JP2005197557A - Manufacturing method of laminated ceramic electronic component - Google Patents

Manufacturing method of laminated ceramic electronic component Download PDF

Info

Publication number
JP2005197557A
JP2005197557A JP2004003861A JP2004003861A JP2005197557A JP 2005197557 A JP2005197557 A JP 2005197557A JP 2004003861 A JP2004003861 A JP 2004003861A JP 2004003861 A JP2004003861 A JP 2004003861A JP 2005197557 A JP2005197557 A JP 2005197557A
Authority
JP
Japan
Prior art keywords
cutting
electronic component
multilayer ceramic
ceramic electronic
pressurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004003861A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Oshiro
達弘 大城
Mitsuhiro Yamazaki
三浩 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004003861A priority Critical patent/JP2005197557A/en
Publication of JP2005197557A publication Critical patent/JP2005197557A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the inconvenience that, as a laminated ceramic electronic component is highly laminated, there happens a level difference due to the thickness of an internal electrode at positions where a pattern for the internal electrode is formed and at positions where the same is not formed, the total amount of the level differences is more increased as the number of laminates is more increased, hence any external crack and internal structure defects occur, and upper and lower surfaces of a laminate after calcination have irregular shape like a bulging pillar. <P>SOLUTION: A laminate block is prepared by laminating alternately a ceramic sheet and an internal electrode, which is then cut down into laminate pieces which are pressurized vertically. Accordingly, any level difference caused by the thickness of the internal electrode is moderated to suppress the occurrence of the external crack, the internal structure defects, and an irregular shape like a bulging pillar. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば積層セラミックコンデンサなどの積層セラミック電子部品の製造方法に関するものである。   The present invention relates to a method for manufacturing a multilayer ceramic electronic component such as a multilayer ceramic capacitor.

従来の積層セラミックコンデンサの製造方法について説明する。   A conventional method for manufacturing a multilayer ceramic capacitor will be described.

積層セラミックコンデンサを始めとする積層セラミック電子部品は、より小型化、高性能化するためにそのセラミック層や内部電極の薄層化と高積層化が進んでおり、高積層化では積層数が数100層以上になるものが生産されている。このような高積層化にともなって、内部電極用パターンが形成された個所と形成されない個所とには必ず内部電極の厚みによる段差が生じ、積層数が多ければ多いほどこの段差の合計量が増加し、外部クラック、内部構造欠陥の発生や焼成後の積層体の上下面が膨らんだ枕状の異形状になるといった不都合があり、これを解消するため内部電極により形成される段差を解消するための方法が種々提案されており、例えば特許文献1には段差解消用パターンを介在させて積層する方法が開示されている。   In multilayer ceramic electronic components such as multilayer ceramic capacitors, the ceramic layers and internal electrodes are becoming thinner and higher in order to reduce size and increase performance. Products with more than 100 layers are being produced. Along with this increase in the number of layers, there is always a step due to the thickness of the internal electrode between the place where the internal electrode pattern is formed and the place where it is not formed. The greater the number of layers, the greater the total amount of the step. However, there are inconveniences such as external cracks, internal structural defects, and a pillow-like irregular shape in which the upper and lower surfaces of the laminated body swelled, and in order to eliminate this, the steps formed by the internal electrodes are eliminated Various methods have been proposed. For example, Patent Document 1 discloses a method of stacking with a step-resolving pattern interposed.

なお、内部電極による段差を有する積層体を焼成した場合、焼成後の積層体の上下面が膨らんだ枕状の形状となるのは、内部電極用パターンが形成されていない部分は積層時に圧力がかかりにくく、焼成収縮が大きくなるためであり、このような枕状の形状では直方体の積層セラミック電子部品の4隅が丸くなってしまうため、回路基板などへの実装時に実装機で正確な認識ができず実装の不具合を引き起こす原因となる。
特開平6−96991号公報
When a laminated body having a step due to the internal electrode is fired, the upper and lower surfaces of the laminated body after firing are in a pillow-like shape because the portion where the internal electrode pattern is not formed has a pressure during lamination. This is because it is difficult to apply and firing shrinkage increases, and in such a pillow-like shape, the four corners of the rectangular parallelepiped multilayer ceramic electronic component are rounded, so that the mounting machine can accurately recognize when mounting on a circuit board or the like. It will not be possible and will cause a bug in the implementation.
JP-A-6-96991

しかし、上記のような段差解消用パターンを介在させる方法においては、積層数が増加するため、積層セラミックコンデンサの製造工程が長くなるという問題や、また段差解消用パターンを内部電極が形成された個所以外の部分に精度良く配置する必要があり、工程が複雑になるなどの問題点を有していた。   However, in the method of interposing the step elimination pattern as described above, the number of laminated layers increases, so that the manufacturing process of the multilayer ceramic capacitor becomes long, and the step elimination pattern is formed at the location where the internal electrode is formed. It is necessary to arrange the parts with high accuracy other than the above, and there is a problem that the process becomes complicated.

そこで、本発明は、上記のような段差解消用のパターンを使用することなく量産に適した簡単な方法で、内外部の欠陥や枕状の異形状化を抑制することができる積層セラミック電子部品の製造方法を提供することを目的とするものである。   Therefore, the present invention provides a multilayer ceramic electronic component capable of suppressing internal / external defects and pillow-like irregularities by a simple method suitable for mass production without using the above-described pattern for eliminating a step difference. An object of the present invention is to provide a manufacturing method.

上記目的を達成するために、本発明は以下の構成を有する。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、セラミックシートと内部電極とを交互に積層して積層体ブロックを作製し、これを個片の積層体に切断後に上下方向より加圧することにより内部電極厚みによる段差を緩和し、外部クラック、内部構造欠陥や枕状の異形状の発生を抑制できる。   According to the first aspect of the present invention, a laminate block is produced by alternately laminating ceramic sheets and internal electrodes, and this is cut into individual laminates and then pressed from above and below to cut the internal electrodes. The steps due to the thickness can be alleviated, and the occurrence of external cracks, internal structural defects and pillow-like irregularities can be suppressed.

本発明の請求項2に記載の発明は、特に、積層体ブロックの切断は回転刃により行うものであり、回転刃の刃幅による切断溝が確実に形成されるため、切断後の加圧により切断した隣接する積層体個片どうしが再度くっついてしまうことを防止し、効果的な加圧により内部電極厚みによる段差を緩和し、内部構造欠陥や枕状の異形状の発生を抑制できる。   In the invention according to claim 2 of the present invention, in particular, the laminated body block is cut by a rotary blade, and a cutting groove is reliably formed by the blade width of the rotary blade. It is possible to prevent the adjacent laminated body pieces that have been cut from sticking to each other again, to relieve a step due to the thickness of the internal electrode by effective pressurization, and to suppress the occurrence of internal structural defects and pillow-like irregular shapes.

本発明の請求項3に記載の発明は、特に、第2工程における積層体ブロックの切断は張設した線条の往復運動により切断を行うワイヤーソーを用いて切断するものであり、線条の往復運動により切断溝が確実に形成されるため、切断後の加圧により切断した隣接する積層体個片どうしが再度くっついてしまうことを防止し、効果的な加圧により内部電極厚みによる段差を緩和し、外部クラック、内部構造欠陥や枕状の異形状の発生を抑制できる。   In the invention according to claim 3 of the present invention, in particular, the cutting of the laminated body block in the second step is performed by using a wire saw that performs cutting by reciprocating movement of the stretched filament, The cutting groove is reliably formed by the reciprocating motion, so that it is possible to prevent the adjacent laminated body pieces that are cut by the pressurization after cutting from sticking again. It can alleviate and suppress the occurrence of external cracks, internal structural defects and pillow-like irregular shapes.

本発明の請求項4に記載の発明は、特に、加圧後の積層体の厚みが加圧前の厚みの90%〜99%の範囲内になるように加圧するものであり、加圧前後の厚み変化を制御することにより加圧力を適切な範囲にできるため、加圧しすぎによる積層体個片の変形を防止するとともに、より効果的に内部電極厚みによる段差を緩和し、内部構造欠陥や枕状の異形状の発生を抑制できる。   In the invention according to claim 4 of the present invention, in particular, pressure is applied so that the thickness of the laminate after pressurization is in the range of 90% to 99% of the thickness before pressurization. By controlling the change in thickness, the applied pressure can be in an appropriate range, so that deformation of the laminated body piece due to excessive pressurization can be prevented, and steps due to the internal electrode thickness can be more effectively mitigated, and internal structural defects and Generation | occurrence | production of the pillow-shaped unusual shape can be suppressed.

本発明の請求項5に記載の発明は、特に、切断後の積層体を加圧することにより焼成後の積層セラミックコンデンサの容量調整を行うものであり、適度の加圧により微小な容量調整を行い、容量精度の良い積層セラミックコンデンサを得ることができる。   The invention according to claim 5 of the present invention is to adjust the capacity of the multilayer ceramic capacitor after firing, particularly by pressurizing the cut multilayer body, and finely adjust the capacity by moderate pressurization. Thus, a multilayer ceramic capacitor with high capacity accuracy can be obtained.

本発明の請求項6に記載の発明は、特に、切断後の積層体を加圧することにより積層体の厚み方向と直交する長手方向(両端部に外部電極が形成される方向で、L方向と呼称する)の側面形状を中央部がふくらんだ形状とすることにより、圧力がかかりにくく焼成による収縮が上下面に比べて大きいため、焼成後に凹面形状に変形しやすい長手方向(L方向)の側面形状を平坦にすることにより、側面を吸着した場合でも実装率の低下を起こさない積層セラミックコンデンサを得ることができる。   In the invention according to claim 6 of the present invention, in particular, by pressing the laminated body after cutting, a longitudinal direction perpendicular to the thickness direction of the laminated body (the direction in which external electrodes are formed at both ends, the L direction) The side shape of the longitudinal direction (L direction) is easy to be deformed into a concave shape after firing, because pressure is difficult to apply and the shrinkage due to firing is larger than the upper and lower surfaces. By flattening the shape, it is possible to obtain a multilayer ceramic capacitor that does not cause a reduction in the mounting rate even when the side surfaces are adsorbed.

本発明の請求項7に記載の発明は、特に、切断後の積層体を長手方向(L方向)の側面形状において中央部の寸法が上下部の寸法より1〜4%大きくなるように加圧することにより、長手方向の側面形状を平坦にできるため、この側面を吸着した場合でも実装率の低下を起こさない積層セラミックコンデンサを得ることができる。   In the invention described in claim 7 of the present invention, in particular, the laminated body after cutting is pressurized so that the dimension of the central part is 1 to 4% larger than the dimension of the upper and lower parts in the side surface shape in the longitudinal direction (L direction). As a result, the shape of the side surface in the longitudinal direction can be flattened, so that a multilayer ceramic capacitor that does not cause a reduction in the mounting rate even when the side surface is adsorbed can be obtained.

本発明にかかる積層セラミックコンデンサは、切断後の積層体を厚み方向に上下から加圧することにより、焼成後枕状などの異形状に変形することを抑制することが可能となり、実装時の不具合を防止して実装性の向上を図ることができるとともに、微小な容量調整を可能にし、容量精度の良い積層セラミックコンデンサを得ることができるものである。   The multilayer ceramic capacitor according to the present invention is capable of suppressing deformation to an abnormal shape such as a pillow after firing by pressing the laminated body from above and below in the thickness direction, and can prevent problems during mounting. Thus, it is possible to improve the mountability and to enable fine capacitance adjustment and to obtain a multilayer ceramic capacitor with high capacitance accuracy.

(実施の形態)
以下、一実施の形態を用いて、本発明の特に請求項1〜7について説明する。
(Embodiment)
Hereinafter, claims 1 to 7 of the present invention will be described using an embodiment.

図1は本発明の実施の形態1における積層体ブロック11の切断工程を説明するための断面図であり、支持台10の上に積層体ブロック11を載置し、冷却装置13で冷却された水を冷却ノズル14から噴射しながら回転刃12により切断する。   FIG. 1 is a cross-sectional view for explaining the cutting process of the laminated body block 11 in Embodiment 1 of the present invention. The laminated body block 11 is placed on the support base 10 and cooled by the cooling device 13. The water is cut by the rotary blade 12 while spraying water from the cooling nozzle 14.

図2は積層体ブロックを切断し、積層体個片に分割した後、積層体の上下方向から加圧する加圧工程を説明するための断面図であり、切断後支持台10に保持されたままの積層体個片21を加圧ヘッド23により上下方向から加圧する。22は切断溝であり、図中矢印は加圧方向を示す。   FIG. 2 is a cross-sectional view for explaining a pressurizing step of pressurizing the laminated body from above and below after cutting the laminated body block and dividing the laminated body into individual pieces. The laminate piece 21 is pressed from above and below by the pressure head 23. Reference numeral 22 denotes a cutting groove, and an arrow in the figure indicates a pressing direction.

図3は切断し個々に分離した積層体個片31の斜視図であり、32は切断面、33は内部電極、34は長手方向(L方向)の側面(すなわち幅方向、厚み方向と直交する側面)を示す。   FIG. 3 is a perspective view of the laminate piece 31 cut and individually separated, 32 is a cut surface, 33 is an internal electrode, 34 is a side surface in the longitudinal direction (L direction) (that is, orthogonal to the width direction and the thickness direction). Side).

次に、本実施の形態における積層セラミック電子部品の製造方法を積層セラミックコンデンサを例に説明する。   Next, a method for manufacturing a multilayer ceramic electronic component according to the present embodiment will be described using a multilayer ceramic capacitor as an example.

まず、チタン酸バリウムを主成分とする無機粉末と、アクリル樹脂あるいはポリビニルブチラール樹脂などのバインダ、ジブチルフタレートなどの可塑剤を混合し、ドクターブレード法によりセラミックシートを作製する。   First, an inorganic powder mainly composed of barium titanate, a binder such as acrylic resin or polyvinyl butyral resin, and a plasticizer such as dibutyl phthalate are mixed, and a ceramic sheet is prepared by a doctor blade method.

次に、セラミックシートの表面に電極ペーストをスクリーン印刷し、複数の内部電極を形成する。   Next, an electrode paste is screen-printed on the surface of the ceramic sheet to form a plurality of internal electrodes.

電極ペーストは、Ni粉末を主成分とし、エチルセルロースやアクリル樹脂、ポリビニルブチラール樹脂などを混合したものである。   The electrode paste contains Ni powder as a main component and is mixed with ethyl cellulose, acrylic resin, polyvinyl butyral resin, or the like.

次いで、内部電極を形成したセラミックシートを内部電極がセラミックシートを挟んで対向するように交互に積層し260層の積層体を作製する。   Next, the ceramic sheets on which the internal electrodes are formed are alternately laminated so that the internal electrodes face each other with the ceramic sheet interposed therebetween, thereby producing a 260-layer laminate.

次に、セラミックシートが軟化する温度に加熱しながら5MPa〜20MPaで加圧し、一体化させて厚み1.0mmの積層体ブロック11を作製する。   Next, the laminate block 11 having a thickness of 1.0 mm is manufactured by pressurizing at 5 MPa to 20 MPa while being heated to a temperature at which the ceramic sheet is softened.

その後、積層体ブロック11を図1に示すように台座10に固定し、回転刃12で積層体ブロック11の上面に対して垂直にかつ切断予定位置の一方から他方に向かって、回転刃12を移動させながら切断する。回転刃12は円盤状で金属基材にダイヤモンド粒子やSiC粒子を固着したものであり、その刃幅は100μm〜500μmのものが一般的である。   Thereafter, the laminated body block 11 is fixed to the pedestal 10 as shown in FIG. 1, and the rotary blade 12 is moved perpendicularly to the upper surface of the laminated body block 11 by the rotary blade 12 from one of the planned cutting positions to the other. Cut while moving. The rotary blade 12 is disk-shaped and has diamond particles or SiC particles fixed to a metal substrate, and the blade width is generally 100 μm to 500 μm.

次に、回転刃12を平行移動させて、切断位置を確認しながら複数回、同様にして積層体ブロック11を切断する。   Next, the rotary blade 12 is moved in parallel, and the laminate block 11 is cut in the same manner a plurality of times while confirming the cutting position.

次いで、積層体ブロック11を回転刃12に対して90度回転させて、同様に複数回切断を行い、長さ(L方向の長さ)約1.8mm、幅約1.0mm、厚み1.0mmの形状の積層体個片を得る。   Next, the laminated body block 11 is rotated 90 degrees with respect to the rotary blade 12 and similarly cut several times, and the length (length in the L direction) is about 1.8 mm, the width is about 1.0 mm, and the thickness is 1. A 0 mm-shaped laminated body piece is obtained.

続いて、積層体個片の上下方向から、加圧前後の積層体の厚みがおのおの0.87mm、0.90mm、0.93mm、0.95mm、0.97mm(厚み寸法変化率は、おのおの87%、90%、93%、95%、97%)になるように加圧力を調整しながら加圧した後支持台から分離する。   Subsequently, the thickness of the laminate before and after pressing is 0.87 mm, 0.90 mm, 0.93 mm, 0.95 mm, and 0.97 mm from the vertical direction of the laminate individual pieces (the thickness dimension change rate is 87 for each. %, 90%, 93%, 95%, 97%), and pressurizing while adjusting the applied pressure to separate from the support base.

厚み寸法変化率は、加圧後の厚みを加圧前の厚みで除した数値の百分率で示した。   The rate of change in thickness was shown as a percentage of the value obtained by dividing the thickness after pressing by the thickness before pressing.

加圧後の長手方向(L方向)の側面中央部の寸法は、側面上下部の寸法に比べて(表1)に示した数値であった。   The dimension of the center part of the side surface in the longitudinal direction (L direction) after pressurization was the numerical value shown in (Table 1) compared with the dimension of the upper and lower parts of the side surface.

次いで有機物を窒素ガス中で除去した後に、内部電極となるNiが過度に酸化されない窒素水素の混合ガス雰囲気中で1300℃まで昇温し、焼成し、焼結体を得る。   Next, after removing the organic matter in nitrogen gas, the temperature is raised to 1300 ° C. in a nitrogen-hydrogen mixed gas atmosphere in which Ni serving as an internal electrode is not excessively oxidized, and a sintered body is obtained.

次に、焼結体の面取りを行い、両端面に導電体層を完全に露出させる。続いて、焼結体の両端面及び端面に銅を主成分とする電極ペーストを塗布した後、800℃の窒素雰囲気中で焼付けを行って外部電極を形成し、この上にニッケル、半田のメッキを施し、積層セラミックコンデンサを作製する。   Next, the sintered body is chamfered to completely expose the conductor layers on both end faces. Subsequently, after applying an electrode paste mainly composed of copper to both end faces and end faces of the sintered body, an external electrode is formed by baking in a nitrogen atmosphere at 800 ° C., and nickel and solder are plated thereon. To produce a multilayer ceramic capacitor.

また、本発明の効果をより明確に示すために、積層体ブロック11を切断後加圧していない試料番号1の断面の顕微鏡写真を図4に、また実施の形態に示す方法で加圧した試料番号4の断面の顕微鏡写真を図5に示す。   Moreover, in order to show the effect of the present invention more clearly, a micrograph of a cross section of sample No. 1 which is not pressurized after cutting the laminate block 11 is shown in FIG. 4 and a sample pressurized by the method shown in the embodiment A photomicrograph of the cross section of No. 4 is shown in FIG.

図4から明確なように、試料番号1の上下面は枕状の異形状になるとともに図4の左右の面(すなわち長手方向の断面)は中央部がややへこんだ形状になっているが、図5に示すように試料番号2では異形状の発生は見られず、きれいな直方体形状のものが得られている。   As is clear from FIG. 4, the upper and lower surfaces of Sample No. 1 have a pillow-like irregular shape, and the left and right surfaces in FIG. 4 (that is, the longitudinal cross section) have a slightly recessed central portion. As shown in FIG. 5, in Sample No. 2, no abnormal shape was observed, and a clean rectangular parallelepiped shape was obtained.

さらに試料番号1と試料番号2〜5の条件で作製した積層セラミックコンデンサについて、おのおの5000個を用いて実装試験を行ったところ、試料番号1の実装不良率は5%であったが、試料番号2〜5の実装不良率は0であった。   Further, when a mounting test was performed using 5000 pieces of the multilayer ceramic capacitors manufactured under the conditions of sample number 1 and sample numbers 2 to 5, the mounting failure rate of sample number 1 was 5%. The mounting failure rate of 2 to 5 was 0.

ここで実装不良率は試料数5000個のうち吸着ミスや認識ミスにより正常に実装できなかった試料数を百分率で示したものである。   Here, the mounting failure rate is the percentage of the number of samples that could not be mounted normally due to an adsorption error or a recognition error out of 5000 samples.

また、焼成後の積層セラミックコンデンサの内部電極が露出した両端面に外部電極を形成し、作製した試料100個について静電容量を測定し、平均値を算出した。   Further, external electrodes were formed on both end faces where the internal electrodes of the fired multilayer ceramic capacitor were exposed, and the capacitance was measured for 100 manufactured samples, and the average value was calculated.

その結果を(表1)に合わせて示す。   The results are also shown in (Table 1).

(表1)の結果から明らかなように、切断後の加圧により、積層体の厚み寸法の変化率が90%〜99%の範囲内であり、かつ加圧による厚み方向と直交する側面(内部電極方向の側面)中央部の寸法変化率が1〜4%となるように加圧した試料番号2〜5は実装試験において実装不良が見られなかったのに対して、加圧していない試料番号1では試料の変形による吸着ミスのため、実装不良が大きくなっている。   As is clear from the results of (Table 1), the side surface (in which the rate of change in the thickness dimension of the laminate is within a range of 90% to 99% by pressing after cutting and orthogonal to the thickness direction by pressing ( Side surface in the direction of internal electrode) Sample numbers 2 to 5 pressurized so that the dimensional change rate in the central portion is 1 to 4%, while no mounting failure was found in the mounting test, while the sample not pressurized In No. 1, mounting failure is large due to an adsorption error due to deformation of the sample.

さらに上記試料番号2〜5では、厚み方向、幅方向と直交する長手方向側面を吸着する実装実験においても吸着不良による実装ミスは見られなかった。   Furthermore, in the above sample numbers 2 to 5, no mounting mistake due to suction failure was found in a mounting experiment in which the longitudinal side surface orthogonal to the thickness direction and the width direction was sucked.

また、加圧前の試料100個をサンプリングして測定した静電容量の平均値は4.2μFと規格下限ぎりぎりであり、その静電容量歩留まりが約40%であったのに対して厚み寸法の変化率が90〜99%となるように厚み方向の加圧を行った試料では試料番号2〜5で明らかなように容量が増加し、静電容量歩留まりも90〜98%と向上することができた。   In addition, the average value of the capacitance measured by sampling 100 samples before pressing was 4.2 μF, which is just below the lower limit of the standard, and the capacitance yield was about 40%, whereas the thickness dimension. In the sample pressed in the thickness direction so that the rate of change in the thickness becomes 90 to 99%, the capacity increases as shown in Sample Nos. 2 to 5, and the capacitance yield also improves to 90 to 98%. I was able to.

ここで、これらの試料の静電容量値については、4.7μF±10%の範囲内が規格を満足する良品である。   Here, regarding the electrostatic capacitance values of these samples, a non-defective product satisfying the standard is within a range of 4.7 μF ± 10%.

また、静電容量歩留まりについては限りなく100%に近いことが求められるが、現実の量産においては、歩留まりとして80%以上であることが好ましい。   The capacitance yield is required to be as close as possible to 100%, but in actual mass production, the yield is preferably 80% or more.

なお、上記実施の形態においては切断に回転刃を用いたが、張設した線条の往復運動により切断を行う、いわゆるワイヤーソーを用いた場合にも同様の効果が得られた。   In the above embodiment, a rotary blade is used for cutting, but the same effect can be obtained when using a so-called wire saw that performs cutting by reciprocating movement of a stretched wire.

回転刃やワイヤーソーを用いて切断を行う場合、あらかじめ所定の間隔で取り付けられた複数の回転刃や線条により切断を行ってもよく、この場合には切断に要する時間が飛躍的に短縮できるとともに、一度に多数の切断溝を形成できるため、切断後に隣接する積層体個片どうしが再度くっついてしまう不具合をより確実に防止できる。   When cutting with a rotary blade or a wire saw, the cutting may be performed with a plurality of rotary blades or filaments attached at a predetermined interval in advance, and in this case, the time required for cutting can be drastically reduced. At the same time, since a large number of cutting grooves can be formed at one time, it is possible to more reliably prevent a problem in which the adjacent laminated body pieces are stuck again after cutting.

また、上記実施の形態においては、積層セラミックコンデンサについて説明したが、積層バリスタ、積層サーミスタ、積層コイル、セラミック多層基板などセラミックシートを積層して形成する積層セラミック電子部品においても同様の効果が得られる。   In the above embodiment, the multilayer ceramic capacitor has been described. However, the same effect can be obtained in a multilayer ceramic electronic component formed by laminating ceramic sheets such as a multilayer varistor, a multilayer thermistor, a multilayer coil, and a ceramic multilayer substrate. .

本発明にかかる積層セラミック電子部品の製造方法は、焼成後の積層セラミック電子部品の異形状化を防止し、実装効率を高めるとともに積層後の静電容量調整を効率よく行うことができるものであり、積層セラミック電子部品の製造方法に有用である。   The method for manufacturing a multilayer ceramic electronic component according to the present invention is capable of preventing irregular shape of the multilayer ceramic electronic component after firing, increasing the mounting efficiency and efficiently adjusting the capacitance after stacking. It is useful for a method of manufacturing a multilayer ceramic electronic component.

本発明の実施の形態1における切断工程の断面図Sectional drawing of the cutting process in Embodiment 1 of this invention 厚み方向の加圧工程を説明するための断面図Sectional drawing for demonstrating the pressurization process of the thickness direction 積層体個片の斜視図Perspective view of laminate 試料番号1(切断後加圧なしの場合)の断面図Sectional view of sample number 1 (when no pressure is applied after cutting) 試料番号4(切断後加圧ありの場合)の断面図Sectional view of sample number 4 (with pressure after cutting)

符号の説明Explanation of symbols

10 支持台
11 積層体ブロック
12 回転刃
13 冷却装置
14 冷却ノズル
21 切断後の積層体個片
22 切断溝
23 加圧ヘッド
31 加圧、分離後の積層体個片
32 切断面
33 内部電極
34 長手方向の側面
DESCRIPTION OF SYMBOLS 10 Support stand 11 Laminated body block 12 Rotating blade 13 Cooling device 14 Cooling nozzle 21 Laminated body piece 22 after cutting 22 Cutting groove 23 Pressurizing head 31 Laminated body piece after pressurization and separation 32 Cut surface 33 Internal electrode 34 Longitudinal Directional side

Claims (7)

無機粉末と有機物を混合して作製したセラミックシートと内部電極とを交互に積層して積層体ブロックを得る第1の工程と、前記積層体ブロックを個片の積層体に切断する第2の工程と、前記切断後の積層体を上下方向に加圧する第3の工程と、前記積層体を焼成する第4の工程とを備える積層セラミック電子部品の製造方法。 A first step of alternately laminating ceramic sheets and internal electrodes prepared by mixing inorganic powder and organic matter to obtain a laminate block, and a second step of cutting the laminate block into individual laminates And a third step of pressurizing the cut laminated body in the vertical direction and a fourth step of firing the laminated body. 第2工程における切断は回転刃による切断である請求項1に記載の積層セラミック電子部品の製造方法。 The method of manufacturing a multilayer ceramic electronic component according to claim 1, wherein the cutting in the second step is cutting with a rotary blade. 第2工程における切断は張設した線条の往復運動により切断を行うワイヤーソーを用いる切断である請求項1に記載の積層セラミック電子部品の製造方法。 2. The method for manufacturing a multilayer ceramic electronic component according to claim 1, wherein the cutting in the second step is cutting using a wire saw that performs cutting by reciprocating movement of a stretched wire. 第3工程における加圧は加圧後の積層体の厚みが加圧前の厚みの90%〜99%の範囲内になるように加圧する請求項1に記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to claim 1, wherein the pressurization in the third step is performed such that the thickness of the laminate after pressurization is in the range of 90% to 99% of the thickness before pressurization. 第3工程における加圧により容量調整を行う請求項1に記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to claim 1, wherein the capacity is adjusted by pressurization in the third step. 第3工程における加圧により積層体の厚み方向と直交する長手方向の側面形状が中央部がふくらんだ形状とする請求項1に記載の積層セラミック電子部品の製造方法。 The manufacturing method of the multilayer ceramic electronic component of Claim 1 which makes the shape of the side surface of the longitudinal direction orthogonal to the thickness direction of a laminated body bulge in the center part by the pressurization in a 3rd process. 幅方向の側面形状において中央部の寸法が上下部の寸法より1〜4%大きくなるように加圧する請求項6に記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to claim 6, wherein in the side shape in the width direction, pressurization is performed so that the dimension of the center part is 1 to 4% larger than the dimension of the upper and lower parts.
JP2004003861A 2004-01-09 2004-01-09 Manufacturing method of laminated ceramic electronic component Pending JP2005197557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003861A JP2005197557A (en) 2004-01-09 2004-01-09 Manufacturing method of laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003861A JP2005197557A (en) 2004-01-09 2004-01-09 Manufacturing method of laminated ceramic electronic component

Publications (1)

Publication Number Publication Date
JP2005197557A true JP2005197557A (en) 2005-07-21

Family

ID=34818639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003861A Pending JP2005197557A (en) 2004-01-09 2004-01-09 Manufacturing method of laminated ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2005197557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181876A (en) * 2008-01-31 2009-08-13 Ohara Inc Method of manufacturing laminate for lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181876A (en) * 2008-01-31 2009-08-13 Ohara Inc Method of manufacturing laminate for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR20120118405A (en) Multilayer ceramic capacitor
CN108183024B (en) Method for manufacturing laminated ceramic electronic component
JP2012227197A (en) Multilayer ceramic capacitor
JP2005197557A (en) Manufacturing method of laminated ceramic electronic component
JPH0766076A (en) Manufacture of laminated chip component and laminated chip component
JP2015076452A (en) Method for manufacturing capacitor element
JP2006128282A (en) Laminated electronic component and its manufacturing method
JP4072861B2 (en) Manufacturing method of multilayer chip component
JP2000315617A (en) Manufacture of laminated ceramic electronic parts
JP7312525B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2016048803A (en) Multilayer ceramic capacitor
JP4150246B2 (en) Manufacturing method of ceramic laminate
JP2002270459A (en) Manufacturing method for laminated ceramic electronic component
JP6224839B2 (en) Method for manufacturing a ceramic multilayer device
JP2019186295A (en) Electronic component and manufacture method of electronic component
JP2004186342A (en) Ceramic laminate and its manufacturing method
US20230114992A1 (en) Method for compressing laminate and method for manufacturing ceramic electronic component including laminate
JP2001338832A (en) Ceramic electronic part and method of manufacturing laminated ceramic board
JP2004186343A (en) Ceramic laminate and its manufacturing method
JP5195253B2 (en) Manufacturing method of electronic parts
JP4525733B2 (en) Manufacturing method of multilayer electronic component
JP4150247B2 (en) Manufacturing method of ceramic laminate
JP2005302978A (en) Process for manufacturing multilayer ceramic electronic component
JP2005229063A (en) Method of manufacturing ceramic electronic component, and tool for heat treatment
JP6383095B2 (en) Method for manufacturing a ceramic multilayer device and ceramic multilayer device