JP2005156763A - Method for assembling liquid crystal substrate - Google Patents

Method for assembling liquid crystal substrate Download PDF

Info

Publication number
JP2005156763A
JP2005156763A JP2003393234A JP2003393234A JP2005156763A JP 2005156763 A JP2005156763 A JP 2005156763A JP 2003393234 A JP2003393234 A JP 2003393234A JP 2003393234 A JP2003393234 A JP 2003393234A JP 2005156763 A JP2005156763 A JP 2005156763A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
amount
agent
microsyringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003393234A
Other languages
Japanese (ja)
Other versions
JP4241339B2 (en
Inventor
Yukihiro Kawasumi
幸宏 川隅
Mitsuyuki Uchimura
満幸 内村
Shinya Yamama
伸也 山間
Yoshinori Shimauchi
義典 島内
Shigeru Ishida
茂 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2003393234A priority Critical patent/JP4241339B2/en
Priority to TW093107159A priority patent/TWI265830B/en
Priority to KR1020040038110A priority patent/KR100646694B1/en
Publication of JP2005156763A publication Critical patent/JP2005156763A/en
Application granted granted Critical
Publication of JP4241339B2 publication Critical patent/JP4241339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells

Abstract

<P>PROBLEM TO BE SOLVED: To overcome a difficulty associated with a conventional liquid crystal dropping and bonding method, in which an adjustment to make one drop correspond to a desired amount is carried out in a preliminary setup of production, because the feed rate of a liquid crystal material is controlled based on a product of a liquid crystal amount per drop and the number of drops, and as a result, the adjustment takes a lot of time and the production is slowed down, and furthermore, because the amount per drop is such a minute amount of a few mgs, accurate measurement becomes difficult, even with an electronic force balance. <P>SOLUTION: Before feeding the liquid crystal material to a substrate, the liquid crystal material to be dropped from a tank onto the substrate is previously weighed and filled in a microsyringe, and then while the relative position of the substrate and a liquid crystal discharge hole is varied, the liquid crystal filled in the microsyringe is fed onto the substrate surface by dropping only a desired amount of the liquid crystal at the desired position of the substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、貼り合せる基板同士をそれぞれ保持して対向させ、間隔を狭めて貼り合わせる液晶基板の組立方法に関する。   The present invention relates to a method of assembling a liquid crystal substrate that holds substrates to be bonded to each other, opposes them, and bonds them with a small interval.

液晶表示パネルの製造には、透明電極や薄膜トランジスタアレイを付けた2枚のガラス基板を数μm程度の極めて接近した間隔をもって接着剤(以下、シール剤ともいう)で貼り合わせ、それによって形成される空間に液晶剤を封止する工程がある。
この液晶剤の封止には、一方の基板上に注入口を設けないようにシール剤をクローズしたパターンに描画し、さらに、そのパターン内になるように液晶剤を滴下しておいて他方の基板を一方の基板上に配置し、真空中で上下の基板を接近させて貼り合せる特許文献1などで提案された方法がある。
In the manufacture of a liquid crystal display panel, two glass substrates with transparent electrodes and thin film transistor arrays are bonded together with an adhesive (hereinafter also referred to as a sealing agent) with a very close distance of about several μm and formed thereby. There is a step of sealing the liquid crystal agent in the space.
To seal this liquid crystal agent, draw a pattern in which the sealing agent is closed so as not to provide an injection port on one substrate, and then drop the liquid crystal agent so as to be within that pattern, There is a method proposed in Patent Document 1 or the like in which a substrate is placed on one substrate and the upper and lower substrates are brought close to each other in a vacuum and bonded together.

また、液晶剤の滴下方法では特許文献2などて提案された方法等がある。   In addition, as a method for dropping the liquid crystal agent, there is a method proposed in Patent Document 2 or the like.

特開昭62−165622号公報Japanese Patent Laid-Open No. 62-165622

特開2003−164783号公報Japanese Patent Laying-Open No. 2003-164783

液晶を滴下してから基板を組み立てる方法では、液晶剤の供給量が少ないと液晶パネル内に真空溜まりができて表示不良となったり、供給量が多い時にはパネルから液晶が溢れて接着不良になったり、液晶を挟む2枚のガラスの隙間が大きくなり表示不良となるため液晶の供給量を精度良く管理することが大切である。   In the method of assembling the substrate after dropping the liquid crystal, if the supply amount of the liquid crystal agent is small, a vacuum will be accumulated in the liquid crystal panel and display will be defective, and if the supply amount is large, the liquid crystal will overflow from the panel and adhesion will be poor. It is important to accurately control the amount of liquid crystal supplied since the gap between the two glass plates sandwiching the liquid crystal becomes large, resulting in poor display.

上記従来技術では、液晶剤の滴下数と1滴当りの液晶量との積で液晶剤の供給量の管理をしていたため、液晶供給器から供給する液晶剤の1滴が所望量になるよう生産の前段取りで調整したり、生産中に供給重量の計測を行い、経時的に供給量が変化するものについては1滴の供給量の調整を行っていた。   In the above prior art, the supply amount of the liquid crystal agent is managed by the product of the number of drops of the liquid crystal agent and the amount of liquid crystal per drop, so that one drop of the liquid crystal agent supplied from the liquid crystal supply device becomes a desired amount. Adjustments were made at the pre-production stage, or supply weights were measured during production, and the supply amount of one drop was adjusted for those whose supply amount changed over time.

この方法では、調整に時間がかかり生産を滞らせるばかりでなく、1滴の量が数mgと微少量のため、電子天秤で精度良く計測することすら困難になってきている。   In this method, not only adjustment takes time and production is delayed, but since the amount of one drop is as small as several mg, even accurate measurement with an electronic balance has become difficult.

また、計測には精密な電子天秤を使用するため安定計測のため天秤の計測に時間がかかり同様に生産性を低下させる要因となっている。   In addition, since a precise electronic balance is used for measurement, it takes time to measure the balance for stable measurement, and this is a factor that similarly reduces productivity.

それゆえ、本発明の目的は、液晶剤を精度良く基板に供給し、かつ液晶供給器の事前準備や生産中の調整に、生産性を低下させることなく、液晶パネルを生産することができる液晶基板の組立方法を提供することにある。   Therefore, an object of the present invention is to provide a liquid crystal panel capable of supplying a liquid crystal agent to a substrate with high accuracy and producing a liquid crystal panel without reducing productivity in advance preparation of a liquid crystal supply device or adjustment during production. It is to provide a method for assembling a substrate.

上記目的を達成するため本発明では、貼り合わせる一方の基板を保持板の下面に保持し、貼り合わせる他方の基板をテーブル上に保持して対向させ、テーブル上に保持した基板上に液晶剤を供給した後、両基板の間隔を狭めていずれかの基板に設けた接着剤により両基板を貼り合わせ場合に、供給対象となる基板一枚若しくは液晶パネル一枚分の領域に単一若しくは複数の液晶供給器から供給するべき液晶量を計量する手段を備え、液晶供給器から供給するべき液晶量を計量して、基板と液晶供給器との基板の主面に平行な方向の相対位置を変化させながら、計量した分を所望の位置に所望の量だけ供給することにある。   In order to achieve the above object, in the present invention, one substrate to be bonded is held on the lower surface of the holding plate, the other substrate to be bonded is held on the table so as to face, and the liquid crystal agent is placed on the substrate held on the table. After supplying, when both substrates are bonded together with an adhesive provided on one of the substrates by narrowing the distance between the two substrates, a single substrate or a plurality of liquid crystal panels are provided in an area for one substrate or one liquid crystal panel to be supplied Means to measure the amount of liquid crystal to be supplied from the liquid crystal supplier, measure the amount of liquid crystal to be supplied from the liquid crystal supplier, and change the relative position of the substrate and the liquid crystal supplier in the direction parallel to the main surface of the substrate In other words, a desired amount is supplied to a desired position while being measured.

以下説明するように、本発明によれば、液晶剤を精度良く安定して基板に供給し、且つ液晶供給器の事前準備や生産中の供給量の確認作業や供給量の調整作業による生産の一時停止をすること無く液晶パネルを生産することが可能である。   As will be described below, according to the present invention, the liquid crystal agent is supplied to the substrate with high accuracy and stability, and the production of the liquid crystal feeder in advance by preparation, confirmation of the supply amount during production, and adjustment of the supply amount is performed. It is possible to produce a liquid crystal panel without pausing.

以下、本発明の一実施例を図に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1において、本発明の方法を具現化する基板組立装置は、液晶滴下部S1と基板貼合部S2から構成され、この両部分は架台2上に隣接して配置される。   In FIG. 1, a substrate assembling apparatus that embodies the method of the present invention is composed of a liquid crystal dropping portion S <b> 1 and a substrate bonding portion S <b> 2, both of which are disposed adjacent to the gantry 2.

架台2の上方には基板貼合部S2を支持するフレーム3がある。また、架台2の上面には、XYθステージT1が備えられている。XYθステージT1を構成するXステージ4aは、駆動モータ5により、図面上で左右のX軸方向に、即ち、液晶滴下部S1と基板貼合部S2間を往来できるようになっている。Yステージ4bはXステージ4a上にあり、駆動モータ6によりXステージと直交するY軸方向に往来できるようになっている。θステージ4cはYステージ4b上にあり、回転ベアリング7を介して駆動モータ8によりYステージ4bに対して水平に回転可能になっていて、θステージ4c上に下基板1aを搭載するテーブル9が固定される。なお、後述する上基板と同様に、テーブル9は真空吸着や静電吸着または粘着部材で下基板1aを搭載保持する。また、Yステージ4bにプレート13で下チャンバユニット10が固定されている。θステージ4cは、下チャンバユニットの外周部10に対し回転ベアリング11と真空シール12を介して回転自由に取り付けられ、θステージ4cが回転しても下チャンバユニットの外周部10はつられて回転しない構造としている。図のようにθステージ4cは下チャンバユニットの一部(底部)を構成している。すなわちθステージ4cは下チャンバユニットの外周部10とは回転方向のみ別に動作するが、XY方向は一緒に(一体となって)移動する構成となっている。   Above the gantry 2 is a frame 3 that supports the substrate bonding portion S2. An XYθ stage T1 is provided on the top surface of the gantry 2. The X stage 4a constituting the XYθ stage T1 can be moved by the drive motor 5 in the left and right X-axis directions in the drawing, that is, between the liquid crystal dropping part S1 and the substrate bonding part S2. The Y stage 4b is on the X stage 4a, and can be moved in the Y-axis direction orthogonal to the X stage by the drive motor 6. The θ stage 4c is on the Y stage 4b and can be rotated horizontally with respect to the Y stage 4b by the drive motor 8 via the rotary bearing 7, and a table 9 on which the lower substrate 1a is mounted is mounted on the θ stage 4c. Fixed. As with the upper substrate described later, the table 9 mounts and holds the lower substrate 1a by vacuum suction, electrostatic suction, or an adhesive member. Further, the lower chamber unit 10 is fixed to the Y stage 4b by a plate 13. The θ stage 4c is rotatably attached to the outer peripheral portion 10 of the lower chamber unit via a rotary bearing 11 and a vacuum seal 12. Even if the θ stage 4c rotates, the outer peripheral portion 10 of the lower chamber unit does not rotate. It has a structure. As shown in the figure, the θ stage 4c constitutes a part (bottom part) of the lower chamber unit. That is, the θ stage 4c operates separately from the outer peripheral portion 10 of the lower chamber unit only in the rotational direction, but moves together (integrally) in the XY directions.

液晶滴下部S1は、テーブル9に搭載保持された下基板1aに所望量の液晶剤を滴下するためのフレーム3から突出したブラケット14で支持されたディスペンサ17とこれを上下移動させるためのZ軸ステージ15とそれを駆動するモータ16で構成される。下基板1aをテーブル9上に保持搭載したXYθステージT1は、液晶剤を滴下するディスペンサ17のノズル18に対し、XおよびY方向に移動する。これにより、下基板1a上の任意の個所に所望量の液晶剤が滴下される。   The liquid crystal dropping unit S1 includes a dispenser 17 supported by a bracket 14 protruding from the frame 3 for dropping a desired amount of liquid crystal agent on the lower substrate 1a mounted and held on the table 9, and a Z axis for moving the dispenser up and down. It comprises a stage 15 and a motor 16 for driving it. The XYθ stage T1 holding and mounting the lower substrate 1a on the table 9 moves in the X and Y directions with respect to the nozzle 18 of the dispenser 17 for dropping the liquid crystal agent. As a result, a desired amount of the liquid crystal agent is dropped onto an arbitrary location on the lower substrate 1a.

液晶滴下後の下基板1aを搭載保持したXYθステージT1は、基板貼合部S2の下部に駆動モータ5によって移動する。   The XYθ stage T1 on which the lower substrate 1a after the liquid crystal is dropped is mounted and held is moved by the drive motor 5 to the lower portion of the substrate bonding portion S2.

基板貼合部S2では、上チャンバユニット21とその内部の真空吸着機能と静電吸着機能を備えた保持板27がそれぞれ独立して上下動できる構造になっている。即ち、上チャンバユニット21は、リニアブッシュと真空シールを内蔵したハウジング30を有しており、シャフト29をガイドとしてフレーム3に固定されたシリンダ22により上下のZ軸方向に移動する。   In the substrate bonding part S2, the upper chamber unit 21 and the holding plate 27 having the vacuum suction function and the electrostatic suction function therein can be independently moved up and down. That is, the upper chamber unit 21 has a housing 30 incorporating a linear bush and a vacuum seal, and moves in the vertical Z-axis direction by a cylinder 22 fixed to the frame 3 with a shaft 29 as a guide.

XYθステージT1が基板貼合部S2に移動していて上チャンバユニット21が下降すると、下チャンバユニットの外周部10周りに配置してあるOリング44に上チャンバユニット21のフランジ21aが接触し一体となり、この時真空チャンバとして機能する状態になる。ここで、下チャンバユニット外周部10の周囲に設置されたボールベアリング87は、真空によるOリング44のつぶれ量を調整するもので上下方向の任意の位置に設定可能となっている。真空化により発生する大きな力は、ボールベアリング87を介して下チャンバユニット外周部10で受けており、Oリング44の弾性変形が可能で、後述するように貼り合わせ時にXYθステージT1をOリング44の弾性範囲内で容易に微動させ精密位置決することができる。   When the XYθ stage T1 is moved to the substrate bonding part S2 and the upper chamber unit 21 is lowered, the flange 21a of the upper chamber unit 21 comes into contact with the O-ring 44 arranged around the outer peripheral part 10 of the lower chamber unit. At this time, the vacuum chamber functions. Here, the ball bearing 87 installed around the outer periphery 10 of the lower chamber unit adjusts the amount of collapse of the O-ring 44 due to vacuum, and can be set at an arbitrary position in the vertical direction. A large force generated by the vacuum is received at the outer peripheral portion 10 of the lower chamber unit via the ball bearing 87, and the O-ring 44 can be elastically deformed. As will be described later, the XYθ stage T1 is attached to the O-ring 44 at the time of bonding. The position can be finely moved within a range of elasticity and can be precisely positioned.

ハウジング30は、上チャンバユニット21が下チャンバユニットと真空チャンバを形成して変形しても、シャフト29に対し真空漏れを起こさないで上下動可能な真空シールを内蔵しているので、真空チャンバの変形がシャフト29に与える力を吸収することができ、シャフト29に固定された保持板27が変形することを防止でき、後述するように保持板27に保持された上基板1bとテーブル9に保持された下基板1aとの平行を保って貼り合わせが可能となる。   The housing 30 incorporates a vacuum seal that can move up and down without causing a vacuum leak to the shaft 29 even if the upper chamber unit 21 is deformed by forming a vacuum chamber with the lower chamber unit. The force applied to the shaft 29 by the deformation can be absorbed, the deformation of the holding plate 27 fixed to the shaft 29 can be prevented, and the upper substrate 1b held by the holding plate 27 and the table 9 are held as will be described later. Bonding is possible while maintaining parallel to the lower substrate 1a.

真空バルブ23は、配管ホース24を介して、図示していない真空源に接続され、これらは真空チャンバを減圧し真空にする時に使用される。また、ガスパージバルブ25は、ガスチューブ26を介して、窒素ガスやクリーンドライエアー等の圧力源に接続され、これらは真空チャンバを大気圧に戻す時に使用される。   The vacuum valve 23 is connected to a vacuum source (not shown) via a piping hose 24, and these are used when the vacuum chamber is depressurized and evacuated. The gas purge valve 25 is connected to a pressure source such as nitrogen gas or clean dry air via a gas tube 26, and these are used when the vacuum chamber is returned to atmospheric pressure.

上基板1bは保持板27の下面に密着保持されるが、大気下においては真空吸着(あるいは吸引吸着)で保持されるようになっている。即ち、保持板27面に複数の吸引孔が設けてあり、これに負圧を供給するための吸引チューブ42が吸引吸着用継手41を介して接続されている。また、吸引チューブ42は、図示していない真空源に接続されている。   The upper substrate 1b is held tightly on the lower surface of the holding plate 27, but is held by vacuum suction (or suction suction) in the atmosphere. That is, a plurality of suction holes are provided on the surface of the holding plate 27, and a suction tube 42 for supplying a negative pressure to the suction holes 42 is connected via a suction adsorption joint 41. The suction tube 42 is connected to a vacuum source (not shown).

次に、静電吸着手段について説明する。   Next, the electrostatic attraction means will be described.

保持板27は下面に方形の凹部を2個有していて、各凹部に内蔵された平板電極を誘電体で覆ってその誘電体の主面が保持板27の下面と同一平面になっている。埋め込まれた各平板電極はそれぞれ正負の直流電源に適宜なスイッチを介して接続されている。従って、各平板電極に正あるいは負の電圧が印加されると、保持板27の下面と同一平面になっている誘電体の主面に負あるいは正の電荷が誘起され、それら電荷によって上基板1bの透明電極膜との間に発生するクーロン力で上基板1bが静電吸着される。各平板電極に印加する電圧は同極でもよいしそれぞれ異なる双極でもよい。尚、周りが大気の場合、真空吸着を併用してもよいし、静電吸着力が大きい場合は、真空吸着手段を不要としてもよい。   The holding plate 27 has two rectangular recesses on the lower surface, and the plate electrode built in each recess is covered with a dielectric, and the main surface of the dielectric is flush with the lower surface of the holding plate 27. . Each embedded plate electrode is connected to a positive and negative DC power source via an appropriate switch. Therefore, when a positive or negative voltage is applied to each plate electrode, a negative or positive charge is induced on the main surface of the dielectric that is flush with the lower surface of the holding plate 27, and the upper substrate 1b is induced by these charges. The upper substrate 1b is electrostatically adsorbed by the Coulomb force generated between the transparent electrode film and the transparent electrode film. The voltage applied to each plate electrode may be the same polarity or may be different from each other. When the surroundings are in the atmosphere, vacuum suction may be used together. When the electrostatic suction force is large, the vacuum suction means may be unnecessary.

さて、シャフト29はハウジング31、32に固定されている。ハウジング31はフレーム3に対してリニアガイド34で取り付けられ、保持板27は上下動可能な構造になっている。その上下駆動は、フレーム3とつながるフレーム35上のブラケット38に固定されたモータ40により行う。駆動の伝達は、ボールねじ36とナットハウジング37で実行される。ナットハウジング37は荷重計33を介してハウジング32とつながり、その下部の保持板27と一体で動作する。   The shaft 29 is fixed to the housings 31 and 32. The housing 31 is attached to the frame 3 by a linear guide 34, and the holding plate 27 has a structure that can move up and down. The vertical drive is performed by a motor 40 fixed to a bracket 38 on a frame 35 connected to the frame 3. Drive transmission is performed by the ball screw 36 and the nut housing 37. The nut housing 37 is connected to the housing 32 via the load meter 33 and operates integrally with the holding plate 27 below the nut housing 37.

従って、モータ40によってシャフト29が下降し、上基板1bを保持した保持板27が下降し、上基板1bがテーブル9上の下基板1aと密着して、貼り合わせに必要な加圧力を与えることのできる構造となっている。この場合、荷重計33は加圧力センサとして働き、逐次、フィードバックされた信号を基にモータ40を制御することで、上下基板1a、1bに所望の加圧力を与えることが可能となっている。   Accordingly, the shaft 29 is lowered by the motor 40, the holding plate 27 holding the upper substrate 1b is lowered, and the upper substrate 1b is brought into close contact with the lower substrate 1a on the table 9 so as to give a pressing force necessary for bonding. It is a structure that can. In this case, the load meter 33 functions as a pressure sensor, and can control the motor 40 based on sequentially fed back signals to apply a desired pressure to the upper and lower substrates 1a and 1b.

下基板1aは重力方向の搭載なので、図2に示すようにテーブル9に設けた位置決め部材81に押付ローラ82による水平方向での押付けによる位置決めの固定で十分である。   Since the lower substrate 1a is mounted in the direction of gravity, it is sufficient to fix the positioning by pressing in the horizontal direction with the pressing roller 82 on the positioning member 81 provided on the table 9 as shown in FIG.

しかしながら、貼り合わす直前の微小位置決めの際、上基板1bが下基板1a上のシール剤や液晶剤と接触した影響で下基板1aがずれたり、持ち上がる可能性がある。また、真空チャンバ内が減圧され真空になる過程で、下基板1aとテーブル9との間に入り込んでいる空気が逃げて下基板1aが踊り、ずれる可能性がある。このため、テーブル9に対しても静電吸着の機能を持たせている。そして、テーブル9に上下(Z軸)方向に移動できるピンを設け接地しておくと、貼り合わせ後の基板の帯電防止とテーブル9からの取り外しを容易に行うことができる。   However, there is a possibility that the lower substrate 1a is displaced or lifted due to the influence of the upper substrate 1b coming into contact with the sealing agent or the liquid crystal agent on the lower substrate 1a at the time of micropositioning just before bonding. Further, in the process of reducing the pressure in the vacuum chamber to become a vacuum, there is a possibility that the air entering between the lower substrate 1a and the table 9 escapes and the lower substrate 1a dances and shifts. For this reason, the table 9 is also provided with an electrostatic adsorption function. If the table 9 is provided with a pin that can move in the vertical (Z-axis) direction and grounded, the substrate after bonding can be easily prevented from being charged and removed from the table 9.

図2に示す60は、保持板27が真空吸着をしていて真空チャンバが減圧され真空吸着力が消えて上基板1bが落下するときに保持板27の僅か下の位置で受け止める受止爪で、上基板1bの2個の対角の位置にあって下方に伸びたシャフト59で釣り下げた形に支持されている。具体的には図示していないが、シャフト59は上チャンバユニット21介して真空シールされて回転と上下移動ができるようになっている。また、シャフト59は、保持板27の上下移動と独立して上下に移動できるだけでなく、回転アクチェータによって回転させて、受止爪60が液晶を両基板1a、1bの主面の広がり方向に拡張させたり、その後に基板の貼り合わせを行う場合の邪魔にならぬように退避させることができるようになっている。   Reference numeral 60 shown in FIG. 2 is a receiving claw that is received at a position slightly below the holding plate 27 when the holding plate 27 is vacuum-sucked, the vacuum chamber is depressurized, the vacuum suction force disappears, and the upper substrate 1b falls. The upper substrate 1b is supported in a form of being suspended by two diagonal positions of a shaft 59 extending downward. Although not specifically shown, the shaft 59 is vacuum-sealed through the upper chamber unit 21 so that it can rotate and move up and down. The shaft 59 not only moves up and down independently of the vertical movement of the holding plate 27 but also rotates by a rotary actuator so that the receiving claw 60 expands the liquid crystal in the spreading direction of the main surfaces of both substrates 1a and 1b. Or can be retracted so as not to interfere with the subsequent bonding of the substrates.

次に、本基板組立装置で基板を貼り合わせる工程について説明する。   Next, the process of bonding substrates together with the substrate assembly apparatus will be described.

先ず、テーブル9に上基板1bを保持した治具を搭載し、駆動モータ5でXYθステージT1を基板貼合部S2に移動させる。そこでモータ40によりシャフト29を介して保持板27を下降させ、テーブル9上の上基板1bを真空吸着させてから、モータ40で上昇させて、上基板1bを待機状態とする。   First, a jig holding the upper substrate 1b is mounted on the table 9, and the XYθ stage T1 is moved to the substrate bonding portion S2 by the drive motor 5. Therefore, the holding plate 27 is lowered by the motor 40 via the shaft 29, and the upper substrate 1b on the table 9 is vacuum-sucked, and then is raised by the motor 40, so that the upper substrate 1b is in a standby state.

XYθステージT1は液晶滴下部S1に戻り、空になった治具が外され、テーブル9上に下基板1aが搭載され所望位置に固定保持される。   The XYθ stage T1 returns to the liquid crystal dropping section S1, the empty jig is removed, and the lower substrate 1a is mounted on the table 9 and fixedly held at a desired position.

図1には示していないが、液晶剤を供給するディスペンサ17の近くのフレーム3にシール剤を吐出するディスペンサがあって、XYθステージT1の各モータ5、6で下基板1aをXY軸方向に移動させつつシール剤を吐出させて、下基板1a上にクローズ(閉鎖)したパターンでシール剤を描画する。   Although not shown in FIG. 1, there is a dispenser that discharges a sealing agent to the frame 3 near the dispenser 17 that supplies the liquid crystal agent, and the lower substrate 1a is moved in the XY axis direction by the motors 5 and 6 of the XYθ stage T1. The sealant is discharged while being moved, and the sealant is drawn in a closed (closed) pattern on the lower substrate 1a.

その後、ディスペンサ17から液晶剤を下基板1a上に供給する。   Thereafter, a liquid crystal agent is supplied from the dispenser 17 onto the lower substrate 1a.

図3に本発明の液晶供給器の構造を示す。液晶供給器はマイクロシリンジ部M1、流路切替部M2、吸い込み部M3、吐出部M4、駆動部M5、制御部100で構成している。   FIG. 3 shows the structure of the liquid crystal supply device of the present invention. The liquid crystal supply unit includes a micro syringe part M1, a flow path switching part M2, a suction part M3, a discharge part M4, a drive part M5, and a control part 100.

マイクロシリンジ部M1は、所望量の液晶をノズル109に供給するための供給タンクであるガラス製のマイクロシリンジ101と駆動部により本図では上下方向に移動するピストン102で構成している。   The microsyringe part M1 is composed of a glass microsyringe 101 which is a supply tank for supplying a desired amount of liquid crystal to the nozzle 109 and a piston 102 which moves in the vertical direction in this figure by a driving part.

流路切替部M2は、流路A、流路B、流路Cを図示せぬモータにより流路切替ポート104を回転させて流路切替を行う切替バルブ103と継手105で構成している。切替バルブの切替タイミングは、図示していないモータをピストン102の移動と重複しないように制御部100から制御している。   The flow path switching unit M2 includes a switching valve 103 and a joint 105 that perform flow path switching by rotating the flow path switching port 104 using a motor (not shown) for the flow paths A, B, and C. The switching timing of the switching valve is controlled from the control unit 100 so that a motor (not shown) does not overlap with the movement of the piston 102.

本図では流路A―Bを繋ぐよう流路切替ポート104の向きを設定しており、この位置を吸い込みポート位置という。また、流路切替ポート104の向きを回転させB−Cを繋ぐようにした位置を、吐出ポート位置という。   In this figure, the direction of the flow path switching port 104 is set so as to connect the flow paths AB, and this position is referred to as a suction port position. A position where the direction of the flow path switching port 104 is rotated to connect B-C is referred to as a discharge port position.

吸い込み部M3は、チューブ106と、既に脱泡処理された液晶剤120が充填されたタンク107とから構成している。   The suction part M3 includes a tube 106 and a tank 107 filled with the liquid crystal agent 120 that has already been defoamed.

ここで、継手105には多孔質ガラスや多孔質シリコン等のイオン交換樹脂が、液晶剤120の流路にフィルタとして内蔵されている。このフィルタは、液晶剤のイオン性不純物を吸着して液晶剤の汚染を除いたり、流路切替バルブ103の劣化により発生した塵埃を液晶パネル側に供給しないようにしている。   Here, an ion exchange resin such as porous glass or porous silicon is incorporated in the joint 105 as a filter in the flow path of the liquid crystal agent 120. The filter adsorbs ionic impurities of the liquid crystal agent to remove contamination of the liquid crystal agent and prevents dust generated due to deterioration of the flow path switching valve 103 from being supplied to the liquid crystal panel side.

吐出部M4は、チューブ108とチューブ108の先端に取り付けたノズル109で構成している。   The discharge part M4 is composed of a tube 108 and a nozzle 109 attached to the tip of the tube 108.

駆動部M5は、ピストン102を精密に位置決め駆動するためのものである。すなわち、モータ110の回転量をねじ111を介してナット112に伝達し、ナット112が案内機構114に沿って、本図では上下方向に移動させる。これによって、連結部113を介してピストン102を駆動している。また、ピストン102の移動量は、ナット112近傍に取り付けたリニアスケール検出ヘッド115によりリニアスケールスケール部116の位置変化を制御部100で観察している。   The drive unit M5 is for precisely positioning and driving the piston 102. That is, the rotation amount of the motor 110 is transmitted to the nut 112 through the screw 111, and the nut 112 is moved in the vertical direction in the drawing along the guide mechanism 114. As a result, the piston 102 is driven via the connecting portion 113. As for the movement amount of the piston 102, the control unit 100 observes a change in the position of the linear scale scale unit 116 with a linear scale detection head 115 attached in the vicinity of the nut 112.

次に、滴下動作を行うためのディスペンサの動作例を示す。なお、どちらか一方の基板面上にはシール剤が液晶パネルの表示領域を囲むように継ぎ目無く塗布されている。   Next, an operation example of the dispenser for performing the dropping operation will be described. A sealing agent is applied seamlessly on either one of the substrates so as to surround the display area of the liquid crystal panel.

図3のモータ110を回転させて、マイクロシリンジ101内のピストン102を移動させる。移動させる量は滴下量を元に制御部100でモータ110の回転量を算出している。ピストン102が移動することで、チューブ106には負圧がかかる。これにより、タンク107から液晶剤120がマイクロシリンジ101内にピストン102が移動した体積分だけ吸い込むことができる。   The motor 110 in FIG. 3 is rotated to move the piston 102 in the microsyringe 101. The amount of movement is calculated by the control unit 100 based on the dripping amount. As the piston 102 moves, negative pressure is applied to the tube 106. Accordingly, the liquid crystal agent 120 can be sucked from the tank 107 by the volume of the piston 102 moved into the microsyringe 101.

ここで吸い込む量は、後述する該当ディスペンサが1基板当りに供給する量であり、ピストン102の移動量はピストン102の直径から決定される。しかし、ピストン102には摩擦負荷等がかかる。このため、モータの指令回転量だけでなく、ピストン102が実際に移動した量を図示せぬエンコーダやリニアスケール115のカウント値から読み込む。そして、それらにより得られたピストン102の移動量が、所望の吸い込み量とそのピストン102の直径の商になるようモータの回転量を制御部100で制御する。これにより、所望の液晶供給量だけマイクロシリンジ101内に液晶剤120を吸い込むことが可能になる。   The amount to be sucked in here is an amount supplied by a corresponding dispenser to be described later per substrate, and the moving amount of the piston 102 is determined from the diameter of the piston 102. However, a friction load or the like is applied to the piston 102. For this reason, not only the command rotation amount of the motor but also the amount of actual movement of the piston 102 is read from the count value of the encoder and the linear scale 115 (not shown). Then, the rotation amount of the motor is controlled by the control unit 100 so that the obtained movement amount of the piston 102 becomes a quotient of the desired suction amount and the diameter of the piston 102. Thereby, the liquid crystal agent 120 can be sucked into the microsyringe 101 by a desired liquid crystal supply amount.

また、吸い込む量を調節する別の方法として、図4に示すように、吸い込み部M3とチューブ106の途中に流量計131を設置し、吸い込み動作中にチューブ106を流れる液晶剤120の量を計測することも可能である。すなわち、ピストン102の移動と共に流量の計測を開始し、ピストン102の移動中に予め設定した該当シリンジの液晶剤120の供給する量になったところでピストン102の移動を停止させる。そして、その時のモータ回転量をリニアスケール115のカウント値から座標換算してピストン102の位置を記憶する。更に、1つの基板中に継続して液晶剤を供給する場合には、ここで記憶した位置から再度流量計測を開始し、同様に供給量と流量計131で観察される流量が等しくなったピストン102の座標を別に記憶する。これを繰り返すことで、所望の液晶供給量だけマイクロシリンジ101内に液晶剤120を吸い込むことが可能になる。   As another method for adjusting the amount of suction, as shown in FIG. 4, a flow meter 131 is installed in the middle of the suction portion M3 and the tube 106, and the amount of the liquid crystal agent 120 flowing through the tube 106 is measured during the suction operation. It is also possible to do. That is, the measurement of the flow rate is started together with the movement of the piston 102, and the movement of the piston 102 is stopped when the amount of the liquid crystal agent 120 supplied to the corresponding syringe set in advance during the movement of the piston 102 is reached. Then, the motor rotation amount at that time is coordinate-converted from the count value of the linear scale 115 and the position of the piston 102 is stored. Further, when the liquid crystal agent is continuously supplied into one substrate, the flow rate measurement is started again from the position stored here, and similarly, the piston whose supply amount and the flow rate observed by the flow meter 131 are equal. The coordinates of 102 are stored separately. By repeating this, the liquid crystal agent 120 can be sucked into the microsyringe 101 by a desired liquid crystal supply amount.

また、吸い込む量を調節する別の方法として、先に述べた流量計131を、タンク内液晶残量計として用いる方法がある。これは、吸い込み部M3とチューブ106の途中にタンク内液晶残量計131を設置し、吸い込み動作中にマイクロシリンジ内に供給される(吸い込まれる)液晶剤120の量を計測する。ピストン102の移動と共にタンク内残量の計測を開始する。そして、吸い込み動作開始前のタンク内残量と、吸い込み動作中に計測されるタンク内残量との差がピストン102の移動中に予め設定した該当シリンジの液晶剤120の供給する量になったところでピストン102の移動を停止させる。その時のモータ回転量をリニアスケール115のカウント値から座標換算してピストン102の位置を記憶する。ここでは秤量計をタンク内液晶残量計131として使用した例を示したが、図5に示すように、超音波センサを使用した液面センサ132をタンク107の底の外側に設けて、液面の変化を計測しても同様の計測が可能である。また重量計をタンク下部に設けて、重量の変化から液晶の残量を計測することもできる。更に、液面計をタンク107内に設けて計測することも可能である。   As another method for adjusting the amount of suction, there is a method of using the flow meter 131 described above as an in-tank liquid crystal fuel gauge. This is because an in-tank liquid crystal fuel gauge 131 is installed in the middle of the suction part M3 and the tube 106, and the amount of the liquid crystal agent 120 supplied (sucked) into the microsyringe during the suction operation is measured. As the piston 102 moves, measurement of the remaining amount in the tank is started. The difference between the remaining amount in the tank before the start of the suction operation and the remaining amount in the tank measured during the suction operation is the amount supplied to the liquid crystal agent 120 of the corresponding syringe set in advance during the movement of the piston 102. By the way, the movement of the piston 102 is stopped. The motor rotation amount at that time is converted into coordinates from the count value of the linear scale 115, and the position of the piston 102 is stored. Here, an example is shown in which a weighing meter is used as the liquid crystal fuel gauge 131 in the tank. However, as shown in FIG. 5, a liquid level sensor 132 using an ultrasonic sensor is provided outside the bottom of the tank 107 to The same measurement is possible even if the change of the surface is measured. A weight scale can be provided at the bottom of the tank to measure the remaining amount of liquid crystal from the change in weight. Furthermore, a liquid level gauge can be provided in the tank 107 for measurement.

更に、1つの基板中に継続して液晶剤を供給する場合には、ここで記憶した位置から再度タンク内液晶残量計測を開始し、同様に供給量とタンク内液晶残量計(131または132)で観察される吸い込み量(吸い込み動作開始前のタンク内残量と,吸い込み動作中に計測されるタンク内残量との差)が等しくなったピストン102の座標を別に記憶し、これを繰り返すことで所望の液晶供給量だけマイクロシリンジ101内に液晶剤120を吸い込むことが可能になる。   Further, when the liquid crystal agent is continuously supplied to one substrate, the measurement of the remaining amount of liquid crystal in the tank is started again from the position stored here, and the supply amount and the remaining amount of liquid crystal in the tank (131 or 132) separately stores the coordinates of the piston 102 in which the suction amount (difference between the residual amount in the tank before the start of the suction operation and the residual amount in the tank measured during the suction operation) observed in step 132) becomes equal. By repeating, it becomes possible to suck the liquid crystal agent 120 into the microsyringe 101 by a desired liquid crystal supply amount.

マイクロシリンジ101内へ所定量の液晶を吸い込み終わると、流路切替ポート104を吐出ポート位置に回転移動させる。次に、モータ110を回転させて、ピストン102を移動させて、ノズル109から液晶剤120を基板面上に供給(滴下)する。   When a predetermined amount of liquid crystal has been sucked into the microsyringe 101, the flow path switching port 104 is rotated to the discharge port position. Next, the motor 110 is rotated, the piston 102 is moved, and the liquid crystal agent 120 is supplied (dropped) from the nozzle 109 onto the substrate surface.

ピストン102を移動させる量は予め設定した1滴当りの量に相当する分だけである。本図では次に滴下する位置にノズル又は基板を移動させて、再度ピストンを駆動して滴下を行い、これを設定分行って、マイクロシリンジ101内に吸い込んだ液晶総量を1枚の基板に供給する。   The amount by which the piston 102 is moved is an amount corresponding to a preset amount per droplet. In this figure, the nozzle or the substrate is moved to the position where the droplet is dropped next, and the piston is driven again to perform the dripping, and this is performed for the set amount, and the total amount of liquid crystal sucked into the microsyringe 101 is supplied to one substrate. To do.

以上の液晶供給動作について、マイクロシリンジへの吸い込み量を決定する例を具体的な基板を例に挙げて説明する。   The above liquid crystal supply operation will be described with reference to a specific substrate as an example of determining the amount of suction into the microsyringe.

図7(a)は6枚の液晶パネルを1枚の基板から取る例である。この例では、ディスペンサ17は図示していないがディスペンサ17A、ディスペンサ17B、ディスペンサ17Cの3組が装置に搭載されており、全て使用できるものとする。
ガラス基板200には、予め分割して液晶パネルになる領域201が決められている。液晶パネル領域201内に滴下動作経路203に沿ってノズル又は基板を移動して液晶202を滴下する。204の点線は液晶パネル間の移動経路を示しており、液晶パネル領域201Aと液晶パネル領域201Bを図示せぬディスペンサ17A、液晶パネル領域201Cと201Dをディスペンサ17B、液晶パネル領域201Eと201Fを図示せぬディスペンサ17Cを使用して、所望の液晶剤を供給する。ここで、一つの液晶パネル領域には、予め対象の画面サイズとセルギャップの設計値から、最適な液晶の供給量がそれぞれパネルの仕様により設定されている。例えば対角20インチの液晶パネルでは、700mg程度の液晶剤を供給するように設定されている。
FIG. 7A shows an example in which six liquid crystal panels are taken from one substrate. In this example, the dispenser 17 is not shown, but three sets of the dispenser 17A, the dispenser 17B, and the dispenser 17C are mounted on the apparatus, and all of them can be used.
In the glass substrate 200, a region 201 to be divided in advance to be a liquid crystal panel is determined. The liquid crystal 202 is dropped by moving the nozzle or the substrate along the dropping operation path 203 in the liquid crystal panel region 201. A dotted line 204 indicates a movement path between the liquid crystal panels. The liquid crystal panel area 201A and the liquid crystal panel area 201B are not shown in the dispenser 17A, the liquid crystal panel areas 201C and 201D are in the dispenser 17B, and the liquid crystal panel areas 201E and 201F are shown in the figure. The desired liquid crystal agent is supplied using the dispenser 17C. Here, in one liquid crystal panel region, an optimal liquid crystal supply amount is set in advance according to the panel specifications based on the target screen size and the design value of the cell gap. For example, a liquid crystal panel having a diagonal of 20 inches is set to supply about 700 mg of liquid crystal agent.

従って、この例では、ディスペンサ17A、17B、17Cそれぞれ液晶剤をまず、1パネル分すなわち700mgの量を先に示したピストン位置計測や、流量計測や、タンク残量計測等の方法により計量しながらマイクロシリンジ101に吸い込み、吸い込み完了時のピストン位置をモータ座標として記憶する。
例えばディスペンサ17aではマイクロシリンジに700mgを吸い込んだ時のモータ座標が700カウントの位置であったとする。ここでは700カウントを記憶する。この場合は1カウントが1mgに相当している。次に、700カウントの位置から再度計測を開始して、マイクロシリンジに700mgを吸い込んだ時のモータ座標が1405カウントの位置であったとする。先の計測では、1mgが1カウントに相当していることから、2回目の計測も同様で1400カウントを示すことが予測できる。しかし、実際には駆動部のねじ部の送り精度のばらつきからこれが狂うことがある。この例では送り量が少なくなっているので結果として、モータの移動量が5カウント多くなっているが、そのまま1405を記憶する。
Accordingly, in this example, each of the dispensers 17A, 17B, and 17C is first weighed by a method such as piston position measurement, flow rate measurement, tank remaining amount measurement, etc. Suction into the microsyringe 101, and the piston position when the suction is completed is stored as motor coordinates.
For example, in the dispenser 17a, it is assumed that the motor coordinate when 700 mg is drawn into the microsyringe is at a position of 700 counts. Here, 700 counts are stored. In this case, 1 count corresponds to 1 mg. Next, it is assumed that the measurement is started again from the 700 count position and the motor coordinates when 700 mg is sucked into the microsyringe is the 1405 count position. In the previous measurement, since 1 mg corresponds to 1 count, it can be predicted that the second measurement similarly shows 1400 counts. However, in reality, this may be out of order due to variations in the feeding accuracy of the screw portion of the drive unit. In this example, since the feed amount is reduced, the motor movement amount is increased by 5 counts as a result, but 1405 is stored as it is.

また、ディスペンサ17bではマイクロシリンジに700mgを吸い込んだ時のモータ座標が680カウントの位置であったとする。ここでは、680カウントを記憶する。これはディスペンサ17aと同様送り精度のばらつきの他、ピストンの径、若しくはマイクロシリンジの内径が設計値ディスペンサ17aよりも大きいため、モータの移動量が小さかったものと考えられる。2回目も同様にしてモータ座標が1360カウントの位置にあったので1360を記憶する。   In the dispenser 17b, it is assumed that the motor coordinates when 700 mg is sucked into the microsyringe is a position of 680 counts. Here, 680 counts are stored. This is considered to be because the movement amount of the motor is small because the piston diameter or the micro-syringe inner diameter is larger than the design value dispenser 17a in addition to the variation in feeding accuracy as in the dispenser 17a. Similarly, since the motor coordinates were at the position of 1360 counts in the second time, 1360 is stored.

また、ディスペンサ17cでは、マイクロシリンジに700mgを吸い込んだ時のモータ座標が705カウントの位置であったとする。ここでは、705カウントを記憶する。これはディスペンサ17aと同様送り精度のばらつきの他、ピストンの径、若しくはマイクロシリンジの内径が、ディスペンサ17aの設計値よりも小さいためモータの移動量が大きかったものと考えられる。2回目も同様にしてモータ座標が1410カウントの位置にあったので1410を記憶する。   In the dispenser 17c, it is assumed that the motor coordinates when 700 mg is drawn into the microsyringe is at the position of 705 counts. Here, 705 counts are stored. This is considered to be because the movement amount of the motor is large because the piston diameter or the micro syringe inner diameter is smaller than the design value of the dispenser 17a in addition to the variation in feeding accuracy as in the dispenser 17a. Similarly, since the motor coordinates were at the position of 1410 counts for the second time, 1410 is stored.

このように、計測結果にばらつきがあるのはマイクロシリンジの器差に起因するものであるが、所望の液晶を供給するためのモータ移動量は記憶されているので、1回目の供給動作、すなわちディスペンサ17aでは液晶パネル領域201a、ディスペンサ17bでは液晶パネル領域201c、ディスペンサ17cでは液晶パネル領域201eに所望の液晶量(700mg)を供給するためのモータ移動量は、ディスペンサ17aでは1405から700を引いた705カウントを所望の滴下数で割ったカウント毎、ディスペンサ17bでは1360から680を引いた680カウントを所望の滴下数で割ったカウント毎、ディスペンサ17cでは1410から705を引いた705カウントを所望の滴下数で割ったカウント毎だけ移動経路202に沿って供給していけば良い。   As described above, the variation in the measurement result is due to the instrumental difference of the microsyringe. However, since the motor movement amount for supplying the desired liquid crystal is stored, the first supply operation, that is, In the dispenser 17a, the liquid crystal panel area 201a, in the dispenser 17b, the liquid crystal panel area 201c, and in the dispenser 17c, the motor movement amount for supplying the desired liquid crystal amount (700 mg) to the liquid crystal panel area 201e is 1405 minus 700 in the dispenser 17a. For each count obtained by dividing 705 counts by the desired number of drops, for dispenser 17b, for each count obtained by subtracting 680 counts from 1360 to 680 for the desired number of drops, for dispenser 17c, for 705 counts obtained by subtracting 1410 from 705, for the desired drop Travel route by count divided by number We should be supplied along the 02.

2回目の供給動作、すなわちディスペンサ17aでは液晶パネル領域201b、ディスペンサ17bでは液晶パネル領域201d、ディスペンサ17cでは液晶パネル領域201fに所望の液晶量(700mg)を供給するためのモータ移動量は、ディスペンサ17aでは記憶された700カウントを所望の滴下数で割ったカウント毎、ディスペンサ17bでは記憶された680カウントを所望の滴下数で割ったカウント毎、ディスペンサ17cでは記憶された705カウントを所望の滴下数で割ったカウント毎だけ移動経路202に沿って供給していけば良い。   The second supply operation, that is, the liquid crystal panel region 201b in the dispenser 17a, the liquid crystal panel region 201d in the dispenser 17b, and the motor movement amount for supplying the desired liquid crystal amount (700 mg) to the liquid crystal panel region 201f in the dispenser 17c is as follows. Then, for every count obtained by dividing the stored 700 count by the desired number of drops, for the dispenser 17b, for every count obtained by dividing the stored 680 count by the desired number of drops, for the dispenser 17c, for 705 counts stored by the desired number of drops. It is only necessary to supply along the movement path 202 for each divided count.

また、図7(b)は2枚の液晶パネルを1枚の基板から取る例である。この例では、ディスペンサ17は図示していないがディスペンサ17A、ディスペンサ17B、ディスペンサ17C、ディスペンサ17Dの4組が装置に搭載されており、使用できるものとする。   FIG. 7B shows an example in which two liquid crystal panels are taken from one substrate. In this example, the dispenser 17 is not shown, but four sets of a dispenser 17A, a dispenser 17B, a dispenser 17C, and a dispenser 17D are mounted on the apparatus and can be used.

200はガラス,201は分割して液晶パネルになる領域、202は滴下する液晶、203は滴下動作経路、204の点線は液晶パネル間の移動経路を示している。液晶パネル領域210Aを2つのディスペンサを使用するよう領域211Aと領域211Bに分けて、図示せぬディスペンサ17Aとディスペンサ17Bを使用して、液晶パネル領域210のうち領域211Aをディスペンサ17Aで、領域211Bをディスペンサ17Bで供給する。同様に液晶パネル領域210B内を2つの領域211C、領域211Dに分割し、領域211Cをディスペンサ17Cで、領域211Dをディスペンサ17Dで供給する。この例では、対角30インチの液晶パネルとして1400mgの液晶剤供給量が設定されており、マイクロシリンジの液晶吸い込み量は1つのパネルを2つのマイクロシリンジを使用して供給することから700mgに設定される。   Reference numeral 200 denotes glass, 201 denotes a region divided into liquid crystal panels, 202 denotes liquid crystal to be dropped, 203 denotes a dropping operation path, and a dotted line 204 denotes a movement path between the liquid crystal panels. The liquid crystal panel area 210A is divided into an area 211A and an area 211B so as to use two dispensers, and the dispenser 17A and the dispenser 17B (not shown) are used. Of the liquid crystal panel area 210, the area 211A is the dispenser 17A and the area 211B is the area 211B. Supply with dispenser 17B. Similarly, the liquid crystal panel area 210B is divided into two areas 211C and 211D, and the area 211C is supplied by the dispenser 17C and the area 211D is supplied by the dispenser 17D. In this example, a liquid crystal agent supply amount of 1400 mg is set as a 30 inch diagonal liquid crystal panel, and the liquid crystal suction amount of the microsyringe is set to 700 mg because one panel is supplied using two microsyringes. Is done.

また、図7(c)は1枚の液晶パネルを1枚の基板から取る例である。この例では、ディスペンサ17は図示していないがディスペンサ17A、ディスペンサ17B、ディスペンサ17C、ディスペンサ17Dの4組が装置に搭載されており、使用できるものとする。   FIG. 7C shows an example in which one liquid crystal panel is taken from one substrate. In this example, the dispenser 17 is not shown, but four sets of a dispenser 17A, a dispenser 17B, a dispenser 17C, and a dispenser 17D are mounted on the apparatus and can be used.

液晶パネル領域220を4つのディスペンサを使用するよう領域221Aと221Bと221Cと221Dに分けて、それぞれの領域毎にそれぞれのディスペンサを使用して、所望量の液晶剤を供給する。この例では、対角50インチの液晶パネルとして3600mgの液晶剤供給量が設定されている。そのため、マイクロシリンジの液晶吸い込み量は、1つのパネルを4つのマイクロシリンジを使用して供給することから900mgに設定されることになる。   The liquid crystal panel region 220 is divided into regions 221A, 221B, 221C, and 221D so that four dispensers are used, and a desired amount of liquid crystal agent is supplied using each dispenser for each region. In this example, a liquid crystal agent supply amount of 3600 mg is set as a 50 inch diagonal liquid crystal panel. Therefore, the liquid crystal suction amount of the microsyringe is set to 900 mg because one panel is supplied using four microsyringes.

所望量の液晶剤を基板面のパネル領域内に滴下し終わると、液晶剤がシール剤のパターンの内側に十分に行き渡らせた後、基板の貼り合わせを行う。   When a desired amount of the liquid crystal agent has been dropped into the panel area of the substrate surface, the liquid crystal agent is sufficiently spread inside the pattern of the sealing agent, and then the substrates are bonded together.

即ち、シリンダ22で上チャンバユニット21を下降させ、そのフランジ部21aをOリング44に当接させて下チャンバユニット10と真空チャンバを形成させる。そして、真空バルブ23を開放して真空チャンバ内を減圧していく。この時、上基板1bは保持板27に真空吸着された状態になっているので、減圧が進み真空化していくと上基板1bに作用していた真空吸着力は消えて行き、上基板1bが自重で落下する。これを図2に示すように受止爪60で受け止めて、保持板27の僅か下の位置に保持しておく。   That is, the upper chamber unit 21 is lowered by the cylinder 22, and the flange portion 21a is brought into contact with the O-ring 44 to form a vacuum chamber with the lower chamber unit 10. Then, the vacuum valve 23 is opened to depressurize the vacuum chamber. At this time, since the upper substrate 1b is vacuum-sucked to the holding plate 27, the vacuum suction force acting on the upper substrate 1b disappears when the pressure is reduced and vacuumed, and the upper substrate 1b It falls with its own weight. This is received by a receiving claw 60 as shown in FIG. 2 and held at a position slightly below the holding plate 27.

真空チャンバ内が充分真空になった時点で、保持板27の静電吸着手段に電圧を印加して受止爪60上の上基板1bを保持板27にクーロン力で保持する。この場合、既に真空になっているので、保持板27と上基板1bの間に空気が残るようなことは無いし、その空気が逃げるときに上基板1bが踊ることもない。   When the inside of the vacuum chamber is sufficiently evacuated, a voltage is applied to the electrostatic chucking means of the holding plate 27 to hold the upper substrate 1b on the receiving claw 60 to the holding plate 27 with Coulomb force. In this case, since the vacuum has already been established, no air remains between the holding plate 27 and the upper substrate 1b, and the upper substrate 1b does not dance when the air escapes.

その後、図示を省略した昇降アクチェータでシャフト59を下降させ、次に、回転アクチェータでシャフト59を回転させ、受止爪60が上下両基板の貼り合わせの邪魔にならぬようにしてから、モータ40で保持板27をさらに下降させ、上基板1bの下面を下基板1a上のシール剤に接触させ、荷重計33でシール剤に付加する加圧力を計測しつつモータ40を制御して上下両基板1a、1bを所望間隔に貼り合わせる。なお、前述の説明では真空状態で基板を受け取り爪で受け取ってから静電吸着力を作用させるようにしているが、基板に真空吸着力が作用しなくなる前に静電吸着力を作用させるようにしても良い。   Thereafter, the shaft 59 is lowered by a lifting actuator (not shown), and then the shaft 59 is rotated by a rotary actuator so that the receiving claw 60 does not interfere with the bonding of the upper and lower substrates. Then, the holding plate 27 is further lowered, the lower surface of the upper substrate 1b is brought into contact with the sealing agent on the lower substrate 1a, and the load is applied to the upper and lower substrates by controlling the motor 40 while measuring the pressure applied to the sealing agent. 1a and 1b are bonded together at a desired interval. In the above description, the electrostatic attracting force is applied after the substrate is received in the vacuum state and received by the claw, but the electrostatic attracting force is applied before the vacuum attracting force stops acting on the substrate. May be.

この場合、上基板1bは保持板27に密着していて中央部が垂れ下がっていることはないから、液晶剤中のスペーサに悪影響を与えたり、基板同士の位置合わせが不良になることはない。因みに、位置合わせは図示を省略した上チャンバユニット21に設けた覗き窓から画像認識カメラで上下各基板1a、1bに設けられている位置合わせマークを読み取って画像処理により位置を計測し、XYθステージT1の各ステージ4a乃至4cを微動させて、高精度な位置合わせを行う。この微動において、Oリング44が極端に変形しないで真空が維持されるように、ボールベアリング87が上下チャンバユニット10、21の間隔を維持している。   In this case, since the upper substrate 1b is in close contact with the holding plate 27 and the central portion does not hang down, the spacer in the liquid crystal agent is not adversely affected and the alignment between the substrates does not become poor. Incidentally, the alignment is performed by reading the alignment marks provided on the upper and lower substrates 1a and 1b from the observation window provided in the upper chamber unit 21 (not shown) with the image recognition camera and measuring the position by image processing, and the XYθ stage. Each stage 4a to 4c of T1 is finely moved to perform highly accurate alignment. In this fine movement, the ball bearing 87 maintains the space between the upper and lower chamber units 10 and 21 so that the vacuum is maintained without the O-ring 44 being deformed extremely.

貼り合わせが終了すると、真空バルブ23を締めてガスパージバルブ25を開き、真空チャンバ内にN2やクリーンドライエアーを供給し、大気圧に戻してからガスパージバルブ25を閉じて、シリンダ22で上チャンバユニット21を上昇させ、XYθステージT1を液晶滴下部S1に戻して、テーブル9から貼り合せた基板を外し、次の貼り合わせに備える。テーブル9から外した後、基板は下流のUV光照射装置や加熱装置などでシール剤が硬化される。   When the bonding is finished, the vacuum valve 23 is closed and the gas purge valve 25 is opened, N2 or clean dry air is supplied into the vacuum chamber, the pressure is returned to atmospheric pressure, and then the gas purge valve 25 is closed. 21 is raised, the XYθ stage T1 is returned to the liquid crystal dropping section S1, and the bonded substrate is removed from the table 9 to prepare for the next bonding. After being removed from the table 9, the sealing agent is cured on the substrate by a downstream UV light irradiation device or a heating device.

以上の実施形態では、シール剤を吐出して液晶を滴下した後直ちに貼り合わせに移行することができるので、基板が塵埃を受けづらく生産歩留まりを向上できる。また、XYθステージT1を上基板1bの真空チャンバ内への搬送に利用でき、装置の小型化が図られている。特に、XYθステージT1の移動で基板を保持したまま液晶剤を広げるので1基板への供給点数を減らすことができて供給量のばらつきは小さくなり、しかも、液晶剤の拡張を貼り合せる基板同士で行うので、短時間で供給から貼り合わせに進むことができ、生産性は向上する。   In the above embodiment, since the sealing agent is discharged and the liquid crystal is dropped, it is possible to shift to bonding immediately, so that it is possible to improve the production yield in which the substrate is difficult to receive dust. Further, the XYθ stage T1 can be used for transporting the upper substrate 1b into the vacuum chamber, and the size of the apparatus is reduced. In particular, since the liquid crystal agent is spread while the substrate is held by the movement of the XYθ stage T1, the number of supply points to one substrate can be reduced, the variation in the supply amount is reduced, and the substrates to which the expansion of the liquid crystal agent is bonded can be reduced. Since it is performed, it is possible to proceed from supply to bonding in a short time, and productivity is improved.

また、液晶剤は正確な量を供給することができるため、液晶剤がシール剤パターンの外側にあふれて基板を汚染するおそれがなく、かつ、洗浄工程は不要となって液晶剤の無駄な消費を無くすことができる。   In addition, since the liquid crystal agent can be supplied in an accurate amount, there is no possibility that the liquid crystal agent overflows outside the sealant pattern and contaminates the substrate, and no cleaning process is required, resulting in wasted consumption of the liquid crystal agent. Can be eliminated.

液晶滴下、基板貼り合わせ装置の全体構成を示す図である。It is a figure which shows the whole structure of a liquid crystal dropping and board | substrate bonding apparatus. 真空状態で基板を受け取る受け取り爪、及び下基板を水平方向に移動しないように保持する保持機構の一例を示す図である。It is a figure which shows an example of the holding mechanism which hold | maintains the receiving nail which receives a board | substrate in a vacuum state, and a lower board | substrate so that it may not move to a horizontal direction. 液晶滴下装置の液晶供給系の概略構成の一例を示す。An example of schematic structure of the liquid crystal supply system of a liquid crystal dropping apparatus is shown. 液晶供給量の計測の一例を示す図である。It is a figure which shows an example of the measurement of liquid crystal supply amount. タンク内の液晶量を測定する一例を示す図である。It is a figure which shows an example which measures the amount of liquid crystals in a tank. 液晶パネルに液晶剤を滴下する状況を説明する図である。It is a figure explaining the condition where a liquid crystal agent is dripped at a liquid crystal panel. マイクロシリンジ内に液晶剤を吸い込む場合の吸い込み量の計測例である。It is an example of measuring the amount of suction when a liquid crystal agent is sucked into a microsyringe.

符号の説明Explanation of symbols

1a…下基板、1b…上基板、2…架台、3…フレーム、4…XYθステージ、
17…液晶滴下装置、101…マイクロシリンジ、102…ピストン、103…切替バルブ、104…流路切替ポート、107…ボトル、109…ノズル。
DESCRIPTION OF SYMBOLS 1a ... Lower substrate, 1b ... Upper substrate, 2 ... Mount, 3 ... Frame, 4 ... XY (theta) stage,
DESCRIPTION OF SYMBOLS 17 ... Liquid crystal dripping apparatus, 101 ... Micro syringe, 102 ... Piston, 103 ... Switching valve, 104 ... Flow path switching port, 107 ... Bottle, 109 ... Nozzle.

Claims (9)

貼り合わせる一方の基板を保持板の下面に保持し、貼り合わせる他方の基板をテーブル上に保持して対向させ、テーブル上に保持した基板上に液晶剤を供給した後、両基板の間隔を狭めていずれかの基板に設けた接着剤により両基板を貼り合わせる液晶基板の組立方法において、
液晶剤を基板に供給する前に、液晶剤をタンクから計量しながらマイクロシリンジ内へ充填する工程と、
計量してマイクロシリンジ内の液晶剤が所望の液晶量となるように供給動作を制御する工程と、
基板と液晶吐出孔との基板の主面に平行な方向の相対位置を変化させながら、前記マイクロシリンジ内に計量充填した液晶剤を、所望の位置に所望の量だけ滴下しながら計量充填した総量を基板面上に供給する工程とを有することを特徴とする液晶基板の組立方法。
One substrate to be bonded is held on the lower surface of the holding plate, the other substrate to be bonded is held on the table so as to face the substrate, a liquid crystal agent is supplied onto the substrate held on the table, and the distance between the two substrates is reduced. In an assembly method of a liquid crystal substrate in which both substrates are bonded together with an adhesive provided on either substrate,
Before supplying the liquid crystal agent to the substrate, filling the microsyringe while measuring the liquid crystal agent from the tank;
A step of measuring and controlling the supply operation so that the liquid crystal agent in the microsyringe has a desired amount of liquid crystal;
The total amount of the liquid crystal agent that has been metered and filled in the microsyringe while being dripped in a desired amount by the desired amount while changing the relative position of the substrate and the liquid crystal discharge hole in the direction parallel to the main surface of the substrate. A method for assembling a liquid crystal substrate, comprising: supplying the substrate onto a substrate surface.
請求項1に記載の液晶基板の組立方法において、
前記マイクロシリンジ内に設けたピストンをモータ駆動して液晶剤の吸い込み、吐出を行うことを特徴とする液晶基板の組立方法。
The method for assembling a liquid crystal substrate according to claim 1,
A liquid crystal substrate assembly method, wherein a piston provided in the microsyringe is driven by a motor to suck and discharge a liquid crystal agent.
請求項2に記載の液晶基板の組立方法において、
液晶剤の計量は、前記マイクロシリンジ内のピストンの位置をモータに近傍付与したエンコーダのパルス数で計測して、変化したパルス数と既知のピストンの直径との積から求めることを特徴とする液晶基板の組立方法。
The method of assembling a liquid crystal substrate according to claim 2.
The liquid crystal agent is measured by measuring the position of the piston in the microsyringe by the number of pulses of an encoder provided in the vicinity of the motor, and obtaining from the product of the changed number of pulses and the known piston diameter. Board assembly method.
請求項2に記載の液晶基板の組立方法において、
供給する液晶剤の入ったタンクと、そのタンクからマイクロシリンジ内に液晶剤を供給する流量を計測する流量計と、計測した流量からマイクロシリンジ内への供給量を演算する制御部とを備え、
液晶吸い込み工程では、マイクロシリンジ内に吸い込んだ液晶剤量を、液晶剤の流量により計量し、マイクロシリンジ内に供給する所望量分だけ吸い込んだときのピストンの位置を記憶し、
液晶吐出工程では、その所望量分だけ吸い込んだときのピストンの位置を記憶した量だけピストンを移動させて液晶剤を基板に供給することを特徴とする液晶基板の組立方法。
The method of assembling a liquid crystal substrate according to claim 2.
A tank containing a liquid crystal agent to be supplied, a flow meter for measuring the flow rate of supplying the liquid crystal agent from the tank into the microsyringe, and a control unit for calculating the supply amount into the microsyringe from the measured flow rate,
In the liquid crystal suction process, the amount of liquid crystal agent sucked into the microsyringe is measured by the flow rate of the liquid crystal agent, and the piston position when the desired amount supplied into the microsyringe is sucked is stored,
An assembly method of a liquid crystal substrate, wherein in the liquid crystal discharge step, the liquid crystal agent is supplied to the substrate by moving the piston by an amount storing the position of the piston when the desired amount is sucked.
請求項2に記載の液晶基板の組立方法において、
供給する液晶剤の入ったタンクと、そのタンク内の液晶残量を計測する残量計測器と、計測したタンクの液晶残量からマイクロシリンジ内への供給量を演算する制御部とを備え、
液晶吸い込み工程は、前記マイクロシリンジ内にピストンをモータ駆動して吸い込んだ液晶剤量を、前記タンク内液晶残量により計量し、前記マイクロシリンジ内に供給する所望量分だけ吸い込んだときのピストンの位置を記憶し、
液晶吐出工程では、その所望量分だけ吸い込んだときのピストンの位置を記憶した量だけピストンを移動させて液晶剤を基板に供給することを特徴とする液晶基板の組立方法。
The method of assembling a liquid crystal substrate according to claim 2.
A tank containing a liquid crystal agent to be supplied, a remaining amount measuring device for measuring the remaining amount of liquid crystal in the tank, and a control unit for calculating the supply amount into the microsyringe from the measured remaining amount of liquid crystal in the tank,
In the liquid crystal suction process, the amount of liquid crystal agent sucked by driving the piston into the microsyringe is measured by the remaining amount of liquid crystal in the tank, and the piston is sucked by a desired amount supplied into the microsyringe. Remember the position,
An assembly method of a liquid crystal substrate, wherein in the liquid crystal discharge step, the liquid crystal agent is supplied to the substrate by moving the piston by an amount storing the position of the piston when the desired amount is sucked.
請求項5に記載の液晶基板の組立方法において、
残量計測は液晶タンク重量を計測する方式であることを特徴とした液晶基板の組立方法。
The method of assembling a liquid crystal substrate according to claim 5,
A method for assembling a liquid crystal substrate, wherein the remaining amount measurement is a method of measuring a weight of the liquid crystal tank.
請求項6に記載の液晶基板の組立方法において、
残量計測は液晶瓶内液晶剤の液面高さを計測する方式であることを特徴とした液晶基板の組立方法。
The method of assembling a liquid crystal substrate according to claim 6.
A method of assembling a liquid crystal substrate, wherein the remaining amount measurement is a method of measuring the liquid level of the liquid crystal agent in the liquid crystal bottle.
請求項1に記載の液晶基板の組立方法において、
液晶瓶と供給タンクとの間にイオン交換樹脂によるフィルタを取り付けて,液晶のイオン性不純物を除去できることを特徴とした液晶基板の組立方法。
The method for assembling a liquid crystal substrate according to claim 1,
An assembly method for a liquid crystal substrate, characterized in that an ionic impurity of liquid crystal can be removed by attaching a filter made of ion exchange resin between the liquid crystal bottle and the supply tank.
請求項1に記載の液晶基板の組立方法において、
供給タンクと液晶吐出孔の間にイオン交換樹脂によるフィルタを取り付けて、液晶のイオン性不純物を除去できることを特徴とした液晶基板の組立方法。
The method for assembling a liquid crystal substrate according to claim 1,
An assembly method of a liquid crystal substrate, characterized in that an ionic impurity of liquid crystal can be removed by attaching a filter made of an ion exchange resin between a supply tank and a liquid crystal discharge hole.
JP2003393234A 2003-11-25 2003-11-25 Assembling method of liquid crystal substrate Expired - Fee Related JP4241339B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003393234A JP4241339B2 (en) 2003-11-25 2003-11-25 Assembling method of liquid crystal substrate
TW093107159A TWI265830B (en) 2003-11-25 2004-03-17 Method for assembling liquid crystal substrate and liquid crystal dropping
KR1020040038110A KR100646694B1 (en) 2003-11-25 2004-05-28 Method for assembling liquid crystal substrate and apparatus for liquid crystal dropping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393234A JP4241339B2 (en) 2003-11-25 2003-11-25 Assembling method of liquid crystal substrate

Publications (2)

Publication Number Publication Date
JP2005156763A true JP2005156763A (en) 2005-06-16
JP4241339B2 JP4241339B2 (en) 2009-03-18

Family

ID=34719656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393234A Expired - Fee Related JP4241339B2 (en) 2003-11-25 2003-11-25 Assembling method of liquid crystal substrate

Country Status (3)

Country Link
JP (1) JP4241339B2 (en)
KR (1) KR100646694B1 (en)
TW (1) TWI265830B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032989A (en) * 2008-07-25 2010-02-12 Top Engineering Co Ltd Method of ejecting liquid crystal onto unit panel area defined on mother substrate
JP2010211170A (en) * 2009-03-10 2010-09-24 Top Engineering Co Ltd Method for setting weight of droplet of liquid crystal and method for dropping the droplet of liquid crystal with the set weight onto unit panel area
WO2018051397A1 (en) * 2016-09-13 2018-03-22 堺ディスプレイプロダクト株式会社 Liquid crystal dropping device and liquid crystal dropping method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811647B1 (en) * 2006-12-26 2008-03-11 엘지.필립스 엘시디 주식회사 Coating liquid supplying apparatus
KR100953082B1 (en) * 2008-07-25 2010-04-19 주식회사 탑 엔지니어링 Method for controlling a droplet amount of liquid crystal to be discharged at a time
KR101024341B1 (en) * 2008-10-31 2011-03-23 주식회사 탑 엔지니어링 Device for fixing liquid container for liquid crystal dispenser
KR101066602B1 (en) * 2009-06-29 2011-09-22 에이피시스템 주식회사 Syringe for injecting liquid crystal and Liquid crystal injector using thereof and Method of injecting liquid crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032989A (en) * 2008-07-25 2010-02-12 Top Engineering Co Ltd Method of ejecting liquid crystal onto unit panel area defined on mother substrate
JP2010211170A (en) * 2009-03-10 2010-09-24 Top Engineering Co Ltd Method for setting weight of droplet of liquid crystal and method for dropping the droplet of liquid crystal with the set weight onto unit panel area
WO2018051397A1 (en) * 2016-09-13 2018-03-22 堺ディスプレイプロダクト株式会社 Liquid crystal dropping device and liquid crystal dropping method

Also Published As

Publication number Publication date
JP4241339B2 (en) 2009-03-18
TW200517189A (en) 2005-06-01
KR20050050153A (en) 2005-05-30
TWI265830B (en) 2006-11-11
KR100646694B1 (en) 2006-11-23

Similar Documents

Publication Publication Date Title
US7363948B2 (en) Apparatus and method for dispensing liquid crystal
US7704348B2 (en) Apparatus and method for fabricating bonded substrate
TWI417144B (en) Paste coating apparatus and paste coating method
JP3422291B2 (en) How to assemble a liquid crystal substrate
JPH1133458A (en) Liquid body coating device
US7553392B2 (en) Method of manufacturing liquid crystal display device and one drop fill apparatus used for the same
JP4241339B2 (en) Assembling method of liquid crystal substrate
CN105188333A (en) Assembling device and assembling method
CN101859036A (en) Base Plate Lamination Device and method for bonding substrate
US8091767B2 (en) Substrate manufacturing apparatus, substrate manufacturing method, ball-mounted substrate, and electronic component-mounted substrate
JP2002318378A (en) Method for assembling liquid crystal display device and its device
JP2007152261A (en) Paste application apparatus, paste application method, and manufacturing method of display panel using it
TWI252134B (en) Fabrication method and device of liquid crystal panel, and solder paste coating device
JP3916898B2 (en) Manufacturing method of liquid crystal panel, manufacturing apparatus and manufacturing system thereof
JP4682576B2 (en) Liquid crystal dropping device
JP4244529B2 (en) Method and apparatus for assembling liquid crystal substrate
TWI397755B (en) Apparatus and method for dropping liquid crystals
TWI441689B (en) Coating device and its coating position correction method
JP5171230B2 (en) Alignment mark detection apparatus and method
TWI482997B (en) Assembly apparatus
KR101201408B1 (en) Unit for dropping liquefied material and apparatus for dropping liquefied material with it
JP3817461B2 (en) Assembling method of liquid crystal substrate
JP2004290885A (en) Application method and application apparatus of coating material, and production method of electro-optical device
JP2001321710A (en) Coating apparatus
KR100543678B1 (en) Liquid crystal injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4241339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees