JP2005200277A - Method for manufacturing optical fiber - Google Patents

Method for manufacturing optical fiber Download PDF

Info

Publication number
JP2005200277A
JP2005200277A JP2004009327A JP2004009327A JP2005200277A JP 2005200277 A JP2005200277 A JP 2005200277A JP 2004009327 A JP2004009327 A JP 2004009327A JP 2004009327 A JP2004009327 A JP 2004009327A JP 2005200277 A JP2005200277 A JP 2005200277A
Authority
JP
Japan
Prior art keywords
optical fiber
longitudinal direction
core member
core
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004009327A
Other languages
Japanese (ja)
Inventor
Tomomi Nakano
ともみ 中野
Yasuo Shinno
康生 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2004009327A priority Critical patent/JP2005200277A/en
Publication of JP2005200277A publication Critical patent/JP2005200277A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/18Axial perturbations, e.g. in refractive index or composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/18Axial perturbations, e.g. in refractive index or composition
    • C03B2203/20Axial perturbations, e.g. in refractive index or composition helical
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/32Eccentric core or cladding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/06Rotating the fibre fibre about its longitudinal axis
    • C03B2205/07Rotating the preform about its longitudinal axis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical fiber capable of more efficiently producing laser light by exciting a core member with a larger amount of exciting light in fiber laser oscillation. <P>SOLUTION: In the method for manufacturing the optical fiber 1, the core member 30 is arranged at a marginal part of a clad member 10 in a section perpendicular to the longitudinal direction of the optical fiber 1, and the core member 30 is helically arranged to the longitudinal direction. One or more core members 30 are arranged in the longitudinal direction of the optical fiber 1 so that the core members 30 are located at the marginal part of the clad member 10 in the section perpendicular to the longitudinal direction of the optical fiber 1. Then, the clad member 10 is heated until the clad member becomes flowable. Furthermore, the center of the section perpendicular to the longitudinal direction of the optical fiber is used as the central axis CZ around which the optical fiber 1 is twisted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、レーザ活性物質を含むコア部材と、励起光を透過させるクラッド部材とを有するファイバレーザ発振に用いる光ファイバの製造方法に関する。   The present invention relates to a method of manufacturing an optical fiber used for fiber laser oscillation having a core member containing a laser active substance and a clad member that transmits excitation light.

従来より、比較的ビーム品質の劣る励起光を用いて非常に高品質のレーザ光を高効率で得ることができるファイバレーザ発振装置や、高速・大容量・長距離伝送が可能な光増幅器等に用いる種々の光ファイバが提案されている。
ファイバレーザに用いられる光ファイバは通常、断面の中心にコア部材(シングルモードのレーザ光を透過させ、希土類元素(Nd、Er)等がドープされた直径2〜12[μm]程度のファイバ形状)を有している。そして、コア部材の周囲に、コア部材よりも低い屈折率を持つクラッド部材(第1クラッド部材であり、励起光を透過させる)を有することで、レーザ光をコア部材内に閉じ込めている。更に第1クラッド部材の周囲に、第1クラッド部材の屈折率よりも低い屈折率を持つ第2クラッド部材を有することで、励起光を第1クラッド部材内に閉じ込めている。
そして、この光ファイバに入射された励起光がコア部材を通ると(コア部材に衝突すると)コア部材内の希土類元素が励起されてレーザ光が発生し、コア部材内にはシングルモードのレーザ光が残る。このレーザ光は、小径(コア部材の径に依存する)であり、かつ広がり角が小さい(発生したレーザ光の波長、コア部材及び第1クラッド部材の屈折率等に依存する)ため、ビーム品質が非常によい(レーザ光のビーム品質は、出射光の半径と、出射光の広がり角の半角との積で表され、この積が小さい程ビーム品質が高い)。
Conventionally, for fiber laser oscillators that can obtain very high-quality laser light with high efficiency using pump light with relatively poor beam quality, optical amplifiers that can perform high-speed, large-capacity, and long-distance transmission Various optical fibers to be used have been proposed.
An optical fiber used for a fiber laser is usually a core member at the center of a cross section (a fiber shape with a diameter of about 2 to 12 [μm] doped with rare earth elements (Nd, Er) and the like that transmits single mode laser light). have. The laser beam is confined in the core member by having a clad member having a lower refractive index than the core member (a first clad member that transmits the excitation light) around the core member. Further, the second cladding member having a refractive index lower than that of the first cladding member is provided around the first cladding member, so that the excitation light is confined in the first cladding member.
When the excitation light incident on the optical fiber passes through the core member (when it collides with the core member), the rare earth element in the core member is excited to generate laser light, and single-mode laser light is generated in the core member. Remains. Since this laser beam has a small diameter (depending on the diameter of the core member) and a small divergence angle (depends on the wavelength of the generated laser beam, the refractive index of the core member and the first cladding member, etc.), the beam quality (The beam quality of the laser light is expressed by the product of the radius of the emitted light and the half angle of the spread angle of the emitted light, and the smaller the product, the higher the beam quality).

従来の一般的な光ファイバ1a(ファイバレーザ発振に用いる光ファイバ)は、図4(A)に示すように、円柱形状の第1クラッド部材10の長手方向(図4(A)のZ軸方向)に、レーザ活性物質を含むコア部材30が配置されている。また、図4(B)は、光ファイバ1aの長手方向に垂直な断面(図4(A)の断面BB)を示している。図4(B)に示すように、従来の一般的な光ファイバ1aは、長手方向に垂直な断面において、第1クラッド部材10の中心部分にコア部材30が配置されている。
この光ファイバ1aの長手方向に垂直な端面から励起光Linを入射すると、入射した励起光Linが第1クラッド部材10内を全反射しながら進行する。そして、第1クラッド部材10内を全反射しながら進行する励起光Linが(偶然的に)コア部材30に衝突すると、コア部材30内でレーザ光が励起される。
As shown in FIG. 4A, a conventional general optical fiber 1a (an optical fiber used for fiber laser oscillation) has a longitudinal direction of a cylindrical first clad member 10 (Z-axis direction in FIG. 4A). ), The core member 30 containing the laser active substance is disposed. FIG. 4B shows a cross section perpendicular to the longitudinal direction of the optical fiber 1a (cross section BB in FIG. 4A). As shown in FIG. 4B, in the conventional general optical fiber 1a, the core member 30 is disposed at the center portion of the first cladding member 10 in a cross section perpendicular to the longitudinal direction.
When the excitation light Lin is incident from the end face perpendicular to the longitudinal direction of the optical fiber 1a, the incident excitation light Lin proceeds while being totally reflected in the first cladding member 10. When the excitation light Lin that travels while being totally reflected in the first cladding member 10 collides with the core member 30 (accidentally), the laser light is excited in the core member 30.

なお、一般的な光ファイバ1aでは、より高品質なレーザ光を得るためにコア部材30の径を約2〜12[μm]としており、より高出力のレーザ光を得る目的でより多くの励起光を入射するために第1クラッド部材10の径を約100[μm]としている。従って、第1クラッド部材10の断面積に対するコア部材30の断面積が非常に小さい。このため、図4(B)に示すように、励起光Linがコア部材30に衝突することなく、第1クラッド部材10内で全反射しながら第1クラッド部材10の外周に沿って周回してしまう場合がある。また、図4(C)に示すように、周回してしまう励起光Linをより低減するために第1クラッド部材10の断面形状を矩形にした光ファイバも提案されているが、それでも周回してしまう励起光Linが発生する場合がある。
また、励起光Linは、比較的ビーム品質が劣るので、コア部材30に衝突するように狙って入射することは非常に困難である。
In the general optical fiber 1a, the diameter of the core member 30 is set to about 2 to 12 [μm] in order to obtain higher quality laser light, and more pumping is performed for the purpose of obtaining higher output laser light. In order to make light incident, the diameter of the first cladding member 10 is about 100 [μm]. Therefore, the cross-sectional area of the core member 30 with respect to the cross-sectional area of the first cladding member 10 is very small. For this reason, as shown in FIG. 4B, the excitation light Lin does not collide with the core member 30 and circulates along the outer periphery of the first cladding member 10 while being totally reflected in the first cladding member 10. May end up. Further, as shown in FIG. 4C, an optical fiber having a rectangular cross-sectional shape of the first cladding member 10 has been proposed in order to further reduce the pumping light Lin that circulates. In some cases, the excitation light Lin is generated.
Further, since the excitation light Lin has a relatively poor beam quality, it is very difficult to aim the light so as to collide with the core member 30.

そこで、例えばファイバレーザ発振装置の分野では、図4(H)に示すように、円筒形のガラス円柱体52の外周面にコア部材30を巻回し、円柱体52の端面の外周端部近傍からプリズム54を用いて励起光を入射(半導体レーザ発生装置58が出力したレーザ光をコリメートレンズ56にて平行光に変換してプリズム54に入射)して、励起光を円柱体52の内部で全反射させながら螺旋状に周回させ、レーザ出力をより向上させるファイバレーザ発振装置が提案されている(例えば特許文献1参照)。
また、例えば光増幅器の分野では、図4(D)〜(G)に示すように、光ファイバの第1クラッド部材10内にコア部材30を少なくとも3本有し、長手方向に少なくとも2個所のモードフィールド径の変化した領域23を設け、利得が低いときだけでなく、利得が高いときであっても、利得波長特性を平坦にすることができる、マルチコアファイバ1bが提案されている(例えば特許文献2参照)。
特開平11−284255号公報 特開平10−242548号公報
Therefore, for example, in the field of the fiber laser oscillation device, as shown in FIG. Excitation light is incident using the prism 54 (the laser light output from the semiconductor laser generator 58 is converted into parallel light by the collimator lens 56 and incident on the prism 54). A fiber laser oscillating device has been proposed in which the laser output is further improved by making it circulate in a spiral shape while reflecting (see, for example, Patent Document 1).
Further, for example, in the field of optical amplifiers, as shown in FIGS. 4D to 4G, the first clad member 10 of the optical fiber has at least three core members 30 and at least two locations in the longitudinal direction. A multi-core fiber 1b has been proposed in which a region 23 having a changed mode field diameter is provided and the gain wavelength characteristic can be flattened not only when the gain is low but also when the gain is high (for example, a patent) Reference 2).
Japanese Patent Laid-Open No. 11-284255 Japanese Patent Laid-Open No. 10-242548

特許文献1に記載のファイバレーザ発振装置では、円柱体52の外周面に剥き出しのコア部材30を巻きつけるため、コア部材30が折れ易いと推定される。
また、特許文献1に記載のファイバレーザ発振装置では、プリズム54を用いて励起光を入射し、円柱体52の外周面を周回するように励起光を入射する必要があるため、より多くの励起光を入射しようとした場合、入射した励起光を全て周回させることは非常に困難である(例えば励起光の径を大きくすると、円柱体52の外周面への入射角が円柱体52の内部で全反射するための角度を満足しない励起光が多くなる可能性がある)。
また、特許文献2に記載のマルチコアファイバ1bでは、コア部材30を複数有しているが、図4(E)〜(G)に示すように、当該コア部材30が断面のほぼ中心に配置されているため、第1クラッド部材10の外周に沿って周回するような励起光が衝突する確率は低いと推定される。
本発明は、このような点に鑑みて創案されたものであり、ファイバレーザ発振において、より多くの励起光がコア部材を励起することができ、より効率よくレーザ光を得ることができる光ファイバの製造方法を提供することを課題とする。
In the fiber laser oscillation device described in Patent Document 1, since the exposed core member 30 is wound around the outer peripheral surface of the cylindrical body 52, the core member 30 is estimated to be easily broken.
Further, in the fiber laser oscillation device described in Patent Document 1, it is necessary to enter the excitation light using the prism 54 and to enter the excitation light so as to go around the outer peripheral surface of the cylindrical body 52. When entering light, it is very difficult to circulate all of the incident excitation light (for example, when the diameter of the excitation light is increased, the incident angle to the outer peripheral surface of the cylindrical body 52 is increased within the cylindrical body 52. There may be more excitation light that does not satisfy the angle for total reflection).
Further, the multi-core fiber 1b described in Patent Document 2 has a plurality of core members 30, but as shown in FIGS. 4E to 4G, the core member 30 is disposed substantially at the center of the cross section. Therefore, it is estimated that the probability that the excitation light that circulates along the outer periphery of the first cladding member 10 collides is low.
The present invention was devised in view of such points, and in fiber laser oscillation, an optical fiber that can excite a core member with more pumping light and can obtain laser light more efficiently. It is an object to provide a manufacturing method.

上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりの光ファイバの製造方法である。
請求項1に記載の光ファイバの製造方法は、光ファイバの長手方向に垂直な断面において、コア部材がクラッド部材の縁部に配置されているとともに、コア部材が長手方向に向かって螺旋形状となるように配置されている光ファイバの製造方法であって、光ファイバの長手方向に垂直な断面において、クラッド部材の縁部にコア部材が位置するように、光ファイバの長手方向に単数または複数のコア部材を配置する。そして、クラッド部材が流動可能状態になるまで加熱する。更に、光ファイバの長手方向に垂直な断面の中心を、ねじりの中心軸となるようにして光ファイバをねじる製造方法である。
As means for solving the above-mentioned problems, the first invention of the present invention is an optical fiber manufacturing method as described in claim 1.
In the optical fiber manufacturing method according to claim 1, in the cross section perpendicular to the longitudinal direction of the optical fiber, the core member is disposed at the edge of the cladding member, and the core member has a spiral shape in the longitudinal direction. A method of manufacturing an optical fiber arranged to be one or more in the longitudinal direction of the optical fiber so that the core member is positioned at the edge of the cladding member in a cross section perpendicular to the longitudinal direction of the optical fiber. The core member is arranged. Then, the clad member is heated until it can flow. Furthermore, this is a manufacturing method in which the optical fiber is twisted so that the center of the cross section perpendicular to the longitudinal direction of the optical fiber becomes the central axis of twisting.

請求項1に記載の光ファイバの製造方法を用いれば、クラッド部材の縁部にコア部材が長手方向に向かって螺旋形状となるように配置されている光ファイバを、より容易に製造することができる。   If the manufacturing method of the optical fiber of Claim 1 is used, it can manufacture more easily the optical fiber arrange | positioned so that a core member may become spiral shape toward the longitudinal direction at the edge of a clad member. it can.

以下に本発明を実施するための最良の形態を図面を用いて説明する。
●[光ファイバの構造(図1)]
図1(A)は、本実施の形態における「光ファイバの製造方法」で製造した光ファイバ1の概略外観図である。
光ファイバ1は、コア部材30を長手方向に有しており、コア部材30にはレーザ活性物質(希土類元素であるNd、Er等)がドープされている。そして、光ファイバ1の長手方向に垂直な断面において、コア部材30がクラッド部材10(以下、第1クラッド部材10と記載する)の縁部に配置されているとともに、コア部材30が長手方向に向かって螺旋形状となるように配置されている。
また、図3(A)に示すように、更に外周を第2クラッド部材20で覆ってもよいし、励起光Linを全反射するコーティング等で覆ってもよい。
また、各部材の屈折率の関係は、コア部材30の屈折率(n30)>第1クラッド部材10の屈折率(n10)≧第2クラッド部材20の屈折率(n20)>空気の屈折率となるように設定されている。なお、第2クラッド部材20は省略してもよい。
これにより、光ファイバ1の端面から入射された励起光(例えば半導体レーザ光)が第1クラッド部材10の外周部で全反射しながら進行しても、より確実に励起光をコア部材30に衝突させて、コア部材30のレーザ活性物質を励起して出力レーザ光を発生させることができる。
The best mode for carrying out the present invention will be described below with reference to the drawings.
● [Optical fiber structure (Figure 1)]
FIG. 1A is a schematic external view of an optical fiber 1 manufactured by the “optical fiber manufacturing method” in the present embodiment.
The optical fiber 1 has a core member 30 in the longitudinal direction, and the core member 30 is doped with a laser active material (such as Nd and Er which are rare earth elements). And in the cross section perpendicular | vertical to the longitudinal direction of the optical fiber 1, while the core member 30 is arrange | positioned at the edge part of the clad member 10 (henceforth the 1st clad member 10), the core member 30 is a longitudinal direction It arrange | positions so that it may become a spiral shape.
Further, as shown in FIG. 3A, the outer periphery may be further covered with the second clad member 20, or may be covered with a coating or the like that totally reflects the excitation light Lin.
Further, the refractive index relationship of each member is as follows: the refractive index of the core member 30 (n30)> the refractive index of the first cladding member 10 (n10) ≧ the refractive index of the second cladding member 20 (n20)> the refractive index of air. It is set to be. Note that the second cladding member 20 may be omitted.
Thereby, even if the excitation light (for example, semiconductor laser light) incident from the end face of the optical fiber 1 travels while being totally reflected by the outer peripheral portion of the first cladding member 10, the excitation light collides with the core member 30 more reliably. Thus, the laser active material of the core member 30 can be excited to generate output laser light.

なお、図1(B)に示す光ファイバ1αは、図4(A)に示す従来の光ファイバ1aに対して、第1クラッド部材10の縁部に1本のコア部材30が長手方向に沿って配置されている。図1(B)に示す光ファイバ1αは、図4(B)に示すように励起光Linが周回した場合、図4(B)よりは励起光Linがコア部材30に衝突して励起する確率が高いと推定される。
図1(C)に示す光ファイバ1βは、図1(B)に示す光ファイバ1αよりも、励起光Linがコア部材30に衝突して励起する確率がより高くなるように、コア部材30の数を増やした例である。しかし、コア部材30が複数本であるので、出力レーザ光の径は、複数本のコア部材30の端面を束ねた径より小さくすることは困難である。
図1(D)に示す光ファイバ1γは、図1(C)に示す光ファイバ1βに対して、コア部材30を1本にして、コア部材30を光ファイバ1γの一方の端面と他方の端面との間で長手方向に複数回往復させた例である。この場合、コア部材30が1本であるので、出力レーザ光の径がより小さくなり、ビーム品質が向上する。
In addition, the optical fiber 1α shown in FIG. 1B has a single core member 30 along the longitudinal direction at the edge of the first clad member 10 with respect to the conventional optical fiber 1a shown in FIG. Are arranged. In the optical fiber 1α shown in FIG. 1B, when the excitation light Lin circulates as shown in FIG. 4B, the probability that the excitation light Lin collides with the core member 30 and is excited than in FIG. 4B. Is estimated to be high.
The optical fiber 1β shown in FIG. 1C has a higher probability that the excitation light Lin collides with the core member 30 and is excited than the optical fiber 1α shown in FIG. This is an example of increasing the number. However, since there are a plurality of core members 30, it is difficult to make the diameter of the output laser light smaller than the diameter obtained by bundling the end faces of the plurality of core members 30.
An optical fiber 1γ shown in FIG. 1 (D) has one core member 30 and one end surface of the optical fiber 1γ and the other end surface of the optical fiber 1β shown in FIG. 1 (C). This is an example of reciprocating a plurality of times in the longitudinal direction. In this case, since the number of the core members 30 is one, the diameter of the output laser light is further reduced, and the beam quality is improved.

以下に説明する「光ファイバの製造方法」にて製造した光ファイバ1(図1(A)に示す光ファイバ1)は、図1(B)に示す光ファイバ1αよりも、励起光Linがコア部材30を励起する確率が高い(高効率である)。また、図1(C)に示す光ファイバ1βよりも、出力レーザ光の径がより小さい(ビーム品質が高い)。また、図1(D)に示す光ファイバγよりも、コア部材30を湾曲させる径がより小さいため、コア部材30が折れにくい。   The optical fiber 1 manufactured by the “optical fiber manufacturing method” described below (the optical fiber 1 shown in FIG. 1A) has a pumping light Lin more core than the optical fiber 1α shown in FIG. The probability of exciting the member 30 is high (high efficiency). Further, the diameter of the output laser beam is smaller than that of the optical fiber 1β shown in FIG. 1C (the beam quality is high). Moreover, since the diameter which curves the core member 30 is smaller than the optical fiber (gamma) shown in FIG.1 (D), the core member 30 is hard to bend.

●[光ファイバの製造方法(図2)]
次に図2(A)〜(D)を用いて、本実施の形態における「光ファイバの製造方法」について説明する。
まず、図2(A)に示すように、第1クラッド部材10の縁部にコア部材30を長手方向(Z軸方向)に平行に配置する。なお、第1クラッド部材10とコア部材30の材質には例えば石英ガラスから選定し、軟化点に関してほぼ同じ材質のものを選定し、熱膨張係数に関してほぼ同じまたは第1クラッド部材10の方が大きくなるような材質のものを選定することが好ましい。また、図2(A)は、励起光がコア部材30により入射できるように、第1クラッド部材10の内部にコア部材30を含むが、図2(B)のように第1クラッド部材10の表面に配置されるコア部材30を、図示しない第2クラッド部材により覆ってもよい。
そして、第1クラッド部材10が流動可能状態になるまで加熱する(加工可能な温度まで熱する)。
更に、光ファイバ1の長手方向に垂直な断面の中心(中心軸CZ)を、ねじりの中心軸となるようにして光ファイバ1をねじる。
すると、第1クラッド部材10の縁部に、長手方向に向かって螺旋形状をしたコア部材30が配置された光ファイバ1が出来上がる。
● [Optical fiber manufacturing method (Figure 2)]
Next, an “optical fiber manufacturing method” in the present embodiment will be described with reference to FIGS.
First, as shown in FIG. 2A, the core member 30 is arranged in parallel with the longitudinal direction (Z-axis direction) at the edge of the first clad member 10. The material of the first clad member 10 and the core member 30 is selected from, for example, quartz glass, the same material is selected for the softening point, and the thermal expansion coefficient is substantially the same or the first clad member 10 is larger. It is preferable to select a material of such a kind. 2A includes the core member 30 inside the first clad member 10 so that the excitation light can be incident on the core member 30, but the first clad member 10 of FIG. The core member 30 disposed on the surface may be covered with a second cladding member (not shown).
And it heats until the 1st clad member 10 will be in the state which can flow (it heats to the temperature which can be processed).
Further, the optical fiber 1 is twisted so that the center (central axis CZ) of the cross section perpendicular to the longitudinal direction of the optical fiber 1 becomes the central axis of twisting.
Then, the optical fiber 1 in which the core member 30 having a spiral shape in the longitudinal direction is arranged at the edge of the first cladding member 10 is completed.

また、図2(C)に示すように、複数本のコア部材30を第1クラッド部材10の縁部に長手方向に平行に配置し、以下同様に加熱してねじれば、より多くのコア部材30が長手方向に向かって螺旋形状をした光ファイバ1が出来上がる。また、図2(C)は、励起光がコア部材30により入射できるように、第1クラッド部材10の内部に複数のコア部材30を含むが、図2(D)のように第1クラッド部材10の表面に配置される複数のコア部材30を、図示しない第2クラッド部材により覆ってもよい。
同様に、図1(D)の光ファイバ1γの状態から、加熱してねじれば、より多くのコア部材30が長手方向に向かって螺旋形状をした光ファイバ1が出来上がる(この場合、コア部材30自身は1本である)。
Further, as shown in FIG. 2C, more core members can be obtained by arranging a plurality of core members 30 parallel to the longitudinal direction at the edge of the first clad member 10 and heating and twisting in the same manner. An optical fiber 1 having a spiral shape 30 in the longitudinal direction is completed. 2C includes a plurality of core members 30 inside the first clad member 10 so that excitation light can be incident on the core member 30, but the first clad member as shown in FIG. 2D. The plurality of core members 30 arranged on the surface of 10 may be covered with a second cladding member (not shown).
Similarly, when heated and twisted from the state of the optical fiber 1γ in FIG. 1D, an optical fiber 1 in which more core members 30 spiral in the longitudinal direction is completed (in this case, the core member 30). One is himself).

●[製造した光ファイバを用いたファイバレーザ発振装置(図3)]
図3(A)は、図2(C)に示す製造方法にて製造した光ファイバ1の周囲(端面を除いた側面)を、溶液状のセラミックス前駆体(ポリシラザン等のコーティング剤)で覆い、焼成して第2クラッド部材20を形成した例である。なお、図3(A)の例では、コア部材30が、第1クラッド部材10及び第2クラッド部材20の端面からはみ出すように、余剰部分を備えている。
そして、図3(B)に示すように光ファイバ1の一方の端面(入射端面)から励起光Lin(半導体レーザ光等)を入射する。入射端面側のコア部材30の先端には、コア部材30の軸方向と垂直になるように、出力レーザ光Loutを反射するミラー46(あるいはコーティング等)を設ける。
また、光ファイバ1の他方の端面(出力端面)のコア部材30を束ね、出力レーザ光Loutの径を小さくする。そして、出力レーザ光Loutを平行光に変換するコリメートレンズ42と、平行光に変換した出力レーザ光Loutをより小さな径に集光する集光レンズ44とを配置する。このように集光した出力レーザ光Loutは、より高いビーム品質にて高い出力と精度を有しており、レーザ加工、レーザ溶接等、種々の用途に用いることが可能である。
● [Fiber laser oscillator using the manufactured optical fiber (Fig. 3)]
FIG. 3 (A) covers the periphery (side face excluding the end face) of the optical fiber 1 manufactured by the manufacturing method shown in FIG. 2 (C) with a solution-like ceramic precursor (a coating agent such as polysilazane). In this example, the second clad member 20 is formed by firing. In the example of FIG. 3A, the core member 30 includes an excess portion so as to protrude from the end surfaces of the first cladding member 10 and the second cladding member 20.
Then, as shown in FIG. 3B, excitation light Lin (semiconductor laser light or the like) is incident from one end face (incident end face) of the optical fiber 1. A mirror 46 (or coating or the like) that reflects the output laser light Lout is provided at the tip of the core member 30 on the incident end face side so as to be perpendicular to the axial direction of the core member 30.
Further, the core member 30 on the other end face (output end face) of the optical fiber 1 is bundled to reduce the diameter of the output laser light Lout. Then, a collimator lens 42 that converts the output laser light Lout into parallel light and a condenser lens 44 that condenses the output laser light Lout converted into parallel light to a smaller diameter are disposed. The condensed output laser light Lout in this way has high output and accuracy with higher beam quality, and can be used for various applications such as laser processing and laser welding.

本発明の「光ファイバの製造方法」は、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。また、光ファイバ1の形状、構成、構造等は、実施の形態の説明に限定されるものではない。
本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
本実施の形態では、励起光Linに半導体レーザを用いたが、励起光には種々のものを用いることができる。
The “optical fiber manufacturing method” of the present invention can be variously changed, added, and deleted without changing the gist of the present invention. Further, the shape, configuration, structure, and the like of the optical fiber 1 are not limited to the description of the embodiment.
The numerical values used in the description of the present embodiment are examples, and are not limited to these numerical values.
In this embodiment, a semiconductor laser is used as the excitation light Lin, but various types of excitation light can be used.

本発明の「光ファイバの製造方法」にて製造した光ファイバ1は、レーザ加工装置等、レーザ光を用いた種々の装置に適用できる。   The optical fiber 1 manufactured by the “optical fiber manufacturing method” of the present invention can be applied to various apparatuses using laser light such as a laser processing apparatus.

本発明の「光ファイバの製造方法」で製造した光ファイバ1の概略外観図である。1 is a schematic external view of an optical fiber 1 manufactured by an “optical fiber manufacturing method” of the present invention. 本発明の「光ファイバの製造方法」を説明する図である。It is a figure explaining the "manufacturing method of an optical fiber" of this invention. ファイバレーザ発振装置の例を説明する図である。It is a figure explaining the example of a fiber laser oscillation apparatus. 従来の光ファイバ、ファイバレーザ発振装置を説明する図である。It is a figure explaining the conventional optical fiber and a fiber laser oscillation apparatus.

符号の説明Explanation of symbols

1 光ファイバ
10 第1クラッド部材
20 第2クラッド部材
30 コア部材
42 コリメートレンズ
44 集光レンズ
46 ミラー
Lin 励起光
Lout (出力)レーザ光

DESCRIPTION OF SYMBOLS 1 Optical fiber 10 1st clad member 20 2nd clad member 30 Core member 42 Collimating lens 44 Condensing lens 46 Mirror Lin Excitation light Lout (Output) laser beam

Claims (1)

光ファイバの長手方向に垂直な断面において、コア部材がクラッド部材の縁部に配置されているとともに、コア部材が長手方向に向かって螺旋形状となるように配置されている光ファイバの製造方法であって、
光ファイバの長手方向に垂直な断面において、クラッド部材の縁部にコア部材が位置するように、光ファイバの長手方向に単数または複数のコア部材を配置し、
クラッド部材が流動可能状態になるまで加熱し、
光ファイバの長手方向に垂直な断面の中心を、ねじりの中心軸となるようにして光ファイバをねじる、
ことを特徴とする光ファイバの製造方法。


In the method of manufacturing an optical fiber, the core member is arranged at the edge of the clad member in a cross section perpendicular to the longitudinal direction of the optical fiber, and the core member is arranged in a spiral shape in the longitudinal direction. There,
In the cross section perpendicular to the longitudinal direction of the optical fiber, one or more core members are arranged in the longitudinal direction of the optical fiber so that the core member is located at the edge of the cladding member,
Heat until the cladding is ready to flow,
Twist the optical fiber so that the center of the cross section perpendicular to the longitudinal direction of the optical fiber is the central axis of the twist,
An optical fiber manufacturing method characterized by the above.


JP2004009327A 2004-01-16 2004-01-16 Method for manufacturing optical fiber Pending JP2005200277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009327A JP2005200277A (en) 2004-01-16 2004-01-16 Method for manufacturing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009327A JP2005200277A (en) 2004-01-16 2004-01-16 Method for manufacturing optical fiber

Publications (1)

Publication Number Publication Date
JP2005200277A true JP2005200277A (en) 2005-07-28

Family

ID=34822404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009327A Pending JP2005200277A (en) 2004-01-16 2004-01-16 Method for manufacturing optical fiber

Country Status (1)

Country Link
JP (1) JP2005200277A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2140294A1 (en) * 2007-03-21 2010-01-06 Nufern Optical fiber article for handling higher power and method of fabricating or using
CN106663911A (en) * 2015-02-12 2017-05-10 株式会社藤仓 Fiber laser device and manufacturing method for amplification coil
JP2017183564A (en) * 2016-03-31 2017-10-05 古河電気工業株式会社 Optical fiber amplifier and multi-stage optical amplification fiber structure
CN111151882A (en) * 2020-02-07 2020-05-15 陕西天元智能再制造股份有限公司 High-speed wire laser cladding method for improving cladding stability of shaft parts

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2140294A1 (en) * 2007-03-21 2010-01-06 Nufern Optical fiber article for handling higher power and method of fabricating or using
EP2140294A4 (en) * 2007-03-21 2012-02-15 Nufern Optical fiber article for handling higher power and method of fabricating or using
EP3133426A3 (en) * 2007-03-21 2017-05-03 Nufern Optical fiber article for handling h igher power and method of fabricating or using it
CN106663911A (en) * 2015-02-12 2017-05-10 株式会社藤仓 Fiber laser device and manufacturing method for amplification coil
US10530113B2 (en) 2015-02-12 2020-01-07 Fujikura Ltd. Fiber laser apparatus and method of manufacturing amplifying coil
CN106663911B (en) * 2015-02-12 2020-02-14 株式会社藤仓 Optical fiber laser device and method for manufacturing coil for amplification
JP2017183564A (en) * 2016-03-31 2017-10-05 古河電気工業株式会社 Optical fiber amplifier and multi-stage optical amplification fiber structure
CN111151882A (en) * 2020-02-07 2020-05-15 陕西天元智能再制造股份有限公司 High-speed wire laser cladding method for improving cladding stability of shaft parts
CN111151882B (en) * 2020-02-07 2021-06-22 陕西天元智能再制造股份有限公司 High-speed wire laser cladding method for improving cladding stability of shaft parts

Similar Documents

Publication Publication Date Title
US20060098694A1 (en) Optical fiber for fiber laser, fiber laser, and laser oscillation method
JPH06104515A (en) Solid state laser
EP1902336A2 (en) Optical coupler devices, methods of their production and use
US7283293B2 (en) High efficiency optical amplifying fiber
JP2005019539A (en) Rare earth-loaded fiber and optical fiber laser using the same
WO2018003574A1 (en) Optical fiber for amplification, and laser device
JP2007250951A (en) Double-clad fiber and fiber laser provided therewith
US20060209909A1 (en) Fiber laser oscillator
JP2006093613A (en) Optical fiber, optical fiber amplifier, and optical fiber laser light source
JP2002270928A (en) Method for optical excitation, optical amplifier, fiber laser, and optical fiber
JP2005203549A (en) Optical fiber and its manufacturing method
JP2007178778A (en) Light guide and light irradiation apparatus
US7769058B2 (en) Optical fiber laser
JP2005200277A (en) Method for manufacturing optical fiber
JP2006019490A (en) Fiber laser oscillator
JP4114619B2 (en) Optical fiber and fiber laser oscillation device
JP2014225584A (en) Fiber laser device
WO2010149163A1 (en) Optical coupler device
JP2010199563A (en) Optical amplifier and resonator
JP2015179761A (en) fiber laser device
JP4287007B2 (en) LASER DEVICE, LASER PROCESSING DEVICE USING THE SAME, AND OPTICAL SIGNAL AMPLIFICATION DEVICE
JP2007173649A (en) Fiber laser device, optical mechanism and incidence method
CN113498567A (en) Active element-added optical fiber, resonator, and fiber laser device
JP2020147480A (en) Method and device for measuring outer diameter of bare optical fiber, and method and apparatus for manufacturing optical fiber
JP4011175B2 (en) Optical fiber laser apparatus and laser processing apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301