JP2005180962A - Electromagnetic flow rate sensor - Google Patents

Electromagnetic flow rate sensor Download PDF

Info

Publication number
JP2005180962A
JP2005180962A JP2003418149A JP2003418149A JP2005180962A JP 2005180962 A JP2005180962 A JP 2005180962A JP 2003418149 A JP2003418149 A JP 2003418149A JP 2003418149 A JP2003418149 A JP 2003418149A JP 2005180962 A JP2005180962 A JP 2005180962A
Authority
JP
Japan
Prior art keywords
sensor
metal shell
pipe
electromagnetic flow
mounting bracket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003418149A
Other languages
Japanese (ja)
Inventor
Yutaka Yoshida
豊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2003418149A priority Critical patent/JP2005180962A/en
Publication of JP2005180962A publication Critical patent/JP2005180962A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a fluctuation of the sensitivity of a sensor by the adsorption and precipitation of a metal such as copper on the wetted part of metal shell made of stainless steel 304. <P>SOLUTION: The sensor 3 is fixed to a piping 1 by screwing a fixing nut 12 together with a socket 2 welded to the piping 1, and the tip of the sensor 3 shown as a right end in the figure is inserted into the liquid 10. The male screw 4c of the metal shell 4 is screwed together with the female screw of the insulation sleeve 13, and the outer male screw of the insulation sleeve 13 is screwed together with the female screw of the fixing nut 12. Thereby, the metal shell 4 is fixed to the fixing nut 12 through the insulation sleeve 13. Because, the piping 1 and the socket 2 are insulated from the metal shell 4 of the sensor 3, the metal such as copper never precipitated on the surface of the metal shell 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は挿入方式の電磁流速センサの改良に関する。   The present invention relates to an improvement of an insertion type electromagnetic flow rate sensor.

配管内を流れる液体の流量を計測するのに、電磁誘導の原理を活用した挿入方式の電磁流速センサが周知であり、配管の口径(サイズ)に関係なく、一定の大きさの小型のセンサを配管に挿入することで流体(液体)の流速を検出できるため、設置が容易で、コストも比較的安いというメリットがあり、近年使用が拡大する傾向にある。   In order to measure the flow rate of liquid flowing in a pipe, an insertion type electromagnetic flow velocity sensor using the principle of electromagnetic induction is well known, and a small sensor with a fixed size can be used regardless of the diameter of the pipe. Since the flow velocity of fluid (liquid) can be detected by inserting it into the pipe, there is an advantage that it is easy to install and the cost is relatively low. In recent years, the use tends to expand.

この種の電磁流速センサは、被計測流体が流れる管路へセンサの先端部を挿入して使用する。センサの先端部の外周部は金属製の筒状部(金属シェル)で形成され、この金属シェルが流体に接液して接地電位とされる(例えば特許文献1参照)。   This type of electromagnetic flow velocity sensor is used by inserting the tip of the sensor into a conduit through which the fluid to be measured flows. The outer peripheral portion of the front end of the sensor is formed of a metal cylindrical portion (metal shell), and this metal shell is in contact with the fluid to be grounded (see, for example, Patent Document 1).

図1は、電磁流速センサの計測原理を説明する縦断面図で、配管1に溶接固着したソケット2に電磁流速センサ3を装着して、円筒形の金属シェル4を含む電磁流速センサ3の先端部(図示右端部)を配管1内に挿入設置している。5は合成樹脂等の電気絶縁材料からなるボデーで、その先端部(図示右端)に2本の電極6,6を備えている。7はコアー、8はヨーク、9はコアー7に巻いた励磁コイルで、励磁電流が流されると、電流の向きに応じた磁束Φが流体中に生じる。流体が紙面に直角な方向に流れると、流速に比例した誘起電圧が電極6,6間に発生し、図示されていないプリアンプで増幅される。   FIG. 1 is a longitudinal sectional view for explaining the measurement principle of an electromagnetic flow rate sensor. A tip of an electromagnetic flow rate sensor 3 including a cylindrical metal shell 4 with an electromagnetic flow rate sensor 3 attached to a socket 2 welded and fixed to a pipe 1. The portion (the right end portion in the drawing) is inserted and installed in the pipe 1. Reference numeral 5 denotes a body made of an electrically insulating material such as a synthetic resin, and has two electrodes 6 and 6 at its tip (right end in the figure). 7 is a core, 8 is a yoke, and 9 is an exciting coil wound around the core 7. When an exciting current is applied, a magnetic flux Φ corresponding to the direction of the current is generated in the fluid. When the fluid flows in a direction perpendicular to the paper surface, an induced voltage proportional to the flow velocity is generated between the electrodes 6 and 6, and is amplified by a preamplifier (not shown).

金属シェル4の先端部(図示右端部)は、被計測流体である流体に接続してアース電位とされる。金属シェル4は強度・耐食性や、アースとしての電位安定性の要求からステンレス製とされることが多い。   The front end portion (right end portion in the figure) of the metal shell 4 is connected to the fluid that is the fluid to be measured and is set to the ground potential. The metal shell 4 is often made of stainless steel due to demands for strength, corrosion resistance, and potential stability as ground.

電磁流速センサを装着する配管、例えばビルの空調システムにおける温水配管では、鉄に亜鉛メッキした亜鉛メッキ管(SGP管)が用いられることが殆どである。空調用の温水配管は、銅管を用いた熱交換器内を通過するため、温水中に銅イオンが溶けている。図1の金属シェル4の接液部に電気メッキの要領で銅が吸着・折出してしまうことになる。このことを、図2の模式図にしたがって以下に説明する。   In piping for mounting an electromagnetic flow rate sensor, for example, hot water piping in an air conditioning system of a building, a galvanized pipe (SGP pipe) galvanized on iron is often used. Since the hot water piping for air conditioning passes through the heat exchanger using a copper tube, copper ions are dissolved in the hot water. Copper is adsorbed and folded out in the manner of electroplating in the liquid contact portion of the metal shell 4 in FIG. This will be described below with reference to the schematic diagram of FIG.

図で、配管1は鉄管1aの表面に符号1bで示すように亜鉛メッキが施されている。また、配管1に溶接されたソケット2は、鉄2aの表面に亜鉛メッキ2bが施されている。そして、電磁流速センサ3の雄ねじ部分をソケット2に螺合することで、センサ3をソケット2に装着固定している。こうして、センサ3の雄ねじ部分がソケット2の雌ねじを介してソケット2及び配管1と電気的に接続され、センサ3の先端部の金属シェル4もまたソケット2及び配管1と電気的に接続されることになる。   In the figure, the pipe 1 is galvanized on the surface of the iron pipe 1a as indicated by reference numeral 1b. Further, the socket 2 welded to the pipe 1 is galvanized 2b on the surface of the iron 2a. The sensor 3 is attached and fixed to the socket 2 by screwing the male thread portion of the electromagnetic flow rate sensor 3 into the socket 2. Thus, the male screw portion of the sensor 3 is electrically connected to the socket 2 and the pipe 1 via the female screw of the socket 2, and the metal shell 4 at the tip of the sensor 3 is also electrically connected to the socket 2 and the pipe 1. It will be.

配管1の表面の亜鉛メッキ1bと、ソケット2の亜鉛メッキ2bが、配管1内を矢印Aのように流れる温水10内に亜鉛イオンZn2+となって溶け出ると、亜鉛メッキ1b,2b部分のマイナス電荷(電子)が矢印Bのようにセンサ3側へ移動し、電気的につながっている金属シェル4の表面近くに集まる。このマイナスの電荷を符号11で示す。前述のように温水10内には銅イオンが溶けているので、この銅イオンは、金属シェル4のマイナス電荷11に吸着されて、金属シェル4の表面に銅が折出する。この現象は、金属シェル4の表面が銅メッキされるのと同じことである。 When the zinc plating 1b on the surface of the pipe 1 and the zinc plating 2b of the socket 2 are dissolved as zinc ions Zn 2+ in the hot water 10 flowing in the pipe 1 as shown by the arrow A, the zinc plating 1b and 2b portions Negative charges (electrons) move to the sensor 3 side as indicated by an arrow B and gather near the surface of the metal shell 4 that is electrically connected. This negative charge is denoted by reference numeral 11. As described above, since the copper ions are dissolved in the hot water 10, the copper ions are adsorbed by the negative charges 11 of the metal shell 4, and copper is folded out on the surface of the metal shell 4. This phenomenon is the same as when the surface of the metal shell 4 is plated with copper.

配管1を流れる液体(例えば温水10)には、上記銅イオンに限ることはなく、他の金属イオンが溶けていることがあり、これらが、亜鉛に対して電気化学的に貴なステンレス製の金属シェル4の表面に吸着されて、銅の場合と同様に金属が折出する。図2では、流体中の金属イオンを、銅イオンも含めて符号M+で示している。 The liquid (for example, hot water 10) flowing through the pipe 1 is not limited to the copper ions, and other metal ions may be dissolved, and these are made of stainless steel that is electrochemically noble with respect to zinc. Adsorbed on the surface of the metal shell 4, the metal breaks out in the same manner as in the case of copper. In FIG. 2, the metal ions in the fluid are indicated by the symbol M + including the copper ions.

ところで、金属のイオン化傾向の順をあらわす一つとして、海水中における腐蝕電位列をあげると、表1のようになる(例えば非特許文献1参照)。表1は飽和カロメル電極照合時の電極電位〔v〕である。   By the way, as an example of the order of the ionization tendency of metals, the corrosion potential sequence in seawater is as shown in Table 1 (for example, see Non-Patent Document 1). Table 1 shows the electrode potential [v] when collating the saturated calomel electrode.

Figure 2005180962
Figure 2005180962

金属が水に触れた場合の電位は、表1のようにステンレスが相対的に高く、以下銅、アルミニウム、亜鉛といった順に低くなっている。表1で電位の違うもの同士を電気的に接続すると、電位の低い方の金属(すなわち電気的に卑の方)が溶け出し、そのことで生まれた電子は、表中の高い電位の金属(電気的に貴という)に集まる。   When the metal touches water, the potential of stainless steel is relatively high as shown in Table 1, and the potential decreases in the order of copper, aluminum, and zinc. When the different potentials in Table 1 are electrically connected, the metal with the lower potential (that is, the electrical base) melts, and the resulting electrons are transformed into the higher potential metals in the table ( Gathered electrically).

この状態で、接続された金属の中間の電位を持つ金属が流体中に溶けていると、つまり図2の場合、亜鉛とステンレス304の間の電位を持つ、銅やアルミニウムといった金属が流体中に溶けていると、電子の集まっている電気的に貴な金属、この場合はセンサ3の先端部の金属シェル4(ステンレス304材)の外周に銅やアルミニウムが吸着されて折出する。
特開2003−194842号公報(3頁、図3) 福沢秀刀著「ガルバニック腐蝕の原理とその防止対策」中川防蝕工業株式会社、技資ナンバー357、1990年9月、P4
In this state, when a metal having an intermediate potential between the connected metals is dissolved in the fluid, that is, in the case of FIG. 2, a metal such as copper or aluminum having a potential between zinc and stainless steel 304 is in the fluid. When melted, copper or aluminum is adsorbed and folded on the outer periphery of the electrically precious metal in which electrons are collected, in this case, the metal shell 4 (stainless steel 304 material) at the tip of the sensor 3.
Japanese Patent Laying-Open No. 2003-194842 (page 3, FIG. 3) Hidetoshi Fukuzawa, “Principles of Galvanic Corrosion and Prevention Measures” Nakagawa Corrosion Industry Co., Ltd., Technical Number 357, September 1990, P4

空調設備では、温水や冷水が流れる熱交換器のコイルに銅パイプを用いたものがある。したがって、亜鉛メッキ配管にステンレス製の金属シェルを備えた挿入方式の電磁流速センサを装着すると、配管とセンサの金属シェルとが電気的に接続され、しかも、流体(温水又は冷水)中に銅などが溶け出しているため、これらの金属が電気的に貴なステンレス製の金属シェルの接液面に吸着・折出して、その結果、センサの電極から見たアースのインピーダンスが変化し、電磁流速センサの感度が変化してしまうという問題点があった。   Some air conditioners use copper pipes for the coils of heat exchangers through which hot and cold water flow. Therefore, when an electromagnetic flow velocity sensor with a stainless steel metal shell is attached to a galvanized pipe, the pipe and the metal shell of the sensor are electrically connected, and copper or the like is contained in the fluid (hot water or cold water). As the metal melts, these metals adsorb and fold out on the wetted surface of an electrically precious stainless steel metal shell, resulting in a change in the earth impedance seen from the sensor electrode, resulting in an electromagnetic flow velocity. There was a problem that the sensitivity of the sensor would change.

実際に亜鉛メッキ配管に温水を流した場合、熱交換器のコイルに銅パイプが使用されていた時に、数日という短期間の間に電磁流速センサの感度が約10%低下することを確認した。このとき、センサの先端部の金属シェルの接液部には銅が折出し、黒く酸化していた。   When hot water was actually flowed through the galvanized piping, when the copper pipe was used for the coil of the heat exchanger, it was confirmed that the sensitivity of the electromagnetic flow rate sensor decreased by about 10% in a short period of several days. . At this time, copper broke out at the liquid contact portion of the metal shell at the tip of the sensor and was oxidized black.

そこで、本発明はこのような金属の吸着・折出を防止することで、前記問題点を解消できる挿入方式の電磁流速センサを提供することを目的とする。   Therefore, an object of the present invention is to provide an insertion type electromagnetic flow rate sensor that can solve the above-mentioned problems by preventing such adsorption and folding of the metal.

本発明は、電磁流速センサのステンレス製金属シェルの接液部に異種金属が折出しないようにするため、基本的にセンサの金属シェルを流体配管から電気的に絶縁することを最も主要な特徴とする。   The main feature of the present invention is that the metal shell of the sensor is basically electrically insulated from the fluid piping in order to prevent dissimilar metals from folding out at the wetted part of the stainless steel metal shell of the electromagnetic flow rate sensor. And

請求項1の発明は、センサの先端部外周が筒形の金属製シェルで形成され、被計測流体が流れる配管にセンサを挿入装着したときに、前記金属製シェルの少なくとも先端部が接液する電磁流速センサにおいて、
配管と金属製シェルとを電気的に絶縁する絶縁手段を具備したことを特徴とする電磁流速センサである。
According to the first aspect of the present invention, the outer periphery of the tip of the sensor is formed of a cylindrical metal shell, and at least the tip of the metal shell comes into contact with the pipe when the sensor is inserted into a pipe through which the fluid to be measured flows. In the electromagnetic flow rate sensor,
An electromagnetic flow velocity sensor comprising an insulating means for electrically insulating a pipe and a metal shell.

請求項2の発明は、請求項1の電磁流量計において、絶縁手段が、センサを配管に螺着するための取付金具の内周に取り付けた絶縁スリーブであることを特徴とするものである。   According to a second aspect of the present invention, in the electromagnetic flowmeter of the first aspect, the insulating means is an insulating sleeve attached to the inner periphery of a mounting bracket for screwing the sensor onto the pipe.

請求項3の発明は、請求項2の電磁流量計において、絶縁スリーブが取付金具の内周に螺着されていることを特徴とするものである。   According to a third aspect of the present invention, in the electromagnetic flowmeter according to the second aspect, the insulating sleeve is screwed onto the inner periphery of the mounting bracket.

請求項4の発明は、請求項2の電磁流量計において、絶縁スリーブが取付金具の内側にアウトサート成形で作りつけたことを特徴とするものである。   According to a fourth aspect of the present invention, in the electromagnetic flowmeter of the second aspect, the insulating sleeve is formed by outsert molding inside the mounting bracket.

請求項5の発明は、請求項1の電磁流量計において、センサを配管に螺着するための取付金具を軸方向に2分割し、両者を電気的に絶縁して固着し、センサの先端側に位置する一方に配管への螺合用雄ねじを設け、他方に金属製シェルと螺合する雌ねじを設けたことを特徴とするものである。   According to a fifth aspect of the present invention, in the electromagnetic flow meter of the first aspect, the mounting bracket for screwing the sensor into the pipe is divided into two in the axial direction, both are electrically insulated and fixed, and the front end side of the sensor One of the two positions is provided with a male screw for screwing into a pipe, and the other is provided with a female screw that is screwed into a metal shell.

配管の亜鉛メッキが溶け出しても、配管と金属シェルとが電気的に絶縁されているため、配管から電子が金属シェルに集まることはない。したがって、温水や冷水等の液体(流体)中に銅などの金属イオンが存在したとしても、これらの金属がセンサの金属シェルに吸着されて折出することはない。その結果、センサの感度変化が防止できる。   Even if the galvanizing of the pipe is melted, the pipe and the metal shell are electrically insulated, so that electrons are not collected from the pipe into the metal shell. Therefore, even if metal ions such as copper are present in a liquid (fluid) such as hot water or cold water, these metals are not adsorbed by the metal shell of the sensor and folded. As a result, the sensitivity change of the sensor can be prevented.

本発明を実施するための最良の形態を図に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図3の実施例はこの発明の好ましい実施の形態で、配管1に溶接したソケット2には雌ねじ2cが刻設されている。取付金具12は図示右端、即ち先端部にテーパ雄ねじ12aを有している。電磁流速センサ3は、ステンレス304からなる全体がほぼ円筒形の金属シェル4の内側に、図1と同様に電気絶縁材料からなるボデー5が配設固着され、2本の電極6,6がボデー5からわずかに流体(例えば温水)10中に突出している。   The embodiment shown in FIG. 3 is a preferred embodiment of the present invention. A socket 2 welded to the pipe 1 is provided with a female screw 2c. The mounting bracket 12 has a tapered male screw 12a at the right end in the drawing, that is, at the tip end. In the electromagnetic flow rate sensor 3, a body 5 made of an electrically insulating material is disposed and fixed inside a substantially cylindrical metal shell 4 made of stainless steel 304, as in FIG. 5 slightly protrudes into the fluid (for example, hot water) 10.

取付金具12は図2の従来技術と同様に外形が六角形で、この六角部分に工具を嵌めて、テーパ雄ねじ12aをソケット2の雌ねじ2cに螺合することで、センサ3を配管1に装着する。取付金具12の内径の最小径は符号12bで示す部分で、この最小径よりも金属シェル4の外経の小径部はわずかに小さく定めてある。したがって、金属シェル4の外径の小経部4bと取付金具12の内径の最小径12bとの間には円筒形の空間(隙間)が形成されている。13は合成樹脂材料からなる電気絶縁手段としてのスリーブで、全体がほぼ円筒形で、その外周に刻設された雄ねじ部分を取付金具12の内周に刻設した雌ねじにきつく螺着することで、スリーブ13を取付金具12に固着している。そして、金属シェル4の大径部に刻設した雄ねじ4cをスリーブ13の内周に刻設した雌ねじ13cに螺合させ、その回転角度位置を調整することで、電極6,6が、図示のように所定の位置、即ち上下方向に位置し、かつ電極6,6の左右方向の位置が、配管内の所定の位置に挿入されるようにセンサの頭部14を回転させて、センサの左右の位置決めと、センサの金属シェル4の軸線(図示左右方向の軸線)回りの角度位置を決める。所定の位置になったところで、図示されていない止めねじによって、スリーブ13と金属シェル4との相対回動を止め、スリーブ13と金属シェル4との角度位置を固定するようにしてある。   The mounting bracket 12 has a hexagonal outer shape similar to the prior art of FIG. 2, and a tool is fitted into the hexagonal portion, and the taper male screw 12 a is screwed into the female screw 2 c of the socket 2, so that the sensor 3 is attached to the pipe 1. To do. The minimum diameter of the inner diameter of the mounting bracket 12 is a portion indicated by reference numeral 12b, and the small diameter portion of the outer diameter of the metal shell 4 is set slightly smaller than this minimum diameter. Therefore, a cylindrical space (gap) is formed between the outer diameter small diameter portion 4 b of the metal shell 4 and the minimum diameter 12 b of the inner diameter of the mounting bracket 12. Reference numeral 13 denotes a sleeve made of a synthetic resin material as an electrical insulating means. The entire sleeve is substantially cylindrical, and a male screw portion engraved on the outer periphery thereof is tightly screwed to a female screw engraved on the inner periphery of the mounting bracket 12. The sleeve 13 is fixed to the mounting bracket 12. Then, the male screw 4c engraved on the large diameter portion of the metal shell 4 is screwed into the female screw 13c engraved on the inner periphery of the sleeve 13, and the rotational angle position thereof is adjusted, so that the electrodes 6 and 6 are shown in the drawing. The sensor head 14 is rotated so that the predetermined position, that is, the vertical position of the electrodes 6 and 6 and the horizontal position of the electrodes 6 and 6 are inserted at predetermined positions in the pipe, And the angular position around the axis of the metal shell 4 of the sensor (the horizontal axis in the figure). When the predetermined position is reached, relative rotation between the sleeve 13 and the metal shell 4 is stopped by a set screw (not shown), and the angular position between the sleeve 13 and the metal shell 4 is fixed.

センサの頭部14には電極6,6間に誘起した信号電圧を増幅するプリアンプや、流速に対応した流速信号を電文に変換してコード15を介して外部に送出するための電子回路が収納されている。なお、16は水密を保つために金属シェル4と取付金具12の間に設けたOリングである。   The sensor head 14 houses a preamplifier for amplifying the signal voltage induced between the electrodes 6 and 6 and an electronic circuit for converting the flow velocity signal corresponding to the flow velocity into a telegram and sending it out via the cord 15. Has been. Reference numeral 16 denotes an O-ring provided between the metal shell 4 and the mounting bracket 12 in order to maintain watertightness.

この実施例は、センサ3の取付金具12とスリーブ13だけが図3の実施例1と異なる。そのため、この実施例2は、取付金具12とスリーブ13だけを図4に示す。この実施例では、絶縁スリーブ13が取付金具12の円周にアウトサート成形で作りつけてある点が実施例と異なる。なお、17はOリング溝である。この溝に図3の場合のようなOリング16を取り付ける。   This embodiment differs from the first embodiment of FIG. 3 only in the mounting bracket 12 and the sleeve 13 of the sensor 3. Therefore, in Example 2, only the mounting bracket 12 and the sleeve 13 are shown in FIG. This embodiment is different from the embodiment in that the insulating sleeve 13 is formed on the circumference of the mounting bracket 12 by outsert molding. Reference numeral 17 denotes an O-ring groove. An O-ring 16 as shown in FIG. 3 is attached to this groove.

この実施例は、図5に示すように取付金具を左右に2分割し、図示右側の第1の取付金具12Aに雄ねじ12aを刻設し、図示左側の第2の取付金具12Bに雌ねじ13cを刻設した。取付金具12Aと13Aとの間には絶縁板18が介装され、両取付金具をネジ20,20で固着しているが、各ネジ20,20に絶縁カラー19,19がそれぞれ嵌めてあるので、第2の取付金具12Bは、第1の取付金具12Aと電気的に絶縁されることになる。したがって、結果的に雌ねじ13cに螺合する金属シェル4は配管1に対し電気的に絶縁される。   In this embodiment, as shown in FIG. 5, the mounting bracket is divided into left and right parts, male screws 12a are engraved on the first mounting bracket 12A on the right side of the figure, and female screws 13c are mounted on the second mounting bracket 12B on the left side of the figure. Engraved. An insulating plate 18 is interposed between the mounting brackets 12A and 13A, and both the mounting brackets are fixed by screws 20 and 20. Since the insulating collars 19 and 19 are respectively fitted to the screws 20 and 20, respectively. The second mounting bracket 12B is electrically insulated from the first mounting bracket 12A. Therefore, as a result, the metal shell 4 that is screwed into the female screw 13 c is electrically insulated from the pipe 1.

電磁流速センサの計測原理を説明する縦断面略図。The longitudinal cross-sectional schematic diagram explaining the measurement principle of an electromagnetic flow velocity sensor. 従来技術の問題点を説明するための模式図。The schematic diagram for demonstrating the problem of a prior art. 本発明の実施例1の一部縦断面図。1 is a partial longitudinal sectional view of Embodiment 1 of the present invention. 本発明の実施例2の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of Example 2 of this invention. 本発明の実施例3の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of Example 3 of this invention.

符号の説明Explanation of symbols

1 配管
1a 鉄管
1b 亜鉛メッキ
2 ソケット
2a 鉄
2b 亜鉛メッキ
3 電磁流量センサ
4 金属シェル
4c 雄ねじ
5 ボデー
6 電極
7 コアー
8 ヨーク
9 励磁コイル
10 流体(温水)
12 取付金具
12A 第1の取付金具
12B 第2の取付金具
12a 雄ねじ
13 絶縁スリーブ(スリーブ)
13c 雌ねじ
DESCRIPTION OF SYMBOLS 1 Piping 1a Iron pipe 1b Zinc plating 2 Socket 2a Iron 2b Zinc plating 3 Electromagnetic flow sensor 4 Metal shell 4c Male screw 5 Body 6 Electrode 7 Core 8 Yoke 9 Excitation coil 10 Fluid (hot water)
12 mounting bracket 12A first mounting bracket 12B second mounting bracket 12a male screw 13 insulating sleeve (sleeve)
13c Female thread

Claims (5)

センサの先端部外周が筒形の金属製シェルで形成され、被計測流体が流れる配管にセンサを挿入装着したときに、前記金属製シェルの少なくとも先端部が接液する電磁流速センサにおいて、
配管と金属製シェルとを電気的に絶縁する絶縁手段を具備したことを特徴とする電磁流速センサ。
In the electromagnetic flow velocity sensor in which the outer periphery of the tip of the sensor is formed of a cylindrical metal shell, and at least the tip of the metal shell is in contact with the pipe when the sensor is inserted and attached to a pipe through which the fluid to be measured flows.
An electromagnetic flow rate sensor comprising an insulating means for electrically insulating a pipe and a metal shell.
絶縁手段が、センサを配管に螺着するための取付金具の内周に取り付けた絶縁スリーブであることを特徴とする請求項1記載の電磁流速センサ。   2. The electromagnetic flow rate sensor according to claim 1, wherein the insulating means is an insulating sleeve attached to an inner periphery of a mounting bracket for screwing the sensor to the pipe. 絶縁スリーブが取付金具の内周に螺着されていることを特徴とする請求項2記載の電磁流速センサ。   3. The electromagnetic flow velocity sensor according to claim 2, wherein the insulating sleeve is screwed to the inner periphery of the mounting bracket. 絶縁スリーブが取付金具の内側にアウトサート成形で作りつけたことを特徴とする請求項2記載の電磁流速センサ。   3. The electromagnetic flow velocity sensor according to claim 2, wherein the insulating sleeve is formed by outsert molding inside the mounting bracket. センサを配管に螺着するための取付金具を軸方向に2分割し、両者を電気的に絶縁して固着し、センサの先端側に位置する一方に配管への螺合用雄ねじを設け、他方に金属製シェルと螺合する雌ねじを設けたことを特徴とする請求項1記載の電磁流速センサ。   The mounting bracket for screwing the sensor to the pipe is divided into two in the axial direction, and both are electrically insulated and fixed, and a male screw for screwing to the pipe is provided on one side located on the tip side of the sensor, and the other 2. The electromagnetic flow velocity sensor according to claim 1, further comprising a female screw threadedly engaged with the metal shell.
JP2003418149A 2003-12-16 2003-12-16 Electromagnetic flow rate sensor Pending JP2005180962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003418149A JP2005180962A (en) 2003-12-16 2003-12-16 Electromagnetic flow rate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003418149A JP2005180962A (en) 2003-12-16 2003-12-16 Electromagnetic flow rate sensor

Publications (1)

Publication Number Publication Date
JP2005180962A true JP2005180962A (en) 2005-07-07

Family

ID=34780439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003418149A Pending JP2005180962A (en) 2003-12-16 2003-12-16 Electromagnetic flow rate sensor

Country Status (1)

Country Link
JP (1) JP2005180962A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7953330B2 (en) 2007-02-28 2011-05-31 Brother Kogyo Kabushiki Kaisha Cartridges, such as developer cartridges, for an image forming apparatus, such as a printer
WO2021018419A1 (en) * 2019-08-01 2021-02-04 Xylem Europe Gmbh Insert-type electromagnetic flow meter
WO2021099153A1 (en) * 2019-11-22 2021-05-27 Endress+Hauser Flowtec Ag Magnetically inductive flow meter
US11703407B2 (en) 2019-12-04 2023-07-18 Siemens Aktiengesellschaft Multifunctional sensor for the process industry

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7953330B2 (en) 2007-02-28 2011-05-31 Brother Kogyo Kabushiki Kaisha Cartridges, such as developer cartridges, for an image forming apparatus, such as a printer
US7970293B2 (en) 2007-02-28 2011-06-28 Brother Kogyo Kabushiki Kaisha Methods and systems relating to image forming apparatuses
US8548339B2 (en) 2007-02-28 2013-10-01 Brother Kogyo Kabushiki Kaisha Cartridges, such as developer cartridges, for an image forming apparatus, such as a printer
WO2021018419A1 (en) * 2019-08-01 2021-02-04 Xylem Europe Gmbh Insert-type electromagnetic flow meter
WO2021099153A1 (en) * 2019-11-22 2021-05-27 Endress+Hauser Flowtec Ag Magnetically inductive flow meter
US11703407B2 (en) 2019-12-04 2023-07-18 Siemens Aktiengesellschaft Multifunctional sensor for the process industry

Similar Documents

Publication Publication Date Title
JP4787822B2 (en) Electromagnetic flow meter with reference electrode
JP2018525626A (en) Electromagnetic flow sensor
JP2006162615A (en) Magnetic induction flowmeter and manufacturing method of magnetic induction flowmeter
US7404335B2 (en) Magnetoinductive flowmeter with galvanic measurement electrodes having a head section of a noble material
JP4359664B2 (en) Electromagnetic flow meter
CN102341678A (en) Sensor assembly for fluid flowmeter
JP2005180962A (en) Electromagnetic flow rate sensor
GB2068122A (en) Electromagnetic flowmeters
EP2893302B1 (en) Angled insert magnetic flow meter
JP2005221360A (en) Electromagnetic flow velocity sensor
US7934431B2 (en) Measuring transducer of a flow measuring device applied in industrial measurements technology
CN110809658A (en) Device for preventing corrosion inside steel pipe by using electromagnetic field
CN101432599A (en) Magnetic-inductive device for measuring the volume flow rate or mass flow rate of a medium
US9534943B2 (en) Measuring tube for magneto-inductive flow-measuring systems
CN206906368U (en) A kind of three-way pipe for being used to install TDS probes
CN116734934B (en) Compact electromagnetic flowmeter, installation method and flow measuring method
KR101267584B1 (en) Electrolytic Protection Device with Electric Generator
AU2011201577A1 (en) Water conditioning systems
CN205879265U (en) Electromagnetic flowmeter
CN219676301U (en) Accurate locater of train based on big dipper
CN221483882U (en) Anti-electricity wall device and electric water heater
CN213865606U (en) Circulating water activation device
JP2590920Y2 (en) Electromagnetic flow meter
CN210180489U (en) Grounding structure of electromagnetic flowmeter sensor
CN110967074A (en) Full aperture magnetic flowmeter subassembly