JP2005195685A - Catoptric system, catoptric system of diffused light source measuring apparatus, and diffused light source measuring apparatus and its measuring method - Google Patents

Catoptric system, catoptric system of diffused light source measuring apparatus, and diffused light source measuring apparatus and its measuring method Download PDF

Info

Publication number
JP2005195685A
JP2005195685A JP2003435740A JP2003435740A JP2005195685A JP 2005195685 A JP2005195685 A JP 2005195685A JP 2003435740 A JP2003435740 A JP 2003435740A JP 2003435740 A JP2003435740 A JP 2003435740A JP 2005195685 A JP2005195685 A JP 2005195685A
Authority
JP
Japan
Prior art keywords
light source
light
spheroid
reflector
focal position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003435740A
Other languages
Japanese (ja)
Other versions
JP4226466B2 (en
Inventor
Akira Ishizuka
章 石塚
Masami Egawa
正美 江川
Shinobu Ito
忍 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Bio Research Co Ltd
Original Assignee
Unitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitec Co Ltd filed Critical Unitec Co Ltd
Priority to JP2003435740A priority Critical patent/JP4226466B2/en
Publication of JP2005195685A publication Critical patent/JP2005195685A/en
Application granted granted Critical
Publication of JP4226466B2 publication Critical patent/JP4226466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catoptric system that converges light, using a simple structure, while maintaining with irradiation conditions from a light source, and also to provide an optical system for a diffused light source measuring apparatus which facilitates simultaneous measuring of all luminous fluxes and saves time and labor for measuring operation, has a simple structure, without requiring a highly sensitive detector, and makes accurate general optical measurement possible, even in the presence of uneven luminance. <P>SOLUTION: The catoptric system 10 is equipped with first and second rotary ellipsoidal reflecting mirrors 2, 3 having the ellipsoid of a rotating elliptical body with a range of ≤180°. The two reflecting mirrors are placed opposite, in such a manner that the second focal position of the first mirror and the first focal position of the second mirror are made to coincide with each other. The first mirror has, at the first focal position, a light source installation section 4 for which the light source is installed orthogonally to a plane including the major axis. The second mirror has, at the second focal position, a light-receiving part installation section 5 for which the light-receiving part is installed that receives the light emitted from the light source. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、紫外線、赤外線、可視光はもとより100nm前後の軟X線から数ギガHzの低周波数波の電磁波を回転楕円曲面反射鏡の第1焦点位置から発し、第2焦点位置に集めて、測定、集光、加工、加熱などの処理を行うことができる反射光学系、および、LEDなどの拡散光源の光度、色調、配光などを測定するための拡散光源測定装置の光学系および拡散光源測定装置ならびにその測定方法に関する。   The present invention emits electromagnetic waves of low frequency waves of several gigahertz from soft X-rays of around 100 nm as well as ultraviolet rays, infrared rays, and visible light from the first focal position of the ellipsoidal curved reflector, and collects them at the second focal position. Reflective optical system capable of performing processing such as measurement, condensing, processing, and heating, and optical system and diffused light source of a diffused light source measuring device for measuring the luminous intensity, color tone, light distribution, etc. of a diffused light source such as an LED The present invention relates to a measuring apparatus and a measuring method thereof.

一般に、LEDなどの拡散光源の光度、色調などを測定するために用いられる拡散光源測定装置としては、全光束測定または部分光束測定を行なうものが知られている(例えば、非特許文献1、2)。全光束測定を行なう拡散光源測定装置では、ゴニオ方式および積分球方式があり、また、部分光束測定を行なう拡散光源測定装置では、CIE(Commission Internationale de I'Eclairage 国際照明委員会)が規定している測定方法が採用されている(例えば、非特許文献3)。   In general, as a diffused light source measuring device used for measuring the luminous intensity, color tone, etc. of a diffused light source such as an LED, one that performs total luminous flux measurement or partial luminous flux measurement is known (for example, Non-Patent Documents 1 and 2). ). The diffuse light source measuring device that performs total luminous flux measurement includes the gonio method and the integrating sphere method, and the diffuse light source measuring device that performs partial light flux measurement is specified by the CIE (Commission Internationale de I'Eclairage International Lighting Commission). A measuring method is employed (for example, Non-Patent Document 3).

全光束測定のゴニオ方式による拡散光源測定装置は、測定する拡散光源の所定角度ごとに、拡散光源または測定部分を移動させて測定を行なう構成のものである。
全光束測定の積分球方式による拡散光源測定装置は、測定する拡散光源を反射面として形成されている積分球面内に設置し、また、積分球面内に配置された測定部分に拡散光源からの直接光が入射しないようにバッフルを配置し、球面内で反射した光の一部を測定部分で測定するものである。
A diffused light source measuring apparatus based on the gonio method for measuring all luminous fluxes is configured to perform measurement by moving the diffused light source or the measurement portion for each predetermined angle of the diffused light source to be measured.
A diffused light source measuring device using an integrating sphere method for measuring all luminous fluxes has a diffused light source to be measured placed in an integrating sphere formed as a reflecting surface, and a direct measurement from the diffused light source is placed on the measurement part arranged in the integrating sphere. A baffle is arranged so that light does not enter, and a part of the light reflected in the spherical surface is measured at the measurement portion.

そして、部分光束測定を行なう拡散光源測定装置は、測定する拡散光源に対向して所定距離を隔てた位置に受光器を配置し、受光器が開口面積100mm2のアパチャーを介して拡散光源からの照射された光を測定し、ILED=E×d2の式により求められた平均光度(ILED)を測定値としている。前記した式中、dは光源から受光面までの距離、Eは、受光器で計測される平均照度(lx)である。 A diffused light source measuring apparatus that performs partial luminous flux measurement arranges a light receiver at a position facing a diffused light source to be measured at a predetermined distance, and the light receiver receives from the diffused light source through an aperture having an opening area of 100 mm 2 . The irradiated light is measured, and the average luminous intensity (I LED ) obtained by the formula of I LED = E × d 2 is used as a measured value. In the above equation, d is the distance from the light source to the light receiving surface, and E is the average illuminance (lx) measured by the light receiver.

なお、紫外線あるいは赤外線(電磁波)などを集光させてその集光光を用いて加工などを行なう反射光学系あるいは、集光光を測定するための反射光学系として、従来、図6(a)、(b)、(c)に示すようなものが提案されている(例えば、特許文献1ないし3)。
図6(a)に示すように、反射光学系は、ランプリフレクターの回転楕円面を光軸Zに対して回転対称な非球面反射面に変形した変形ランプリフレクター101bと、ランプ前面ガラス101cの入射面または出射面の少なくとも一方を光軸Zに対して回転対称な非球面レンズ面に変形したランプ前面レンズ101dとを備え、発光部101aの光源の中心点Pfから発した光線群を変形ランプリフレクター101bで反射し、ランプ前面ガラス101cの出射面全面から均一の密度で出射して集光点に集光し、例えば、光ファイバ103に入射させるようにしている(例えば、特許文献1)。
Conventionally, as a reflection optical system for condensing ultraviolet rays or infrared rays (electromagnetic waves) and processing using the collected light, or a reflection optical system for measuring the collected light, FIG. (B) and (c) have been proposed (for example, Patent Documents 1 to 3).
As shown in FIG. 6A, the reflecting optical system includes a deformed lamp reflector 101b obtained by deforming the spheroid of the lamp reflector into an aspheric reflecting surface that is rotationally symmetric with respect to the optical axis Z, and incidence of the lamp front glass 101c. A lamp front lens 101d in which at least one of the surface and the exit surface is deformed into an aspheric lens surface rotationally symmetric with respect to the optical axis Z, and a group of rays emitted from the center point Pf of the light source of the light emitting unit 101a is transformed into a deformed lamp reflector. The light is reflected by 101b, emitted from the entire exit surface of the lamp front glass 101c with a uniform density, condensed at a condensing point, and incident on, for example, the optical fiber 103 (for example, Patent Document 1).

また、図6(b)に示すように、反射光学系は、光源からの光を通過させるための開口112aが中央部に設けられた第1の凹面鏡112と、この第1の凹面鏡112の光軸上に中心点が位置するように対向配置された第1の凸面鏡114とを備えるとともに、前記光源からの光を試料Wに集光するように配置された第1のカセグレン鏡110、第1の凹面鏡112の近傍でかつ光軸が第1の凹面鏡112の光軸と交叉するように配置された第2の凹面鏡118、この第2の凹面鏡118の光軸上に中心点が位置するように対向配置された第2の凸面鏡120を有する検出光集光用の第2のカセグレン鏡116と、前記第1の凹面鏡112と第1の凸面鏡114との中間位置でかつ前記第2の凹面鏡118と第2の凸面鏡120との中間位置に設置され、前記試料Wから前記第1の凹面鏡112、第1の凸面鏡114を経て反射進行してきた検出光を受け、更に前記第2のカセグレン鏡116へ検出光を反射させる中間反射鏡122と、を含み、少なくとも第1のカセグレン鏡110と第2のカセグレン鏡116とは1つのクライオスタット126内に収納されたものとして構成されている(例えば、特許文献2)。   Further, as shown in FIG. 6B, the reflection optical system includes a first concave mirror 112 provided with an opening 112a for allowing light from the light source to pass in the center, and the light from the first concave mirror 112. A first convex mirror 114 disposed opposite to the central point so that the center point is located on the axis, and a first Cassegrain mirror 110 disposed so as to condense light from the light source onto the sample W; The second concave mirror 118 is arranged in the vicinity of the concave mirror 112 and the optical axis intersects with the optical axis of the first concave mirror 112, and the center point is positioned on the optical axis of the second concave mirror 118. A second Cassegrain mirror 116 for condensing detection light having a second convex mirror 120 disposed opposite to the second concave mirror 118 at an intermediate position between the first concave mirror 112 and the first convex mirror 114. Intermediate position with the second convex mirror 120 An intermediate reflecting mirror 122 which is installed, receives detection light reflected and propagated from the sample W through the first concave mirror 112 and the first convex mirror 114, and further reflects the detection light to the second Cassegrain mirror 116; And at least the first Cassegrain mirror 110 and the second Cassegrain mirror 116 are configured to be housed in one cryostat 126 (for example, Patent Document 2).

さらに、図6(c)に示すように、微粒子径測定装置214は、レーザ光照射手段216と、ワークWを載置するX−Yテーブル218と、このX−Yテーブル218を移動させるステッピングモータ220およびモータ制御手段(図示せず)よりなる走査手段と、この走査手段により走査してレーザ照射手段216によりレーザを照射して発生する微粒子を集光するための楕円面鏡集光器222と放物面鏡224よりなる集光手段と、この集光手段により集光した微粒子を測定する光電子増倍管(PMT)226と、加速電圧印加手段227と、制御手段228と、を備えている(例えば、特許文献3)。つまり、微粒子径測定装置214では、反射光学系である集光手段として楕円面鏡集光器222と放物面鏡224を備えるものである。   Further, as shown in FIG. 6C, the particle diameter measuring device 214 includes a laser beam irradiation means 216, an XY table 218 on which the workpiece W is placed, and a stepping motor that moves the XY table 218. 220, a scanning means comprising motor control means (not shown), and an ellipsoidal mirror condenser 222 for condensing fine particles generated by scanning with this scanning means and irradiating the laser with laser irradiation means 216; Condensing means composed of a parabolic mirror 224, a photomultiplier tube (PMT) 226 for measuring fine particles collected by the condensing means, acceleration voltage applying means 227, and control means 228 are provided. (For example, patent document 3). That is, the fine particle diameter measuring device 214 includes an ellipsoidal mirror condenser 222 and a parabolic mirror 224 as a condenser means that is a reflection optical system.

特開2002−298625号公報JP 2002-298625 A 特開平7−140069号公報Japanese Patent Laid-Open No. 7-140069 特開平9−236411号公報JP-A-9-236411 「白色LED照明システムの高輝度・高効率・長寿命化技術」技術情報協会 PP149−151、PP159−169"White LED Lighting System High Brightness, High Efficiency, Long Life Technology" Technical Information Association PP149-151, PP159-169 JISC7036:発光ダイオード測定方法(表示用)(昭和60年)JISC7036: Light-emitting diode measurement method (for display) (Showa 60) CIE Publ.No.CIE127:Measurement of LEDs.(1997)CIE Publ. No. CIE 127: Measurement of LEDs. (1997)

しかし、従来の拡散光源測定装置あるいは反射光学系では、以下に示すような問題点が存在していた。
(1)全光束測定のゴニオ方式による拡散光源測定装置では、所定角度ごとに拡散光源の測定を行なうため、拡散光源の全光束について測定データを同時刻に取得することができなかった。また、当該測定装置では、所定角度ごとに拡散光源もしくは測定部分を移動する必要があるため、拡散光源の安定性、当該測定装置の安定性を保つ必要から、測定作業に時間と手間が著しくかかるものであった。さらに、当該測定装置では、配光曲線を正確に求める必要性から設備的、技術的にも高い精度が要求され、測定作業が困難であった。
However, the conventional diffused light source measuring apparatus or reflective optical system has the following problems.
(1) In the diffused light source measurement device using the gonio method for measuring the total luminous flux, the diffused light source is measured at every predetermined angle, and therefore measurement data cannot be obtained for the total luminous flux of the diffused light source at the same time. In addition, since the measurement apparatus needs to move the diffused light source or the measurement portion at every predetermined angle, it is necessary to maintain the stability of the diffused light source and the stability of the measurement apparatus. It was a thing. Furthermore, the measurement apparatus requires high accuracy in terms of equipment and technology because of the necessity of accurately obtaining the light distribution curve, and the measurement work is difficult.

(2)全光束測定の積分球方式による拡散光源測定装置では、光の一部を測定する必要から高感度な測定器を必要とし、また、測定する光度、色度座標などの値が既知である拡散光源との比較測定を行なわなければならず、絶対測定ができなかった。また、当該測定装置では、拡散光源を積分球内に挿入するため、積分球に形成する開口部分を挿入操作が行い易いように大きくすると測定誤差が発生し、また、開口部分を小さく維持すると挿入操作に時間がかかりタクトタイムの低下につながってしまった。   (2) A diffused light source measuring device using an integrating sphere method for measuring total luminous flux requires a highly sensitive measuring device because it needs to measure a part of light, and values such as luminous intensity and chromaticity coordinates to be measured are known. Comparison measurement with a certain diffused light source had to be performed, and absolute measurement was not possible. In addition, since the diffused light source is inserted into the integrating sphere in the measuring apparatus, a measurement error occurs if the opening formed in the integrating sphere is made large so that the insertion operation can be easily performed, and if the opening is kept small, the insertion is performed. The operation took a long time and led to a decrease in tact time.

さらに、部分光束測定を行なう拡散光源測定装置では、測定に用いる構成が簡便なため、便利な反面、測定する拡散光源の配光特性に輝度ムラや、色ムラが存在すると、その影響を受けてしまい正確な測定が全くできないものであった。特に、昨今のLEDにおいては、白色、青色、赤色、緑色などのXY色度図上における区分が行なえるレベルでは足りず、さらに波長の限られた色度図上でのエリアにおいて区分することの必要が生じており、LED全体の総合的な光の正確な測定値を測定できることが望まれていた。   Furthermore, a diffused light source measuring apparatus that performs partial light flux measurement has a simple configuration for measurement. Therefore, it is convenient, but if there are uneven brightness or color unevenness in the light distribution characteristics of the diffused light source to be measured, it is affected by it. As a result, accurate measurement was impossible at all. In particular, in recent LEDs, it is not enough to classify on the XY chromaticity diagram such as white, blue, red, green, etc. In addition, it is possible to classify in the area on the chromaticity diagram with limited wavelength. A need has arisen and it has been desired to be able to measure accurate measurements of the overall light of the entire LED.

(3)また、集光した集光光を用いる各種測定のための反射光学系あるいは集光した集光光などを用いて各種の加工などの処理を行うための反射光学系では、集光した集光光が照射されたときの条件と同等にすることが望まれているが、現実には実現されていなかった。   (3) In addition, in the reflection optical system for various measurements using the condensed light collected or the reflection optical system for performing various processing using the collected light collected, the light is condensed. Although it is desired to make it equivalent to the condition when the condensed light is irradiated, it has not been realized in reality.

本発明は、前記したような問題点に鑑みて創案されたものであり、簡単な構成で光源から照射された条件を維持した状態で集光させることができる反射光学系を提供することを目的とし、あわせて、全光束に対して同時に測定でき、測定操作に手間がかからず、装置構成も簡易で、高感度な検出器も必要なく、拡散光源に輝度ムラ、色ムラが存在しても総合的な光の正確な測定が行なえる拡散光源測定装置の光学系および拡散光源測定装置ならびにその光測定方法を提供することを目的とする。   The present invention was devised in view of the above-described problems, and an object thereof is to provide a reflective optical system capable of condensing light with a simple configuration while maintaining conditions irradiated from a light source. In addition, it is possible to measure all the luminous fluxes at the same time, the measurement operation is not time-consuming, the device configuration is simple, no highly sensitive detector is required, and the diffused light source has uneven brightness and color unevenness. Another object of the present invention is to provide an optical system of a diffused light source measuring apparatus, a diffused light source measuring apparatus, and a light measuring method thereof capable of performing comprehensive accurate measurement of light.

前記した目的を達成するため、本発明にかかる反射光学系は、以下に示すように構成した。すなわち、反射光学系は、楕円の長軸の回転角度を180度以下の範囲とする回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を備え、前記第1回転楕円曲面反射鏡の第2焦点位置と、前記第2回転楕円曲面反射鏡の第1焦点位置とを合致させるように、前記両回転楕円曲面反射鏡を対面させて配置し、前記第1回転楕円曲面反射鏡は、長軸を含む面に対して直交して光源が設置される光源設置部を第1焦点位置に有し、前記第2回転楕円曲面反射鏡は、前記光源からの照射光を集光した集光光を受光する受光部が設置される受光部設置部を第2焦点位置に有するもとした。   In order to achieve the above-described object, the reflection optical system according to the present invention is configured as follows. That is, the reflective optical system includes a first spheroidal curved surface reflecting mirror and a second spheroidal curved surface reflecting mirror having a spheroidal elliptic curved surface in which the rotation angle of the major axis of the ellipse is 180 degrees or less, The two spheroid curved reflectors are arranged to face each other so that the second focal position of the first spheroid curved reflector and the first focal position of the second spheroid curved reflector are matched. The spheroid curved reflector has a light source installation part at a first focal position where a light source is installed orthogonal to a plane including the long axis, and the second spheroid curved reflector is irradiated from the light source. It is assumed that the second focus position has a light receiving portion installation portion in which a light receiving portion for receiving the condensed light obtained by collecting the light is installed.

このように構成されることにより、反射光学系では、光源設置部に最大照射角度が180度未満の光源を設置して点灯すると、第1回転楕円曲面反射鏡により第2焦点位置、つまり、第2回転楕円曲面反射鏡の第1焦点に集光され、再び、発散して第2回転楕円曲面反射鏡の第2焦点に集光して、その第2焦点位置の受光部設置に設置された受光部に光源からの光が入射される。このとき、この反射光学系では、第1回転楕円曲面反射鏡の第1焦点位置から照射された照射光は、第2焦点位置、つまり、第2回転楕円曲面反射鏡の第1焦点位置で点対称となり、照射された照射角度の状態(条件)と同じ状態で第2回転楕円曲面反射鏡の第2焦点位置に集光されることになる。なお、受光部の受光面が平面であるときに、被測定光源は、照射するときの最大照射角度が180度未満であれば、照射したすべての光が受光部で受光される。   With this configuration, in the reflective optical system, when a light source having a maximum irradiation angle of less than 180 degrees is installed and lit in the light source installation unit, the second focal position, that is, the first focal point is reflected by the first spheroidal curved reflector. Condensed at the first focal point of the two-spheroid curved reflector, diverged again, condensed at the second focal point of the second ellipsoidal curved reflector, and installed at the light receiving unit at the second focal point position Light from the light source is incident on the light receiving unit. At this time, in this reflective optical system, the irradiation light irradiated from the first focal position of the first spheroid curved reflector reflects at the second focal position, that is, the first focal position of the second spheroid curved reflector. It becomes symmetrical and is focused on the second focal position of the second spheroid curved reflector in the same state as the irradiation angle state (condition). Note that when the light receiving surface of the light receiving unit is a flat surface and the light source to be measured has a maximum irradiation angle of less than 180 degrees when irradiated, all of the irradiated light is received by the light receiving unit.

また、集光光を用いて被処理物を処理するための反射光学系は、楕円の長軸の回転角度を180度以下とする回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を備え、前記第1回転楕円曲面反射鏡の第2焦点位置と、前記第2回転楕円曲面反射鏡の第1焦点位置とを合致させるように、前記両回転楕円曲面反射鏡を対面させて配置し、前記第1回転楕円曲面反射鏡は、長軸を含む面に対して直交して電磁波照射源が設置される設置部を第1焦点位置に有し、前記第2回転楕円曲面反射鏡は、前記電磁波照射源から照射された電磁波を集波した電磁波により被処理物が処理される処理部を第2焦点位置に有するものとした。   In addition, a reflection optical system for processing an object to be processed using condensed light includes a first spheroid curved reflector having a spheroid elliptical curved surface whose rotation angle of the major axis of the ellipse is 180 degrees or less, and A second spheroid curved reflector, and the two spheroid curved surfaces so as to match a second focal position of the first spheroid curved reflector and a first focal position of the second spheroid curved reflector. The first spheroid curved reflector has an installation portion in which an electromagnetic wave irradiation source is installed at a first focal position orthogonal to a plane including the long axis, The two-rotation ellipsoidal curved mirror has a processing portion at the second focal position where the object to be processed is processed by the electromagnetic wave obtained by collecting the electromagnetic waves irradiated from the electromagnetic wave irradiation source.

このように構成されることにより、反射光学系では、第1回転楕円曲面反射鏡の第1焦点位置に配置した光源から照射光、たとえば、軟X線、紫外線、可視光、赤外線(熱)などの電磁波を照射すると、第2焦点位置、つまり、第2回転楕円曲面反射鏡の第1焦点位置を介して、その第2回転楕円曲面反射鏡の第2焦点位置に、点対称な状態、すなわち、照射された照射角度の状態(条件)と同じ状態で電磁波が集波されることになり、第2回転楕円曲面反射鏡の第2焦点位置である処理部に配置された被処理物を、電磁波照射源からの発散光束情報を維持したままで処理することができる。なお、この反射光学系において処理とは、例えば、光ファイバなどの被処理物に光を集光して入射させることや、集められた熱により加熱することや、集光した光により機械的に加工することなど、集波した電磁波を利用して行なうことをいう。   With this configuration, in the reflective optical system, light emitted from the light source disposed at the first focal position of the first spheroid curved reflector, for example, soft X-rays, ultraviolet rays, visible light, infrared rays (heat), etc. When the second electromagnetic wave is irradiated, the second focal position, that is, the second focal position of the second spheroid curved reflector is point-symmetrical via the first focal position of the second spheroid curved reflector, The electromagnetic wave is collected in the same state as the irradiated irradiation angle state (condition), and the object to be processed disposed at the processing unit that is the second focal position of the second spheroidal curved reflector is Processing can be performed while maintaining divergent light flux information from the electromagnetic wave irradiation source. In this reflective optical system, the processing means, for example, that light is collected and incident on an object to be processed such as an optical fiber, heated by collected heat, or mechanically by the collected light. This refers to processing using collected electromagnetic waves, such as processing.

また、前記反射光学系において、前記第1回転楕円曲面反射鏡および前記第2回転楕円曲面反射鏡は、互いに相似形状に形成されると共に、その一方を他方より小さく形成されたものとした。   In the reflective optical system, the first spheroid curved reflector and the second spheroid curved mirror are formed in a similar shape to each other, and one of them is formed smaller than the other.

このように構成されることにより、反射光学系では、第2回転楕円曲面反射鏡の第2焦点位置に集光される集光光(電磁波)が、光源部(電磁波照射源)からの照射された状態より縮小された状態となったり、あるいは、第2回転楕円曲面反射鏡の第2焦点位置に集光される集光光(電磁波)が、光源部(電磁波照射源)からの照射された状態より拡大された状態となったりすることができる。   With this configuration, in the reflective optical system, the condensed light (electromagnetic wave) collected at the second focal position of the second spheroid curved reflector is irradiated from the light source unit (electromagnetic wave irradiation source). The condensed light (electromagnetic wave) condensed to the second focal position of the second spheroid curved reflector is irradiated from the light source unit (electromagnetic wave irradiation source). It can be a state expanded from the state.

また、前記した目的を達成するため、本発明に係る拡散光源測定装置の反射光学系は、以下のように構成した。すなわち、被測定光源の照射光を受光部により受光して測定する拡散光源測定装置の反射光学系であって、第1焦点位置に設置された被測定光源の180度以下における最大照射角度の照射光を反射して第2焦点位置に集光する回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を備え、前記第1回転楕円曲面反射鏡の第2焦点位置と、前記第2回転楕円曲面反射鏡の第1焦点位置とを合致させるように、前記両回転楕円曲面反射鏡を対面させて配置し、前記第1回転楕円曲面反射鏡は、長軸を含む面に対して直交して形成した前記被測定光源が設置される光源設置部を第1焦点位置に有し、前記第2回転楕円曲面反射鏡は、前記被測定光源からの照射光を集光した集光光を受光する前記受光部が設置される受光部設置部を第2焦点位置に有するものとした。   In order to achieve the above-described object, the reflection optical system of the diffuse light source measurement device according to the present invention is configured as follows. That is, it is a reflection optical system of a diffuse light source measurement device that receives and measures irradiation light of a light source to be measured by a light receiving unit, and emits a maximum irradiation angle at 180 degrees or less of the light source to be measured installed at the first focal position. A first spheroidal curved surface reflecting mirror and a second spheroidal curved surface reflecting mirror having a spheroidal elliptical surface that reflects light and condenses at the second focal position; The two spheroidal curved reflectors are arranged to face each other so that the focal position matches the first focal position of the second spheroidal curved reflector, and the first spheroidal curved reflector has a long axis. A light source installation portion on which the light source to be measured, which is formed orthogonal to a plane including the light source, is disposed at a first focal position, and the second spheroidal curved reflector reflects irradiation light from the light source to be measured. The light receiving unit for receiving the collected light is installed. It was assumed to have a light receiving portion installation section to the second focal position.

このように構成されることにより、拡散光源測定装置の反射光学系では、第1回転楕円曲面反射鏡の光源設置部に被測定光源を配置して点灯させると、第1回転楕円曲面反射鏡の第2焦点、つまり、第2回転楕円曲面反射鏡の第1焦点に集光されると共に、第2回転楕円曲面反射鏡側に発散して再びその第2回転楕円曲面反射鏡の第2焦点位置に設置される受光部に集光される。この反射光学系では、例えば、両回転楕円曲面反射鏡が相似形状であれば、第1回転楕円曲面反射鏡の第2焦点位置(第2回転楕円曲面反射鏡の第1焦点位置)に対して点対称な状態で照射光を集光光として受光することができる。   With this configuration, in the reflection optical system of the diffuse light source measurement device, when the light source to be measured is arranged and lit on the light source installation part of the first spheroid curved reflector, the first spheroid curved reflector The second focal point, that is, the second focal point of the second spheroid curved reflector is focused again on the first focal point of the second spheroid curved reflector and diverges toward the second spheroid curved reflector again. The light is collected on the light receiving unit installed in the. In this reflection optical system, for example, if both the spheroid curved reflectors are similar in shape, with respect to the second focal position of the first spheroid curved reflector (the first focal position of the second spheroid curved reflector). Irradiation light can be received as condensed light in a point-symmetric state.

また、前記拡散光源測定装置の反射光学系において、前記両回転楕円曲面反射鏡は、長軸を180度以下の範囲で回転させた回転楕円体の楕円曲面を有している。そのため、拡散光源測定装置の反射光学系では、受光部が平面状である場合には、被測定光源からの最大照射角度が180度未満であるとき、それに対応して両回転楕円曲面反射鏡は、180度以下の楕円回転曲面を有していれば、平面な受光部に対して照射された光が受光することができる。   In the reflection optical system of the diffused light source measurement apparatus, both the spheroid curved reflectors have a spheroid ellipsoid whose major axis is rotated within a range of 180 degrees or less. Therefore, in the reflection optical system of the diffused light source measurement device, when the light receiving part is planar, when the maximum irradiation angle from the light source to be measured is less than 180 degrees, If it has an elliptical rotation curved surface of 180 degrees or less, the light irradiated with respect to the planar light-receiving part can be received.

また、前記拡散光源測定装置の反射光学系において、前記第1回転楕円曲面反射鏡および前記第2回転楕円曲面反射鏡は、互いに相似形状に形成されると共に、その一方が他方より小さく形成されたものとした。
このように構成されることにより、拡散光源測定装置の反射光学系では、第2回転楕円曲面反射鏡の第2焦点位置に集光される集光光が、光源部からの照射された状態より縮小あるいは拡大された状態となり、被測定光源の発光面より小さな面となって、あるいは、大きな面となって、受光部で受光されることになる。
In the reflection optical system of the diffused light source measurement device, the first spheroid curved mirror and the second spheroid curved mirror are formed in a similar shape, and one of them is formed smaller than the other. It was supposed to be.
With this configuration, in the reflection optical system of the diffuse light source measurement device, the condensed light collected at the second focal position of the second spheroid curved reflector is more than the state irradiated from the light source unit. The light receiving portion receives light at a reduced or enlarged state, which is smaller or larger than the light emitting surface of the light source to be measured.

また、前記した目的を達成するため、本発明に係る拡散光源測定装置は、以下のように構成した。すなわち、被測定光源の照射光を受光部により受光して測定する拡散光源測定装置であって、前記被測定光源を設置する光源設置手段と、この光源設置手段により設置された被測定光源から照射光を照射させる電源装置と、この電源装置により被測定光源から照射される照射光を反射して前記受光部に導く反射光学系と、この反射光学系により反射して集光された照射光を受光する前記受光部を有する測定装置とを備え、前記反射光学系は、第1焦点位置に設置された被測定光源の180度以下における最大照射角度の照射光を反射して第2焦点位置に集光する回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を備え、前記第1回転楕円曲面反射鏡の第2焦点位置と、前記第2回転楕円曲面反射鏡の第1焦点位置とを合致させるように、前記両回転楕円曲面反射鏡を対面させて配置し、前記第1回転楕円曲面反射鏡は、長軸を含む面に対して直交して形成した前記被測定光源が設置される光源設置部を第1焦点位置に有し、前記第2回転楕円曲面反射鏡は、前記被測定光源からの照射光を受光する前記受光部が設置される受光部設置部を第2焦点位置に有するものとした。   In order to achieve the above-described object, the diffused light source measuring apparatus according to the present invention is configured as follows. That is, a diffused light source measuring apparatus that measures the light emitted from a light source to be measured by receiving a light from a light receiving unit, the light source setting means for setting the light source to be measured, and the light source to be measured set by the light source setting means A power supply device that irradiates light, a reflection optical system that reflects the irradiation light emitted from the light source to be measured by the power supply device and guides it to the light receiving unit, and the irradiation light that is reflected and collected by the reflection optical system A measuring device having the light receiving unit for receiving light, and the reflection optical system reflects irradiation light having a maximum irradiation angle of 180 degrees or less of a light source to be measured installed at a first focal position to a second focal position. A first spheroid curved reflector and a second spheroid curved reflector having a concentric spheroid elliptical curved surface, a second focal position of the first spheroid curved reflector, and the second spheroid curved surface First of the reflector The two light-spinning ellipsoidal reflecting mirrors are arranged so as to face each other so as to coincide with a point position, and the first light-spinning ellipsoidal reflecting mirror is formed orthogonally to a plane including the long axis. The second rotating ellipsoidal reflecting mirror has a light receiving portion installing portion in which the light receiving portion for receiving irradiation light from the light source to be measured is installed. It was assumed to have two focal positions.

このように構成されることにより、拡散光源測定装置は、光源設置手段により被測定光源が反射光学系の第1回転楕円曲面反射鏡の第1焦点位置に設置されると、電源装置により被測定光源が点灯させられる。そして、拡散光源測定装置では、被測定光源が点灯すると、照射光は、第1回転楕円曲面反射鏡の第2焦点位置、つまり、第2回転楕円曲面反射鏡の第1焦点位置に集光され、再び発散して第2回転楕円曲面反射鏡の第2焦点位置に配置された受光部に集光して受光される。   With this configuration, when the light source to be measured is installed at the first focal position of the first spheroid curved reflector of the reflective optical system by the light source installation unit, the diffuse light source measurement device is measured by the power supply device. The light source is turned on. In the diffuse light source measurement device, when the light source to be measured is turned on, the irradiation light is collected at the second focal position of the first spheroid curved reflector, that is, the first focal position of the second spheroid curved reflector. Then, it diverges again and is condensed and received by the light receiving portion disposed at the second focal position of the second spheroid curved reflector.

また、前記した目的を達成するため、本発明に係る被測定光源の測定方法は、以下のように構成した。すなわち、被測定光源の測定方法は、楕円の長軸の回転角度を180度以下の範囲とする回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を備え、前記第1回転楕円曲面反射鏡の第2焦点位置と前記第2回転楕円曲面反射鏡の第1焦点位置とを合致させるように、その両回転楕円曲面反射鏡を対面させて配置した反射光学系を用いて被測定光源の照射光を測定する測定方法であって、前記第1回転楕円曲面反射鏡の第1焦点位置に、長軸を含む面に対して直交する方向に前記被測定光源を配置するステップと、前記第1回転楕円曲面反射鏡の第1焦点位置に配置された前記被測定光源を点灯させるステップと、前記被測定光源から照射され、第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を介して、その第2回転楕円曲面反射鏡の第2焦点に集光される照射光を受光するステップと、受光した前記被測定光源からの照射光を測定するステップと、を含むこととした。   In order to achieve the above-described object, the measuring light source measuring method according to the present invention is configured as follows. That is, the measuring method of the light source to be measured includes the first rotating elliptic curved surface reflecting mirror and the second rotating elliptic curved surface reflecting mirror having a spheroidal elliptic curved surface in which the rotation angle of the major axis of the ellipse is in a range of 180 degrees or less. Reflective optics in which both the spheroidal curved reflectors are arranged to face each other so as to match the second focal position of the first spheroidal curved reflector and the first focal position of the second spheroidal curved reflector. A measurement method for measuring irradiation light of a light source to be measured using a system, wherein the light source to be measured is perpendicular to a plane including a major axis at a first focal position of the first spheroidal curved reflector. , Turning on the measured light source arranged at the first focal position of the first spheroid curved reflector, irradiating from the measured light source, and the first spheroid curved reflector and the first Through two rotating ellipsoidal reflectors , It was decided to include the steps of receiving the illumination light focused on the second focal point of the second rotating elliptic surface reflector, and measuring the light emitted from the sample light source which is received, the.

本発明に係る反射光学系、拡散光源測定装置の反射光学系および拡散光源測定装置ならびにその光測定方法によれば、以下に示すような優れた効果を奏する。
反射光学系は、被測定光源の最大照射角度が180度未満であるときには、第2回転楕円曲面反射鏡の第2焦点位置に配置される受光部に、被測定光源から照射される光は全て集光されて一度に受光される。そのため、反射光学系では、被測定光源に光の放射方向に対して輝度ムラ、色ムラなどが存在しても被測定光源の全方位による総合的な光に対しての測定を行なうことが可能となる。特に、被測定光源としてLEDのように、発光部の周縁側と中心とに輝度ムラ、色ムラが存在するものでは、従来の部分光束による測定に比較して格段に精度を向上した状態で測定することが可能となる。また、この反射光学系では、レンズなどの付属する部品を全く必要としないため、構成もシンプルで小型化にも適している。なお、光源の指向性(最大照射角度)がX方向およびY方向が5度未満であれば、楕円曲面もその指向性の光などを反射できる幅さえ備えていれば足り、あとの部分は、遮光板などで囲う構成としても構わない。
According to the reflection optical system, the reflection optical system of the diffusion light source measurement device, the diffusion light source measurement device, and the light measurement method thereof according to the present invention, the following excellent effects can be obtained.
When the maximum irradiation angle of the light source to be measured is less than 180 degrees, the reflection optical system has all the light emitted from the light source to be measured on the light receiving unit arranged at the second focal position of the second spheroidal curved reflector. Light is collected and received at a time. For this reason, the reflective optical system can measure the total light from all directions of the light source to be measured even if the light source to be measured has uneven brightness and color unevenness in the light emission direction. It becomes. Especially when the light source to be measured has uneven brightness and color unevenness on the periphery and center of the light emitting part, such as LED, the measurement is performed with much improved accuracy compared to the measurement using conventional partial light flux. It becomes possible to do. In addition, since this reflection optical system does not require any attached parts such as a lens, the configuration is simple and suitable for miniaturization. In addition, if the directivity (maximum irradiation angle) of the light source is less than 5 degrees in the X direction and the Y direction, it is sufficient that the elliptical curved surface has a width that can reflect the light of the directivity, and the remaining part is It may be configured to be surrounded by a light shielding plate or the like.

反射光学系は、第2回転楕円曲面反射鏡の第2焦点位置に配置される被処理物を処理する場合には、第1回転楕円曲面反射鏡の第1焦点位置に配置された光源から照射される光あるいは熱などの電磁波により、光源から照射された状態と同じ状態、つまり、第2回転楕円曲面反射鏡の第1焦点位置(第2回転楕円曲面反射鏡の第2焦点位置)を境に点対称として、第2回転楕円曲面反射鏡の第2焦点位置に集光(集熱、集電磁波)することができる。そのため、この反射光学系では、その第2焦点位置に配置される被処理物に対して光源からの照射された発散電磁波情報(発散光束情報、発散熱情報)を維持した状態で加工、集光、加熱などの処理を行うことができる。   The reflection optical system irradiates from the light source arranged at the first focal position of the first ellipsoidal curved mirror when processing the object arranged at the second focal position of the second ellipsoidal curved reflector. The same state as the state irradiated from the light source by electromagnetic waves such as light or heat, that is, the first focal position of the second spheroid curved reflector (second focal position of the second spheroid curved reflector) is the boundary. As point symmetry, light can be collected (heat collection, electromagnetic waves collection) at the second focal position of the second ellipsoidal reflecting mirror. For this reason, in this reflective optical system, processing and condensing are performed while maintaining the divergent electromagnetic wave information (the divergent light beam information and the divergent heat information) irradiated from the light source to the object to be processed disposed at the second focal position. A process such as heating can be performed.

また、反射光学系は、第2回転楕円曲面反射鏡を第1回転楕円曲面反射鏡と相似形状として一方を大きく形成したり、あるいは小さく形成したりしても、光源からの照射される状態(条件、[照射向き])を維持して、縮小あるいは拡大された状態で第2回転楕円曲面反射鏡の第2焦点位置に集光することができる。そのため、反射光学系では、例えば、測定器などに使用したときに、装置本体のサイズ形状などに拘束されることなく、構成する自由度が大幅に広がることになる。また、反射光学系では、処理の状態に応じて適宜、第2回転楕円曲面反射鏡の大きさを変更して対応することが可能となる。   In addition, even if the reflecting optical system is formed such that the second spheroid curved reflector is similar to the first spheroid curved mirror and one of them is formed larger or smaller, the state of being irradiated from the light source ( It is possible to focus on the second focal position of the second ellipsoidal reflecting mirror in a reduced or enlarged state while maintaining the condition [irradiation direction]). For this reason, in the reflection optical system, for example, when used in a measuring instrument or the like, the degree of freedom of configuration is greatly expanded without being restricted by the size and shape of the apparatus main body. Further, in the reflection optical system, the size of the second spheroid curved reflector can be appropriately changed according to the processing state.

さらに、拡散光源測定装置の反射光学系および拡散光源測定装置では、特に光源から180度未満の指向性となる光を照射する場合に、第2回転楕円曲面反射鏡の第2焦点位置の受光部に光が一度に集光されるため、光源から照射された光の全てが同時に測定できる。そのため、被測定光源に光の放射方向に対して輝度ムラ、色ムラなどが存在しても被測定光源の全方位による総合的な光に対しての測定を行なうことが可能となる。特に、被測定光源としてLEDのように、発光部の周縁側と中心とに輝度ムラ、色ムラが存在するものでは、従来の部分光束による測定に比較して格段に精度を向上した状態で測定することが可能となる。なお、両回転楕円曲面反射鏡は、対向する側に開口部分を大きくとれるため、被測定光源の設置が簡単に行えることになる。また、両回転楕円曲面反射鏡の対面する部分で、かつ、設置される光源および受光部以外の部分では、外部からの光が入射しないように遮光する囲いを適宜設けることにすれば、より正確な測定などの作業を行なうことが可能となる。   Further, in the reflection optical system and the diffusion light source measurement device of the diffuse light source measurement device, particularly when the light having a directivity of less than 180 degrees is emitted from the light source, the light receiving unit at the second focal position of the second spheroid curved reflector Since light is collected at once, all of the light emitted from the light source can be measured simultaneously. Therefore, even if luminance unevenness, color unevenness, or the like exists in the light source to be measured with respect to the light emitting direction, it is possible to perform measurement on the total light from all directions of the light source to be measured. Especially when the light source to be measured has uneven brightness and color unevenness on the periphery and center of the light emitting part, such as LED, the measurement is performed with much improved accuracy compared to the measurement using conventional partial light flux. It becomes possible to do. In addition, since both the spheroidal curved reflectors can have a large opening on the opposite side, the light source to be measured can be easily installed. In addition, it is more accurate if an enclosure that shields light from the outside so as not to be incident on the portion that faces both the spheroid curved reflectors and that is not the light source and the light receiving portion to be installed is appropriately provided. It is possible to perform operations such as simple measurement.

また、拡散光源測定装置の反射光学系あるいは拡散光源測定装置では、第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を互いに相似形として、その一方を他方より小さくあるいは大きくできるため、例えば、設置された測定装置を含むインラインなどの被測定光源が搬送される径路の位置と、測定位置を分離することがいたって簡単に行なえ、測定器のサイズ形状などに限定されることがない。
さらに、拡散光源測定装置の反射光学系あるいは拡散光源測定装置では、受光部が平面で集光光を受光する場合に、被測定光源からの最大照射角度が180度未満であれば、その照射された光をすべて受光部で集光することができる。
Further, in the reflection optical system of the diffuse light source measurement device or the diffuse light source measurement device, the first spheroid curved reflector and the second spheroid curved reflector can be made similar to each other, and one of them can be made smaller or larger than the other. The measurement position can be easily separated from the position of the path through which the light source to be measured such as an in-line including the installed measuring apparatus is conveyed, and the measurement shape is not limited to the size and the like.
Further, in the reflection optical system of the diffused light source measuring device or the diffused light source measuring device, when the light receiving unit receives the condensed light on a flat surface, if the maximum irradiation angle from the measured light source is less than 180 degrees, the light is irradiated. All the collected light can be collected by the light receiving unit.

さらに、拡散光源測定装置の測定方法では、特に、180度以下の指向性を備える光を照射する被測定光源に対して、広い開口部の状態において設置される当該被測定光源および受光部を操作すればよく、操作性に優れ、かつ、従来のものと比較して測定の精度を維持あるいは向上させた状態を維持してタクトタイムの向上が図れる。   Furthermore, in the measurement method of the diffused light source measurement device, in particular, the measured light source and the light receiving unit installed in a wide opening state are operated for the measured light source that emits light having directivity of 180 degrees or less. In this case, the operability is excellent, and the tact time can be improved while maintaining or improving the measurement accuracy as compared with the conventional one.

以下、本発明の実施の形態について図面を参照して説明する。
図1(a)は、反射光学系における照射および集光の光の状態を模式的に示す模式図、(b)は、反射光学系を模式的に示す斜視図、(c)は、反射光学系で測定される被測定光源の最大照射角度を説明するための斜視図、図2は、拡散光源測定装置を用いる光測定システムの全体の概略を模式的に示す平面図、図3(a)は、集光光を受光部としての光ファイバに入射させる構成を示す側面図、(b)は集光光を受光部としての配光特性を測定するためのカメラに入射させる構成を示す側面図である。
なお、図1ないし図3では、被測定光源として140度のX方向およびY方向における最大照射角度(指向性)を有するLED(以下「ワーク」という)の測定を行なう例として説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1A is a schematic diagram schematically showing the state of irradiation and condensing light in the reflection optical system, FIG. 1B is a perspective view schematically showing the reflection optical system, and FIG. FIG. 2 is a perspective view for explaining the maximum irradiation angle of the light source to be measured measured by the system, FIG. 2 is a plan view schematically showing the entire outline of the light measurement system using the diffused light source measurement device, and FIG. FIG. 3B is a side view showing a configuration in which condensed light is incident on an optical fiber as a light receiving unit, and FIG. 4B is a side view showing a configuration in which condensed light is incident on a camera for measuring light distribution characteristics as a light receiving unit. It is.
1 to 3 will be described as an example of measuring an LED (hereinafter referred to as “work”) having a maximum irradiation angle (directivity) in the X direction and the Y direction of 140 degrees as a light source to be measured.

図2および図3に示すように、光測定システムAは、ワークWを整列させる整列装置Cと、この整列装置Cで整列されたワークWを搬送する搬送装置Bと、この搬送装置Bにより搬送されて来るワークWを、あらかじめ設定した所定位置で停止させた状態で点灯させるための電源装置Dと、この電源装置Dにより点灯された被測定光源Wの光を測定する拡散光源測定装置1、11と、この拡散光源測定装置1、11により測定されたワークWを選別する選別装置Eとを備えている。   As shown in FIGS. 2 and 3, the light measurement system A includes an alignment device C that aligns the workpieces W, a conveyance device B that conveys the workpieces W aligned by the alignment device C, and a conveyance device B that conveys the workpieces W. A power supply device D for lighting the workpiece W that has been stopped at a predetermined position set in advance, and a diffused light source measurement device 1 for measuring the light of the light source W to be measured turned on by the power supply device D, 11 and a sorting device E that sorts the workpiece W measured by the diffused light source measuring devices 1 and 11.

拡散光源測定装置1,11は、この測定システムAでは2箇所に並列して配置されている。なお、拡散光源測定装置1,11は、測定するワークWに対応して1箇所に配置する構成とすることや、あるいは、2箇所以上に配列する構成としても構わないものである。この拡散光源測定装置1の反射光学系10は、楕円の長軸の回転角度を180度以下の範囲とする回転楕円体の楕円曲面(回転楕円曲面)を有する第1回転楕円曲面反射鏡2および第2回転楕円曲面反射鏡3とを備え、そして、図1に示すように、第1回転楕円曲面反射鏡2の第2焦点f2と第2回転楕円曲面反射鏡3の第1焦点f3とが合致(一致)するように、楕円曲面を互いに対面させて配置されている。さらに、反射光学系10では、第1回転楕円曲面反射鏡2の第1焦点f1に、ワークWを設置するための光源設置部4を備え、第2回転楕円曲面反射鏡3の第2焦点f4に、測定装置Fの受光部5Aを設置するための受光部設置部5を備えている。なお、両回転楕円曲面反射鏡2,3は、長軸に沿った位置に配置されている。また、回転楕円曲面反射鏡2、3を180度以下としているのは、180度を越えると、対面して反射光学系10を構成したときに、重なって反射面を有効に利用することができないからであり、また、受光部3が平面的に配置されたときに、その受光部に180度を越えた反射面からの光を受光できないからである。   In this measurement system A, the diffused light source measuring devices 1 and 11 are arranged in parallel at two locations. The diffused light source measuring devices 1 and 11 may be arranged at one location corresponding to the workpiece W to be measured, or may be arranged at two or more locations. The reflection optical system 10 of the diffused light source measuring apparatus 1 includes a first spheroid curved reflector 2 having a spheroid elliptical curved surface (spheroid curved surface) whose rotation angle of the major axis of the ellipse is 180 degrees or less, and The second spheroidal curved surface reflecting mirror 3 is provided. As shown in FIG. 1, the second focal point f2 of the first spheroidal curved surface reflecting mirror 2 and the first focal point f3 of the second spheroidal curved surface reflecting mirror 3 are provided. The elliptical curved surfaces are arranged facing each other so as to match (match). Further, the reflection optical system 10 includes a light source installation unit 4 for installing the workpiece W at the first focal point f1 of the first ellipsoidal curved reflector 2, and the second focal point f4 of the second ellipsoidal reflecting mirror 3. In addition, a light receiving unit installation unit 5 for installing the light receiving unit 5A of the measuring device F is provided. Both the spheroidal curved reflectors 2 and 3 are arranged at positions along the long axis. Further, the reason why the spheroid curved reflectors 2 and 3 are set to 180 degrees or less is that when the angle exceeds 180 degrees, when the reflecting optical system 10 is configured to face each other, the reflecting surfaces cannot be used effectively. In addition, when the light receiving unit 3 is arranged in a plane, the light from the reflecting surface exceeding 180 degrees cannot be received by the light receiving unit.

反射光学系10の両回転楕円曲面反射鏡2,3は、互いに相似形に形成されており、ここでは、第2回転楕円曲面反射鏡3が第1回転楕円曲面反射鏡2より小さく形成されている。また、両回転楕円曲面反射鏡2,3は、筐体2A,3Aに配置あるいは設けられており、図示しない支持手段により互いに固定され、設置テーブル20に支持されることで設置されている。なお、図2に示すように、筐体2A,3Aは、対面する搬送装置B側において隣接しやすいように、直方体の角部分に切欠面を形成している。   The two spheroid curved reflectors 2 and 3 of the reflecting optical system 10 are formed in a similar shape to each other. Here, the second spheroid curved reflector 3 is formed to be smaller than the first spheroid curved reflector 2. Yes. Further, the two spheroid curved reflecting mirrors 2 and 3 are disposed or provided in the housings 2A and 3A, are fixed to each other by a supporting means (not shown), and are installed by being supported by the installation table 20. As shown in FIG. 2, the casings 2 </ b> A and 3 </ b> A are formed with notched surfaces at the corners of the rectangular parallelepiped so as to be easily adjacent on the conveying device B side facing each other.

そして、図1に示すように、第1回転楕円曲面反射鏡2は、回転楕円曲面以外では、遮蔽板6により遮蔽されており、第1焦点f2に対応する位置にワークWを設置するための光源設置部4としての開口が形成されている。そして、この光源設置部4は、ワークWが長軸を含む水平面(設置面に対して平行な面)に対して直交して配置できるように構成されている。ここでは、搬送装置Bにより光源設置部4にワークWが搬送されて設置されると、そのワークWの姿勢が水平面に対して直交して、そのワークWの照射面が第1焦点f1に配置されるように設定されている。そして、ワークWが設置されると、ワークWの照射中心が、回転楕円曲面の幅方向に対する中央(短軸方向の中央)に直立して向くように配置されることになる。   As shown in FIG. 1, the first spheroid curved reflector 2 is shielded by the shielding plate 6 except for the spheroid curved surface, and is used to place the workpiece W at a position corresponding to the first focal point f2. An opening as the light source installation part 4 is formed. And this light source installation part 4 is comprised so that the workpiece | work W can be orthogonally arranged with respect to the horizontal surface (surface parallel to an installation surface) containing a long axis. Here, when the work W is transported and installed in the light source installation unit 4 by the transport device B, the posture of the work W is orthogonal to the horizontal plane, and the irradiation surface of the work W is arranged at the first focus f1. Is set to be. When the workpiece W is installed, the irradiation center of the workpiece W is arranged so as to face upright at the center (the center in the minor axis direction) with respect to the width direction of the spheroidal curved surface.

また、この第1回転楕円曲面反射鏡2は、第2回転楕円曲面反射鏡3と重なる位置においては、第2回転楕円曲面反射鏡3に対面して開口されている。この第1回転楕円曲面反射鏡2は、ここでは、楕円をその長軸を中心に160度回転させた回転楕円曲面を有するように構成されており、ワークWが光源設置部4に搬送されて光源設置部4に設置されると、そのワークWの発光中心が、第1焦点f1に一致するように設定されている。   Further, the first spheroidal curved surface reflecting mirror 2 is opened facing the second spheroidal curved surface reflecting mirror 3 at a position overlapping the second spheroidal curved surface reflecting mirror 3. Here, the first rotating elliptic curved surface reflecting mirror 2 is configured to have a rotating elliptic curved surface obtained by rotating the ellipse by 160 degrees about its long axis, and the work W is conveyed to the light source installation unit 4. When installed in the light source installation unit 4, the light emission center of the workpiece W is set to coincide with the first focus f1.

また、第2回転楕円曲面反射鏡3は、回転楕円曲面以外では、遮蔽板7により遮蔽されており、第2焦点f4に対応する位置に測定装置Fの受光部設置部5としての開口が形成されている。なお、この第2回転楕円曲面反射鏡3は、第1回転楕円曲面反射鏡2と重なる位置においては第1回転楕円曲面反射鏡2に対して開口されている。この第2回転楕円曲面反射鏡3は、ここでは、長軸を160度回転させて形成される回転楕円曲面を有するように構成されており、受光部5Aの中心位置が、第2焦点f4に一致するように設定されている。   Further, the second spheroid curved reflector 3 is shielded by the shielding plate 7 except for the spheroid curved surface, and an opening as the light receiving unit installation unit 5 of the measuring device F is formed at a position corresponding to the second focal point f4. Has been. The second spheroid curved reflector 3 is opened to the first spheroid curved reflector 2 at a position overlapping the first spheroid curved mirror 2. Here, the second spheroid curved reflector 3 is configured to have a spheroid curved surface formed by rotating the major axis by 160 degrees, and the center position of the light receiving portion 5A is at the second focal point f4. Set to match.

図3(a)に示すように、受光部5Aは、ここでは、支持台25を介して設置されるように構成されている。この受光部5Aは、図示しない拡散板を受光面に設置しており、その拡散板を介して光ファイバに集光光を取り込むように構成されている。なお、第2回転楕円曲面反射鏡光3は、第1回転楕円曲面反射鏡2と相似形でかつ小さく形成されているため、例えば、ワークWの発光面積に対して、受光部5Aに受光される受光面積を小さくすることで、受光部5AにワークWから照射された光を集光して確実に受光することが可能となる。   As shown to Fig.3 (a), 5 A of light-receiving parts are comprised so that it may install through the support stand 25 here. The light receiving unit 5A is configured such that a diffusion plate (not shown) is installed on the light receiving surface, and the condensed light is taken into the optical fiber through the diffusion plate. Since the second spheroid curved reflector light 3 is similar to the first spheroid curved reflector 2 and is formed small, for example, the light receiving area 5A receives light with respect to the light emission area of the workpiece W. By reducing the light receiving area, the light irradiated from the workpiece W can be collected and reliably received by the light receiving unit 5A.

図2および図3(a)に示すように、ワークWを搬送する搬送装置Bは、整列装置Cにより整列されたワークWを着脱自在に保持する光源設置手段としての回転テーブル30と、この回転テーブル30を回転駆動させる駆動機構32と、この駆動機構32を制御する制御手段(図示せず)を備えている。回転テーブル30は、所定周縁位置に、所定間隔に設けたワークWを着脱自在に保持する保持部31を有している。
そのため、回転テーブル30は、保持部31にワークWが保持されて回転テーブル30が駆動機構32により所定角度において回転駆動することで、ワークWを拡散光源測定装置1の反射光学系10における第1回転楕円曲面反射鏡2の第1焦点f1の位置にワークWを設置させている。
As shown in FIG. 2 and FIG. 3A, the transport device B that transports the workpiece W includes a rotary table 30 as a light source installation unit that detachably holds the workpiece W aligned by the alignment device C, and this rotation. A drive mechanism 32 that rotationally drives the table 30 and a control unit (not shown) that controls the drive mechanism 32 are provided. The turntable 30 has a holding portion 31 that detachably holds workpieces W provided at predetermined intervals at predetermined peripheral positions.
Therefore, the rotary table 30 holds the work W on the holding unit 31 and the rotary table 30 is rotationally driven at a predetermined angle by the drive mechanism 32, so that the work W is the first in the reflection optical system 10 of the diffused light source measurement apparatus 1. A workpiece W is placed at the position of the first focal point f1 of the spheroid curved reflector 2.

図3(a)に示すように、測定装置Fは、第2焦点に設置された受光部5Aから保持機構5bにより保持される光ファイバ5aを介して受光部5Aから受光したワークWの照射光の光度、色調、全光束などを測定するものである。   As shown in FIG. 3A, the measuring device F irradiates light from the light receiving unit 5A received from the light receiving unit 5A via the optical fiber 5a held by the holding mechanism 5b from the light receiving unit 5A installed at the second focal point. Measuring the luminous intensity, color tone, total luminous flux, etc.

また、第1焦点f1の位置にワークWが設置されたとき、ワークWを点灯させるための電源装置Dが測定位置の例えば下部に配置されている。この電源装置Dは、回転テーブル30の保持部31(図2参照)が保持しているワークWの電極に接触して、ワークWをあらかじめ設定された所定時間(ワークWの光が測定できる時間)点灯させるように構成されている。この電源装置Dは、固定式でも移動式でも構わない。   In addition, when the work W is placed at the position of the first focal point f1, a power supply device D for lighting the work W is disposed, for example, below the measurement position. The power supply device D is in contact with the electrode of the work W held by the holding unit 31 (see FIG. 2) of the rotary table 30 and the work W is set for a predetermined time (a time during which the light of the work W can be measured). ) It is configured to light up. The power supply device D may be fixed or mobile.

また、ワークWの検査が終了して、そのワークWを選別するための選別装置Eは、拡散光源測定装置1,11で測定された結果により、ワークWを所定の区分ケースに区分するためのものである。なお、この選別装置Eは、回転テーブル30の保持部31からワークWが離脱されて落下したときに、受取る開口スライダ(図示せず)、その開口スライダに隣接して回転可能に設置された選別ノズル(図示せず)、その選別ノズルの下方に隣接して配置された区分ケース(図示せず)などを備えている。   The sorting device E for sorting the workpiece W after the workpiece W has been inspected is for sorting the workpiece W into predetermined sorting cases based on the results measured by the diffused light source measuring devices 1 and 11. Is. The sorting device E has an opening slider (not shown) that is received when the work W is detached from the holding portion 31 of the rotary table 30 and dropped, and a sorting device that is rotatably installed adjacent to the opening slider. A nozzle (not shown), a sorting case (not shown) arranged adjacent to the lower side of the sorting nozzle, and the like are provided.

なお、拡散光源測定装置1に隣接して配置された拡散光源測定装置11は、すでに説明した拡散光源測定装置1と同じ反射光学系10を備え、受光部設置部5に配置される受光部5Bの構成のみが異なるため、受光部5Bの説明のみをする。すなわち、受光部5Bは、ここでは、ワークWの配光特性を測定するために用いられるカメラであり、支持台26を介して固定して使用されている。そして、このカメラのレンズ位置は、第2回転楕円曲面反射の第2焦点f4の焦点を結んで、さらに拡散していく直前の位置に配置されるように設定されている。受光部5Bであるカメラに入射した光は、測定装置Gによりその配光特性が測定されるものである。   The diffused light source measuring device 11 arranged adjacent to the diffused light source measuring device 1 includes the same reflection optical system 10 as the diffused light source measuring device 1 already described, and the light receiving unit 5B arranged in the light receiving unit installation unit 5. Since only the configuration of is different, only the light receiving unit 5B will be described. That is, here, the light receiving unit 5B is a camera used for measuring the light distribution characteristics of the workpiece W, and is fixedly used via the support base 26. The lens position of this camera is set so as to be positioned immediately before the second focal point f4 of the second spheroidal curved surface reflection is formed and further diffused. The light distribution characteristic of the light incident on the camera that is the light receiving unit 5B is measured by the measuring device G.

つぎに、光測定システムAおよび拡散光源測定装置1の動作について説明する。
はじめに、図2に示すように、整列装置Cにより整列されたワークWは、搬送装置Bの回転テーブル30における保持部31に保持される。保持されたワークWは、回転テーブル30の動作により拡散光源測定装置1における第1回転楕円曲面反射鏡2の第1焦点f1に搬送されて設置される。このとき、ワークWは、第1回転楕円曲面反射鏡2の長軸を含む水平面に対して直交する方向に配置される(ステップ1)。そして、拡散光源測定装置1では、第1回転楕円曲面反射鏡2の第1焦点f1に設置されることで、電源装置Dの電極部分がワークWの電極に接続して点灯させる(ステップ2)。
Next, operations of the light measurement system A and the diffused light source measurement apparatus 1 will be described.
First, as shown in FIG. 2, the workpieces W aligned by the aligning device C are held by the holding unit 31 in the rotary table 30 of the conveying device B. The held workpiece W is transported to and installed at the first focal point f1 of the first rotating elliptic curved reflector 2 in the diffused light source measurement apparatus 1 by the operation of the rotary table 30. At this time, the workpiece W is arranged in a direction orthogonal to the horizontal plane including the long axis of the first spheroid curved reflector 2 (step 1). In the diffused light source measuring device 1, the electrode portion of the power supply device D is connected to the electrode of the work W by being installed at the first focal point f1 of the first spheroid curved reflector 2 (step 2). .

ワークWが点灯すると、図1(a)に示すように、ワークWからの照射光は、第1回転楕円曲面反射鏡2の第2焦点f2、つまり、第2回転楕円曲面反射鏡3の第1焦点f3に集光されて、その第2焦点f3から再び発散し、第2回転楕円曲面反射鏡3の反射面により第2焦点f4に集光される。このとき、ワークWからの最大照射角度は、X方向およびY方向(図1(c)参照)において、ここでは一例として140度であるとしている。そのため、両回転楕円曲面反射鏡2,3は、その最大照射角度を反射できる楕円回転曲面の短軸方向に対する幅寸法を備えていれば、ワークWからの照射光は全て、第2回転楕円曲面反射鏡3の第2焦点f4に集光して受光部5Aにより受光させることができる(ステップ3)。   When the workpiece W is turned on, as shown in FIG. 1A, the irradiation light from the workpiece W is the second focal point f2 of the first spheroid curved reflector 2, that is, the second spheroid curved reflector 3 of the second spheroid curved reflector 3. The light is condensed at the first focal point f3, diverges again from the second focal point f3, and is condensed at the second focal point f4 by the reflecting surface of the second spheroidal curved reflector 3. At this time, the maximum irradiation angle from the workpiece W is 140 degrees as an example in the X direction and the Y direction (see FIG. 1C). Therefore, as long as both the spheroidal curved reflecting mirrors 2 and 3 have a width dimension with respect to the minor axis direction of the elliptical rotating curved surface that can reflect the maximum irradiation angle, all the irradiation light from the workpiece W is the second rotating elliptic curved surface. The light can be collected at the second focal point f4 of the reflecting mirror 3 and received by the light receiving unit 5A (step 3).

そのため、反射光学系10では、ワーク(被測定光源)Wから照射される光(光束)のほとんどを、拡散板(図示せず)を介して光ファイバ5aにより受光でき、測定装置Fにより波長特性、光度、色度座標などの値(主波長、純度、ピーク波長、色温度(相関色温度)、演色評価値)などを適切に測定することができる(ステップ4)。なお、反射光学系10は、第2回転楕円曲面反射鏡3が第1回転楕円曲面反射鏡2と相似形状で、かつ小さく形成されていることから、光ファイバ5aの入射面に確実に入射させることができる。   Therefore, in the reflective optical system 10, most of the light (light beam) emitted from the work (light source to be measured) W can be received by the optical fiber 5 a through the diffusion plate (not shown), and the wavelength characteristic is measured by the measuring device F. The values (main wavelength, purity, peak wavelength, color temperature (correlated color temperature), color rendering evaluation value), etc. of the luminosity and chromaticity coordinates can be appropriately measured (step 4). In the reflecting optical system 10, since the second spheroid curved reflector 3 is similar in shape to the first spheroid curved reflector 2 and is formed small, it is surely incident on the incident surface of the optical fiber 5a. be able to.

拡散光源測定装置1により測定されたワークWは、電源装置DがワークWの電極から離間して、かつ回転テーブル30が所定角度回転することで、つぎの拡散光源測定装置11の反射光学系10における第1回転楕円曲面反射鏡2の第1焦点に設置されて、配光特性が前記したものと同様の動作により測定装置Gにより測定される。なお、拡散光源測定装置11では、受光部5Bにより集光光を受光するときに、すでに説明した受光部5Aとは受光面の位置が異なることと、測定内容が異なるだけなので、詳しい説明は省略する。   The workpiece W measured by the diffused light source measuring device 1 is separated from the electrode of the workpiece W by the power supply device D, and the rotary table 30 is rotated by a predetermined angle, whereby the reflecting optical system 10 of the next diffused light source measuring device 11 is used. Is installed at the first focal point of the first spheroidal curved reflector 2 and the light distribution characteristic is measured by the measuring device G by the same operation as described above. In the diffused light source measurement device 11, when the collected light is received by the light receiving unit 5 </ b> B, the position of the light receiving surface is different from that of the light receiving unit 5 </ b> A already described, and the measurement content is different, so detailed description is omitted. To do.

拡散光源測定装置1,11によりワークWの光が測定されると、測定装置F,GからワークWがどのクラスに分類されるかについての信号が選別装置E側に送られる。なお、測定装置F,Gには、あらかじめワークWの区分について、例えば、情報テーブルが記憶されており、その情報テーブルに基づいて信号が送られている。
拡散光源測定装置1,11による測定が終了すると、回転テーブル30は、駆動機構32により所定角度回転してワークWを保持して回転し、選別装置Eの上方で停止する。このとき、回転テーブル30の他の保持部31がつぎのワークWを保持して拡散光源測定装置1、11などの測定位置に設置させている。なお、拡散光源測定装置11と選別装置Eとの間には、ワークWのその他の構成についての測定、検出などを行なう装置を配置しても構わない。
When the light of the workpiece W is measured by the diffused light source measuring devices 1 and 11, a signal as to which class the workpiece W is classified from the measuring devices F and G is sent to the sorting device E side. Note that, for example, an information table is stored in advance in the measuring devices F and G for the classification of the workpiece W, and a signal is transmitted based on the information table.
When the measurement by the diffused light source measuring devices 1 and 11 is completed, the rotary table 30 rotates by a predetermined angle by the drive mechanism 32 to hold and rotate the workpiece W, and stops above the sorting device E. At this time, the other holding portion 31 of the rotary table 30 holds the next workpiece W and is installed at the measurement position of the diffused light source measurement devices 1 and 11 and the like. In addition, you may arrange | position the apparatus which performs the measurement, detection, etc. about the other structure of the workpiece | work W between the diffused light source measurement apparatus 11 and the selection apparatus E. FIG.

選別装置Eの上方で停止した回転テーブル30の保持部31は、ワークWの保持を解除することで、下方に待機している選別装置Eの図示しない開口スライダ内にワークWを落下させる。選別装置Eは、図示しない開口スライダにより落下されたワークWを受取り、あらかじめ、測定装置F,Gからの信号により回転して配置された図示しない選別ノズルを介して、測定結果ごとに図示しない区分ケースに区分されて収納される。   The holding unit 31 of the rotary table 30 stopped above the sorting device E releases the work W, thereby dropping the workpiece W into an opening slider (not shown) of the sorting device E waiting below. The sorting device E receives the workpiece W dropped by an opening slider (not shown), and previously classifies each measurement result via a sorting nozzle (not shown) that is rotated by a signal from the measuring devices F and G. Separated into cases and stored.

なお、反射光学系10は、図1ないし図3では、LEDなどのX方向およびY方向に180度未満である140度の最大照射角度となる拡散光源に対して有効として説明したが、図4(a)に示すような、偏平な指向性(例えば、X方向に140度、Y方向に30度)を有する光源である場合でも有効に対応することが可能となる。図4(a)に示すような指向性を有する被測定光源であるLEDに対しては、その最大照射角度がカバーできる回転楕円体の楕円曲面(回転楕円曲面)の幅寸法を備えていれば良い。   1 to 3, the reflective optical system 10 has been described as being effective for a diffused light source having a maximum irradiation angle of 140 degrees that is less than 180 degrees in the X and Y directions, such as LEDs. Even in the case of a light source having flat directivity (for example, 140 degrees in the X direction and 30 degrees in the Y direction) as shown in FIG. For an LED, which is a light source to be measured, having directivity as shown in FIG. 4A, the width of the ellipsoidal curved surface (spheroid surface) that can cover the maximum irradiation angle is provided. good.

すなわち、図4(b)に示すように、反射光学系41は、楕円の長軸を35度の範囲で回転させて形成した回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡42および第2回転楕円曲面反射鏡43を備え、そして、第1回転楕円曲面反射鏡42の第2焦点f2と第2回転楕円曲面反射鏡43の第1焦点f3とが合致(一致)するように、回転楕円曲面を互いに対面させて配置されているものである。そして、両回転楕円曲面反射鏡42,43は、その両側面に側面板42a、43aを介して遮蔽板6,7を配置している。   That is, as shown in FIG. 4B, the reflective optical system 41 includes a first spheroidal curved reflector 42 having a spheroidal elliptical curved surface formed by rotating the major axis of the ellipse within a range of 35 degrees, and A second spheroid curved reflector 43, and the second focal point f2 of the first spheroid curved reflector 42 and the first focal point f3 of the second spheroid curved reflector 43 match (match), The spheroidal curved surfaces are arranged facing each other. The rotating ellipsoidal reflecting mirrors 42 and 43 are respectively provided with shielding plates 6 and 7 via side plates 42a and 43a on both side surfaces thereof.

なお、この反射光学系41の構成は、両回転楕円曲面反射鏡42,43の幅寸法、および側面板42a、43a以外については、すでに図1ないし図3において説明した構成とおなじものであるため、同じ符合を付して説明を省略する。
この反射光学系41を備える場合においては、整列装置C(図2参照)では、ワークWが保持部31(図2参照)に保持される方向についても制御して整列させるように構成されて、すでに説明したような測定作業が順次送られることになる。
The configuration of the reflection optical system 41 is the same as the configuration already described with reference to FIGS. 1 to 3 except for the width dimensions of the two spheroid curved reflectors 42 and 43 and the side plates 42a and 43a. The same reference numerals are given and the description is omitted.
In the case of including the reflection optical system 41, the alignment device C (see FIG. 2) is configured to control and align the direction in which the workpiece W is held by the holding unit 31 (see FIG. 2). Measurement operations as already described will be sent sequentially.

なお、図1ないし図4で説明したように、両回転楕円曲面反射鏡2,3(42,43)は、長軸を180度以下の範囲で回転させた回転楕円曲面を備えることで、照射光と同じ状態(条件)を維持して集光光として集光することができるものであり、両回転楕円曲面反射鏡の形状(例えば、縁部分の形状)などに限定されるものではない。また、ここでは、楕円の長軸の回転角度を180度以下の範囲である回転楕円曲面反射鏡2,3(42,43)として説明したが、両回転楕円曲面反射鏡2,3(42,43)を製造するときの製造方法を特定しているものではなく、回転楕円曲面の短軸方向における幅寸法を特定するための表現として記載しているものである。   In addition, as demonstrated in FIG. 1 thru | or 4, both rotation ellipsoid curved reflectors 2 and 3 (42, 43) are provided with a rotation ellipse curved surface whose major axis is rotated within a range of 180 degrees or less. The same state (conditions) as the light can be maintained and condensed as the condensed light, and is not limited to the shape of the double spheroid curved reflector (for example, the shape of the edge portion). In addition, here, the explanation has been made assuming that the rotation angle of the major axis of the ellipse is the rotation ellipsoidal curved reflectors 2 and 3 (42, 43) in the range of 180 degrees or less. 43) is not specified as a manufacturing method, but is described as an expression for specifying the width dimension in the minor axis direction of the spheroidal curved surface.

また、図1(a)に示す状態の反射光学系10の構成として説明したが、例えば、図5(a)で示すように、反射光学系10Aにおいて、両回転楕円曲面反射鏡2,3(42,43)が相似形でかつ、同じ大きさとしても構わない。また、図5(b)に示すように、反射光学系10Bにおいて、両回転楕円曲面反射鏡2,3(42,43)が相似形でかつ、第1回転楕円曲面反射鏡2(42)が小さく形成されたものであっても構わない。   Moreover, although it demonstrated as a structure of the reflective optical system 10 of the state shown to Fig.1 (a), as shown in Fig.5 (a), in the reflective optical system 10A, both rotation ellipsoid curved reflectors 2, 3 ( 42, 43) may be similar and have the same size. Further, as shown in FIG. 5B, in the reflecting optical system 10B, both the spheroidal curved reflectors 2, 3 (42, 43) are similar and the first spheroidal curved reflector 2 (42) is the same. It may be formed small.

さらに、両回転楕円曲面反射鏡2,3(42,43)が相似形であれば、短軸および長軸の長さ寸法は、特に限定されるものではない。なお、暗室など外部からの光の影響がなければ、両回転楕円曲面反射鏡2,3(42,43)に設けた遮蔽板6、7および側面板42a、43aを設ける必要がない。   Furthermore, if both the spheroidal curved reflectors 2 and 3 (42, 43) are similar, the lengths of the short axis and the long axis are not particularly limited. If there is no influence of light from the outside such as a dark room, it is not necessary to provide the shielding plates 6 and 7 and the side plates 42a and 43a provided on the two spheroid curved reflectors 2 and 3 (42 and 43).

両回転楕円曲面反射鏡2,3(42,43)は、その回転楕円曲面が少なくとも鏡面となっていれば良く、遮蔽板6,7または側面板42a、43aを鏡面とする必要はない。もちろん、遮蔽板6,7または側面板42a、43aが、鏡面として形成されても構わない。なお、暗室などの測定において不必要な光の影響がない環境の場合には、反射光学系10においては、遮蔽板6,7あるいは側面板42a、43aがない状態の構成であっても構わない。   The two spheroid curved reflecting mirrors 2 and 3 (42, 43) are only required to have at least a mirror surface of the spheroid curved surface, and the shielding plates 6 and 7 or the side plates 42a and 43a are not required to be mirror surfaces. Of course, the shielding plates 6 and 7 or the side plates 42a and 43a may be formed as mirror surfaces. Note that, in an environment where there is no influence of unnecessary light in measurement such as in a dark room, the reflection optical system 10 may be configured without the shielding plates 6 and 7 or the side plates 42a and 43a. .

なお、両回転楕円曲面反射鏡2,3(42,43)の鏡面は、例えば、紫外線、可視光を反射する場合には、一例としてプラスチック、金属(例えば、アルミニウム)などの基材を鏡面研磨してアルミニウムを蒸着させることで構成される。また、赤外線を反射する場合には、一例として、基材の表面を鏡面研磨して金を蒸着させることで構成される。さらに、軟X線を反射する場合には、一例として、ニッケル多層膜、チタン多層膜あるいはニッケルチタン多層膜を用いることで構成される。そして、熱に対しての反射を行なう場合には、金属面、例えばステンレス面を研磨して構成される。   In addition, the mirror surfaces of the two spheroid curved reflecting mirrors 2 and 3 (42 and 43) are mirror-polished on a base material such as plastic or metal (for example, aluminum) as an example when reflecting ultraviolet light or visible light. Thus, aluminum is deposited. Moreover, when reflecting infrared rays, as an example, the surface of the base material is mirror-polished to deposit gold. Furthermore, in the case of reflecting soft X-rays, for example, a nickel multilayer film, a titanium multilayer film, or a nickel titanium multilayer film is used. And when reflecting with respect to a heat | fever, it is comprised by grind | polishing a metal surface, for example, a stainless steel surface.

反射光学系10(10A,10B)が使用される装置の一例としては、半導体の種結晶や原料結晶の加熱用、UV硬貨用光源の集光用、赤外線集光用、露光装置の光源部リレー光学系、X線用モノクロメータ光学系、分光器取り込み集光用などの電磁波の集光、リレー光学系に主に適用することが可能となる。
なお、前記した実施の形態では、回転楕円曲面反射鏡を二つ用いた反射光学系として説明したが、回転楕円曲面反射鏡は、2の倍数個を用いることで同様の反射光学系として測定を行なうことが可能となる。
An example of an apparatus in which the reflective optical system 10 (10A, 10B) is used is for heating a semiconductor seed crystal or a raw material crystal, for condensing a light source for a UV coin, for infrared condensing, and for a light source relay of an exposure apparatus. The present invention can be applied mainly to an optical system, an X-ray monochromator optical system, a condensing of electromagnetic waves for collecting and collecting spectroscopes, and a relay optical system.
In the above-described embodiment, the reflection optical system using two spheroid curved reflectors has been described. However, the measurement can be performed as a similar reflection optical system by using multiple spheroid curved reflectors. Can be performed.

(a)は、本発明に係る反射光学系における照射および集光の光の状態を模式的に示す模式図、(b)は、反射光学系を模式的に示す斜視図、(c)は、本発明に係る反射光学系で測定される被測定光源の最大照射角度を説明するための斜視図である。(A) is a schematic view schematically showing the state of irradiation and condensing light in the reflective optical system according to the present invention, (b) is a perspective view schematically showing the reflective optical system, and (c) is It is a perspective view for demonstrating the maximum irradiation angle of the to-be-measured light source measured with the reflective optical system which concerns on this invention. 本発明に係る拡散光源測定装置を用いる光測定システムの全体の概略を模式的に示す平面図である。It is a top view which shows typically the outline of the whole optical measurement system using the diffused light source measuring device which concerns on this invention. 本発明に係る拡散光源測定装置の側面から模式的に示し、(a)は、集光光を受光部としての光ファイバに入射させる構成を示す側面図、(b)は集光光を受光部としての配光特性を測定するためのカメラに入射させる構成を示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It shows typically from the side of the diffused light source measuring apparatus which concerns on this invention, (a) is a side view which shows the structure which makes condensed light inject into the optical fiber as a light-receiving part, (b) is light-receiving part It is a side view which shows the structure made to inject into the camera for measuring the light distribution characteristic as. 本発明に係る反射光学系の他の構成を示し、(a)は、被測定光源の最大照射角度を説明するための斜視図、(b)は、反射光学系を模式的に示す斜視図、(c)は、反射光学系における照射および集光の光の状態を模式的に示す模式図である。The other structure of the reflective optical system which concerns on this invention is shown, (a) is a perspective view for demonstrating the maximum irradiation angle of a to-be-measured light source, (b) is a perspective view which shows a reflective optical system typically, (C) is a schematic diagram schematically showing the state of irradiation and condensing light in the reflective optical system. (a)、(b)は、それぞれ本発明に係る他の反射光学系における照射および集光の光の状態を模式的に示す模式図である。(A), (b) is a schematic diagram which shows typically the state of the light of irradiation and condensing in the other reflective optical system which concerns on this invention, respectively. (a)は、従来の反射光学系を模式的に示す模式図、(b)は従来の赤外線の反射光学系を模式的に示す模式図、(c)は、従来の反射光学系により微粒子測定を行なうための装置全体を示す模式図である。(A) is a schematic diagram schematically showing a conventional reflective optical system, (b) is a schematic diagram schematically showing a conventional infrared reflective optical system, and (c) is a fine particle measurement by the conventional reflective optical system. It is a schematic diagram which shows the whole apparatus for performing.

符号の説明Explanation of symbols

1 拡散光源測定装置
2 第1回転楕円曲面反射鏡
2A 筐体
3 第2回転楕円曲面反射鏡
3A 筐体
4 光源設置部(開口)
5 受光部設置部(開口)
5A 受光部(光ファイバ)
5B 受光部(カメラ)
6 遮蔽板
7 遮蔽板
10 反射光学系
20 設置テーブル
25 支持台
30 回転テーブル
31 保持部
32 駆動機構
41 反射光学系
42 第1回転楕円曲面反射鏡
43 第2回転楕円曲面反射鏡
f1 第1焦点(第1回転楕円曲面反射鏡)
f2 第2焦点(第1回転楕円曲面反射鏡)
f3 第1焦点(第2回転楕円曲面反射鏡)
f4 第2焦点(第2回転楕円曲面反射鏡)
A 光測定システム
B 搬送装置
C 整列装置
D 電源装置
E 選別装置
F 測定装置
G 測定装置
W ワーク(被測定光源)
DESCRIPTION OF SYMBOLS 1 Diffuse light source measuring apparatus 2 1st rotation elliptical curved-surface reflective mirror 2A housing | casing 3 2nd rotational elliptical curved-surface reflective mirror 3A housing | casing 4 Light source installation part (opening)
5 Light receiver installation part (opening)
5A Light receiving part (optical fiber)
5B Light receiver (camera)
6 Shielding Plate 7 Shielding Plate 10 Reflective Optical System 20 Installation Table 25 Supporting Table 30 Rotating Table 31 Holding Unit 32 Drive Mechanism 41 Reflecting Optical System 42 First Rotating Elliptical Curved Reflector 43 Second Rotating Elliptic Curved Reflector 43 f1 First Focus ( 1st spheroid curved mirror)
f2 Second focus (first spheroid curved reflector)
f3 first focus (second spheroid curved mirror)
f4 Second focus (second spheroid curved mirror)
A Light measurement system B Transport device C Alignment device D Power supply device E Sorting device F Measurement device G Measurement device W Workpiece (light source to be measured)

Claims (7)

楕円の長軸の回転角度を180度以下の範囲とする回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を備え、
前記第1回転楕円曲面反射鏡の第2焦点位置と、前記第2回転楕円曲面反射鏡の第1焦点位置とを合致させるように、前記両回転楕円曲面反射鏡を対面させて配置し、
前記第1回転楕円曲面反射鏡は、長軸を含む面に対して直交して光源が設置される光源設置部を第1焦点位置に有し、前記第2回転楕円曲面反射鏡は、前記光源からの照射光を集光した集光光を受光する受光部が設置される受光部設置部を第2焦点位置に有することを特徴とする反射光学系。
A first spheroid curved reflector and a second spheroid curved mirror having a spheroid ellipsoid having a major axis rotation angle of 180 degrees or less ;
And the second focus position of the first rotary elliptic surface reflector, so as to match the first focal position of the second rotary elliptic surface reflector, arranged so as to face the two rotary elliptic surface reflector,
The first spheroid curved reflector has a light source installation part in which a light source is installed orthogonal to a plane including a long axis at a first focal position, and the second spheroid curved reflector includes the light source reflecting optical system and having a light receiving portion disposed portion in which the light receiving portion is installed for receiving the condensed light condensed at the second focal point position of light irradiated from.
楕円の長軸の回転角度を180度以下の範囲とする回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を備え、
前記第1回転楕円曲面反射鏡の第2焦点位置と、前記第2回転楕円曲面反射鏡の第1焦点位置とを合致させるように、前記両回転楕円曲面反射鏡を対面させて配置し、
前記第1回転楕円曲面反射鏡は、長軸を含む面に対して直交して電磁波照射源が設置される設置部を第1焦点位置に有し、前記第2回転楕円曲面反射鏡は、前記電磁波照射源から照射された電磁波を集波した電磁波により被処理物が処理される処理部を第2焦点位置に有することを特徴とする反射光学系。
A first spheroid curved reflector and a second spheroid curved mirror having a spheroid ellipsoid having a major axis rotation angle of 180 degrees or less ;
And the second focus position of the first rotary elliptic surface reflector, so as to match the first focal position of the second rotary elliptic surface reflector, arranged so as to face the two rotary elliptic surface reflector,
The first rotating elliptic surface reflector has an installation part electromagnetic radiation source and perpendicular to the plane containing the major axis is disposed at the first focal point position, the second rotary elliptic surface reflector, the A reflection optical system having a processing portion at a second focal position for processing an object to be processed by electromagnetic waves obtained by collecting electromagnetic waves irradiated from an electromagnetic wave irradiation source .
前記第1回転楕円曲面反射鏡および前記第2回転楕円曲面反射鏡は、互いに相似形状に形成されると共に、その一方が他方より小さく形成されたことを特徴とする請求項1または請求項2に記載の反射光学系。 3. The first and second spheroidal curved reflectors and the second spheroidal curved reflector are formed in a similar shape to each other, and one of them is formed smaller than the other. The reflective optical system described. 被測定光源の照射光を受光部により受光して測定する拡散光源測定装置の反射光学系であって、
第1焦点位置に設置された被測定光源の180度以下における最大照射角度の照射光を反射して第2焦点位置に集光する回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を備え、
前記第1回転楕円曲面反射鏡の第2焦点位置と、前記第2回転楕円曲面反射鏡の第1焦点位置とを合致させるように、前記両回転楕円曲面反射鏡を対面させて配置し、
前記第1回転楕円曲面反射鏡は、長軸を含む面に対して直交して形成した前記被測定光源が設置される光源設置部を第1焦点位置に有し、前記第2回転楕円曲面反射鏡は、前記被測定光源からの照射光を集光した集光光を受光する前記受光部が設置される受光部設置部を第2焦点位置に有することを特徴とする拡散光源測定装置の反射光学系。
A reflection optical system of a diffused light source measuring device that receives and measures irradiation light of a light source to be measured by a light receiving unit,
A first spheroid curved reflector having a spheroid ellipsoid that reflects irradiating light at a maximum irradiating angle of 180 degrees or less of the light source to be measured installed at the first focal position and condenses it at the second focal position; A second rotating elliptic curved reflector,
And the second focus position of the first rotary elliptic surface reflector, so as to match the first focal position of the second rotary elliptic surface reflector, arranged so as to face the two rotary elliptic surface reflector,
The first spheroid curved reflector has a light source installation part at a first focal position where the measured light source is formed orthogonal to a plane including a major axis, and the second spheroid curved surface reflection. The reflection of the diffused light source measurement device, wherein the mirror has a light receiving portion installation portion in which the light receiving portion for receiving the condensed light obtained by collecting the irradiation light from the light source to be measured is provided at the second focal position. Optical system.
前記第1回転楕円曲面反射鏡および前記第2回転楕円曲面反射鏡は、互いに相似形状に形成されると共に、その一方が他方より小さく形成されたことを特徴とする請求項4に記載の拡散光源測定装置の反射光学系。 5. The diffused light source according to claim 4, wherein the first spheroid curved reflector and the second spheroid curved reflector are formed in a similar shape to each other, and one of them is formed smaller than the other. Reflective optical system of the measuring device. 被測定光源の照射光を受光部により受光して測定する拡散光源測定装置であって、
前記被測定光源を設置する光源設置手段と、この光源設置手段により設置された被測定光源から照射光を照射させる電源装置と、この電源装置により被測定光源から照射される照射光を反射して前記受光部に導く反射光学系と、この反射光学系により反射して集光された照射光を受光する前記受光部を有する測定装置とを備え、
前記反射光学系は、第1焦点位置に設置された被測定光源の180度以下における最大照射角度の照射光を反射して第2焦点位置に集光する回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を備え、
前記第1回転楕円曲面反射鏡の第2焦点位置と、前記第2回転楕円曲面反射鏡の第1焦点位置とを合致させるように、前記両回転楕円曲面反射鏡を対面させて配置し、
前記第1回転楕円曲面反射鏡は、長軸を含む面に対して直交して形成した前記被測定光源が設置される光源設置部を第1焦点位置に有し、前記第2回転楕円曲面反射鏡は、前記被測定光源からの照射光を受光する前記受光部が設置される受光部設置部を第2焦点位置に有することを特徴とする拡散光源測定装置。
A diffused light source measuring device that receives and measures irradiation light of a light source to be measured by a light receiving unit,
A light source installation means for installing the light source to be measured, a power supply device for irradiating irradiation light from the light source to be measured installed by the light source installation means, and reflecting the irradiation light emitted from the light source to be measured by the power supply device A reflection optical system that leads to the light receiving unit, and a measuring device that has the light receiving unit that receives irradiation light reflected and collected by the reflection optical system,
The reflection optical system has a first ellipsoidal surface having a spheroid that reflects the irradiation light at the maximum irradiation angle of 180 degrees or less of the light source to be measured installed at the first focal position and condenses it at the second focal position. A spheroid curved reflector and a second spheroid curved reflector,
And the second focus position of the first rotary elliptic surface reflector, so as to match the first focal position of the second rotary elliptic surface reflector, arranged so as to face the two rotary elliptic surface reflector,
The first spheroid curved reflector has a light source installation part at a first focal position where the measured light source is formed orthogonal to a plane including a major axis, and the second spheroid curved surface reflection. The diffuser light source measurement apparatus, wherein the mirror has a light receiving portion installation portion in which the light receiving portion for receiving irradiation light from the light source to be measured is installed at a second focal position.
楕円の長軸の回転角度を180度以下の範囲とする回転楕円体の楕円曲面を有する第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を備え、前記第1回転楕円曲面反射鏡の第2焦点位置と前記第2回転楕円曲面反射鏡の第1焦点位置とを合致させるように、その両回転楕円曲面反射鏡を対面させて配置した反射光学系を用いて被測定光源の照射光を測定する拡散光源測定装置の測定方法であって、
前記第1回転楕円曲面反射鏡の第1焦点位置に、長軸を含む面に対して直交する方向に前記被測定光源を配置するステップと、
前記第1回転楕円曲面反射鏡の第1焦点位置に配置された前記被測定光源を点灯させるステップと、
前記被測定光源から照射され、第1回転楕円曲面反射鏡および第2回転楕円曲面反射鏡を介して、その第2回転楕円曲面反射鏡の第2焦点に集光される照射光を受光するステップと、
受光した前記被測定光源からの照射光を測定するステップと、を含むことを特徴とする拡散光源測定装置の測定方法。

A first spheroidal curved surface reflecting mirror and a second spheroidal curved surface reflecting mirror having a spheroidal elliptical curved surface whose rotation angle of the major axis of the ellipse is in a range of 180 degrees or less ; Irradiation light of the light source to be measured using a reflective optical system in which both the spheroidal curved reflectors are arranged to face each other so that the second focal position matches the first focal position of the second spheroidal curved reflector. A measuring method of a diffused light source measuring apparatus for measuring
Disposing the measured light source at a first focal position of the first spheroid curved reflector in a direction orthogonal to a plane including a long axis;
Illuminating the measured light source disposed at a first focal position of the first spheroid curved reflector;
Receiving irradiation light irradiated from the light source to be measured and condensed on the second focal point of the second ellipsoidal curved reflector through the first ellipsoidal reflecting mirror and the second ellipsoidal reflecting mirror; When,
Measuring the irradiation light from the light source to be measured that has been received.

JP2003435740A 2003-12-26 2003-12-26 Reflective optical system, reflection optical system of diffused light source measuring apparatus, diffused light source measuring apparatus and measuring method thereof Expired - Fee Related JP4226466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435740A JP4226466B2 (en) 2003-12-26 2003-12-26 Reflective optical system, reflection optical system of diffused light source measuring apparatus, diffused light source measuring apparatus and measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435740A JP4226466B2 (en) 2003-12-26 2003-12-26 Reflective optical system, reflection optical system of diffused light source measuring apparatus, diffused light source measuring apparatus and measuring method thereof

Publications (2)

Publication Number Publication Date
JP2005195685A true JP2005195685A (en) 2005-07-21
JP4226466B2 JP4226466B2 (en) 2009-02-18

Family

ID=34815715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435740A Expired - Fee Related JP4226466B2 (en) 2003-12-26 2003-12-26 Reflective optical system, reflection optical system of diffused light source measuring apparatus, diffused light source measuring apparatus and measuring method thereof

Country Status (1)

Country Link
JP (1) JP4226466B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198983A (en) * 2006-01-27 2007-08-09 Hamamatsu Photonics Kk Adapter for integrating sphere, and photodetection device equipped therewith
WO2010140484A1 (en) * 2009-06-01 2010-12-09 株式会社システムロード Device for measuring optical characteristic of light source, measuring method, and examining device provided with the measuring device
JP2011153929A (en) * 2010-01-27 2011-08-11 Panasonic Corp Total light quantity measurement system, total light quantity measurement apparatus, and total light quantity measurement method
JP2012026868A (en) * 2010-07-23 2012-02-09 Panasonic Corp Full light quantity measurement system and full light quantity measurement method
WO2013081107A1 (en) * 2011-12-02 2013-06-06 独立行政法人産業技術総合研究所 Converging mirror furnace
CN103185664A (en) * 2011-12-30 2013-07-03 财团法人金属工业研究发展中心 Optical measurement assist device with oval calotte structure and optical measurement system
JP2016070834A (en) * 2014-09-30 2016-05-09 日亜化学工業株式会社 Light flux measurement device and light flux measurement method
KR101746280B1 (en) 2015-08-27 2017-06-13 한국교통대학교산학협력단 Optical Gas Sensor with the Improvement of Chemical Resistance and Anti-scattering of lights
KR20180082819A (en) * 2017-01-11 2018-07-19 재단법인 오송첨단의료산업진흥재단 Ellipsoidal reflector and optical signal transmission module having the same
KR102212681B1 (en) * 2019-09-26 2021-02-05 한국기초과학지원연구원 Mounting device for complex motion of objective lens with cassegrain structure
WO2021261002A1 (en) * 2020-06-23 2021-12-30 浜松ホトニクス株式会社 Light guide and light detection device
WO2022004147A1 (en) * 2020-07-02 2022-01-06 コニカミノルタ株式会社 Optical system for measuring optical characteristics and device for measuring optical characteristics
CN114486790A (en) * 2020-10-28 2022-05-13 旭化成微电子株式会社 Gas detection device
WO2023067757A1 (en) * 2021-10-21 2023-04-27 株式会社京都セミコンダクター Reflective optical sensor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198983A (en) * 2006-01-27 2007-08-09 Hamamatsu Photonics Kk Adapter for integrating sphere, and photodetection device equipped therewith
WO2010140484A1 (en) * 2009-06-01 2010-12-09 株式会社システムロード Device for measuring optical characteristic of light source, measuring method, and examining device provided with the measuring device
JP2011153929A (en) * 2010-01-27 2011-08-11 Panasonic Corp Total light quantity measurement system, total light quantity measurement apparatus, and total light quantity measurement method
JP2012026868A (en) * 2010-07-23 2012-02-09 Panasonic Corp Full light quantity measurement system and full light quantity measurement method
KR101677819B1 (en) * 2011-12-02 2016-11-18 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Converging mirror furnace
WO2013081107A1 (en) * 2011-12-02 2013-06-06 独立行政法人産業技術総合研究所 Converging mirror furnace
KR20140088897A (en) * 2011-12-02 2014-07-11 도꾸리쯔교세이호진상교기쥬쯔소고겡뀨죠 Converging mirror furnace
CN104011491A (en) * 2011-12-02 2014-08-27 独立行政法人产业技术综合研究所 Converging mirror furnace
JPWO2013081107A1 (en) * 2011-12-02 2015-04-27 独立行政法人産業技術総合研究所 Condenser mirror heating furnace
US9777375B2 (en) 2011-12-02 2017-10-03 National Institute Of Advanced Industrial Science And Technology Converging mirror furnace
CN103185664A (en) * 2011-12-30 2013-07-03 财团法人金属工业研究发展中心 Optical measurement assist device with oval calotte structure and optical measurement system
JP2016070834A (en) * 2014-09-30 2016-05-09 日亜化学工業株式会社 Light flux measurement device and light flux measurement method
KR101746280B1 (en) 2015-08-27 2017-06-13 한국교통대학교산학협력단 Optical Gas Sensor with the Improvement of Chemical Resistance and Anti-scattering of lights
KR20180082819A (en) * 2017-01-11 2018-07-19 재단법인 오송첨단의료산업진흥재단 Ellipsoidal reflector and optical signal transmission module having the same
KR101911351B1 (en) * 2017-01-11 2018-10-25 재단법인 오송첨단의료산업진흥재단 Ellipsoidal reflector and optical signal transmission module having the same
KR102212681B1 (en) * 2019-09-26 2021-02-05 한국기초과학지원연구원 Mounting device for complex motion of objective lens with cassegrain structure
WO2021261002A1 (en) * 2020-06-23 2021-12-30 浜松ホトニクス株式会社 Light guide and light detection device
WO2022004147A1 (en) * 2020-07-02 2022-01-06 コニカミノルタ株式会社 Optical system for measuring optical characteristics and device for measuring optical characteristics
CN114486790A (en) * 2020-10-28 2022-05-13 旭化成微电子株式会社 Gas detection device
CN114486790B (en) * 2020-10-28 2023-10-20 旭化成微电子株式会社 Gas detection device
US11921030B2 (en) 2020-10-28 2024-03-05 Asahi Kasei Microdevices Corporation Gas detection apparatus
WO2023067757A1 (en) * 2021-10-21 2023-04-27 株式会社京都セミコンダクター Reflective optical sensor

Also Published As

Publication number Publication date
JP4226466B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4226466B2 (en) Reflective optical system, reflection optical system of diffused light source measuring apparatus, diffused light source measuring apparatus and measuring method thereof
TWI312417B (en) Inspection system and method for identifying surface and body defects in a glass sheet
EP0895696B1 (en) Image formation apparatus for viewing indicia on a planar specular substrate
KR100746114B1 (en) Imaging system for imaging a defect on a planar specular object
USRE37740E1 (en) Method and apparatus for optical inspection of substrates
US20110089341A1 (en) Fluorometers
KR100967859B1 (en) Optical measuring device
JP3354131B2 (en) Lighting for surface inspection of goods
JP2009535782A (en) Board illumination / inspection equipment
KR100699733B1 (en) Visual inspecting method and apparatus
KR20140060946A (en) Electronic materials processing area measurement for illumination device and applying the inspection equipment
CN101076720B (en) Apparatus for inspecting backlight unit
US20050146719A1 (en) Method and apparatus for illuminating a substrate during inspection
KR101001113B1 (en) Apparatus for Detecting Wafer Crack and Method for Detecting Wafer Defect
TW202102839A (en) Appearance inspection device capable of suppressing the occurrence of halation and being excellent in inspection processing speed
KR102008224B1 (en) Inspecting system being capable of inspecting curved surface
JP2000505203A (en) Low side image forming equipment
JP2005127970A (en) Optical system for measuring light of wide dispersion light source, instrument for measuring light of wide dispersion light source, and light measuring method therefor
KR101485425B1 (en) Cover-glass Analysis Apparatus
JP3095856B2 (en) Light inspection device for visual inspection
JP2000333047A (en) Optical image pickup device and optical image pickup method
JP2009092481A (en) Lighting device for visual inspection and visual inspection device
JP2004109127A (en) Defect detection device for fpd substrate
JP4380311B2 (en) Defect inspection equipment
KR102361925B1 (en) Optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081126

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111205

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees