JP2005158939A - 分割ヒーター付きアニール装置及び方法 - Google Patents

分割ヒーター付きアニール装置及び方法 Download PDF

Info

Publication number
JP2005158939A
JP2005158939A JP2003393974A JP2003393974A JP2005158939A JP 2005158939 A JP2005158939 A JP 2005158939A JP 2003393974 A JP2003393974 A JP 2003393974A JP 2003393974 A JP2003393974 A JP 2003393974A JP 2005158939 A JP2005158939 A JP 2005158939A
Authority
JP
Japan
Prior art keywords
heating means
temperature
divided
annealing
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003393974A
Other languages
English (en)
Inventor
Masaru Kawahara
勝 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoshin Engineering KK
Original Assignee
Kyoshin Engineering KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoshin Engineering KK filed Critical Kyoshin Engineering KK
Priority to JP2003393974A priority Critical patent/JP2005158939A/ja
Publication of JP2005158939A publication Critical patent/JP2005158939A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

【課題】
ワーク寸法が通常の寸法(約620mm)より大きい(約1000mm〜1800mm)場合にはアニール処理室内部の温度分布が一定せず、適切な温度の面内分布を得ることが出来ず、所望の品質を有するアニール処理が出来ない。
【解決手段】
側部加熱手段と下部加熱手段と蒸気発生加熱手段とを有し、側部加熱手段が反応容器の長手方向に距離をおいて配置された複数の分割加熱手段により構成し、かつ、これらの各分割加熱手段が反応容器の周囲を所定角度だけ加熱する複数の細分割ヒーターの集合体により構成しており、下部加熱手段を反応容器の下面において同心円上に距離をおいて配置された複数の分割加熱手段により構成し、上記側部加熱手段、下部加熱手段及び蒸気発生加熱手段をそれぞれ独立して温度調整が可能とした。
【選択図】 図2

Description

本発明は、一般には液晶用ガラス基板やシリコンウエハー等のワークに酸化膜等を生成するための若しくは所望の熱処理を施すための高圧アニール処理装置に関し、特に、液晶用ガラス基板やシリコンウエハー等に酸化膜等を生成し、又は所定の表面処理を施すため処理室内へ純水等の流体を適量だけ供給することにより空焚きを防止すると共に独立して温度制御可能な複数の加熱手段により当該処理室内の温度分布を所望の温度領域内に微調整することにより精度の高いアニール等の作業を達成することが出来る独立して温度制御可能な複数の加熱手段を備えた高温高圧水蒸気アニール処理装置に関する。
液晶用ガラス基板やシリコンウエハー等のワークをアニール処理する場合、該液晶用ガラス基板やシリコンウエハー等の表面を600℃又はそれ以上の温度まで加熱して表面を酸化してそこに酸化膜を形成する方法は知られている。しかしこのような方法は軟化点が500〜600℃程度のソーダガラスではこのような高温に耐えることが出来ずガラス表面が溶解することがある。そこでソーダガラスの代わりに1400〜1700℃程度の軟化点を有する石英ガラスの使用が求められている。しかしながら、石英ガラスは一般に高価であり経済的でない。そこで、ガラス表面だけを瞬間的に酸化させることが出来るレーザーアニール方法が提案された。この方法によればソーダガラスを使用した時でもその表面が溶解するということはなく、高価な石英ガラスの使用は必ずしも必要ではない。しかしながらこのレーザーアニール方法は精度の高い酸化膜を形成することが困難でありガラス上に高精度な酸化膜の形成が期待出来ない。このため、最近では、特に、水蒸気を使用して酸化膜を形成する高圧アニール水蒸気処理方法が広く採用されている。
図11及び図12は本件発明者が先に開示(特許文献1参照)した高圧アニール水蒸気処理装置の例を示している。これらの装置は何れもワークを配置した反応容器内へ外部から純水を供給し、この純水を加熱して蒸気を発生し、当該反応容器内を加熱及び加圧しながらワークへ対して所定のアニール水蒸気処理を行なう装置である。
図11に示す高精度高圧アニール装置10は、石英ガラスにより構成され内部にアニール処理室20を形成している反応容器11と、該反応容器11を包囲しており、例えば、鋼素材により構成されている圧力容器12と、を有している。反応容器11内にはアニール処理されるべき被加工物品である複数のワーク13が積層配置してある。この反応容器11は、有底筒体14と、エンドキャップ15と、両者を封止結合するためのシール手段16と、から構成されている。この反応容器11の外側であって圧力容器12の内側の空間部分には側方から反応容器11内部を加熱するため側部加熱手段17が設けてある。更に、反応容器11の下方部外側には下方から反応容器11の内部を加熱するための下部加熱手段18が設けてある。有底筒体14の下方部であってエンドキャップ15の周辺部には上記加熱手段17、18によって加熱されることにより蒸気を発生するための純水19が収容される周辺溝部21が形成されている。反応容器11内においてワーク13の下側には、純水19が加熱されることにより上昇する蒸気を受けるための複数の好ましくは不透明の石英板22が配置されている。これらの石英板22には、当該蒸気内に含まれている水滴が付着し、直接水滴がワーク13へ付着することを防止すると共に、蒸気をアニール処理室内20へ適切に分散させる作用をしている。またワーク13の上側には蒸気を下方へ反射する板部材23が配置してある。
上方へ盛り上っているエンドキャップ15の中央部にはそこから下方に伸びる例えば筒状の中空部分24がエンドキャップ15と一体的に形成されている。この中空部分24には、好ましくは石英ガラスにより形成された試験管形状の管体25が倒置状態にて差し込まれ、かつ該管体25の開口部が設けてある下方部が、中空部分24の下端部へ対して密封固着され、管体25がエンドキャップ15の下方部に開口するように配置している。管体25の有底部分がワーク13の下側であって石英板22の上方に位置し、この管体25の有底部分に温度制御センサー26が設置されて、こうして反応容器11内の反応作業時の的確な温度測定を行なっている。
図12に示す高精度高圧アニール装置10Aは、図11のアニール装置10とほぼ同様の構造を有しているが、温度制御センサー26Aを収容するための管体25Aが反応容器11Aを構成しているエンドキャップ15Aの中央部から上方に向かってエンドキャップと一体的に形成されている。これによりエンドキャップの構成を容易にしている。なお、図12に示す高精度高圧アニール装置10Aも、図11の装置10と同様に、反応容器11A内の反応作業時の的確な温度測定が可能である。
これらのアニール装置10、10Aは反応容器内部の温度及び圧力制御に関して、それ以前の同種装置に比較して極めて高い信頼性をもたらし、その結果、処理されたワークの性能を非常に向上させることに成功した。これは温度制御センサー26、26Aからの情報に基き、必要に応じて加熱手段17、17A、18、18Aをオンオフ調整し又はPID(比例積分微分)制御することが出来、更にこれらの温度制御センサーの下方には石英ガラス板好ましくは不透明な石英ガラス板22、22Aが配置され、該不透明石英ガラス板の下方に配置されている下部加熱手段18、18Aから放散される熱線を遠赤外線の熱線に変換し、これによりアニール処理室内における温度分布の均一化を図ることが出来るようになったからである。
特願2003−311638
上述の装置は、寸法が通常約620mm程度のワークのアニール処理に適するものである。しかしながら、今日、液晶デイスプレー等は、その寸法が1000mm〜1800mm程度又はそれ以上の大型デイスプレーまでもが要求されつつある現状である。もし、このような大型ワークを図11、図12に示すようなアニール装置によって処理加工しようとするならば、当然、アニール処理室をそのような大きいワークを収容出来るように大型化し、加熱手段も大きいワット密度を提供できるものとする必要がある。然るに発明者の実験によれば、そのように大型化したアニール処理室において、上述装置のような加熱手段の配列によっては、その大型化したアニール処理室内部の温度分布が一定せず、適切な温度の面内分布を得ることが出来ず、その結果、所望の品質を有するアニール処理が出来ないことが判明した。即ち、大型化したアニール処理室内に配置した大型ワークの中央部において所望の温度を得ようとすると、周辺部において所望の温度が得られず、また、周辺部において所望の温度を得ようとすると、中央部の温度が高くなりすぎ、所望のアニール処理が出来ないのである。更に、これら大型化したワーク表面の温度分布が、処理室中央部から周辺部に至る間における面内温度分布がランダムに変化することも判明した。これはワークにおける熱伝達速度の不均一性に加え、加熱手段とワークとの距離的な関係、その他の理由によって、ワーク全面に必ずしも常に均等な温度上昇をもたらすことが出来ず、もし、均等な温度上昇を得ようとすると、非常にゆっくりした温度上昇を行わねばならず、加熱作業に極めて長い時間を必要とする。しかし、もしこのようなゆっくりした温度上昇を行うと純水全体が同時に加熱され、そのためシール手段が熱による損傷の危険に遭遇することも判明した。そこで、本発明においては、1000〜1800mm程度又はそれ以上の大型のワークへ対する迅速かつ適切な温度上昇を可能とすると同時にシール手段へ対する熱損傷の危険を発生せず、これまでと同様にすぐれたアニール処理を施すことが可能な高圧アニール装置を提供することを目的とする。
本発明は上記課題を解消するため、圧力容器内へ間隔を置いて配置されている反応容器内へ収容されたワークを高圧アニール水蒸気処理方法にてアニール処理を施す高温高圧アニール水蒸気処理装置を提供する。この装置は、側部加熱手段と、下部加熱手段と、蒸気発生加熱手段と、を有している。側部加熱手段は反応容器の長手方向に距離をおいて配置された複数の分割加熱手段(32A、32B、32C....32N)により構成され、かつ、これらの各分割加熱手段(32A、32B、32C....32N)は反応容器の周囲を所定角度だけ加熱する複数の細分割ヒーター(32Aa、32Ab、32Ac...32Ba、32Bb、32Bc...)の集合体により構成され、下部加熱手段が反応容器の下面において同心円上に距離をおいて配置された複数の分割加熱手段(33A、33B、33C....33N)により構成されている。その上、側部加熱手段、下部加熱手段及び蒸気発生加熱手段がそれぞれ独立して温度調整が可能である。
本発明によれば、予め装置に、本件発明による温度条件を施すことにより、これまでの620mm程度のワークに対しては勿論、これよりも大きいワーク、例えば1000〜1800mm又はそれ以上の大きさのワークへ対しても、迅速かつ的確で、その上、均質な高圧アニール作業を行なうことが可能な高温雰囲気を短時間で達成することが出来る。その結果、このように大型化したワーク全表面に対しても迅速に均一な高温分布を達成することが出来、これによりそのような大型化したワークへ対しても容易に所望の品質を有するアニール処理を提供することが出来る。
この発明においては、上述の様にかなり大きな寸法を有するワークへ所望のアニール処理を施すことが可能な装置を提供する。この装置においては、特に大きいワークの全面へ常に均一な温度分布をもたらすことが出来るようにするため、側部加熱手段と下部加熱手段と蒸気発生加熱手段とを設け、側部加熱手段及び下部加熱手段をそれぞれ複数の分割加熱手段にて構成すると同時に、それらの側部加熱手段と下部加熱手段と蒸気発生加熱手段とが必要に応じて適切な温度勾配を形成出来るよう、それぞれ独立して温度制御可能とし、また処理室即ち反応容器内部の温度を特定位置にて感知することにより、その温度データを測定する。これにより各分割加熱手段の発熱量を予め調整して各加熱手段に出力勾配を設けるようにした。こうして、反応容器内の温度データを各加熱手段の作動容量値にフィードバックすることにより予め各ヒーターの特定値に設定し、反応容器内の各位置における温度条件を最適状態にし、かつシール手段の熱損傷を発生することなく、これまでよりも大きいワークの全表面を常に所望の温度まで加熱することが出来るようにしている。
図1は、図11及び図12に示す装置をこれまでよりも大型のワーク処理が可能なように改良したもので、図2は、図1に示す反応容器の下方部分のみを示した本件発明にかかる高圧アニール装置の部分拡大図である。図1に示す高圧アニール装置30においては、1000〜1800mmもの大型ワーク49を収容出来るように反応容器31と圧力容器48とを大型化すると共に、そのような大型ワーク49の表面全体を常に均等に所望温度まで加熱し、所望の処理が出来るように、反応容器31と圧力容器48との間に配設する側部加熱手段32及び下部加熱手段33を特異な構成としたものである。図1に示すアニール処理装置30において、反応容器31を包囲している圧力容器48、ワーク上方の板部材50、その他の要素の作用及び構成は、図11に示すアニール処理装置に関して述べたものと同様であるので詳述しない。以下、本発明のアニール装置30の構成について詳細に述べる。
図1及びその一部拡大図にして示して図2を参照すると、アニール処理装置30を構成している反応容器31は好ましくは石英ガラスにより構成されている。この反応容器31は、大型のワーク49を受入可能な寸法を有する倒置した有底筒体34と、該筒体34の下側開放端部を閉鎖しており中央部が上方へ湾曲しているエンドキャップ35と、当該筒体34とエンドキャップ35とを封止結合するためのシール手段36と、により構成されている。更に当該筒体34の下端部とエンドキャップ35の周辺内側面との間には、周辺溝部37が形成され、この周辺溝部37には一度の処理作業に必要な程度の純水38が液体供給手段54を介して供給収容されている。上方へ湾曲しているエンドキャップ35の中央部にはそこから下方に伸びる例えば筒状の中空部分39がエンドキャップ35と一体的に形成されている。この中空部分39には、好ましくは石英ガラスにより形成された試験管形状の管体40が倒置状態にて差し込まれ、かつ該管体40の開口部が設けてある端部が、中空部分39の下端部へ対して密封固着され、管体40は、図11の装置と同様に、エンドキャップ35の下方へ向かって開口して配置されている。この管体40の有底部分は処理室47内のワーク下方部分まで延びており、この有底部分には温度制御センサー41が設置されている。これにより処理室47内にセンサー41からの金属イオンが飛散することを阻止しかつその金属イオンがワークへ付着するような事故を発生することなく処理室内の温度を正確に測定出来る。なお、本件発明者の研究において、処理室47の内部温度はワーク49の上方部分で測定するよりも図示のように下方部分で測定することにより、一層正確な室内温度データを得ることが出来ることが判明している。これは、上方部分では板部材50からの反射熱及び上方部分の側方加熱手段32からの影響が反映するためと思われる。
反応容器31の内部において、被加工積層ワーク49の下側には不透明石英板42が設けてある。この石英板42は図示の例では3枚だけ示しているが、これに限定されるものではない。また、これらの石英板は周辺溝部37内の純水38が加熱されることによって発生する蒸気が処理室内へ上昇する際にその流れを邪魔することにより当該蒸気内に含まれている水滴を除却する機能を有しており、さらにこれらの石英板には当該水滴が除却された蒸気をワークアニール処理室47内へ均等に分散するように、所定寸法の孔を設けることも可能である。更にまたこれらの石英板42は下部加熱手段33によって加熱されることによりそれ自身発熱体となって処理室内を加熱する補助作用を有している。前記管体40はこれら石英板42の中央部を貫通してワーク49の下側近傍まで延びており(図1参照)、これによって処理室47内における反応作業時のワーク処理温度の測定を行なっている。更に、ワーク49の上方部位には、処理室47内を上昇した蒸気及び熱を下方へ反射するための板材50が配置されている。温度センサー41は、後述するように、加熱処理室47の内部温度を代表して計測するものであり、この場合、温度センサーをこの位置に設置することによって最も適切に処理室内の温度を代表出来る。これらは上述の通りである。
反応容器31と、圧力容器48と、の間には、反応容器31の内部に画定される処理室47内を側面から加熱するため筒体34の外周面を包囲するように、側部加熱手段32が設けてある。この側部加熱手段は、該処理室47の長手方向に分断されて配置されている複数の分割加熱手段から構成されている。例えば、反応容器31の外周面の下方部分に配置されている第1の側部加熱手段32Aと、その上方に配置されている第2の側部加熱手段32Bと、更に順次上方の位置を加熱するための側部加熱手段32C〜32Nと、により構成されている。一般にこの加熱手段は多いほど的確な温度制御が可能となるが、多すぎるとその調整に時間を要することになる。出願人の実験によれば、例えば、石英板42の周辺を加熱する加熱手段、積層ワークと石英板との間を加熱する加熱手段、積層ワークの下方部分を加熱する加熱手段、積層ワークの中間部分を加熱する加熱手段、積層ワークの上方部分を加熱する加熱手段、積層ワークの上方部分と上部板部材との間を加熱する加熱手段、等を有することが望ましいが、少なくとも3個(N=3)以上の側部加熱手段を設けることが好ましい。
ここで注意すべきことは、これらの分割されている各側部加熱手段32A、32B、32C〜32Nは、図4に示すように、反応容器31の側壁の全周面を所定角度αに分割した領域を加熱するため、それぞれ、複数の細分割ヒーターの集合体により構成されているのである。例えば図3及び図4に示すように、側部加熱手段32Aは、所定角度(α)を120度と設定すると、それぞれ僅かな間隔(s)を置いて配置した3個の細分割ヒーター32Aa、32Ab、32Acの集合体によって構成され、同様に、側部加熱手段32Bも、それぞれ3個の細分割ヒーター32Ba、32Bb、32Bcの集合体によって構成される。当業者に明らかなように、もし、所定角度(α)を90度に設定すると、当該側壁面を4分割して加熱するため、分割されている各側部加熱手段32A、32B、32C〜32Nは、それぞれ4個の細分割ヒーターの集合体によって構成され、もし、所定角度(α)を180度に設定すると、当該側壁面を2分割して加熱するため、各側部加熱手段32A、32B、32C〜32Nは、それぞれ2個の細分割ヒーターの集合体によって構成されることになる。これらの分割ヒーターの数は一般に多いほど的確な温度制御が可能となるが、多すぎるとその調整に時間を要することになる。出願人の実験によれば、分割されている各側部加熱手段はそれぞれ少なくとも4個(α=90度)若しくは5個(α=72度)の細分割ヒーターにより構成することが望ましい。
然るに、本発明において、これらの各側部加熱手段32A、32B、32C〜32Nを構成している各分割ヒーターは、例えば、N=3、所定角度α=120度と仮定すると、分割ヒーターの数は合計9個であり、これらは全て、それぞれ互に独立して温度調整が出来る構成となっている。
更に本発明では、反応容器31の内部を下側から加熱するため、該反応容器31の外側であってエンドキャップ35の下側湾曲面に沿って下部加熱手段33が設けてある。この下部加熱手段33は、図11又は図12に示すようなリング状に連続している下部加熱手段18、18Aと異なり、それぞれ同心円状に分割配置した複数の加熱手段により構成されている。即ち、この下部加熱手段33は、例えば、図2に示すように、反応容器31の底部中心部を下側から加熱するためエンドキャップ35の最上湾部付近に配置されている第1の分割下部加熱手段33Aと、第1の分割下部加熱手段33Aの外周部に配置されている第2の分割下部加熱手段33Bと、反応容器のさらに半径方向外方を加熱する第3の分割下部加熱手段33Cと、により構成されている。勿論、同心円の直径を更に細かく設定し、より多くの分割加熱手段(33A〜33N)を配置することも可能であるが、出願人の実験によれば少なくとも3個以上の下部加熱手段を設けることが望ましい。
更に、これらの分割されている各下部加熱手段33A、33B、33Cは、反応容器31を構成しているエンドキャップ35の下側湾曲面において360度全円周面に沿って同心円状に連続して配置されているものではなく、図5に示すように、当該面を同心円状に分割し、更に各々の同心円を複数の円弧状に分割して加熱するものである。このため、これらの分割されている各下部加熱手段33A、33B、33Cは、エンドキャップ35の全円周面を所定角度(β)に分割した領域を加熱するため、それぞれが、複数の細分割ヒーターの集合体により構成されている。例えば、所定角度(β)を120度と設定すると、中心部の下部加熱手段33Aは、それぞれ僅かな間隔(t)をおいて同心円状に配置されている3個の細分割ヒーター33Aa、33Ab、33Acの集合体によって構成され、同様に、下部加熱手段33Bも、それぞれ3個の細分割ヒーター33Ba、33Bb、33Bcの集合体によって構成されている。当業者に明らかなように、もし、所定角度(β)を90度に設定すると、当該円周面を4分割して加熱するため、各下部加熱手段33A、33B、33Cは、それぞれ4個の細分割ヒーターの集合体によって構成され、もし、所定角度βを180度に設定すると、当該円周面を2分割して加熱するため、分割されている各下部加熱手段33A、33B、33Cは、それぞれ2個の細分割ヒーターの集合体によって構成されることになる。これらの細分割ヒーターの数は一般に多いほど的確な温度制御が可能となるが、多すぎるとその調整に時間を要することになる。出願人の実験によれば、分割されている各下部加熱手段は少なくとも4個(β=90度)、若しくは5個(β=72度)の細分割ヒーターにより構成することが望ましい。なお、上記記載において、中心部の下部加熱手段33Aが、3個の細分割ヒーター33Aa、33Ab、33Acの集合体によって構成される旨記述しているが、この下部加熱手段33Aは従来通りの連続した加熱手段としても室内熱分布にさほど大きな影響はないことが出願人の実験で判明している。
然るに、本発明において、これらの分割されている各下部加熱手段33A、33B、33C〜33Nを構成している各細分割ヒーターは、例えばN=3、所定角度α=120度と仮定すると合計で9個となり、これらは全て、それぞれ互に独立して温度調整が出来る構成となっている。
更に、反応容器31の下方部分に形成されている周辺溝部37へ収容されている純水38を加熱して処理室47内部へ送給する蒸気を発生するため、反応容器31の外側であって筒体34の下端部でかつ側部加熱手段32Aの下側位置に蒸気発生用の側部加熱手段(以下、蒸気発生側部加熱手段という)43(図2参照)と、該反応容器31の外側であってエンドキャップ35の湾曲面に沿って同心円状に配置した最外側の下部加熱手段33N(図示の例ではN=C)の半径方向外側位置に蒸気発生用の下部加熱手段(以下、蒸気発生下部加熱手段という)44(図2及び図5参照)と、が設けてある。これらの蒸気発生側部加熱手段43及び蒸気発生下部加熱手段44は、上述の側部加熱手段32及び下部加熱手段33とは異なり、所定角度毎に分割した細分割ヒーターにより構成する必要はない。しかし、細分割ヒーターとすることも可能である。特に蒸気発生側部加熱手段43は処理室47の内部温度に大きな影響力を及ぼすことがあるので、この実施例では、他の側部加熱手段と同数の細分割ヒーターの集合体より形成されるものとする。また、これらの蒸気発生側部加熱手段43及び蒸気発生下部加熱手段44も、それぞれ側部加熱手段32及び下部加熱手段33からは独立して温度調整が可能であり、蒸気発生側部加熱手段43を細分割ヒーターの集合体とした時はそれらの細分割ヒーターも互に独立して温度調整が可能とする。なお、これらの蒸気発生側部加熱手段43及び蒸気発生下部加熱手段44は必要なら、一方を省略することも出来る。
ここで注意されるべきことは、これらの蒸気発生側部加熱手段43及び蒸気発生下部加熱手段44は、共に、純水38の上方部分即ち上層部分付近のみを加熱し、かつシール手段36に近接した下方部分即ち下層部分を加熱しないように、出来るだけ当該シール手段36から離れて位置付けることに意を払う必要がある。シール手段36の耐用温度は通常200℃程度であり、シール手段がこれらの加熱手段により加熱され損傷を受けることを極力防止する必要があるためである。なお、この実施例においては、温度センサー41を収容する管体40を、図11に示すと同様な構成にて示しているが、これに限定されるものではなく、図12に示すと同様な構成とすることも可能である。なお、図1において、符号54は液体供給手段を、符号55は処理室へ連通する連通管である。
次に、本件発明装置の作動に付いて述べる。図1及び図2に示す本件発明のアニール処理装置30において、初めに、被処理ワークと同様の寸法、形状及び構造を有するサンプルワーク即ちダミーワーク49Aを準備し、これらを実際に処理作業を行なう場合と同様の枚数だけ同様の作業手順でアニール処理装置30内の所定位置へ積層装着する。説明においては、図を簡単にするため、図6に示すように、サンプルワーク49Aの数を3枚として説明する。アニール処理装置30へ装着する前に、各サンプルワークW1、W2、W3には、図6に示すように、それぞれ、例えば、サンプルワークの周辺部8点と中央部1点合計で9点を選択して、これら各点の温度を測定するためのセンサーS1、S2、S3、S4、S5、S6、S7、S8、S9を取り付ける。図6においては図を簡単にするため、サンプルW3にだけセンサーを取り付けて示しているが、W2、W1にも同様にセンサーを装着する。従って、センサーの数は合計で(3×9=27)により、27個となる。これらのセンサー付きのサンプルワークを装置内の所定位置へ積載し、周辺溝部37へ純水を供給する。
反応容器31を封止状態に設定した後、初めに側部加熱手段32を起動して当該容器31の内部を予備加熱する。これによりサンプルワークを予め185℃以上の温度(例えば200℃)まで予熱する。この温度は、温度制御センサー41によって検知出来る。その後、蒸気発生側部加熱手段43及び/又は蒸気発生下部加熱手段44を起動する。これにより純水の表面部分から蒸気が発生する。純水表面から発生した蒸気により、反応容器31内の圧力が上昇する。反応容器31の内圧は連通管55へ取り付けてある圧力センサー52(図1)にて感知する。次に反応容器内の空気を排除する。このために、連通管55内の弁53(図1)を開放しながら、さらに蒸気により容器内部の圧力上昇を図る。圧力センサー52によって反応容器の内圧(絶対圧)を計測し、その圧力に対する飽和蒸気温度が純水表面の直ぐ上面を公知の手段で検知した温度に等しい時、反応容器31内の空気が蒸気によって完全に置換されたこと意味し、空気の入れ替えが完了する。これにより処理作業の前工程が完了する。勿論、このような手順以外に、弁53を開放してそこから公知の真空ポンプで容器3内の空気を抜き出して、容器内の空気を入れ替えることも可能である。
次いで、側部加熱手段32と、下部加熱手段33と、を更に加熱し、処理容器内の温度を所望の処理温度である例えば350℃まで上昇させる。ここでは、例示として、側部加熱手段32が、(N=4、α=120度と仮定して)12個の細分割ヒーターから構成され、同様に、下部加熱手段33が、(同心円状に3個、β=120度と仮定して)9個の細分割ヒーターから構成されているものとする。しかして、合計で21個の細分割ヒーターの温度上昇に伴ってワークサンプルW1、W2、W3の温度が漸次上昇する。そのときの各ワークサンプルの温度変化をワークサンプルへ装着した27個のセンサー(S1〜S27)からのデータで収集する。27個のセンサーによる温度上昇の変化と時間との関係を図7に示す。この図から分かるように、全ての細分割ヒーターを起動した当初(T0)からある時間T1までは、各センサーS1〜S27の温度は、予備加熱温度(PT)から順次ばらばらに上昇を始め、そのバラツキ(m)はかなり大きい。このバラツキを少なくするため、処理室47内の温度制御センサー41からの温度データを温度調整器(TC)で受け、処理室内の温度調整を開始する。温度制御センサー41と、温度調整器45と、各細分割ヒーターとは、図8に示すような回路によって接続されている。
即ち、温度制御センサー41にて検出された温度データは、初めに温度調整器45へ送られる。温度調整器45は、センサー41が所望の温度350℃よりも低い(高い)温度を感知すると、温度調整器45は室内温度を上げる(下げる)ことを指令する。そこで、操作員は所定のソリッドステートパワーリレー(SSPR1〜SSPRn)46の抵抗値を変動調整し、各位置に配置されている細分割ヒーターへ対してワット密度による出力勾配を形成する。即ち、温度センサー41が350℃よりも低い(高い)値を示している場合にはリレーの抵抗値を調整して電圧が掛かる時間を調整することにより各加熱手段へ対する電力出力を制御することにより当該センサー41に近接している細分割ヒーターから順次その出力を所定値だけ上げ(下げ)、センサー41の変動を確認し、細分割ヒーターとセンサー41との関連を確認する。かかる調整を再三試行する。その後、最もセンサー41に大きな影響を持つリレーから順次調整し、温度制御センサー41からの処理室内温度のデータを各分割ヒーター32Aa〜32Anへフィードバックしながら、全てのリレー46を何度か調整し、処理室内の温度が所望の値に収斂するまで繰返す。最終的にセンサー41が所定の350℃を提供する。このようにして当該SSPRへ直結した分割ヒーターの温度調整がなされる。
その結果、図7に示すように、時間T2後においては、処理室内に積層配置したワークサンプルへ装着した各センサーからのデータは略所望の350℃の線上に至る。このときの各リレー46の抵抗値を特定値として記録し、レシピ1を作成する。これらの値がこの装置30の350℃に対する特定値を示すものである。従って、この後において、この装置により実働作業を開始する時には、予め、図8に示す回路中の各リレー46の抵抗値をレシピ1に記載の当該特定値に設定することにより、装置内に配置したワークの全ての面の温度が、350℃の所望の値を示すのである。かかる手順により、例えば室内処理温度を400℃とする各分割加熱手段を構成している細分割ヒーターの特定値を検出し、レシピ2を作成する。同様にして、450℃とするレシピ3を、更にそれ以外の特定の温度に対する多くのレシピを作成する。このとき蒸気発生加熱手段43、44を同時に作動させ更に、もし、蒸気発生側部加熱手段43を細分割ヒーターにより構成するときには、当該細分割ヒーターからの温度情報をも同時に加味したレシピを作成することは当然である。
本発明の装置により所望の加熱処理を行う場合には、必要な処理室内の温度を特定し、上記レシピの中から当該特定温度に合致するレシピを探し出し、そのレシピに基き、各リレー46の抵抗値をダイアルにて調整し、こうして各分割ヒーターの発熱量即ちワット密度を特定する。この結果、各分割ヒーターには特定のワット密度勾配が設定される。然るにこのワット密度勾配は、処理室内における作業ワーク49の全面へ最も均一な温度分布をもたらすものである。次いで、所定の手順により所望の処理作業を行う。これにより、極めて高品質な加熱処理作業が達成出来るのである。
図9は、レシピを作成するための別の手法について開示している。この方法では、コンピューターへ温度情報を取り込むことによって、各細分割ヒーターの最適温度条件を検出するものである。このため、この具体例においては、各側部加熱手段32及び各下部加熱手段33を構成している各細分割ヒーターと反応容器31との間にそれぞれ温度センサーT1、T1、T1...及びT2、T2、T2...を配置し、更に蒸気発生加熱手段43、44と反応容器31との間にもそれぞれ温度センサーT3、T3を配置して各細分割ヒーター及び/又は蒸気発生加熱手段のヒーター温度を測定している。細分割ヒーターの数に等しい数のT1〜T3からの温度情報を、温度制御センサー41からの温度情報と共に主温度調整器57を介してコンピューター56へ取り込む。更に、図6に示すサンプルワーク49Aの各点の温度もコンピューター56へ取り込み、これらのヒーター温度とサンプルワーク49Aの各点の温度とを比較する。そこで、所望の設定温度と実際のサンプルワークの温度情報とを比較し、実際のサンプルワーク温度が所望値よりも高い(低い)場合にはコンピューター56が各ヒーターの温度を順次下げる(上げる)ように指令する。これにより各分割ヒーター等へ直結している副温度調整器58、58、58...が作動して各ヒーターの温度を所定の値だけ調整する。この場合、必要に応じて各細分割ヒーターの温度調整をシーケンス制御し、実際のサンプルワークの温度情報と、各細分割ヒーターとの関連性を判別する。次いで、コンピューターの助けによりサンプルワークの全ての面における温度が所望の処理温度(例えば350℃)に最も近接する時の温度制御センサー41及び各分割ヒーターの温度を設定する副温度調整器58、58、58...の数値を記録し、レシピを作成する。なお、図9においては、蒸気発生加熱手段43、44については、別に設けたコンピューター回路によりレシピを作成するようにしているが、これに限定されるものではなく、一つのコンピューター回路にて同時に温度調整してレシピを作成することも出来る。同様の手順により、上記と同様に、複数のレシピを作成する。
本発明の装置により所望の加熱処理を行う場合には、必要な処理室内の温度を特定し、上記レシピの中から当該特定温度に合致するレシピを探し出し、そのレシピに基き、各温度副調整器58、58...を調整し、こうして各分割ヒーターの発熱量を特定する。この結果、各分割ヒーターには特定のワット密度勾配が設定される。然るにこのワット密度勾配は、処理室内における作業ワーク49の全面へ最も均一な温度分布をもたらすものである。次いで、所定の手順により所望の処理作業を行う。これにより、極めて高品質な加熱処理作業が達成出来るのである。
図10は、図8及び図9に示す方法によって作成したレシピに基き、作業用ワークへ対して所定の熱処理を施すようにSSPR46、46...及び各温度副調整器58、58...を予め設定した時の複数ワークの温度上昇状態を示す図である。この図から分かるように、本発明による方法によれば、実際の作業工程が始まるときには、ほとんど全てのワークがほとんど全ての面においてほぼ同一の温度状態を提供することが出来る。
本発明によれば、これまでよりも大きい約1000〜1800mm程度のワークでも非常に高精度な温度管理により高圧アニール作業を達成することが出来るので作業の歩留まりが上昇し、均質で高品質なアニール作業を極めて低価格にて行なうことが可能となる。このため、多くの液晶カラーフィルターの製造、液晶TFT基板の成形、プラズマデイスプレー材料の焼成及びそのアニール作業、有機エレクトリックルミネッセンス用基板の乾燥、その他の同種の作業に最適に利用可能である。
また、本発明の設定では、処理室の温度が350℃即ち1.1MPaの状態の時、周辺溝部37内の純水表面温度は約185℃になり、所定の蒸気を発生するが、周辺溝部37低部の純水の温度は約150℃以上に上昇せず、このため、200℃程度で熱損傷を受けるシール手段36は、何の変化もなく適切に機能する。また、純水表面から発生した蒸気がもし水滴を含んでいても、ワーク49が予め200℃程度まで加熱されているので、それらの水滴がワークへ付着して存置するということはない。また、本発明においては、純水とワークとの間に石英板42が配置されているので、もし水滴が発生しても、その殆どが当該石英板42に付着し、ワークへ蒸気が到達する時には、その蒸気中からは水滴が除去された状態となっており、水滴による「しみ」の問題は発生しない。
本件発明の全体図を示した図である。 図1の一部拡大図を示した図である。 本件発明における側部加熱手段を構成している分割ヒーターの配置状態を示している図である。 本件発明における側部加熱手段を構成している分割ヒーターの細分割ヒーターの配置状態を示している図であって、図3の矢線4−4に沿って見た図である。 本件発明における下部加熱手段を構成している分割ヒーター及び細分割ヒーターの配置状態を示している図である。 サンプルワークへ温度感知センサーを装着した図である。 サンプルワークによる温度調整の状態を示す図である。 本件発明のワット密度勾配をもたらすための回路を示す図である。 図2と同様の各分割ヒーターの配置状態と、各分割ヒーターからの温度情報の収集方法及び解析方法をコンピューターにより行うための解説図である。 本発明により得たレシピに基きワーク処理を行なったときのワーク各面の温度上昇変化を示す図である。 従来の装置の一例を示す図1と同様の図である。 従来の装置の別の一例を示す図1と同様の図である。
符号の説明
30 高圧アニール装置 31 反応容器
32 側部加熱手段 33 下部加熱手段
34 有底筒体 35 エンドキャップ
36 シール手段 37 周辺溝部
38 純水 39 中空部分
40 管体 41 温度制御センサー
42 石英板 43 蒸気発生側部加熱手段
44 蒸気発生下部加熱手段 45 温度制御器
46 ソリッドステートパワーリレー 47 アニール処理室
48 圧力容器 49 ワーク
49A サンプルワーク 50 板部材
52 圧力センサー 53 弁
54 液体供給手段 55 連通管
56 コンピューター 57 主温度調整器
58 副温度調整器 TC 温度調整器
m バラツキ S1〜S9 温度センサー
T1、T2、T3 温度センサー W1〜W3 サンプルワーク
s、t 間隙

Claims (12)

  1. 圧力容器内へ間隔を置いて配置されている反応容器内へ収容されたワークを高圧アニール水蒸気処理方法にてアニール処理を施す分割ヒーターによる温度制御可能な高温高圧アニール水蒸気処理装置であって、
    側部加熱手段と、下部加熱手段と、蒸気発生加熱手段と、を有し、
    側部加熱手段が反応容器の長手方向に距離をおいて配置された複数の分割加熱手段(32A、32B、32C....32N)により構成され、かつ、これらの各分割加熱手段(32A、32B、32C....32N)が反応容器の周囲を所定角度だけ加熱する複数の細分割ヒーター(32Aa、32Ab、32Ac...32Ba、32Bb、32Bc...)の集合体により構成されており、
    下部加熱手段が反応容器の下面において同心円上に距離をおいて配置された複数の分割加熱手段(33A、33B、33C....33N)により構成されており、
    上記側部加熱手段、下部加熱手段及び蒸気発生加熱手段がそれぞれ独立して温度調整が可能であることを特徴とする分割ヒーター付きアニール水蒸気処理装置。
  2. 下部加熱手段を構成している各分割加熱手段(33A、33B、33C....33N)が反応容器の下面を所定角度だけ加熱する複数の細分割ヒーターの集合体により構成される分割加熱手段を含んでいることを特徴とする請求項1に記載の分割ヒーター付きアニール水蒸気処理装置。
  3. 蒸気発生加熱手段が少なくとも蒸気発生側部加熱手段を有していることを特徴とする請求項1又は2に記載の高温高圧アニール水蒸気処理装置。
  4. 蒸気発生側部加熱手段が反応容器の反応容器の周囲を所定角度だけ加熱する複数のヒーターの集合体により構成されていることを特徴とする請求項1乃至3のいずれか一つにに記載の高温高圧アニール水蒸気処理装置。
  5. 蒸気発生加熱手段が少なくとも蒸気発生下部加熱手段を有していることを特徴とする請求項1乃至4のいずれか一つに記載の高温高圧アニール水蒸気処理装置。
  6. 各分割加熱手段及び/又は細分割ヒーターの温度調整がソリッドステートパワーリレーの出力調整によって行われることを特徴とする請求項1乃至5のいずれか一つに記載の高温高圧アニール水蒸気処理装置。
  7. 各分割加熱手段及び/又は細分割ヒーターの温度調整がコンピューターにより算出した温度勾配を提供するように各分割加熱手段及び/又は細分割ヒーターに接続された温度調整器によって行われることを特徴とする請求項1乃至5のいずれか一つに記載の高温高圧アニール水蒸気処理装置。
  8. 各分割加熱手段及び/又は細分割ヒーターの温度をワークと石英板との間に配置した温度制御センサーが検知する反応室内温度に対応して調整することを特徴とする請求項1乃至7のいずれか一つに記載の高温高圧アニール水蒸気処理装置。
  9. 互に独立して温度調整可能な側部加熱手段と下部加熱手段と蒸気発生加熱手段とを有しているアニール処理装置においてアニール処理する方法であって、
    所定数のサンプルワークへ所望の数の温度センサーを装着して装置内へ搭載しかつ加熱手段を起動して各加熱手段に取り付けた温度センサーからの温度データを収集すること、
    加熱手段の温度を測定してこれらの温度を記録し、各加熱手段に特定の温度勾配を形成することによりサンプルワークのセンサ−の値が所望の温度領域に入る点を特定しレシピを作成すること、
    サンプルワークの代わりに作業用ワークを搭載しかつレシピに基き各加熱手段の温度出力を所定の勾配を形成するように予め調整すること、
    の諸工程によりアニール水蒸気処理方法。
  10. 側部加熱手段と、下部加熱手段と、蒸気発生加熱手段と、を有し、側部加熱手段が反応容器の長手方向に距離をおいて配置された複数の加熱手段(32A、32B、32C....32N)により構成され、かつ、これらの各加熱手段(32A、32B、32C....32N)が反応容器の周囲を所定角度だけ加熱する複数の細分割ヒーター(32Aa、32Ab、32Ac...32Ba、32Bb、32Bc...)の集合体により構成され、下部加熱手段が反応容器の下面において同心円上に距離をおいて配置された複数の加熱手段(33A、33B、33C....33N)により構成され、上記側部加熱手段、下部加熱手段及び蒸気発生加熱手段がそれぞれ独立した温度調整が可能である装置によって、圧力容器内へ間隔を置いて配置されている反応容器内へ収容されたワークを高圧アニール水蒸気処理する方法であって、
    初めに所定数のサンプルワークへ所望の数の温度センサーを装着して装置内へ搭載しかつ各加熱手段を起動して各温度センサーからの温度データを収集すること、
    各分割手段を構成している分割加熱手段及び/又は細分割ヒーターの温度を測定してこれらの温度を記録し、各分割加熱手段及び/又は細分割ヒーターに特定の温度勾配を形成することによりサンプルワークのセンサ−の値が所望の温度領域に入る点を特定しレシピを作成すること、
    サンプルワークの代わりに作業用ワークを搭載しかつレシピに基き各分割加熱手段及び/又は細分割ヒーターの温度出力を所定の温度勾配を形成するように予め調整すること、
    の諸工程により高精度のアニール処理を可能とする高温高圧アニール水蒸気処理方法。
  11. サンプルワークのセンサ−の値が所望の温度領域に入る点を特定するため、ソリッドステートパワーリレーを使用することを特徴とする請求項9に記載の高温高圧アニール水蒸気処理方法。
  12. サンプルワークのセンサ−の値が所望の温度領域に入る点を特定するため、コンピューターによる演算を用いることを特徴とする請求項9に記載の高温高圧アニール水蒸気処理方法。
JP2003393974A 2003-11-25 2003-11-25 分割ヒーター付きアニール装置及び方法 Pending JP2005158939A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003393974A JP2005158939A (ja) 2003-11-25 2003-11-25 分割ヒーター付きアニール装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393974A JP2005158939A (ja) 2003-11-25 2003-11-25 分割ヒーター付きアニール装置及び方法

Publications (1)

Publication Number Publication Date
JP2005158939A true JP2005158939A (ja) 2005-06-16

Family

ID=34720181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393974A Pending JP2005158939A (ja) 2003-11-25 2003-11-25 分割ヒーター付きアニール装置及び方法

Country Status (1)

Country Link
JP (1) JP2005158939A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010727A (ja) * 2006-06-30 2008-01-17 Dainippon Printing Co Ltd 蒸気処理装置及び蒸気処理方法
JP2008053258A (ja) * 2006-08-22 2008-03-06 Ihi Corp 熱処理装置および熱処理方法とその制御装置
JP2014165500A (ja) * 2013-02-26 2014-09-08 Tera Semicon Corp バッチ式基板処理装置
JP2016160128A (ja) * 2015-02-27 2016-09-05 AvanStrate株式会社 ガラス基板の製造方法
KR20180080750A (ko) * 2017-01-04 2018-07-13 서울대학교산학협력단 병원성 미생물 살균을 위한 과열수증기 발생장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010727A (ja) * 2006-06-30 2008-01-17 Dainippon Printing Co Ltd 蒸気処理装置及び蒸気処理方法
JP2008053258A (ja) * 2006-08-22 2008-03-06 Ihi Corp 熱処理装置および熱処理方法とその制御装置
JP2014165500A (ja) * 2013-02-26 2014-09-08 Tera Semicon Corp バッチ式基板処理装置
JP2016160128A (ja) * 2015-02-27 2016-09-05 AvanStrate株式会社 ガラス基板の製造方法
KR20180080750A (ko) * 2017-01-04 2018-07-13 서울대학교산학협력단 병원성 미생물 살균을 위한 과열수증기 발생장치
KR101916395B1 (ko) * 2017-01-04 2018-11-08 서울대학교 산학협력단 병원성 미생물 살균을 위한 과열수증기 발생장치

Similar Documents

Publication Publication Date Title
US6353209B1 (en) Temperature processing module
JP5173092B2 (ja) 加工室の温度制御方法、半導体加工装置及びセンサ較正方法
JP4744382B2 (ja) プローバ及びプローブ接触方法
US11024522B2 (en) Virtual sensor for spatially resolved wafer temperature control
KR101648082B1 (ko) 화학 증착 챔버 내부의 베이스 가열 제어 장치 및 방법
US20140251214A1 (en) Heated substrate support with flatness control
KR100481113B1 (ko) 웨이퍼 가열장치 및 그의 제어방법
TW200428505A (en) Critical dimension variation compensation across a wafer by means of local wafer temperature control
JP2003282578A (ja) 熱処理装置および半導体製造方法
KR100615763B1 (ko) 열처리 장치의 온도 교정 방법
JP2012209517A (ja) 熱処理制御システムおよび熱処理制御方法
US7675306B2 (en) Prober apparatus and operating method therefor
JP2005158939A (ja) 分割ヒーター付きアニール装置及び方法
KR101767469B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 가열부
TW564503B (en) Heat treatment method and device
KR20210129165A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JPH03145121A (ja) 半導体熱処理用温度制御装置
JP4505348B2 (ja) 基板処理装置、及び基板処理方法
KR20210028126A (ko) 열전대 구조, 열처리 장치 및 열전대 구조 제조방법
US20240234073A9 (en) Methods, systems, and apparatus for monitoring radiation output of lamps
KR102452021B1 (ko) 온도 감시 장치, 열처리 장치 및 온도 감시 방법
WO2023053172A1 (ja) 支持具、基板処理装置、および半導体装置の製造方法
US20130240502A1 (en) Rapid thermal anneal system and process
JP3886320B2 (ja) 半導体処理装置及びウェハの加熱制御方法
JP2001345271A (ja) ウェハの加熱制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Effective date: 20081125

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081201

A02 Decision of refusal

Effective date: 20090424

Free format text: JAPANESE INTERMEDIATE CODE: A02