JP2005159276A - Semiconductor light emitting device and method of manufacturing the same - Google Patents

Semiconductor light emitting device and method of manufacturing the same Download PDF

Info

Publication number
JP2005159276A
JP2005159276A JP2004155914A JP2004155914A JP2005159276A JP 2005159276 A JP2005159276 A JP 2005159276A JP 2004155914 A JP2004155914 A JP 2004155914A JP 2004155914 A JP2004155914 A JP 2004155914A JP 2005159276 A JP2005159276 A JP 2005159276A
Authority
JP
Japan
Prior art keywords
sealing material
semiconductor light
light emitting
emitting device
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004155914A
Other languages
Japanese (ja)
Other versions
JP4788109B2 (en
Inventor
Naoyuki Kondo
直幸 近藤
Takao Hayashi
隆夫 林
Naoko Doi
尚子 土井
Shunpei Fujii
俊平 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004155914A priority Critical patent/JP4788109B2/en
Publication of JP2005159276A publication Critical patent/JP2005159276A/en
Application granted granted Critical
Publication of JP4788109B2 publication Critical patent/JP4788109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device and a method of manufacturing the same capable of reducing stress applied to the semiconductor light emitting device, preventing break in a sealing material, and improving the efficiency in taking light out of the semiconductor light emitting device. <P>SOLUTION: A semiconductor light emitting device comprises a substrate 1 in which a concave portion 2 is provided from its surface and a predetermined electric circuit pattern 8 is formed, a semiconductor light emitting device 9 mounted on the bottom surface of the concave portion 2, and a sealing material with which the concave portion 2 is filled and the semiconductor light emitting device 9 is sealed. The sealing material comprises a first sealing material 5 formed to have the thickness equal to the height of the semiconductor light emitting device 9 mounted on the bottom surface of the concave portion 2 and a second sealing material 6 formed on the top surface side of the semiconductor light emitting device 9 and the first sealing material 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体発光装置及びその製造方法に関するものであり、詳しくは、表面実装可能な発光ダイオード装置等の半導体発光装置及びその製造方法に関するものである。   The present invention relates to a semiconductor light emitting device and a manufacturing method thereof, and more particularly to a semiconductor light emitting device such as a surface mountable light emitting diode device and a manufacturing method thereof.

樹脂基板上に凹部を設け、その凹部に半導体発光素子を搭載したものを樹脂で封止して形成する面実装半導体にかかる従来の技術としては、図7に示すように、樹脂基板21上に凹部21aを設け、その凹部21aに半導体発光素子22を搭載し透光性樹脂24で封止して形成した面実装半導体装置であって、半導体発光素子22の周りにこの半導体発光素子22を熱応力から保護するための応力緩衝材23を有するものが知られている。このものにあっては、回路基板実装時の熱応力への耐熱性を高めることができるので、半導体リフロー工程での熱応力による半導体素子の不良を防ぎ、信頼性の高い面実装半導体装置を得ることができる(特許文献1)。   As a conventional technique for a surface-mount semiconductor in which a concave portion is provided on a resin substrate and a semiconductor light emitting element mounted on the concave portion is sealed with resin, as shown in FIG. A surface-mounting semiconductor device formed by providing a recess 21 a, mounting a semiconductor light-emitting element 22 in the recess 21 a, and sealing it with a translucent resin 24. The semiconductor light-emitting element 22 is heated around the semiconductor light-emitting element 22. What has the stress buffer material 23 for protecting from stress is known. In this case, since the heat resistance to the thermal stress at the time of circuit board mounting can be improved, the semiconductor element failure due to the thermal stress in the semiconductor reflow process is prevented, and a highly reliable surface mount semiconductor device is obtained. (Patent Document 1).

しかし、かかる面実装半導体装置においては、透光性樹脂24が冷却される際に透光性樹脂24の収縮により半導体発光素子22のエッジ部に応力が発生し、半導体発光素子22が損傷したり、透光性樹脂24自体にクラックが発生し、光取り出し効率(半導体発光素子のチップ内で生じた光子の数に対する外部に出てくる光子の数の割合)が低下するという問題点があった。
特開平11−112036号公報
However, in such a surface mount semiconductor device, when the translucent resin 24 is cooled, stress is generated at the edge portion of the semiconductor light emitting element 22 due to the shrinkage of the translucent resin 24, and the semiconductor light emitting element 22 is damaged. There is a problem that a crack occurs in the translucent resin 24 itself and the light extraction efficiency (ratio of the number of photons coming out to the number of photons generated in the chip of the semiconductor light emitting device) is lowered. .
JP-A-11-112036

本発明は、このような点に鑑みてなされたものであり、その目的とするところは、半導体発光素子に生じる応力の低減や封止材料の割れを防止するとともに、半導体発光素子からの光取り出し効率を向上させることができる半導体発光装置およびその製造方法を提供することを目的としている。   The present invention has been made in view of these points, and the object of the present invention is to reduce the stress generated in the semiconductor light emitting element and prevent cracking of the sealing material, and to extract light from the semiconductor light emitting element. An object of the present invention is to provide a semiconductor light emitting device and a method for manufacturing the same that can improve efficiency.

上記した課題を解決するために、本発明の請求項1に係る半導体発光装置は、表面に凹部が設けられるとともに所定の電気回路パターンが形成された基板と、当該凹部の底面に実装した半導体発光素子と、当該凹部に充填して半導体発光素子を封止する封止材とを備えた半導体発光装置であって、前記封止材は、凹部の底面に実装された半導体発光素子の高さに相等する厚みに形成された第一の封止材料と、半導体発光素子及び第一の封止材料の上面側に形成された第二の封止材料とからなることを特徴とする。   In order to solve the above problems, a semiconductor light emitting device according to claim 1 of the present invention is a semiconductor light emitting device in which a concave portion is provided on the surface and a predetermined electric circuit pattern is formed, and a semiconductor light emitting device mounted on the bottom surface of the concave portion. A semiconductor light emitting device comprising an element and a sealing material that fills the recess and seals the semiconductor light emitting element, the sealing material being at a height of the semiconductor light emitting element mounted on the bottom surface of the recess. It consists of the 1st sealing material formed in the equivalent thickness, and the 2nd sealing material formed in the upper surface side of the semiconductor light emitting element and the 1st sealing material, It is characterized by the above-mentioned.

本発明の請求項2に係る半導体発光装置は、表面に第一の凹部と第一の凹部の底面に第二の凹部が設けられるとともに所定の電気回路パターンが形成された基板と、第二の凹部の底面に実装した半導体発光素子と、第一の凹部及び第二の凹部に充填して半導体発光素子を封止する封止材とを備えた半導体発光装置であって、前記第二の凹部は、前記半導体発光素子の高さに相等する深さに形成されたものであると共に、前記封止材は、前記半導体発光素子の高さに相等する厚みに形成された第一の封止材料と、半導体発光素子及び第一の封止材料の上面側に形成された第二の封止材料とからなることを特徴とする。   According to a second aspect of the present invention, there is provided a semiconductor light emitting device having a first recess on the surface and a second recess on the bottom of the first recess and a substrate on which a predetermined electric circuit pattern is formed; A semiconductor light emitting device comprising: a semiconductor light emitting element mounted on a bottom surface of a recess; and a sealing material that fills the first recess and the second recess and seals the semiconductor light emitting element. Is formed to a depth equivalent to the height of the semiconductor light emitting element, and the sealing material is a first sealing material formed to a thickness equivalent to the height of the semiconductor light emitting element. And a second sealing material formed on the upper surface side of the semiconductor light emitting element and the first sealing material.

本発明の請求項3に係る半導体発光装置は、前記第一の凹部の底面部に、第二の封止材料が収縮する際に発生する応力を緩和させるための収縮応力緩衝用溝部もしくは収縮応力緩衝用突起部の少なくともいずれかを設けたことを特徴とする。   According to a third aspect of the present invention, there is provided the semiconductor light emitting device according to the third aspect of the present invention, wherein a shrinkage buffering groove or a contraction stress is formed on the bottom surface of the first recess to relieve a stress generated when the second sealing material contracts. At least one of the buffering protrusions is provided.

本発明の請求項4に係る半導体発光装置は、第二の封止材料の屈折率が、第一の封止材料の屈折率より大きいものであることを特徴とするを特徴とする。   The semiconductor light emitting device according to claim 4 of the present invention is characterized in that the refractive index of the second sealing material is larger than the refractive index of the first sealing material.

本発明の請求項5に係る半導体発光装置は、前記第一の封止材料は、中波長紫外線から可視光線までの波長域光を反射する高反射性物質からなる充填剤を含有するものであることを特徴とする。   In the semiconductor light emitting device according to claim 5 of the present invention, the first sealing material contains a filler made of a highly reflective substance that reflects light in a wavelength range from medium wavelength ultraviolet light to visible light. It is characterized by that.

本発明の請求項6に係る半導体発光装置は、前記第一の封止材料は、前記第二の封止材料が有する官能基と親和性を有する基を備えたシランカップリング剤を含有するものであることを特徴とする。   In the semiconductor light emitting device according to claim 6 of the present invention, the first sealing material contains a silane coupling agent having a group having an affinity with the functional group of the second sealing material. It is characterized by being.

本発明の請求項7に係る半導体発光装置は、前記第二の封止材料は、前記第一の封止材料が有する官能基と親和性を有する基を備えたシランカップリング剤を含有するものであることを特徴とする。   In the semiconductor light-emitting device according to claim 7 of the present invention, the second sealing material contains a silane coupling agent having a group having an affinity for the functional group of the first sealing material. It is characterized by being.

本発明の請求項8に係る半導体発光装置は、前記第二の封止材料の表面には、耐水性のシリカ膜が形成されてなることを特徴とする。   The semiconductor light emitting device according to claim 8 of the present invention is characterized in that a water-resistant silica film is formed on the surface of the second sealing material.

本発明の請求項9に係る半導体発光装置は、前記第一の封止材料と前記第二の封止材料との界面には、耐水性のシリカ膜が形成されてなることを特徴とする。   The semiconductor light emitting device according to claim 9 of the present invention is characterized in that a water-resistant silica film is formed at the interface between the first sealing material and the second sealing material.

本発明の請求項10に係る半導体発光装置の製造方法は、前記凹部の底面に形成された電気回路パターン上に半導体発光素子を実装する工程と、第一の封止材料層を、半導体発光素子の高さに相等する厚みとなるよう凹部に形成する工程と、半導体発光素子及び第一の封止材料層の上面側に、第二の封止材料層を形成する工程と、を有することを特徴とする。   According to a tenth aspect of the present invention, there is provided a semiconductor light emitting device manufacturing method comprising: mounting a semiconductor light emitting element on an electric circuit pattern formed on a bottom surface of the recess; and a first sealing material layer comprising the semiconductor light emitting element. And forming a second sealing material layer on the upper surface side of the semiconductor light emitting element and the first sealing material layer. Features.

本発明の請求項11に係る半導体発光装置の製造方法は、前記第二の封止材料層を形成する工程は、固体状の第二の封止材料を凹部に設置し、加熱した後冷却するものであることを特徴とする。   In the method of manufacturing a semiconductor light emitting device according to an eleventh aspect of the present invention, the step of forming the second sealing material layer is performed by placing the solid second sealing material in the recess, heating, and then cooling. It is characterized by being.

本発明の請求項1に係る半導体発光装置によると、封止材は、第一の封止材料が凹部の底面に実装された半導体発光素子の高さに相等する厚みに形成されるとともに、第二の封止材料が半導体発光素子及び第一の封止材料の上面側に形成されるので、半導体発光素子の側周面には第一の封止材料が存在し、第二の封止材料が収縮する際に発生する応力が三次元的に半導体発光素子のエッジ部に生じることがなく、エッジ部への応力集中を防止することができる。また、第二の封止材料の底部では、大部分が第一の封止材料と接合するため、第二の封止材料が収縮する際に発生する応力の大部分は第一の封止材料に発生し、第一の封止材料と第二の封止材料の界面で緩和される。そのため、半導体発光素子のエッジ部に発生する応力が緩和され、エッジ部への応力の集中を防止することができる。   According to the semiconductor light emitting device of the first aspect of the present invention, the sealing material is formed to have a thickness equivalent to the height of the semiconductor light emitting element in which the first sealing material is mounted on the bottom surface of the recess. Since the second sealing material is formed on the upper surface side of the semiconductor light emitting element and the first sealing material, the first sealing material exists on the side peripheral surface of the semiconductor light emitting element, and the second sealing material As a result, the stress generated when the shrinkage does not occur three-dimensionally at the edge portion of the semiconductor light emitting device, and stress concentration on the edge portion can be prevented. In addition, since most of the second sealing material is bonded to the first sealing material at the bottom of the second sealing material, most of the stress generated when the second sealing material contracts is the first sealing material. And is relaxed at the interface between the first sealing material and the second sealing material. Therefore, the stress generated at the edge portion of the semiconductor light emitting element is relaxed, and concentration of stress on the edge portion can be prevented.

本発明の請求項2に係る半導体発光装置によると、樹脂基板の表面に第一の凹部と第一の凹部の底面に設けられた第二の凹部を有し、封止材は、第一の封止材料が第二の凹部の底面に実装された半導体発光素子の高さに相等する厚みに形成されるとともに、第二の封止材料が半導体発光素子及び第一の封止材料の上面側に形成されるので、半導体発光素子の側周面には第一の封止材料が存在し、第二の封止材料が収縮する際に発生する応力が三次元的に半導体発光素子のエッジ部に生じることがなく、エッジ部への応力集中を防止することができる。また、半導体発光素子のエッジ部分に第一の封止材料と第二の封止材料の界面が生じ、第二の封止材料が収縮する際に半導体発光素子のエッジ部に発生する応力の負荷は、大部分が第一の凹部の底面と第一の封止材料と第二の封止材料の界面に生じるため、半導体発光素子のエッジ部への応力の集中を防止することができ、半導体発光素子の損傷や封止材内のクラックの発生を低減することができる。   According to the semiconductor light emitting device of the second aspect of the present invention, the resin substrate has the first recess and the second recess provided on the bottom surface of the first recess on the surface of the resin substrate. The sealing material is formed to a thickness equivalent to the height of the semiconductor light emitting device mounted on the bottom surface of the second recess, and the second sealing material is on the upper surface side of the semiconductor light emitting device and the first sealing material Since the first sealing material is present on the side peripheral surface of the semiconductor light emitting element, the stress generated when the second sealing material contracts is three-dimensionally applied to the edge portion of the semiconductor light emitting element. Therefore, stress concentration on the edge portion can be prevented. In addition, an interface between the first sealing material and the second sealing material is generated at the edge portion of the semiconductor light emitting element, and the stress load generated at the edge portion of the semiconductor light emitting element when the second sealing material contracts Since most occurs at the bottom surface of the first recess and the interface between the first sealing material and the second sealing material, stress concentration on the edge portion of the semiconductor light-emitting element can be prevented. Damage to the light emitting element and occurrence of cracks in the sealing material can be reduced.

本発明の請求項3に係る半導体発光装置によると、上述した請求項2の効果に加えて、
第一の凹部の底面部に、第二の封止材料が収縮する際に発生する応力を緩和させるための収縮応力緩衝用溝部もしくは収縮応力緩衝用突起部の少なくともいずれかを設けているため、第一の凹部に充填した第二の封止材料が硬化収縮もしくは熱収縮する際に発生する応力が収縮応力緩衝用溝部や収縮応力緩衝用突起部にも発生し、半導体発光素子に生じる側面方向からの収縮応力が低減される。そのため、半導体発光素子のエッジ部への応力集中が緩和され、半導体発光素子の損傷をより低減することができる。
According to the semiconductor light emitting device according to claim 3 of the present invention, in addition to the effect of claim 2 described above,
Since at least one of the shrinkage stress buffering groove or the shrinkage stress buffering protrusion for relaxing the stress generated when the second sealing material contracts is provided on the bottom surface of the first recess, Side surface direction generated in the semiconductor light emitting element due to the stress generated when the second sealing material filled in the first recess shrinks or shrinks due to curing also occurs in the shrinkage stress buffering groove and the shrinkage stress buffering protrusion. The shrinkage stress from is reduced. Therefore, stress concentration on the edge portion of the semiconductor light emitting element is relaxed, and damage to the semiconductor light emitting element can be further reduced.

本発明の請求項4に係る半導体発光装置によると、上述した請求項1もしくは請求項2の効果に加えて、前記第二の封止材料の屈折率が、第一の封止材料の屈折率より大きいので、半導体発光素子の側面からの光を第二の封止材料に放射しやすくすることができ、光取り出し効率が向上する。   According to the semiconductor light emitting device of the fourth aspect of the present invention, in addition to the effect of the first or second aspect, the refractive index of the second sealing material is the refractive index of the first sealing material. Since it is larger, the light from the side surface of the semiconductor light emitting element can be easily emitted to the second sealing material, and the light extraction efficiency is improved.

本発明の請求項5に係る半導体発光装置によると、上述した請求項1乃至4のいずれかの効果に加えて、前記第一の封止材料は、中波長紫外線から可視光線までの波長域光を反射する高反射性物質からなる充填剤を含有するものであるので、半導体発光素子の側面から放射される広範囲な波長域の光に対して、第二の封止材料と第一の封止材料5との界面で反射させ、また、前記充填剤により散乱させて取出し効率を向上するさせることができる。さらに充填剤が含有されることにより、第一の封止材料の線膨張率が減少し、ヒートサイクルが加わったときの半導体発光素子への応力が減少する。   According to the semiconductor light emitting device of the fifth aspect of the present invention, in addition to the effect of any one of the first to fourth aspects, the first sealing material has a wavelength band light from a medium wavelength ultraviolet light to a visible light. The second sealing material and the first sealing material against light in a wide wavelength range emitted from the side surface of the semiconductor light emitting device. Reflection at the interface with the material 5 and scattering by the filler can improve the extraction efficiency. Furthermore, by containing a filler, the linear expansion coefficient of the first sealing material is reduced, and the stress on the semiconductor light emitting element when a heat cycle is applied is reduced.

本発明の請求項6に係る半導体発光装置によると、上述した請求項1乃至5のいずれかの効果に加えて、前記第一の封止材料は、前記第二の封止材料が有する官能基と親和性を有する基を備えたシランカップリング剤を含有するものであるので、第二の封止材料との接合強度が向上する。   According to the semiconductor light emitting device of the sixth aspect of the present invention, in addition to the effect of any one of the first to fifth aspects, the first sealing material is a functional group that the second sealing material has. Therefore, the bonding strength with the second sealing material is improved.

本発明の請求項7に係る半導体発光装置によると、上述した請求項1乃至6のいずれかの効果に加えて、前記第二の封止材料は、前記第一の封止材料が有する官能基と親和性を有する基を備えたシランカップリング剤を含有するものであるので、第一の封止材料との接合強度が向上する。   According to the semiconductor light emitting device of the seventh aspect of the present invention, in addition to the effect of any one of the first to sixth aspects, the second sealing material is a functional group that the first sealing material has. Therefore, the bonding strength with the first sealing material is improved.

本発明の請求項8に係る半導体発光装置によると、上述した請求項1乃至7のいずれかの効果に加えて、前記第二の封止材料の表面には、耐水性のシリカ膜が形成されてなるので、第二の封止樹脂内に水分が浸透することが防止でき、そのため、半導体発光素子を湿気から保護することができる。   According to the semiconductor light-emitting device of the eighth aspect of the present invention, in addition to the effect of any one of the first to seventh aspects described above, a water-resistant silica film is formed on the surface of the second sealing material. Therefore, moisture can be prevented from penetrating into the second sealing resin, and thus the semiconductor light emitting device can be protected from moisture.

本発明の請求項9に係る半導体発光装置によると、上述した請求項1乃至8のいずれかの効果に加えて、前記第一の封止材料と前記第二の封止材料との界面には、耐水性のシリカ膜が形成されてなるので、第二の封止材料内に水分が浸透した場合であっても、半導体発光素子を湿気から保護することができる。   According to the semiconductor light emitting device of the ninth aspect of the present invention, in addition to the effect of any one of the first to eighth aspects described above, the interface between the first sealing material and the second sealing material is Since the water-resistant silica film is formed, the semiconductor light emitting device can be protected from moisture even when moisture penetrates into the second sealing material.

本発明の請求項10に係る半導体発光装置の製造方法によると、基板表面に設けた凹部に、第一の封止材料層を半導体発光素子の高さに相等する厚みとなるよう形成した後、半導体発光素子及び第一の封止材料層の上面側に、第二の封止材料層を形成するので、半導体発光素子の側周面には第一の封止材料が存在し、第二の封止材料が収縮する際に発生する応力が三次元的に半導体発光素子のエッジ部に生じることがなく、エッジ部への応力集中を防止することができる。また、半導体発光素子のエッジ部分に第一の封止材料と第二の封止材料の界面が生じ、第二の封止材料が収縮する際に半導体発光素子のエッジ部に発生する応力の負荷は、大部分が第一の凹部の底面と第一の封止材料と第二の封止材料の界面に生じるため、半導体発光素子のエッジ部への応力の集中を防止することができ、半導体発光素子の損傷や封止材内のクラックの発生を低減することができる。   According to the method for manufacturing a semiconductor light emitting device according to claim 10 of the present invention, after forming the first sealing material layer in the recess provided on the substrate surface so as to have a thickness equivalent to the height of the semiconductor light emitting element, Since the second sealing material layer is formed on the upper surface side of the semiconductor light emitting element and the first sealing material layer, the first sealing material exists on the side peripheral surface of the semiconductor light emitting element, and the second sealing material layer Stress generated when the sealing material contracts does not occur three-dimensionally at the edge portion of the semiconductor light emitting element, and stress concentration on the edge portion can be prevented. In addition, an interface between the first sealing material and the second sealing material is generated at the edge portion of the semiconductor light emitting element, and the stress load generated at the edge portion of the semiconductor light emitting element when the second sealing material contracts Since most occurs at the bottom surface of the first recess and the interface between the first sealing material and the second sealing material, stress concentration on the edge portion of the semiconductor light-emitting element can be prevented. Damage to the light emitting element and occurrence of cracks in the sealing material can be reduced.

本発明の請求項11に係る半導体発光装置の製造方法によると、上述した請求項10の効果に加えて、第二の封止材料層を形成する工程は、固体状の第二の封止材料を凹部に設置するので、第二の封止材料の封止作業に要する時間の短縮や第二の封止材料を充填する際に充填量の過不足が発生することを防止することができる。   According to the method for manufacturing a semiconductor light emitting device according to the eleventh aspect of the present invention, in addition to the effect of the tenth aspect described above, the step of forming the second sealing material layer includes a solid second sealing material. Therefore, it is possible to prevent the amount of time required for the sealing operation of the second sealing material from being shortened and the occurrence of excess or deficiency in the filling amount when filling the second sealing material.

(実施形態1)
本発明の第1の実施形態を図1に基づいて説明する。図1は、本実施形態における半導体発光装置の製造方法の概略を示す断面図である。図1において、1はセラミックス基板、2はセラミックス基板1の表面に設けた凹部、5は第一の封止材料、6は第二の封止材料、7は第一の封止材料5と第二の封止材料6の界面、8はセラミックス基板1の表面に形成された電気回路パターン、9は半導体発光素子、9aは半導体発光素子のエッジ部、10は第二の封止材料6上に形成されたレンズ部、15はシリカ膜である。
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view illustrating an outline of a method for manufacturing a semiconductor light emitting device in the present embodiment. In FIG. 1, 1 is a ceramic substrate, 2 is a recess provided on the surface of the ceramic substrate 1, 5 is a first sealing material, 6 is a second sealing material, 7 is a first sealing material 5 and a first sealing material. The interface between the two sealing materials 6, 8 is an electric circuit pattern formed on the surface of the ceramic substrate 1, 9 is a semiconductor light emitting device, 9 a is an edge portion of the semiconductor light emitting device, and 10 is on the second sealing material 6. The formed lens portion 15 is a silica film.

同図(a)に示すように、アルミナからなるセラミックス基板1の表面に凹部2を形成した後、凹部2を含めたセラミックス基板1の表面に所定の電気回路パターン8を形成する。凹部2は、底部に近づくに従って水平面の断面形状が狭小になるよう側周面が傾斜している。このような傾斜した側周面を設けることで、後述する側周面でのレーザによる電気回路パターン8の形成が容易になるとともに、側周面に反射鏡を設けることにより半導体発光素子9からの光取り出し効率を向上することができる。また、側周部と底部が交差するコーナー部をなめらかにR面取りすれば、後述する第二の封止材料6を封止する場合に、収縮時の応力がコーナー部に集中することがなくなり、コーナー部近傍でのクラックの発生を低減させることができる。  As shown in FIG. 2A, after forming a recess 2 on the surface of a ceramic substrate 1 made of alumina, a predetermined electric circuit pattern 8 is formed on the surface of the ceramic substrate 1 including the recess 2. As for the recessed part 2, the side peripheral surface inclines so that the cross-sectional shape of a horizontal surface may become narrow as it approaches the bottom part. By providing such an inclined side peripheral surface, it becomes easy to form an electric circuit pattern 8 by a laser on the side peripheral surface described later, and from the semiconductor light emitting element 9 by providing a reflecting mirror on the side peripheral surface. Light extraction efficiency can be improved. Further, if the corner portion where the side peripheral portion and the bottom portion intersect with each other is smoothly rounded, the stress at the time of contraction is not concentrated on the corner portion when sealing the second sealing material 6 described later. The occurrence of cracks near the corner can be reduced.

なお、本実施形態においては、セラミックス基板1の材料としてアルミナを用いるがこれに限定されるものではなく、窒化アルミニウム、ジルコニア、炭化ケイ素等を成形焼成したものやこれらのセラミックス基板に無機粒子、無機繊維を含有するものも用途に応じて好適に用いることができる。さらに、本発明にかかる基板はセラミックス基板に限定されるものではなく、ポリフェニレンサルファイド、ポリフタルアミド、LCPのような熱可塑性樹脂や、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂等の樹脂基板やこれらの樹脂基板にガラス、シリカ、アルミナ等の繊維や粒子を含有したものも好適に用いることができる。   In the present embodiment, alumina is used as the material of the ceramic substrate 1, but the present invention is not limited to this, and the ceramic substrate 1 is formed and fired with aluminum nitride, zirconia, silicon carbide, etc. The thing containing a fiber can also be used suitably according to a use. Furthermore, the substrate according to the present invention is not limited to a ceramic substrate, and a resin substrate such as a thermoplastic resin such as polyphenylene sulfide, polyphthalamide, or LCP, or a thermosetting resin such as an epoxy resin or a phenol resin, These resin substrates containing fibers, particles such as glass, silica, alumina, etc. can also be suitably used.

また、電気回路パターン8の形成は、CVD法、スパッタリング等のPVD法、めっき等の公知の薄膜形成法を用いて、セラミックス基板1上に銅被膜のような導電性材料からなる導電性被膜を形成した後、この導電性被膜の回路部と非回路部の境界領域をレーザにより除去して、所定の電気回路をパターニングする。その後、セラミックス基板1を硫酸銅めっき浴に浸漬させた状態で、導電性被膜の回路部に通電して銅膜にめっき層を付着させて厚膜化して、電気回路パターン8を形成する。このようなレーザパターニングにより電気回路パターン8を形成すると、凹部2の底面のみならず側周面にも容易に電気回路パターンを形成することができ、本発明における半導体発光素子9を凹部2の底面に実装するような三次元的な電気回路パターン8の形成が必要な場合には特に好適に用いることができる。  Further, the electric circuit pattern 8 is formed by applying a conductive film made of a conductive material such as a copper film on the ceramic substrate 1 using a known thin film forming method such as a CVD method, a PVD method such as sputtering, or plating. After the formation, the boundary region between the circuit portion and the non-circuit portion of the conductive film is removed by a laser, and a predetermined electric circuit is patterned. Thereafter, in a state where the ceramic substrate 1 is immersed in a copper sulfate plating bath, the circuit portion of the conductive film is energized to deposit a plating layer on the copper film to increase the thickness, thereby forming the electric circuit pattern 8. When the electric circuit pattern 8 is formed by such laser patterning, the electric circuit pattern can be easily formed not only on the bottom surface of the recess 2 but also on the side peripheral surface. When the three-dimensional electric circuit pattern 8 to be mounted on the board is required to be formed, it can be used particularly preferably.

次に、同図(b)に示すように、凹部2の底面に形成された電気回路パターン8の所定の位置にGaAlNからなる半導体発光素子9をフリップチップ実装することにより、半導体発光素子9を電気回路パターン8と電気的に接続させた後、エポキシ樹脂からなる第一の封止材料5を、凹部2に実装された半導体発光素子9の高さと同一になるまで凹部2にポッティングにより充填する。その後、セラミックス基板1を雰囲気温度423K(150℃)の炉に入れて10分間加熱して、第一の封止材料5を硬化させる。また、この硬化処理後さらに数時間、炉中もしくは大気中に放置して硬化を促進してもよい。なお、半導体発光素子9の実装をフリップチップにより行なうことで、ワイヤボンディングによる実装に比べて半導体発光素子9からの光取り出し効率が向上するとともに、封止材料を封止したときのワイヤの切断を防止することができる。   Next, as shown in FIG. 2B, the semiconductor light emitting element 9 is flip-chip mounted on a predetermined position of the electric circuit pattern 8 formed on the bottom surface of the recess 2 so that the semiconductor light emitting element 9 is formed. After being electrically connected to the electric circuit pattern 8, the first sealing material 5 made of epoxy resin is filled into the recess 2 by potting until the height of the semiconductor light emitting element 9 mounted in the recess 2 becomes the same. . Thereafter, the ceramic substrate 1 is placed in a furnace having an atmospheric temperature of 423 K (150 ° C.) and heated for 10 minutes to cure the first sealing material 5. Further, curing may be promoted by leaving it in an oven or in the air for several hours after this curing treatment. The mounting of the semiconductor light emitting element 9 by flip chip improves the light extraction efficiency from the semiconductor light emitting element 9 compared to the mounting by wire bonding, and also cuts the wire when the sealing material is sealed. Can be prevented.

本実施形態においては、半導体発光素子9としてGaAlNを用いたが、これに限定されるものではなく、発光波長が紫外光から赤外光までの半導体発光素子を選択することができ、例えばZnS、ZnSe、SiC、GaP、GaAlAs、AlInGaP、InGaN,GaN,AlInGaN等の半導体発光素子が好適に用いられる。   In the present embodiment, GaAlN is used as the semiconductor light emitting element 9, but the semiconductor light emitting element 9 is not limited to this, and a semiconductor light emitting element having an emission wavelength from ultraviolet light to infrared light can be selected. A semiconductor light emitting device such as ZnSe, SiC, GaP, GaAlAs, AlInGaP, InGaN, GaN, AlInGaN is preferably used.

半導体発光素子9は、各種材料を積層して形成されているため、積層方向に対して垂直の力が加わった場合に損傷しやすい。そのため、第一の封止材料5は、封止時の応力を緩和することのできるゴム状のものを用いるのが好ましく、本実施形態において用いたエポキシ樹脂に限定されるものではなく、アクリレート系樹脂、メタクリレート系樹脂、ビニル系樹脂、シリコーン樹脂等も好適に用いることができる。このうち、シロキサン結合を主体とする材料は耐熱性や耐光性に優れるので、半導体発光素子9の発熱による第一の封止樹脂5の劣化や半導体発光素子9からの光による黄変を防止することができる。このシロキサン結合を主体とする材料としては、硬化前の粘度が低く封止時の作業性に優れ、気泡の残留が少ないうえに、低温で硬化するために他の構成部品への影響が少ないシリコーン樹脂が好適に用いられる。このシリコーン樹脂は収縮率の小さい付加重合型が好ましい。   Since the semiconductor light emitting element 9 is formed by stacking various materials, it is easily damaged when a force perpendicular to the stacking direction is applied. Therefore, the first sealing material 5 is preferably a rubber-like material that can relieve stress at the time of sealing, and is not limited to the epoxy resin used in this embodiment, but is an acrylate-based material. Resins, methacrylate resins, vinyl resins, silicone resins and the like can also be suitably used. Among these, since the material mainly composed of siloxane bond is excellent in heat resistance and light resistance, it prevents deterioration of the first sealing resin 5 due to heat generation of the semiconductor light emitting element 9 and yellowing due to light from the semiconductor light emitting element 9. be able to. As a material mainly composed of this siloxane bond, it has a low viscosity before curing, excellent workability at the time of sealing, there are few residual bubbles, and it has a low influence on other components because it cures at a low temperature. Resins are preferably used. This silicone resin is preferably an addition polymerization type having a small shrinkage rate.

また、第一の封止材料5は、中波長紫外線から可視光線までの波長域光を反射する高反射性物質からなる充填剤を含有するものであってもよい。この場合は、半導体発光素子9の側面から放射される広範囲な波長域の光に対して、第二の封止材料6と第一の封止材料5との界面で反射させ、また、充填剤により散乱させて取出し効率を向上させることができる。この第一の封止材料5として拡散反射性が良好な硫酸バリウムを用いれば、半導体発光素子9から放射される光が満遍なく反射・拡散し、発色に良好な影響を与える。   Moreover, the 1st sealing material 5 may contain the filler which consists of a highly reflective substance which reflects the wavelength range light from medium wavelength ultraviolet rays to visible light. In this case, light in a wide wavelength range radiated from the side surface of the semiconductor light emitting element 9 is reflected at the interface between the second sealing material 6 and the first sealing material 5, and the filler It is possible to improve the extraction efficiency by scattering. If barium sulfate having good diffuse reflectivity is used as the first sealing material 5, light emitted from the semiconductor light emitting element 9 is uniformly reflected and diffused, and the color development is favorably affected.

さらに、第一の封止材料5の線膨張率が大きいと、半導体発光素子9の凹部2の底面からの高さに相等する厚みに形成することは困難となる場合が生じ得るが、充填剤が含有されることにより、第一の封止材料5の線膨張率が減少する。その結果、第一の封止材料5を、半導体発光素子9の凹部2の底面からの高さに相等する厚みに形成することが容易となる。   Further, if the linear expansion coefficient of the first sealing material 5 is large, it may be difficult to form the semiconductor light emitting element 9 with a thickness equivalent to the height from the bottom surface of the recess 2. By containing, the linear expansion coefficient of the 1st sealing material 5 reduces. As a result, it becomes easy to form the first sealing material 5 with a thickness equivalent to the height from the bottom surface of the recess 2 of the semiconductor light emitting element 9.

上述した半導体発光素子9から放射される光の反射・拡散の効果と第一の封止材料5の線膨張率の減少の効果とを有効に奏するためには、充填剤の含有率を1〜40重量%、好ましくは10〜35重量%とすることが好ましい。   In order to effectively exhibit the effect of reflection / diffusion of light emitted from the semiconductor light emitting element 9 and the effect of reduction of the linear expansion coefficient of the first sealing material 5, the filler content is set to 1 to 1. It is preferable that the content be 40% by weight, preferably 10 to 35% by weight.

次に、同図(c)に示すように、エポキシ樹脂からなる第二の封止材料6をセラミックス基板1の表面と同一の高さになるまで凹部2に充填後、炉中で熱処理を行なって硬化させる。このような第二の封止材料6を形成することで、半導体発光素子9の側周面には第一の封止材料5が存在し、第二の封止材料6が収縮する際に発生する応力が三次元的に半導体発光素子9のエッジ部9aに生じることがなく、エッジ部9aへの応力集中を防止することができる。また、半導体発光素子9のエッジ部9aと同一の高さに第一の封止材料5と第二の封止材料6の界面7が生じ、第二の封止材料6が収縮する際に半導体発光素子9のエッジ部9aに発生する応力の負荷は、その大部分が界面7に生じて緩和され、エッジ部9aへの応力の集中が防止され、半導体発光素子9の損傷や第二の封止材料6内でのクラックの発生を低減することができる。   Next, as shown in FIG. 2C, the second sealing material 6 made of epoxy resin is filled in the recess 2 until it becomes the same height as the surface of the ceramic substrate 1, and then heat-treated in a furnace. To cure. By forming such a second sealing material 6, the first sealing material 5 exists on the side peripheral surface of the semiconductor light emitting element 9, and is generated when the second sealing material 6 contracts. The stress to be generated is not generated three-dimensionally at the edge portion 9a of the semiconductor light emitting element 9, and the stress concentration on the edge portion 9a can be prevented. Further, when the interface 7 between the first sealing material 5 and the second sealing material 6 is generated at the same height as the edge portion 9 a of the semiconductor light emitting element 9, the semiconductor when the second sealing material 6 contracts. Most of the stress load generated at the edge portion 9a of the light emitting element 9 is mitigated by being generated at the interface 7, and the stress concentration on the edge portion 9a is prevented, and the semiconductor light emitting element 9 is damaged or second sealed. The occurrence of cracks in the stop material 6 can be reduced.

半導体発光素子9の発光波長が短い場合は光エネルギーが高くなり、第二の封止材料6が劣化して黄変しやすくなり光透過性が悪化する原因となるが、第二の封止材料6として低融点ガラスを用いることで、このような劣化が低減して半導体発光装置の寿命を長くすることができる。また、低融点ガラスは、封止時のチップの損傷や第一の封止材料5の劣化及び基板への電気回路の密着性低下を防止するため、封止温度が673K(400℃)以下のものが好ましい。また、低融点ガラス等の粘度の大きな材料を封止材として用いる場合は、封止の際半導体発光素子9の側面に空気層が残りやすく、一般に空気の屈折率が低いため半導体発光素子9の光取り出し効率が低減するが、本実施形態にかかる半導体発光装置及びその製造方法によれば、第二の封止材料6が封止する際に、凹部の底部が略平滑となっているため、空気層の残留を効果的に防止することができる。また、後述の実施形態3で述べるような予め第二の封止材料からなるプリフォームを充填する製造方法においては、底面が略平坦な形状のプリフォームとなるので、プリフォームの形状が簡易化されてその作製が容易となる。   When the emission wavelength of the semiconductor light emitting element 9 is short, the light energy increases, and the second sealing material 6 is deteriorated and easily yellowed, resulting in deterioration of light transmittance. By using low melting point glass as 6, such deterioration can be reduced and the life of the semiconductor light emitting device can be extended. The low melting point glass has a sealing temperature of 673 K (400 ° C.) or lower in order to prevent damage to the chip during sealing, deterioration of the first sealing material 5, and decrease in adhesion of the electric circuit to the substrate. Those are preferred. Further, when a material having a high viscosity such as low melting point glass is used as the sealing material, an air layer tends to remain on the side surface of the semiconductor light emitting element 9 at the time of sealing, and since the refractive index of air is generally low, the semiconductor light emitting element 9 Although the light extraction efficiency is reduced, according to the semiconductor light emitting device and the manufacturing method thereof according to the present embodiment, when the second sealing material 6 is sealed, the bottom of the recess is substantially smooth, It is possible to effectively prevent the air layer from remaining. In addition, in the manufacturing method in which the preform made of the second sealing material is filled in advance as described in Embodiment 3 described later, the preform has a substantially flat shape on the bottom surface, so the shape of the preform is simplified. Therefore, its production becomes easy.

本実施形態においては、第二の封止材料6としてエポキシ樹脂や低融点ガラスを用いたが、これに限定されるものではなく、アクリレート系樹脂、メタクリレート系樹脂、ビニル系樹脂、シリコーン樹脂や低融点ガラス等も好適に用いることができる。なお、第二の封止材料6は第一の封止材料と同一であってもよく、また異なっていてもよい。また、第一の封止材料5の屈折率を第二の封止材料6の屈折率よりも大きなものにすれば、半導体発光素子9の側面からの光を第二の封止材料6に放射しやすくすることができるので、光取り出し効率が向上する。   In the present embodiment, epoxy resin or low-melting glass is used as the second sealing material 6, but is not limited to this, and acrylate resin, methacrylate resin, vinyl resin, silicone resin, A melting point glass or the like can also be suitably used. The second sealing material 6 may be the same as or different from the first sealing material. Further, if the refractive index of the first sealing material 5 is larger than the refractive index of the second sealing material 6, light from the side surface of the semiconductor light emitting element 9 is emitted to the second sealing material 6. The light extraction efficiency is improved.

第一の封止材料5や第二の封止材料6として上記材料の他に、ジクロオレフィンポリマー、全フッ素ポリマー、ポリメタクリル酸メチルのような透明熱可塑性樹脂を用いることも可能である。さらに、これらの封止材料に、YAG:Ce、Y22S:Eu、ZnS:Cu,Al(Ba,Mg)、Al1017:Eu,Mn、(Sr,Ca,Ba,Mg)10(PO4612:Euのような半導体発光素子9からの光の波長を変換する蛍光体を含有させてもよい。 In addition to the above materials, the first sealing material 5 and the second sealing material 6 may be made of a transparent thermoplastic resin such as dichloroolefin polymer, perfluoropolymer, or polymethyl methacrylate. Further, these sealing materials include YAG: Ce, Y 2 O 2 S: Eu, ZnS: Cu, Al (Ba, Mg), Al 10 O 17 : Eu, Mn, (Sr, Ca, Ba, Mg). 10 (PO 4) 6 C 12 : the wavelength of the light from the semiconductor light emitting element 9 may contain a phosphor that converts such as Eu.

また、上述した第一の封止材料5は、第二の封止材料6が有する官能基と親和性を有する基を備えたシランカップリング剤を含有するものであってもよい。この場合は、第二の封止材料6との接合強度が向上し、特に第二の封止材料6が無機物を主骨格に含んだ樹脂である場合のように、第一の封止材料5と第二の封止材料6との接合強度が期待できない場合に有効である。具体的には、メタロキサン結合を主骨格とする材料は、耐熱性や耐光性に優れるため、これを第一の封止材料5に含有させることにより、半導体発光素子9の発熱による第一の封止材料5の特性劣化や、半導体発光素子9からの光により黄変して光取出し効率が低減することを防止できる。また、短波長域の材料吸収が低いため、光取り出し効率に優れる。   Moreover, the 1st sealing material 5 mentioned above may contain the silane coupling agent provided with the group which has affinity with the functional group which the 2nd sealing material 6 has. In this case, the bonding strength with the second sealing material 6 is improved. In particular, as in the case where the second sealing material 6 is a resin containing an inorganic substance in the main skeleton, the first sealing material 5 is used. This is effective when the bonding strength between the first sealing material 6 and the second sealing material 6 cannot be expected. Specifically, since the material having a metalloxane bond as the main skeleton is excellent in heat resistance and light resistance, the first sealing material 5 contains this material, whereby the first sealing due to heat generation of the semiconductor light emitting device 9 is achieved. It is possible to prevent the characteristics of the stop material 5 from being deteriorated and the light extraction efficiency is reduced due to yellowing due to light from the semiconductor light emitting element 9. Further, since the material absorption in the short wavelength region is low, the light extraction efficiency is excellent.

メタロキサン化合物は、M(OR)n(n=0〜3)やM−O−M結合を有する金属酸化物であり、金属MにはSiのほかTi、Zrなどの前周期遷移金属が好適に用いられる。より具体的には、水分存在下で金属アルコキシ化合物に上記シランカップリング剤を予め混合し、CaO、BaOなどの塩基によって反応を開始させる。また、シラノールなどの金属水酸化物M(OH)なども略上述と同様の反応で進行するが、反応開始時の水分は不要である。そして、いずれの場合も、予めシランカップリング剤を混合して反応を行ない、略ゲル化した状態で封止を行なうことに特徴を有する。 The metalloxane compound is a metal oxide having M (OR) n (n = 0 to 3) or M—O—M bond, and the metal M is preferably a forward transition metal such as Ti or Zr in addition to Si. Used. More specifically, the silane coupling agent is mixed in advance with the metal alkoxy compound in the presence of moisture, and the reaction is started with a base such as CaO or BaO. Further, metal hydroxide M (OH) such as silanol proceeds in a reaction substantially similar to the above, but moisture at the start of the reaction is unnecessary. In any case, the reaction is performed by mixing a silane coupling agent in advance, and sealing is performed in a substantially gelled state.

このシランカップリング剤の官能基は、第二の封止材料6によって異なり、例えば、第二の封止材料6がエポキシ、エポキシ変性、ジアリルフタレート、ポリイミド、ウレタンなどの透明樹脂の場合、エポキシ末端を有するシランカップリング剤には、γグリシドキシプロピルトリメトキシシラン、γグリシドキシプロピルトリエトキシシラン、β(3、4エポキシシクロヘキシル)エチルトリメトキシシランが用いられ、アミノ末端を有するシランカップリング剤には、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γアミノプロピルトリメトキシシランが用いられる。   The functional group of this silane coupling agent differs depending on the second sealing material 6. For example, when the second sealing material 6 is a transparent resin such as epoxy, epoxy-modified, diallyl phthalate, polyimide, urethane, the epoxy terminal Γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β (3,4-epoxycyclohexyl) ethyltrimethoxysilane is used as the silane coupling agent having an amino group, and silane coupling having an amino terminus As the agent, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γaminopropyltrimethoxysilane is used.

また、同図(d)に示すように、第二の封止材料6の上面側に、上記第二の封止材料6として例示したものやガラス材料からなるレンズ部10を形成することも可能である。この場合、半導体発光素子9からの光取り出し効率をさらに向上することができる。   In addition, as shown in FIG. 4D, it is possible to form the lens portion 10 made of glass material or the one exemplified as the second sealing material 6 on the upper surface side of the second sealing material 6. It is. In this case, the light extraction efficiency from the semiconductor light emitting element 9 can be further improved.

さらに、図2に示すように、第二の封止材料6の表面には、耐水性のシリカ膜15が形成されていることが好ましい。耐水性のシリカ膜15は、ペルヒドロポリシラザンのようなポリシラザン化合物からなるガラス膜であり、第二の封止材料6が硬化した後に、ペルヒドロポリシラザン溶液を第二の封止材料6の上面に所定量塗布し、大気中に放置して硬化させることで形成される。このポリシラザン化合物は、酸素や水分と反応することで常温や比較的低い温度で硬化して緻密なシリカ膜15を生成する。このシリカ膜15を形成することにより、第二の封止樹脂6内に外部からの水分が浸透することが防止でき、そのため、半導体発光素子9を湿気から保護することができる。   Further, as shown in FIG. 2, a water-resistant silica film 15 is preferably formed on the surface of the second sealing material 6. The water-resistant silica film 15 is a glass film made of a polysilazane compound such as perhydropolysilazane. After the second sealing material 6 is cured, the perhydropolysilazane solution is applied to the upper surface of the second sealing material 6. It is formed by applying a predetermined amount and leaving it in the atmosphere to cure. This polysilazane compound reacts with oxygen and moisture to cure at room temperature or a relatively low temperature to form a dense silica film 15. By forming this silica film 15, it is possible to prevent moisture from the outside from penetrating into the second sealing resin 6, and thus the semiconductor light emitting element 9 can be protected from moisture.

この耐水性のシリカ膜15は、図3に示すように、第一の封止材料5と前記第二の封止材料6との界面に形成されるものであってもよい。この場合には、第二の封止材料6内に水分が浸透した場合であっても、半導体発光素子9を湿気から保護することができる。   As shown in FIG. 3, the water-resistant silica film 15 may be formed at the interface between the first sealing material 5 and the second sealing material 6. In this case, the semiconductor light emitting element 9 can be protected from moisture even when moisture penetrates into the second sealing material 6.

本実施形態で述べた第一の封止材料5や第二の封止材料6及び半導体発光素子9の材質は以下の実施形態においても好適に用いられる。また、本実施形態で述べた耐水性のシリカ膜の形成も、以下の実施形態において好適に用いられて本実施形態で述べた同様の硬化を奏するものである。   The materials of the first sealing material 5, the second sealing material 6, and the semiconductor light emitting element 9 described in this embodiment are also suitably used in the following embodiments. In addition, the formation of the water-resistant silica film described in the present embodiment is also preferably used in the following embodiments to achieve the same curing as described in the present embodiment.

なお、本発明で用いる「相等する高さ」、「相等する厚み」及び「同一の高さ」、「同一の厚み」とは、高さ、厚みが完全に一致する状態に限定するものではなく、本発明の作用効果を得られる範囲であれば多少の高さや厚みに差異がある状態をも含むものとし、以下の実施形態においても同様である。   The “equivalent height”, “equivalent thickness”, “same height”, and “same thickness” used in the present invention are not limited to the state where the height and thickness are completely matched. As long as the effects of the present invention can be obtained, it includes a state in which there is some difference in height and thickness, and the same applies to the following embodiments.

(実施形態2)
本発明の第2の実施形態を図4に基づいて説明する。図4は、本実施形態における半導体発光装置の製造方法の概略を示す断面図である。図4において、1はセラミックス基板、3はセラミックス基板1の表面に設けた第一の凹部、4は第一の凹部3の底面に設けた第二の凹部、5は第一の封止材料、6は第二の封止材料、7は第一の封止材料5と第二の封止材料6の界面、8はセラミックス基板1の表面に形成された電気回路パターン、9は半導体発光素子、9aは半導体発光素子9のエッジ部、10は第二の封止材料6上に形成されたレンズ部である。なお、本実施形態に用いるセラミックス基板1、半導体発光素子9、第一の封止材料5及び第二の封止材料6の各々の材質等の詳細並びに電気回路パターン8の形成に関しては実施形態1と共通であるため、共通部分については説明を省略する。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view illustrating an outline of a method for manufacturing a semiconductor light emitting device in the present embodiment. In FIG. 4, 1 is a ceramic substrate, 3 is a first recess provided on the surface of the ceramic substrate 1, 4 is a second recess provided on the bottom surface of the first recess 3, and 5 is a first sealing material, 6 is a second sealing material, 7 is an interface between the first sealing material 5 and the second sealing material 6, 8 is an electric circuit pattern formed on the surface of the ceramic substrate 1, 9 is a semiconductor light emitting element, Reference numeral 9 a denotes an edge portion of the semiconductor light emitting element 9, and 10 denotes a lens portion formed on the second sealing material 6. The details of each material of the ceramic substrate 1, the semiconductor light emitting element 9, the first sealing material 5, and the second sealing material 6 used in the present embodiment and the formation of the electric circuit pattern 8 are described in the first embodiment. Therefore, the description of the common parts is omitted.

まず、同図(a)に示すように、アルミナからなるセラミックス基板1の表面に第一の凹部3及び第二の凹部4を形成した後、第一の凹部3及び第二の凹部4を含めたセラミックス基板1の表面に所定の電気回路パターン8を形成する。第一の凹部3は、底部に近づくに従って水平面の断面形状が狭小になるよう側周面が傾斜している。また、第二の凹部4は第一の凹部3の底部略中央部に設けられ、後工程で実装する半導体発光素子9の高さに相等する深さに形成され、底部に近づくに従って水平面の断面形状が狭小になるよう側周面が傾斜している。第一の凹部3及び第二の凹部4の側周面を傾斜させることで、後述する側周面でのレーザによる電気回路パターン8の形成が容易になるとともに、側周面に反射鏡を設けることにより半導体発光素子9からの光取り出し効率を向上することができる。また、側周部と底部が交差するコーナー部をなめらかにR面取りすれば、後述する第二の封止材料6を封止する場合に、収縮時の応力がコーナー部に集中することがなくなり、コーナー部近傍でのクラックの発生を低減させることができる。   First, as shown in FIG. 1A, after the first concave portion 3 and the second concave portion 4 are formed on the surface of the ceramic substrate 1 made of alumina, the first concave portion 3 and the second concave portion 4 are included. A predetermined electric circuit pattern 8 is formed on the surface of the ceramic substrate 1. As for the 1st recessed part 3, the side peripheral surface inclines so that the cross-sectional shape of a horizontal surface may become narrow as it approaches the bottom part. The second recess 4 is provided at a substantially central portion of the bottom of the first recess 3 and is formed at a depth equivalent to the height of the semiconductor light emitting element 9 to be mounted in a later process. The side peripheral surface is inclined so that the shape is narrow. By inclining the side peripheral surfaces of the first concave portion 3 and the second concave portion 4, it is easy to form the electric circuit pattern 8 by a laser on the side peripheral surface described later, and a reflecting mirror is provided on the side peripheral surface. Thus, the light extraction efficiency from the semiconductor light emitting element 9 can be improved. Further, if the corner portion where the side peripheral portion and the bottom portion intersect with each other is smoothly rounded, the stress at the time of contraction is not concentrated on the corner portion when sealing the second sealing material 6 described later. The occurrence of cracks near the corner can be reduced.

次に、同図(b)に示すように、第二の凹部4の底面に形成された電気回路パターン8の所定の位置にGaAlNからなる半導体発光素子9をフリップチップ実装することにより、半導体発光素子9を電気回路パターン8と電気的に接続させた後、第一の凹部3の底部と同一の高さになるまで、すなわち、第二の凹部4に実装された半導体発光素子9の高さと同一になるまで、エポキシ樹脂からなる第一の封止材料5を第二の凹部4にポッティングにより充填する。その後、セラミックス基板1を雰囲気温度423K(150℃)の炉に入れて10分間加熱して、第一の封止材料5を硬化させる。また、この硬化処理後さらに数時間、炉中もしくは大気中に放置して硬化を促進してもよい。   Next, as shown in FIG. 4B, semiconductor light emitting element 9 made of GaAlN is flip-chip mounted at a predetermined position of electric circuit pattern 8 formed on the bottom surface of second recess 4 to thereby emit semiconductor light. After the element 9 is electrically connected to the electric circuit pattern 8, the height of the semiconductor light emitting element 9 mounted in the second recess 4 is the same as that of the bottom of the first recess 3. Until the same, the first sealing material 5 made of epoxy resin is filled into the second recess 4 by potting. Thereafter, the ceramic substrate 1 is placed in a furnace having an atmospheric temperature of 423 K (150 ° C.) and heated for 10 minutes to cure the first sealing material 5. Further, curing may be promoted by leaving it in an oven or in the air for several hours after this curing treatment.

次に、同図(c)に示すように、低融点ガラスからなる第二の封止材料6を、セラミックス基板1の表面と略同一の高さになるまで第一の凹部3に充填後、炉中で熱処理を行なって硬化させる。このような第二の封止材料6を形成することで、半導体発光素子9の側周面には第一の封止材料5が存在し、第二の封止材料6が収縮する際に発生する応力が三次元的に半導体発光素子9のエッジ部9aに生じることがなく、エッジ部9aへの応力集中を防止することができる。また、第二の封止材料6が硬化する際に収縮力が発生する第二の封止材料6の底面部は、その大部分が第一の凹部3の底部及び第一の封止材料5に接合しているため、第二の封止材料6が収縮する際に発生する収縮力は、第一の凹部3の底部と第一の封止材料5に生じる。そのため、この収縮力の大部分は第一の封止材料5と第二の封止材料の界面7に生じて緩和されるか、セラミックスからなる強固な第一の凹部3に生じるので、エッジ部9aへの応力の集中が防止され、半導体発光素子9の損傷や第二の封止材料6内でのクラックの発生を低減することができる。   Next, as shown in FIG. 2C, after filling the first recess 3 with the second sealing material 6 made of low-melting glass until the height is substantially the same as the surface of the ceramic substrate 1, It is cured by heat treatment in an oven. By forming such a second sealing material 6, the first sealing material 5 exists on the side peripheral surface of the semiconductor light emitting element 9, and is generated when the second sealing material 6 contracts. The stress to be generated is not generated three-dimensionally at the edge portion 9a of the semiconductor light emitting element 9, and the stress concentration on the edge portion 9a can be prevented. Further, the bottom part of the second sealing material 6 that generates contraction force when the second sealing material 6 is cured is mostly the bottom part of the first recess 3 and the first sealing material 5. Therefore, the contraction force generated when the second sealing material 6 contracts is generated at the bottom of the first recess 3 and the first sealing material 5. Therefore, most of the shrinkage force is generated at the interface 7 between the first sealing material 5 and the second sealing material and relaxed, or is generated in the strong first concave portion 3 made of ceramics. Concentration of stress on 9a is prevented, and damage to the semiconductor light emitting element 9 and generation of cracks in the second sealing material 6 can be reduced.

また、封止材として低融点ガラス等の粘度の大きな材料を用いる場合は、封止の際半導体発光素子9の側面に空気層が残りやすく、一般に空気の屈折率が低いため半導体発光素子9の光取り出し効率が低減するが、本実施形態にかかる半導体発光装置及びその製造方法によれば、第二の封止材料6が封止する際に、凹部の底部が略平滑となっているため、空気層の残留を効果的に防止することができる。また、後述の実施形態3で述べるような予め第二の封止材料からなるプリフォームを充填する製造方法においては、底面が略平坦な形状のプリフォームとなるので、プリフォームの形状が簡易化されて半導体発光装置の作製が容易となる。   Further, when a material having a high viscosity such as a low melting point glass is used as the sealing material, an air layer tends to remain on the side surface of the semiconductor light emitting element 9 at the time of sealing, and since the refractive index of air is generally low, the semiconductor light emitting element 9 Although the light extraction efficiency is reduced, according to the semiconductor light emitting device and the manufacturing method thereof according to the present embodiment, when the second sealing material 6 is sealed, the bottom of the recess is substantially smooth, It is possible to effectively prevent the air layer from remaining. In addition, in the manufacturing method in which the preform made of the second sealing material is filled in advance as described in Embodiment 3 described later, the preform has a substantially flat shape on the bottom surface, so the shape of the preform is simplified. Thus, the manufacture of the semiconductor light emitting device is facilitated.

また、同図(d)に示すように、第二の封止材料6の上面側に、上記第二の封止材料6として例示したものやガラス材料からなるレンズ部10を形成することも可能である。この場合、半導体発光素子9からの光取り出し効率をさらに向上することができる。   In addition, as shown in FIG. 4D, it is possible to form the lens portion 10 made of glass material or the one exemplified as the second sealing material 6 on the upper surface side of the second sealing material 6. It is. In this case, the light extraction efficiency from the semiconductor light emitting element 9 can be further improved.

(実施形態3)
本発明の第3の実施形態を図5に基づいて説明する。図5は、本実施形態における半導体発光装置の製造方法の概略を示す断面図である。本実施形態は、第二の封止材料6を凹部に充填する際に、予めプリフォームを作製した上で行なうことに特徴を有し、その他については実施形態1及び実施形態2と同一であるので説明を省略する。
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view illustrating an outline of a method for manufacturing a semiconductor light emitting device in the present embodiment. This embodiment is characterized in that a preform is prepared in advance when filling the recess with the second sealing material 6, and the rest is the same as in the first and second embodiments. Therefore, explanation is omitted.

図5(a)は、実施形態1において第二の封止材料6を充填する際に固体状のプリフォームを作成して行なう半導体発光装置の製造方法の概略を示す断面図である。硬化触媒を配合した付加重合型シリコーン樹脂からなる第一の封止材料5を、凹部2に実装された半導体発光素子9の高さと同一になるまで凹部2に充填したものを、373K(100℃)まで加熱して硬化させた後に(図1(b)参照)、図5(a)に示すように、ガラス転移温度が553K(280℃)の低融点ガラスからなるプリフォーム状の第二の封止材料6を第一の凹部5の残りの空間に充填する。このプリフォーム状の第二の封止材料6は、第一の凹部5の残りの空間に嵌合し、かつ嵌合後の形状がセラミックス基板1の表面と同一になるように予め作製されたものである。   FIG. 5A is a cross-sectional view illustrating an outline of a method for manufacturing a semiconductor light emitting device, which is performed by creating a solid preform when the second sealing material 6 is filled in the first embodiment. What filled the recessed part 2 with the 1st sealing material 5 which consists of the addition polymerization type silicone resin which mix | blended the curing catalyst with the height of the semiconductor light-emitting element 9 mounted in the recessed part 2 is 373K (100 degreeC). ) To be cured (see FIG. 1 (b)), as shown in FIG. 5 (a), a preform-like second glass composed of a low melting point glass having a glass transition temperature of 553K (280 ° C.). The remaining space of the first recess 5 is filled with the sealing material 6. This preform-like second sealing material 6 was previously produced so as to fit into the remaining space of the first recess 5 and to have the same shape as the surface of the ceramic substrate 1 after fitting. Is.

プリフォーム状の第二の封止材料6が充填されたセラミックス基板1を598K(325℃)まで加熱して、プリフォーム状の第二の封止材料6を溶融させた後、598K(325℃)以上に加熱した図示しない金型にてセラミック基板の表面を加圧して基板の表面を均一平面となるよう整えて第二の封止材料6の封止を行なう。このように、第二の封止材料6をプリフォーム状にして充填することで、第二の封止材料6の封止作業に要する時間の短縮や第二の封止材料6を充填する際に充填量の過不足が発生することを防止することができる。   The ceramic substrate 1 filled with the preform-like second sealing material 6 is heated to 598K (325 ° C.) to melt the preform-like second sealing material 6, and then 598K (325 ° C.). ) The second sealing material 6 is sealed by pressurizing the surface of the ceramic substrate with a mold (not shown) heated as described above so that the surface of the substrate becomes a uniform plane. As described above, when the second sealing material 6 is filled in a preform shape, the time required for the sealing operation of the second sealing material 6 is shortened or the second sealing material 6 is filled. It is possible to prevent an excess or deficiency in the filling amount.

また、実施形態2の場合であっても、図5(b)に示すように、本実施形態を好適に用いることができる。   Further, even in the case of the second embodiment, as shown in FIG. 5B, the present embodiment can be suitably used.

(実施形態4)
本発明の第4の実施形態を図6に基づいて説明する。図6は、本実施形態における半導体発光装置の製造方法の概略を示す断面図である。図6において、3はセラミックス基板の表面に設けた第一の凹部、3aは第一の凹部3の底部に設けた収縮応力緩衝用溝部、6は第二の封止材料、9aは半導体発光素子のエッジ部である。なお、本実施形態に用いるセラミックス基板1、半導体発光素子9、第一の封止材料5及び第二の封止材料6の各々の材質等の詳細並びに電気回路パターン8の形成に関しては実施形態1と共通であるため、説明を省略する。
(Embodiment 4)
A fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view illustrating an outline of a method for manufacturing a semiconductor light emitting device in the present embodiment. In FIG. 6, 3 is a first recess provided on the surface of the ceramic substrate, 3a is a shrinkage stress buffering groove provided at the bottom of the first recess 3, 6 is a second sealing material, and 9a is a semiconductor light emitting device. It is the edge part. The details of each material of the ceramic substrate 1, the semiconductor light emitting element 9, the first sealing material 5, and the second sealing material 6 used in the present embodiment and the formation of the electric circuit pattern 8 are described in the first embodiment. And the description is omitted.

本実施形態は、第一の凹部3の底面部に、第二の封止材料6が収縮する際に発生する応力を緩和させるための応力緩衝用溝部を設けたことに特徴を有し、その他については実施形態2と共通するので、共通部分については説明を省略する。   The present embodiment is characterized in that a stress buffering groove for relaxing stress generated when the second sealing material 6 contracts is provided on the bottom surface of the first recess 3. Since this is the same as that of the second embodiment, the description of the common part is omitted.

図6(a)(b)に示すように、第一の凹部3の底面部には、第二の凹部4を囲むように、開口部が略円形であって、深さが0.1〜1.0mm程度の収縮応力緩衝用溝部4aが等間隔に4つ形成されている。この収縮応力緩衝用溝部4aを設けることで、第一の凹部3に充填した第二の封止材料6が硬化収縮もしくは熱収縮する際に発生する応力が収縮応力緩衝用溝部4aにも発生するため、半導体発光素子9に生じる側面方向からの収縮応力が低減される。そのため、エッジ部9aへの応力の集中が防止され、半導体発光素子9の損傷をより低減することができる。   As shown in FIGS. 6A and 6B, the bottom of the first recess 3 has a substantially circular opening and a depth of 0.1 to surround the second recess 4. Four groove portions 4a for contraction stress buffering about 1.0 mm are formed at equal intervals. By providing the shrinkage stress buffering groove 4a, the stress generated when the second sealing material 6 filled in the first recess 3 undergoes shrinkage by curing or heat shrinkage is also generated in the shrinkage stress buffering groove 4a. Therefore, shrinkage stress from the side surface direction generated in the semiconductor light emitting element 9 is reduced. Therefore, concentration of stress on the edge portion 9a is prevented, and damage to the semiconductor light emitting element 9 can be further reduced.

収縮応力緩衝用溝部4aの開口部の形状は略円形に限定されるものではなく、配置数も4つに限定されるものではないが、半導体発光素子9への応力緩和硬化を均等にするために、半導体発光素子9と等距離に等間隔で設けることが好ましい。また、収縮応力緩衝用溝部4aは、図6(c)に示すような、半導体発光素子9を囲む全周にわたって設けてもよい。さらに、図6に示すような収縮応力緩衝用溝部4aに代えて、もしくは収縮応力緩衝用溝部4aとともに高さが0.1〜1.0mm程度の収縮応力緩衝用の突起部を設けても同様の効果を得ることができる。なお、本実施形態において、収縮応力緩衝用溝部4aの深さとして0.1〜1.0mmを例示したのは、0.1mmより小さい場合は、応力緩和効果が小さく、1.0mmより大きい場合は、第二の封止材料6や第二の凹部4で反射した半導体発光素子4からの光が収縮応力緩衝用溝部4aの内部に取りこまれて光取り出し効率が低下するからである。   The shape of the opening portion of the shrinkage stress buffering groove 4a is not limited to a substantially circular shape, and the number of arrangements is not limited to four. However, in order to equalize stress relaxation hardening to the semiconductor light emitting element 9 In addition, it is preferable that the semiconductor light emitting elements 9 are provided at equal intervals at equal intervals. Further, the shrinkage stress buffering groove 4a may be provided over the entire circumference surrounding the semiconductor light emitting element 9 as shown in FIG. Furthermore, instead of the shrinkage stress buffering groove 4a as shown in FIG. 6, or a shrinkage stress buffering protrusion having a height of about 0.1 to 1.0 mm may be provided together with the shrinkage stress buffering groove 4a. The effect of can be obtained. In the present embodiment, the depth of the shrinkage stress buffering groove 4a is exemplified as 0.1 to 1.0 mm. When the depth is smaller than 0.1 mm, the stress relaxation effect is small and larger than 1.0 mm. This is because the light from the semiconductor light emitting element 4 reflected by the second sealing material 6 and the second recess 4 is taken into the shrinkage stress buffering groove 4a and the light extraction efficiency is lowered.

実施形態1における半導体発光装置の製造方法の概略を示す断面図である。6 is a cross-sectional view illustrating an outline of a method for manufacturing the semiconductor light-emitting device according to Embodiment 1. FIG. 第二の封止材料の表面に耐水性のシリカ膜が形成されている半導体発光装置の概略を示す断面図である。It is sectional drawing which shows the outline of the semiconductor light-emitting device in which the water-resistant silica film is formed in the surface of the 2nd sealing material. 第一の封止材料と前記第二の封止材料との界面に耐水性のシリカ膜が形成されている半導体発光装置の概略を示す断面図である。It is sectional drawing which shows the outline of the semiconductor light-emitting device in which the water-resistant silica film is formed in the interface of a 1st sealing material and said 2nd sealing material. 実施形態2における半導体発光装置の製造方法の概略を示す断面図である。6 is a cross-sectional view illustrating an outline of a method for manufacturing a semiconductor light-emitting device in Embodiment 2. FIG. 実施形態3における半導体発光装置の製造方法の概略を示す断面図である。6 is a cross-sectional view illustrating an outline of a method for manufacturing a semiconductor light emitting device in Embodiment 3. FIG. 実施形態4における半導体発光装置の製造方法の概略を示す断面図である。6 is a cross-sectional view illustrating an outline of a method for manufacturing a semiconductor light-emitting device in Embodiment 4. FIG. 従来例を示す概略図である。It is the schematic which shows a prior art example.

符号の説明Explanation of symbols

1 セラミックス基板
2 凹部
3 第一の凹部
4 第二の凹部
5 第一の封止材料
6 第二の封止材料
7 第一の封止材料5と第二の封止材料6の界面
8 電気回路パターン
9 半導体発光素子
DESCRIPTION OF SYMBOLS 1 Ceramic substrate 2 Recessed part 3 First recessed part 4 Second recessed part 5 First sealing material 6 Second sealing material 7 Interface of first sealing material 5 and second sealing material 6 8 Electrical circuit Pattern 9 Semiconductor light emitting device

Claims (11)

表面に凹部が設けられるとともに所定の電気回路パターンが形成された基板と、当該凹部の底面に実装した半導体発光素子と、当該凹部に充填して半導体発光素子を封止する封止材とを備えた半導体発光装置であって、
前記封止材は、凹部の底面に実装された半導体発光素子の高さに相等する厚みに形成された第一の封止材料と、半導体発光素子及び第一の封止材料の上面側に形成された第二の封止材料とからなることを特徴とする半導体発光装置。
A substrate having a recess provided on the surface and having a predetermined electric circuit pattern formed thereon, a semiconductor light emitting device mounted on the bottom surface of the recess, and a sealing material filling the recess and sealing the semiconductor light emitting device A semiconductor light emitting device,
The sealing material is formed on the upper surface side of the semiconductor light emitting element and the first sealing material, the first sealing material having a thickness equivalent to the height of the semiconductor light emitting element mounted on the bottom surface of the recess. A semiconductor light emitting device comprising the second sealing material formed.
表面に第一の凹部と第一の凹部の底面に第二の凹部が設けられるとともに所定の電気回路パターンが形成された基板と、第二の凹部の底面に実装した半導体発光素子と、第一の凹部及び第二の凹部に充填して半導体発光素子を封止する封止材とを備えた半導体発光装置であって、
前記第二の凹部は、前記半導体発光素子の高さに相等する深さに形成されたものであると共に、
前記封止材は、前記半導体発光素子の高さに相等する厚みに形成された第一の封止材料と、
半導体発光素子及び第一の封止材料の上面側に形成された第二の封止材料とからなることを特徴とする半導体発光装置。
A first recess formed on the surface, a second recess provided on the bottom surface of the first recess and a predetermined electric circuit pattern formed thereon; a semiconductor light emitting device mounted on the bottom surface of the second recess; A semiconductor light emitting device comprising a sealing material for sealing the semiconductor light emitting element by filling the concave portion and the second concave portion,
The second recess is formed at a depth equivalent to the height of the semiconductor light emitting device, and
The sealing material is a first sealing material formed in a thickness equivalent to the height of the semiconductor light emitting element,
A semiconductor light emitting device comprising: a semiconductor light emitting element; and a second sealing material formed on an upper surface side of the first sealing material.
前記第一の凹部の底面部に、第二の封止材料が収縮する際に発生する応力を緩和させるための収縮応力緩衝用溝部もしくは収縮応力緩衝用突起部の少なくともいずれかを設けたことを特徴とする請求項2に記載の半導体発光装置。   A bottom surface portion of the first recess is provided with at least one of a shrinkage stress buffering groove portion and a shrinkage stress buffering projection portion for relaxing the stress generated when the second sealing material shrinks. The semiconductor light-emitting device according to claim 2. 前記第二の封止材料の屈折率は、第一の封止材料の屈折率より大きいものであることを特徴とする請求項1乃至3のいずれかに記載の半導体発光装置。   4. The semiconductor light emitting device according to claim 1, wherein a refractive index of the second sealing material is larger than a refractive index of the first sealing material. 5. 前記第一の封止材料は、中波長紫外線から可視光線までの波長域光を反射する高反射性物質からなる充填剤を含有するものであることを特徴とする請求項1乃至4のいずれかに記載の半導体発光装置。   The said 1st sealing material contains the filler which consists of a highly reflective substance which reflects the wavelength range light from medium wavelength ultraviolet to visible light, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. The semiconductor light-emitting device described in 1. 前記第一の封止材料は、前記第二の封止材料が有する官能基と親和性を有する基を備えたシランカップリング剤を含有するものであることを特徴とする請求項1乃至5のいずれかに記載の半導体発光装置。   The said 1st sealing material contains the silane coupling agent provided with the group which has an affinity with the functional group which said 2nd sealing material has, The 1 thru | or 5 characterized by the above-mentioned. The semiconductor light-emitting device in any one. 前記第二の封止材料は、前記第一の封止材料が有する官能基と親和性を有する基を備えたシランカップリング剤を含有するものであることを特徴とする請求項1乃至6のいずれかに記載の半導体発光装置。   The said 2nd sealing material contains the silane coupling agent provided with the group which has an affinity with the functional group which said 1st sealing material has, The Claim 1 thru | or 6 characterized by the above-mentioned. The semiconductor light-emitting device in any one. 前記第二の封止材料の表面には、耐水性のシリカ膜が形成されてなることを特徴とする請求項1乃至7のいずれかに記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein a water-resistant silica film is formed on a surface of the second sealing material. 前記第一の封止材料と前記第二の封止材料との界面には、耐水性のシリカ膜が形成されてなることを特徴とする請求項1乃至8のいずれかに記載の半導体発光装置。   9. The semiconductor light emitting device according to claim 1, wherein a water-resistant silica film is formed at an interface between the first sealing material and the second sealing material. . 前記凹部の底面に形成された電気回路パターン上に半導体発光素子を実装する工程と、
第一の封止材料層を、半導体発光素子の高さに相等する厚みとなるよう凹部に形成する工程と、
半導体発光素子及び第一の封止材料層の上面側に、第二の封止材料層を形成する工程と、
を有することを特徴とする半導体発光装置の製造方法。
Mounting a semiconductor light emitting element on the electric circuit pattern formed on the bottom surface of the recess;
Forming a first sealing material layer in the recess so as to have a thickness equivalent to the height of the semiconductor light emitting element;
Forming a second sealing material layer on the upper surface side of the semiconductor light emitting element and the first sealing material layer;
A method of manufacturing a semiconductor light emitting device, comprising:
前記第二の封止材料層を形成する工程は、固体状の第二の封止材料を凹部に設置し、加熱した後冷却するものであることを特徴とする請求項10に記載の半導体発光装置の製造方法。   11. The semiconductor light emitting device according to claim 10, wherein in the step of forming the second sealing material layer, the solid second sealing material is placed in the recess, heated and then cooled. Device manufacturing method.
JP2004155914A 2003-10-28 2004-05-26 Semiconductor light emitting device and manufacturing method thereof Active JP4788109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155914A JP4788109B2 (en) 2003-10-28 2004-05-26 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003367208 2003-10-28
JP2003367208 2003-10-28
JP2004155914A JP4788109B2 (en) 2003-10-28 2004-05-26 Semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005159276A true JP2005159276A (en) 2005-06-16
JP4788109B2 JP4788109B2 (en) 2011-10-05

Family

ID=34741069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155914A Active JP4788109B2 (en) 2003-10-28 2004-05-26 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4788109B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035882A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Led illuminator
JP2007059419A (en) * 2005-08-22 2007-03-08 Showa Denko Kk Led package with compound semiconductor light emitting element
JP2007116138A (en) * 2005-09-22 2007-05-10 Lexedis Lighting Gmbh Light emitting device
JP2008135442A (en) * 2006-11-27 2008-06-12 Matsushita Electric Works Ltd Optical module
JP2008544568A (en) * 2005-07-04 2008-12-04 ソウル セミコンダクター カンパニー リミテッド Light emitting diode and manufacturing method thereof
JP2009044082A (en) * 2007-08-10 2009-02-26 Stanley Electric Co Ltd Surface-mount light-emitting device
JP2009111245A (en) * 2007-10-31 2009-05-21 Nichia Corp Light-emitting device and its manufacturing method
JP2009188167A (en) * 2008-02-06 2009-08-20 Toyoda Gosei Co Ltd Method for manufacturing light-emitting device
JP2010283281A (en) * 2009-06-08 2010-12-16 Nichia Corp Light emitting device
JP2012156442A (en) * 2011-01-28 2012-08-16 Nichia Chem Ind Ltd Light emitting device
JP2013035953A (en) * 2011-08-09 2013-02-21 Nihon Ceratec Co Ltd Phosphor molding material, method for producing phosphor molding material, and luminescent device
US8502364B2 (en) 2006-08-22 2013-08-06 Mitsubishi Chemical Corporation Semiconductor device member, production method of semiconductor-device-member formation liquid and semiconductor device member, and semiconductor-device-member formation liquid, phosphor composition, semiconductor light-emitting device, lighting system and image display system using the same
KR101310107B1 (en) 2011-12-22 2013-09-23 한국세라믹기술원 Encapsulant For UVLED Device, UVLED Device Using The Same And Manufacturing Method thereof
JP2016521011A (en) * 2013-05-20 2016-07-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Chip scale light emitting device package with dome
JP2017168620A (en) * 2016-03-16 2017-09-21 豊田合成株式会社 Light-emitting device and manufacturing method thereof
JP2020167396A (en) * 2019-03-27 2020-10-08 日亜化学工業株式会社 Method of manufacturing light emitting device
CN113130422A (en) * 2021-02-26 2021-07-16 广东美的白色家电技术创新中心有限公司 Power module and preparation method thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952975A (en) * 1972-09-22 1974-05-23
JPS5565450A (en) * 1978-11-10 1980-05-16 Hitachi Ltd Resin-mold type semiconductor device
JPH0459167U (en) * 1990-09-27 1992-05-21
JPH0563068U (en) * 1992-01-31 1993-08-20 シャープ株式会社 Resin-sealed light emitter
JPH07142766A (en) * 1993-11-16 1995-06-02 Rohm Co Ltd Light-emitting device
JPH11340518A (en) * 1998-05-27 1999-12-10 Toshiba Corp Semiconductor light-emitting device
JP2000022217A (en) * 1998-06-30 2000-01-21 Toshiba Corp Optical semiconductor module
JP2000124475A (en) * 1998-10-14 2000-04-28 Kanegafuchi Chem Ind Co Ltd Curable composition for sealing optical semiconductor and manufacture of optical semiconductor product
JP2000174350A (en) * 1998-12-10 2000-06-23 Toshiba Corp Optical semiconductor module
JP2001177177A (en) * 1999-12-20 2001-06-29 Kyocera Corp Package for housing optical semiconductor element
JP2002335020A (en) * 2001-05-10 2002-11-22 Nichia Chem Ind Ltd Light emitting device
JP2003046133A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Light emitting device and method of manufacturing the same
JP2003110146A (en) * 2001-07-26 2003-04-11 Matsushita Electric Works Ltd Light-emitting device
JP2003113310A (en) * 2001-10-05 2003-04-18 Kanegafuchi Chem Ind Co Ltd Composition for optical material, composition for electronic material, optical material, electronic material, light-emitting diode and method for producing the same
JP2003197973A (en) * 2001-12-28 2003-07-11 Toshiba Lighting & Technology Corp Light emitting diode and led display device
JP2003249691A (en) * 2002-02-22 2003-09-05 Matsushita Electric Works Ltd Light emitting device and its producing method
JP2004128424A (en) * 2002-10-07 2004-04-22 Citizen Electronics Co Ltd White light emitting device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952975A (en) * 1972-09-22 1974-05-23
JPS5565450A (en) * 1978-11-10 1980-05-16 Hitachi Ltd Resin-mold type semiconductor device
JPH0459167U (en) * 1990-09-27 1992-05-21
JPH0563068U (en) * 1992-01-31 1993-08-20 シャープ株式会社 Resin-sealed light emitter
JPH07142766A (en) * 1993-11-16 1995-06-02 Rohm Co Ltd Light-emitting device
JPH11340518A (en) * 1998-05-27 1999-12-10 Toshiba Corp Semiconductor light-emitting device
JP2000022217A (en) * 1998-06-30 2000-01-21 Toshiba Corp Optical semiconductor module
JP2000124475A (en) * 1998-10-14 2000-04-28 Kanegafuchi Chem Ind Co Ltd Curable composition for sealing optical semiconductor and manufacture of optical semiconductor product
JP2000174350A (en) * 1998-12-10 2000-06-23 Toshiba Corp Optical semiconductor module
JP2001177177A (en) * 1999-12-20 2001-06-29 Kyocera Corp Package for housing optical semiconductor element
JP2002335020A (en) * 2001-05-10 2002-11-22 Nichia Chem Ind Ltd Light emitting device
JP2003046133A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Light emitting device and method of manufacturing the same
JP2003110146A (en) * 2001-07-26 2003-04-11 Matsushita Electric Works Ltd Light-emitting device
JP2003113310A (en) * 2001-10-05 2003-04-18 Kanegafuchi Chem Ind Co Ltd Composition for optical material, composition for electronic material, optical material, electronic material, light-emitting diode and method for producing the same
JP2003197973A (en) * 2001-12-28 2003-07-11 Toshiba Lighting & Technology Corp Light emitting diode and led display device
JP2003249691A (en) * 2002-02-22 2003-09-05 Matsushita Electric Works Ltd Light emitting device and its producing method
JP2004128424A (en) * 2002-10-07 2004-04-22 Citizen Electronics Co Ltd White light emitting device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544568A (en) * 2005-07-04 2008-12-04 ソウル セミコンダクター カンパニー リミテッド Light emitting diode and manufacturing method thereof
US8809892B2 (en) 2005-07-04 2014-08-19 Seoul Semiconductor Co., Ltd. Light emitting diode and method of fabricating the same
JP2007035882A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Led illuminator
JP4552798B2 (en) * 2005-07-26 2010-09-29 パナソニック電工株式会社 LED lighting device
JP2007059419A (en) * 2005-08-22 2007-03-08 Showa Denko Kk Led package with compound semiconductor light emitting element
JP2007116138A (en) * 2005-09-22 2007-05-10 Lexedis Lighting Gmbh Light emitting device
US8502364B2 (en) 2006-08-22 2013-08-06 Mitsubishi Chemical Corporation Semiconductor device member, production method of semiconductor-device-member formation liquid and semiconductor device member, and semiconductor-device-member formation liquid, phosphor composition, semiconductor light-emitting device, lighting system and image display system using the same
KR101500765B1 (en) * 2006-08-22 2015-03-09 미쓰비시 가가꾸 가부시키가이샤 Semiconductor device member, liquid for forming semiconductor device member, method for manufacturing semiconductor device member, and liquid for forming semiconductor device member using the method, phosphor composition, semiconductor light emitting device, illuminating apparatus and image display apparatus
JP2008135442A (en) * 2006-11-27 2008-06-12 Matsushita Electric Works Ltd Optical module
JP2009044082A (en) * 2007-08-10 2009-02-26 Stanley Electric Co Ltd Surface-mount light-emitting device
JP2009111245A (en) * 2007-10-31 2009-05-21 Nichia Corp Light-emitting device and its manufacturing method
JP2009188167A (en) * 2008-02-06 2009-08-20 Toyoda Gosei Co Ltd Method for manufacturing light-emitting device
JP2010283281A (en) * 2009-06-08 2010-12-16 Nichia Corp Light emitting device
US9123867B2 (en) 2011-01-28 2015-09-01 Nichia Corporation Light emitting device
JP2012156442A (en) * 2011-01-28 2012-08-16 Nichia Chem Ind Ltd Light emitting device
JP2013035953A (en) * 2011-08-09 2013-02-21 Nihon Ceratec Co Ltd Phosphor molding material, method for producing phosphor molding material, and luminescent device
KR101310107B1 (en) 2011-12-22 2013-09-23 한국세라믹기술원 Encapsulant For UVLED Device, UVLED Device Using The Same And Manufacturing Method thereof
JP2016521011A (en) * 2013-05-20 2016-07-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Chip scale light emitting device package with dome
US11145794B2 (en) 2013-05-20 2021-10-12 Lumileds Llc Chip scale light emitting device package with dome
JP2017168620A (en) * 2016-03-16 2017-09-21 豊田合成株式会社 Light-emitting device and manufacturing method thereof
JP2020167396A (en) * 2019-03-27 2020-10-08 日亜化学工業株式会社 Method of manufacturing light emitting device
JP7148811B2 (en) 2019-03-27 2022-10-06 日亜化学工業株式会社 Method for manufacturing light emitting device
CN113130422A (en) * 2021-02-26 2021-07-16 广东美的白色家电技术创新中心有限公司 Power module and preparation method thereof

Also Published As

Publication number Publication date
JP4788109B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4788109B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4599857B2 (en) Semiconductor device and manufacturing method thereof
CN103009545B (en) Manufacture the method for optics, optics, and comprise the device of optics
JP4945106B2 (en) Semiconductor light emitting device
EP1766696B1 (en) Light-emitting device
JP4303550B2 (en) Light emitting device
JP3931916B2 (en) Semiconductor device and manufacturing method thereof
JP5648422B2 (en) Light emitting device and manufacturing method thereof
JP2019102614A (en) Light-emitting device and manufacturing method thereof
TW200541110A (en) Semiconductor light emitting devices including flexible film having therein an optical element, and methods of assembling same
JP6183486B2 (en) LIGHT EMITTING DEVICE, METHOD FOR PRODUCING COVER MEMBER, AND METHOD FOR PRODUCING LIGHT EMITTING DEVICE
US10790424B2 (en) Method of manufacturing light-emitting device, and light-emitting device
KR101310107B1 (en) Encapsulant For UVLED Device, UVLED Device Using The Same And Manufacturing Method thereof
US10644208B2 (en) Method of manufacturing light emitting device
JP4600404B2 (en) Semiconductor device and manufacturing method thereof
JP6760324B2 (en) Light emitting device
JP2008172140A (en) Light-emitting device having buffering material between housing and upside rigid protecting material
TW202220236A (en) Light-emitting device and light-emitting device manufacturing method
KR101334315B1 (en) Light emitting diode lamp and method of fabricating the same
JP7208507B2 (en) Light emitting device and manufacturing method thereof
JP7181489B2 (en) Light emitting device and manufacturing method thereof
JP2009200379A (en) Light-emitting device
JP2007109930A (en) Light-emitting device
KR101115460B1 (en) LED package
JP2022016624A (en) Manufacturing method for light-emitting device and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4788109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151