Lg Electronics Inc. Mobile terminal
WO2020009031A1 (en) * 2018-07-06 2020-01-09 立岡 哲治 Power generation plant using buoyancy body and power generation method thereof
JP2020007957A (en) * 2018-07-06 2020-01-16 立岡 哲治 Power generation plant using buoyancy body and its power generation method
US11156199B2 (en) 2018-07-06 2021-10-26 Tetsuji Tateoka Power plant using buoyant body and method of generating power by power plant using buoyant body

Also Published As

Publication number Publication date
TW200523468A (en) 2005-07-16
US20050158184A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
JP2005201268A (en) Air pressure accumulating structure to be used in water
JP5574298B2 (en) Wave actuated pump and means for connecting it to the seabed
US7980832B2 (en) Wave energy converter
Lindroth et al. Offshore wave power measurements—A review
US7969033B2 (en) Buoyancy energy cell
US6781253B2 (en) Converting ocean energy into electrical energy using bourdon tubes and cartesian divers
CN102269106A (en) Oscillation floater pneumatic type sea wave energy generating device
US8253263B2 (en) Wave-power system for extracting simultaneously both potential and kinetic energy at variable significant wave heights and periods
US20090261593A1 (en) Tidal pump generator
EP2865884A3 (en) Tapered helical auger turbine to convert hydrokinetic energy into electrical energy
CN102022248A (en) A floating type wave power generation system
US10415539B1 (en) Tidal electricity generator
US20110221209A1 (en) Buoyancy Energy Cell
CN204677360U (en) The wave energy collection device of self adaption tidal level
NO329737B1 (en) Bolgekraftverk
JP2009533600A (en) Multiple use and complementary conversion of sea wave energy
CN202645829U (en) A novel floater- and hydraulic transmission-type ocean wave energy generating set
EP1713979A2 (en) Wave energy plant for electricity generation
WO2010045500A1 (en) Wave energy extraction system
GB2448721A (en) Compressed air tidal power generator
US4171189A (en) Lift-force pump activated by the weight and buoyancy of giant buoys
ES2148105A1 (en) Plant for exploiting the tidal energy
CN100552215C (en) Fro water pump type voltage transformation tidal power generating device
CN212716979U (en) Telescopic rope-rolling type ocean floater power generation device
Falcão The development of wave energy utilisation