JP2005152824A - Air bubble generator - Google Patents

Air bubble generator Download PDF

Info

Publication number
JP2005152824A
JP2005152824A JP2003396876A JP2003396876A JP2005152824A JP 2005152824 A JP2005152824 A JP 2005152824A JP 2003396876 A JP2003396876 A JP 2003396876A JP 2003396876 A JP2003396876 A JP 2003396876A JP 2005152824 A JP2005152824 A JP 2005152824A
Authority
JP
Japan
Prior art keywords
gas
liquid
container
bubble generating
liquid ejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003396876A
Other languages
Japanese (ja)
Inventor
Ryuta Kondo
龍太 近藤
Hideki Ono
英樹 大野
Masamitsu Kondo
正満 近藤
Shigeru Iwanaga
茂 岩永
Keiko Yasui
圭子 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003396876A priority Critical patent/JP2005152824A/en
Publication of JP2005152824A publication Critical patent/JP2005152824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air bubble generator at a fine orifice or a fine net of which refuse does not heap and which can assure performance of generating a lot of stable minute air bubbles over a long period of time. <P>SOLUTION: The air bubble generator is provided with an inflow port 23 opened in a barrel 22 having an hollow part 21, a pressurized liquid introducing pipe 24 connected with the inflow port 23 and a gas-liquid jetting port 25 opened in the barrel 22. Liquid in which gas is dissolved under pressure is introduced into the inflow port 23, is made to a whirling flow in the barrel and then is ejected from the gas-liquid jetting port 25 to reduce pressure and to enable the air bubbles to be generated. Thereby a gaseous axis 28 is formed at a whirling flow central part in the barrel 22 and when the whirling flow is ejected from the gas-liquid jetting port, the gaseous axis 28 is sheared to minute air bubbles and ejected liquid is decompressed by jetting resistance and dissolved gas is separated with the minute air bubble as a nucleus and a lot of minute air bubbles can be generated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、気泡発生装置に関するものである。   The present invention relates to a bubble generating device.

従来、この種の気泡発生装置としては、例えば、気体を加圧溶解した液体を減圧して微細気泡を発生させるために、減圧板と網が設けられた微細気泡発生ノズルを用いているものがあった(特許文献1参照)。   Conventionally, as this type of bubble generating device, for example, a device using a fine bubble generating nozzle provided with a decompression plate and a net is used to generate a fine bubble by depressurizing a liquid in which a gas is dissolved under pressure. (See Patent Document 1).

図9は前記文献に記載された従来の気泡発生装置を示すものである。図9において、微細気泡発生ノズル1の内部には孔2が設けられた減圧板3とその下流に網4が設けられている。そして空気を吸引した水を高圧ポンプ(図示せず)等で高圧に加圧し、孔2、減圧板3から網4に水流を衝突させることにより、急激に減圧され水中に溶解されていた空気が分離し微細気泡となる。   FIG. 9 shows a conventional bubble generating apparatus described in the above document. In FIG. 9, a decompression plate 3 provided with holes 2 and a net 4 are provided downstream thereof in the inside of the fine bubble generating nozzle 1. Then, the air that has been sucked in air is pressurized to a high pressure with a high-pressure pump (not shown) or the like, and the water stream collides with the net 4 from the hole 2 and the decompression plate 3, so that the air that has been rapidly decompressed and dissolved in the water is Separates into fine bubbles.

また、他の従来の微細気泡発生装置としては、例えば、レリーフバルブが設けられた微細気泡発生ノズルを用いて、液体が通過するときの内部の圧力が所定圧に達したときにレリーフバルブが開き微細気泡が発生するようにしたものがあった(特許文献2参照)。   As another conventional fine bubble generating device, for example, a fine bubble generating nozzle provided with a relief valve is used to open the relief valve when the internal pressure when the liquid passes reaches a predetermined pressure. There was one in which fine bubbles were generated (see Patent Document 2).

図10において、気体を加圧溶解した液体を減圧して微細気泡を発生させるために、微細気泡発生ノズル5の吐出管路6内部の圧力によって開閉する弁体7と、この弁体7を付勢するスプリング8で構成されたレリーフバルブ9が設けられている。そして上記液体が吐出管路6を通過するときの内部の圧力が所定圧に達したときにレリーフバルブ9が開き微細気泡が発生する。
特開昭63−283772号公報 特公平3−14464号公報
In FIG. 10, in order to reduce the pressure of the gas dissolved under pressure and generate fine bubbles, a valve body 7 that opens and closes by the pressure inside the discharge pipe 6 of the fine bubble generation nozzle 5 and the valve body 7 are attached. A relief valve 9 composed of a spring 8 is provided. When the internal pressure when the liquid passes through the discharge pipe 6 reaches a predetermined pressure, the relief valve 9 is opened and fine bubbles are generated.
Japanese Unexamined Patent Publication No. 63-283377 Japanese Patent Publication No. 3-14464

しかしながら、前記特許文献1の構成では、減圧板3の孔から網に水流が衝突するため、網にゴミが溜まり、微細気泡の発生能力が次第に低下してくるという課題があった。   However, in the configuration of Patent Document 1, a water flow collides with the net from the hole of the decompression plate 3, so that dust accumulates on the net and the ability to generate fine bubbles gradually decreases.

また、特許文献2の構成においては、レリーフバルブ9と吐出管路6の内部における隙間において微細気泡を発生させているが、吐出管路6内を流れる水の流れにより吐出管路6の内部と弁体7との隙間が一定に保たれず安定して微細気泡が発生しないという課題があった。   Further, in the configuration of Patent Document 2, fine bubbles are generated in the clearance between the relief valve 9 and the discharge pipe 6, but the flow of water flowing in the discharge pipe 6 causes the inside of the discharge pipe 6 to There was a problem that the gap with the valve body 7 was not kept constant and fine bubbles were not generated stably.

本発明は、前記従来の課題を解決するもので、ゴミが溜まらずかつ長期間に渡って安定して微細気泡を多量発生するという性能を確保できる気泡発生装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a bubble generating device capable of ensuring the performance that dust does not accumulate and stably generates a large amount of fine bubbles over a long period of time.

前記従来の課題を解決するために、本発明の気泡発生装置は、中空部を有する器体に開口された流入口と、流入口に接続される加圧液導入管と、器体に開口した気液噴出孔とを備え、気体が加圧溶解した液体を流入口に導入して器体内で旋回流とし気液噴出孔より噴出させることで減圧し、気泡を発生できるようにしたものである。   In order to solve the above-described conventional problems, the bubble generating device of the present invention has an inflow opening opened in a container having a hollow portion, a pressurized liquid introduction pipe connected to the inflow opening, and an opening in the container. It is equipped with a gas-liquid jet hole, which introduces a liquid in which gas is pressurized and dissolved into the inlet and turns it into a swirling flow inside the container to eject it from the gas-liquid jet hole so that bubbles can be generated. .

これによって、気体を加圧溶解している液体を、流入口から導入して器体内で旋回流を生じさせると、旋回外周部は高圧に中心部は低圧になるので、旋回中心近傍では導入された加圧液体の一部に減圧が生じて溶解気体が分離するとともに旋回中心部に収束して気体軸が形成される。この気体軸を有する器体内の旋回流が気液噴出孔より噴出する際に、気体軸が剪断されて微細気泡となり、噴出した液体は噴出抵抗により減圧され前述の微細気泡を核として溶解気体を分離し、多量の微細気泡を発生させることができる。   As a result, when a liquid in which gas is dissolved under pressure is introduced from the inlet and a swirling flow is generated in the vessel, the swirling outer peripheral portion is high pressure and the central portion is low pressure, so that it is introduced near the swirling center. A reduced pressure is generated in a part of the pressurized liquid so that the dissolved gas is separated and converges at the center of rotation to form a gas axis. When the swirling flow in the container having the gas axis is ejected from the gas-liquid ejection hole, the gas axis is sheared into fine bubbles, and the ejected liquid is depressurized by the ejection resistance, and the dissolved gas is generated using the fine bubbles as a nucleus. It can separate and generate a lot of fine bubbles.

本発明の気泡発生装置は、微細気泡発生部を微細なオリフィス形状や網を用いたものにしないので、確実な微細気泡発生とゴミの付着停滞防止の両立を図ることができる。   The bubble generating apparatus of the present invention does not make the fine bubble generating part a fine orifice shape or a net, so that it is possible to achieve both reliable generation of fine bubbles and prevention of stagnation of dust.

第1の発明は中空部を有する器体と、器体に開口された流入口と、流入口に接続される加圧液導入管と、器体に開口した気液噴出孔とを備え、気体が加圧溶解した液体を流入口に導入して器体内で旋回流とし気液噴出孔より噴出させることで、減圧が生じて気泡を発生できるようにすることにより、気体を加圧溶解している液体を、流入口から導入して器体内で旋回流を生じさせると、旋回外周部は高圧に中心部は低圧になるので、旋回中心近傍では導入された加圧液体の一部に減圧が生じて溶解気体が分離するとともに、気体と液体の比重差によりこの分離した気体が旋回中心部に収束して細紐状の気体軸が形成される。この気体軸を有する器体内の旋回流が気液噴出孔より噴出する際に、気体軸が剪断されて微細気泡となり、噴出した液体は噴出抵抗により減圧され前述の微細気泡を核として溶解気体を分離し、多量の微細気泡を発生させることができる。このように、微細気泡発生部を微細なオリフィス形状や網を用いたものにしないので、確実な微細気泡発生とゴミの付着停滞防止の両立を図ることができる。   1st invention is equipped with the container which has a hollow part, the inflow port opened to the container body, the pressurized liquid inlet tube connected to an inflow port, and the gas-liquid ejection hole opened to the container body, and gas By introducing the pressurized and dissolved liquid into the inlet and turning it into a swirling flow through the gas-liquid jet hole, the pressure is dissolved and the gas is pressurized and dissolved. If the liquid is introduced from the inlet and a swirling flow is generated in the vessel, the swirling outer peripheral portion becomes high pressure and the central portion becomes low pressure, so that the pressure of the introduced pressurized liquid is reduced in the vicinity of the swirling center. As a result, the dissolved gas is separated, and the separated gas converges on the center of rotation due to the difference in specific gravity between the gas and the liquid, thereby forming a thin string-like gas shaft. When the swirling flow in the container having the gas axis is ejected from the gas-liquid ejection hole, the gas axis is sheared into fine bubbles, and the ejected liquid is depressurized by the ejection resistance, and the dissolved gas is generated using the fine bubbles as a nucleus. It can separate and generate a lot of fine bubbles. As described above, since the fine bubble generating portion is not made of a fine orifice shape or a net, it is possible to achieve both the reliable generation of fine bubbles and the prevention of stagnation of dust.

第2の発明は、特に 第1の発明の器体の中空部を略回転対称に形成し、流入口は器体の周壁部に接線方向に開口して構成することにより、回転対称の器体中空部に、その周壁部接線方向に開口した流入口から加圧液体を導入することで、器体内に強い旋回流を生じさせることが可能になるので、旋回中心近傍の減圧による気体軸の形成と、核となる微細気泡の発生を促進し、ゴミ付着を起こす微細流路なしに、確実に減圧分離による多量の微細気泡を発生することができる。   In the second invention, in particular, the hollow portion of the vessel body of the first invention is formed in a substantially rotationally symmetric manner, and the inflow port is configured to open in a tangential direction to the peripheral wall portion of the vessel body. By introducing pressurized liquid into the hollow part from the inlet opening in the tangential direction of the peripheral wall part, it becomes possible to generate a strong swirling flow in the body, so the formation of the gas shaft by decompression near the swirling center In addition, it is possible to promote generation of fine bubbles as a core and reliably generate a large amount of fine bubbles by vacuum separation without a fine flow path causing dust adhesion.

第3の発明は、特に 第2の発明の器体の周壁部に接線方向に開口された流入口を、器体の周壁部の円周上に所定の間隔を置いて複数個備えることにより、旋回流の同一円周上に複数の流入口を備えて、同一回転方向に複数の箇所から旋回を促進させるので、強く安定した旋回流を生じさせることができ、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。   According to a third aspect of the present invention, in particular, by providing a plurality of inflow ports opened in a tangential direction to the peripheral wall portion of the container body of the second invention at predetermined intervals on the circumference of the peripheral wall portion of the container body, A plurality of inlets are provided on the same circumference of the swirl flow, and the swirl is promoted from a plurality of locations in the same rotation direction, so that a strong and stable swirl flow can be generated, and the liquid near the swirl center can be depressurized. The formation of the gas axis at the center of rotation by the dissolved gas separation can be ensured, and a large amount of fine bubbles can be generated more reliably.

第4の発明は、特に 第1〜3のいずれか1つの発明の器体を略中空円筒状に形成した構成とすることにより、円筒状器体の内部中空部は、回転対称軸両端部が軸に垂直な略平面の円柱状空間になり、この円柱状空間の円周部から接線方向に液体が流入することで、旋回流を乱す旋回軸方向の流速成分がほとんど無くなり、旋回軸に垂直な旋回の流速成分ばかりにすることができるので、強く安定した旋回流を生じさせることができ、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。   According to a fourth aspect of the present invention, in particular, the inner hollow portion of the cylindrical vessel body is configured so that both end portions of the rotational symmetry axis are formed by forming the vessel body of any one of the first to third inventions into a substantially hollow cylindrical shape. It becomes a substantially planar cylindrical space perpendicular to the axis, and liquid flows in tangentially from the circumference of this cylindrical space, so that there is almost no flow velocity component in the swirl axis direction disturbing the swirl flow, and perpendicular to the swivel axis. As a result, it is possible to produce only a swirling flow velocity component, so that a strong and stable swirling flow can be generated, and the formation of a gas axis at the swirling center is ensured by depressurization of liquid near the swirling center and separation of dissolved gas. Can be realized more reliably.

第5の発明は、特に 第1〜4のいずれか1つの発明の器体の外部に、気液噴出孔と所定の間隔を有して噴出流が衝突する衝突部を備えることにより、溶解気体を含む液体が気液噴出孔を出て急減圧による微細気泡を発生した後流で、この噴出流が勢いよく衝突部に衝突することにより、さらに多くの微細気泡が発生するので、ゴミの付着防止と微細気泡の多量発生の両立が実現できる。   The fifth aspect of the invention is a dissolved gas, in particular, by providing a collision part on the outside of the container of any one of the first to fourth aspects of the present invention, where the jet flow collides with a gas-liquid jet hole at a predetermined interval. Since the liquid containing the gas exits the gas-liquid jet holes and generates fine bubbles due to sudden decompression, this jet flow vigorously collides with the collision part, so that more fine bubbles are generated, so that dust adheres. Both prevention and generation of a large amount of fine bubbles can be realized.

第6の発明は、特に 第1〜3のいずれか1つの発明の器体内に、器体中空部の周壁部近傍に羽根を有し旋回流の旋回軸を回転軸とする羽根車を設けた構成とすることにより、流入口から導入された液体の流れにより中空部周壁部にある羽根が接線方向に力を受けて羽根車が旋回流とともに回転し、旋回軸方向の流速成分に乱される等の影響を防止して旋回流を安定させることができ、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。   According to a sixth aspect of the present invention, an impeller having a blade near the peripheral wall of the hollow portion of the container and having a swirling axis as a rotation axis is provided in the container of any one of the first to third aspects of the invention. With this configuration, the blades in the peripheral wall of the hollow portion are subjected to a tangential force by the liquid flow introduced from the inlet, and the impeller rotates together with the swirling flow, and is disturbed by the flow velocity component in the swirling axis direction. The swirl flow can be stabilized by preventing the influence of etc., and the formation of the gas axis at the swivel center by the decompression of the liquid near the swivel center and the separation of dissolved gas is ensured, and the generation of a large amount of fine bubbles is more reliably realized. be able to.

第7の発明は、特に 第1〜3のいずれか1つの発明の気液噴出孔を旋回流の旋回軸の両軸端の一方に開口し、器体は気液噴出孔にむかって断面積が縮小する先細り形状とすることにより、液体の旋回流の旋回半径が気液噴出孔に近づくにつれて小さくなり流路も狭くなるので、流速が早くなるとともに流路抵抗が増大して圧力が大きくなり、増速に伴う気体軸の剪断力増大と気液噴出孔前後の圧力差の増大で、微細気泡の発生が促進される。また、器体内の流路抵抗の増大に抗して液体を流通させるために液体の導入圧力を増大させることになり、圧力が大きくなるので溶解する気体量も大きくなり、このことによっても微細気泡の発生量が大きくなり、ゴミの付着防止と確実な微細気泡多量発生の両立が実現できる。   In the seventh invention, in particular, the gas-liquid ejection hole of any one of the first to third inventions is opened at one of both ends of the swirling shaft of the swirling flow, and the vessel body has a cross-sectional area facing the gas-liquid ejection hole. By reducing the taper shape, the swirl radius of the liquid swirl becomes smaller as the gas-liquid jet hole approaches, and the flow path becomes narrower. Therefore, the flow velocity is increased and the flow resistance is increased to increase the pressure. The generation of fine bubbles is promoted by an increase in the shearing force of the gas shaft accompanying the increase in speed and an increase in the pressure difference before and after the gas-liquid ejection hole. In addition, in order to circulate the liquid against the increase in the flow resistance in the body, the liquid introduction pressure is increased, and the amount of dissolved gas increases because the pressure increases. As a result, the generation of dust and the generation of a large amount of fine bubbles can be realized.

第8の発明は、特に 第1〜3のいずれか1つの発明の気液噴出孔を器体中空部の回転対称軸の両軸端の一方に開口し、器体の流入口を回転対称軸の軸長中心よりも気液噴出孔側に設けた構成とすることにより、流入口から器体対称軸の他端までの距離を十分に設けることになり、流入口から導入された液体が気液噴出孔へすぐに向かわず、他端の方へ旋回流を成長・促進することができるので旋回流が安定し、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。   In the eighth aspect of the invention, in particular, the gas-liquid ejection hole according to any one of the first to third aspects of the invention is opened at one of both ends of the rotational symmetry axis of the body hollow portion, and the inlet of the body is defined as the rotational symmetry axis. By providing the gas-liquid jet hole side with respect to the axial length center, a sufficient distance is provided from the inlet to the other end of the symmetry axis of the vessel body. The swirling flow can be grown and promoted toward the other end without being immediately directed to the liquid ejection hole, so the swirling flow is stable, and the gas axis at the swirling center is formed by depressurizing the liquid near the swirling center and separating dissolved gas. And a large amount of fine bubbles can be generated more reliably.

以下、本発明の実施の形態について、図面を参照しながら説明する。従来例および各実施の形態において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the conventional example and each embodiment, parts having the same configuration and the same operation are denoted by the same reference numerals, and detailed description thereof is omitted. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の第1の実施の形態における気泡発生装置の概略回路構成図であり、図2は本発明の第1の実施の形態における気泡発生装置の微細気泡発生部の斜視図、図3は同微細気泡発生部の断面図である。図1〜3において、水槽11内には液体としての水Wが貯留され、水槽11の側壁には吸込口12及び吐出口13が形成されている。吸込口12には吸込管路14を介してポンプ15が連結されるとともに、このポンプ15の吸込管路14側には、気体としての空気を吸い込む空気吸込口16が連結されている。また、ポンプ15の下流側には溶解タンク17が配置され、ポンプ15と溶解タンク17との間は接続管路18によって連通されている。そして、水槽11の吐出口13には微細気泡発生部19が設けられ、溶解タンク17と微細気泡発生部19との間は、吐出管路20により連通されている。
(Embodiment 1)
FIG. 1 is a schematic circuit configuration diagram of a bubble generation device according to a first embodiment of the present invention, and FIG. 2 is a perspective view of a fine bubble generation unit of the bubble generation device according to the first embodiment of the present invention. 3 is a cross-sectional view of the fine bubble generating portion. 1 to 3, water W as a liquid is stored in the water tank 11, and a suction port 12 and a discharge port 13 are formed on the side wall of the water tank 11. A pump 15 is connected to the suction port 12 via a suction conduit 14, and an air suction port 16 for sucking air as gas is connected to the suction conduit 14 side of the pump 15. In addition, a dissolution tank 17 is disposed on the downstream side of the pump 15, and the pump 15 and the dissolution tank 17 are communicated with each other by a connection pipe 18. The discharge port 13 of the water tank 11 is provided with a fine bubble generation unit 19, and the dissolution tank 17 and the fine bubble generation unit 19 are communicated with each other by a discharge pipe 20.

次に、図2および図3において微細気泡発生部19は、略長楕円球体状に形成された回転対称の中空部21を有する器体22と、器体22の周囲壁に設けられ回転対称軸に垂直な円形断面の接線方向に開口された流入口23と、吐出管路20を連通する加圧液導入管24とで構成されるとともに、中空部21の回転対称軸の両端部には、それぞれ開口された気液噴出孔25が設けられ、この2つの気液噴出孔25の外側には衝突部である円形状のバッフル板26が配置されている。このバッフル板26は器体22から伸びた4本の支柱27によって2つの気液噴出孔25それぞれと所定の間隔を有して取り付けられている。   Next, in FIG. 2 and FIG. 3, the fine bubble generating unit 19 includes a vessel body 22 having a rotationally symmetric hollow portion 21 formed in a substantially elliptical sphere shape, and a rotationally symmetric axis provided on the peripheral wall of the vessel body 22. The inlet 23 is opened in a tangential direction with a circular cross section perpendicular to the pressure line, and the pressurized liquid introduction pipe 24 communicates with the discharge pipe 20. Opened gas-liquid ejection holes 25 are provided, and a circular baffle plate 26 that is a collision portion is disposed outside the two gas-liquid ejection holes 25. The baffle plate 26 is attached to each of the two gas-liquid jet holes 25 with predetermined intervals by four support columns 27 extending from the vessel body 22.

以上の構成において、その動作、作用について説明する。図1〜3に示す実施の形態の気泡発生装置において、ポンプ15を運転するとポンプの吸引力が生じて、水槽11内の水Wは吸込口12から、空気吸込口16からは空気が、吸込管路14を介してポンプ15内に吸い込まれ、ポンプ15内から接続管路18を経て溶解タンク17にかけての高圧部で空気は水Wに加圧溶解される。そして、溶解タンク17内では溶解しきれなかった空気が余剰空気として分離され、溶解空気を含有する水Wは混気水となり、吐出管路20を通って微細気泡発生部19に搬送される。吐出管路20から繋がる加圧液導入管24を経て流入口23を通り器体22の中空部21に入った混気水は、内周壁の接線方向から流入するので中空部21の周壁に沿って旋回する。   The operation and action of the above configuration will be described. 1 to 3, when the pump 15 is operated, a suction force of the pump is generated, and the water W in the water tank 11 is sucked from the suction port 12 and the air is sucked from the air suction port 16. Air is sucked into the pump 15 via the pipe line 14, and air is pressurized and dissolved in the water W in a high-pressure portion from the pump 15 through the connection pipe line 18 to the dissolution tank 17. Then, the air that could not be dissolved in the dissolution tank 17 is separated as excess air, and the water W containing the dissolved air becomes mixed water and is transported to the fine bubble generator 19 through the discharge pipe 20. The mixed water that has entered the hollow portion 21 of the vessel body 22 through the inlet 23 through the pressurized liquid introduction pipe 24 connected from the discharge pipe 20 flows in from the tangential direction of the inner peripheral wall. Turn.

この水流の旋回運動によって旋回外周部と中心部には圧力差が生じ、旋回速度が大きければ大きいほど外周部と中心部との圧力差は大きくなって、旋回外周部は高圧に中心部は低圧になるので、旋回中心近傍では導入された混気水の一部に減圧が生じて溶解気体が分離するとともに、旋回中心となる器体22回転対称軸部に気体と液体の比重差によってこの分離した気体が収束して細紐状の気体軸28が形成される。   Due to the swirling motion of the water flow, a pressure difference is produced between the outer periphery and the center of the swirl, and the larger the swirl speed, the greater the pressure difference between the outer periphery and the center. Therefore, in the vicinity of the swirling center, a part of the introduced mixed water is decompressed and the dissolved gas is separated, and this separation is caused by the specific gravity difference between the gas and the liquid at the rotational axis of the vessel 22 which is the swirling center. The converged gas converges to form a thin string-like gas shaft 28.

中空部21内の混気水は、旋回しながら2つの気液噴出孔25に近づくにつれて断面積が縮小する先細り形状となっているので旋回半径が小さくなり流路も狭くなるので、気液噴出孔25付近でその旋回速度および圧力は最大となり、外部側の水と気液噴出孔25の出口で押し合う状態になる。気体軸28に集まった空気は、この外部の水と旋回状態の混気水との境界面や境界域で圧縮、剪断され、微細気泡を含有した流体として2つの気液噴出孔25から外部の水中へ噴出される。噴出した流体は噴出抵抗により減圧され前述の微細気泡を核とすることができるので、溶解気体を分離し微細気泡を多量に発生させることができるようになる。このように、微細気泡発生部を微細なオリフィス形状や網を用いたものにしないので、確実な微細気泡発生とゴミの付着停滞防止の両立を図ることができる。   The mixed water in the hollow portion 21 has a tapered shape in which the cross-sectional area decreases as it approaches the two gas-liquid jet holes 25 while turning, so the turning radius becomes smaller and the flow path becomes narrower. In the vicinity of the hole 25, the turning speed and pressure become maximum, and the water on the outside side and the outlet of the gas-liquid jet hole 25 are pressed against each other. The air collected on the gas shaft 28 is compressed and sheared at the boundary surface or boundary region between the external water and the swirling mixed water, and is externally discharged from the two gas-liquid jet holes 25 as a fluid containing fine bubbles. Spouted into the water. Since the jetted fluid is decompressed by the jetting resistance and can use the aforementioned fine bubbles as a nucleus, the dissolved gas can be separated and a large amount of fine bubbles can be generated. As described above, since the fine bubble generating portion is not made of a fine orifice shape or a net, it is possible to achieve both the reliable generation of fine bubbles and the prevention of stagnation of dust.

また、器体中空部の周壁部接線方向に加圧液体を導入することで、器体内に強い旋回流を生じさせることが可能になるので、旋回中心近傍の減圧による気体軸の形成と、核となる微細気泡の発生を促進し、ゴミ付着を起こす微細流路なしに、確実に減圧分離による多量の微細気泡を発生することができる。   In addition, by introducing a pressurized liquid in the tangential direction of the peripheral wall portion of the hollow body, it is possible to generate a strong swirling flow in the hollow body, so that the formation of the gas shaft by decompression near the swirling center and the nucleus The generation of microbubbles can be promoted, and a large amount of microbubbles can be reliably generated by vacuum separation without a microchannel causing dust adhesion.

なお、本実施の形態では加圧液導入管24につながる流入口23を、器体22の周囲壁に接線方向に開口して設けているが、器体22の回転対称軸方向に速度成分を有するように流入口23を傾けて開口設置しても、混気水の流入流速が早ければ十分に、回転対称軸上に気体軸が生成されるので、気泡核の発生を促して同様の効果が得られる。   In this embodiment, the inlet 23 connected to the pressurized liquid introduction pipe 24 is provided in a tangential direction on the peripheral wall of the container body 22, but the velocity component is applied in the rotational symmetry axis direction of the container body 22. Even if the inlet 23 is inclined to have an opening, a gas axis is generated on the rotationally symmetric axis as long as the inflow speed of the mixed water is sufficiently high. Is obtained.

そして、器体22内の中空部21形状を気液噴出孔25にむかって先細り形状にしたことにより、流速が早くなるとともに流路抵抗が増大して圧力が大きくなり、増速に伴う気体軸の剪断力増大と気液噴出孔前後の圧力差の増大で、微細気泡の発生が促進される。また、器体22内の流路抵抗の増大に抗して液体を流通させるためにポンプ15の運転圧力を大きくして液体の導入圧力を増大させることになり、圧力が大きくなるので溶解する気体量も大きくなり、このことによっても微細気泡の発生量が大きくなり、ゴミの付着防止と確実な微細気泡多量発生の両立が実現できる。   Then, the hollow portion 21 in the container 22 is tapered toward the gas-liquid jet hole 25, so that the flow velocity is increased and the flow resistance is increased to increase the pressure. The generation of fine bubbles is promoted by the increase in the shearing force and the increase in the pressure difference before and after the gas-liquid ejection hole. Further, in order to circulate the liquid against the increase in the flow path resistance in the vessel body 22, the operating pressure of the pump 15 is increased to increase the liquid introduction pressure. This also increases the amount of generation of fine bubbles, which makes it possible to achieve both dust prevention and reliable generation of a large amount of fine bubbles.

その上、溶解気体を含む液体が気液噴出孔を出た直後の急減圧による微細気泡を発生した後も、その下流でさらに噴出流が勢いよく衝突部に衝突することにより微細気泡やその核の発生が生じて、より多くの微細気泡が発生することになるので、ゴミの付着防止と微細気泡の多量発生の両立が実現できる。   In addition, even after the liquid containing dissolved gas has generated fine bubbles due to sudden decompression immediately after exiting the gas-liquid jet holes, the jet flow further vigorously collides with the collision part downstream so that the fine bubbles and their nuclei As a result, more fine bubbles are generated, so that it is possible to realize both prevention of dust adhesion and generation of a large amount of fine bubbles.

(実施の形態2)
図4は本発明の第2の実施の形態における気泡発生装置の微細気泡発生部の斜視図、図5は同微細気泡発生部の断面図である。なお、第1の実施の形態の気泡発生装置と同一構造のものは同一符号を付与し、説明を省略する。図4〜図5において、第1の実施の形態の構成と異なるところは、半球に円柱を接続した形状に形成された中空部29を有する器体30において、中空部29の回転対称軸の半球側の端部には、外側にバッフル板26が配置された気液噴出孔31が設けられている点にある。
(Embodiment 2)
FIG. 4 is a perspective view of a fine bubble generating portion of the bubble generating apparatus according to the second embodiment of the present invention, and FIG. 5 is a cross-sectional view of the fine bubble generating portion. In addition, the thing of the same structure as the bubble generator of 1st Embodiment gives the same code | symbol, and abbreviate | omits description. 4 to 5, the difference from the configuration of the first embodiment is that in the vessel 30 having the hollow portion 29 formed in a shape in which a cylinder is connected to the hemisphere, the hemisphere having a rotational symmetry axis of the hollow portion 29. At the end portion on the side, a gas-liquid ejection hole 31 in which a baffle plate 26 is disposed outside is provided.

以上の構成で、その動作、作用について説明する。図に示す実施の形態の気泡発生装置においてポンプを運転すると、吸い込まれた空気が水Wに加圧溶解されて混気水となり、微細気泡発生部19に搬送される。加圧液導入管24を経て流入口23から器体30の中空部29に入った混気水は、内周壁の接線方向から流入するので中空部29の周壁に沿って旋回する。この水流の旋回運動によって旋回外周部と中心部には圧力差が生じ、旋回外周部は高圧に中心部は低圧になるので、旋回中心近傍では導入された混気水の一部に減圧が生じて溶解気体が分離するとともに、旋回中心となる器体30の回転対称軸部に気体軸28が形成される。中空部29内の混気水は、旋回しながら気液噴出孔31に近づくにつれて断面積が縮小する先細り形状となっているので旋回半径が小さくなり流路も狭くなるので、気液噴出孔31付近でその旋回速度および圧力は最大となり、増速に伴う気体軸28の剪断力増大と気液噴出孔31前後の圧力差の増大で、気体軸が剪断された微細気泡が発生するとともに、圧力差で溶解しきれず析出する微細気泡の発生が促進される。   The operation and action of the above configuration will be described. When the pump is operated in the bubble generator of the embodiment shown in the figure, the sucked air is pressurized and dissolved in the water W to become mixed water, and is conveyed to the fine bubble generator 19. The air-mixed water that has entered the hollow portion 29 of the container body 30 from the inlet 23 through the pressurized liquid introduction pipe 24 flows in from the tangential direction of the inner peripheral wall, and thus swirls along the peripheral wall of the hollow portion 29. The swirling motion of this water flow causes a pressure difference between the swirling outer periphery and the central portion, and the swirling outer periphery is at a high pressure and the center is at a low pressure. As a result, the dissolved gas is separated, and a gas shaft 28 is formed on the rotationally symmetric shaft portion of the vessel 30 serving as the center of rotation. Since the mixed water in the hollow portion 29 has a tapered shape in which the cross-sectional area decreases as it approaches the gas-liquid ejection hole 31 while turning, the turning radius becomes smaller and the flow path becomes narrower. The swirl speed and pressure are maximized in the vicinity, and by increasing the shearing force of the gas shaft 28 accompanying the increase in speed and increasing the pressure difference before and after the gas-liquid ejection holes 31, fine bubbles with sheared gas shafts are generated, The generation of fine bubbles that cannot be completely dissolved and precipitate due to the difference is promoted.

このように、核となる微細気泡の発生を促進し、ゴミ付着を起こす微細流路なしに、確実に減圧分離による多量の微細気泡を発生することができる。また、器体内の流路抵抗の増大に抗して液体を流通させるために液体の導入圧力、すなわちポンプの動作圧力を増大させることになり、溶解液体の圧力が大きくなるので溶解する気体量も大きくなり、このことによっても微細気泡の発生量が大きくなり、ゴミの付着防止と確実な微細気泡多量発生の両立が実現できる。   In this way, it is possible to promote generation of micro bubbles as a core and reliably generate a large amount of micro bubbles by decompression separation without a micro flow path causing dust adhesion. In addition, the liquid introduction pressure, that is, the pump operating pressure is increased in order to circulate the liquid against the increase in the flow path resistance in the body, and the dissolved liquid pressure increases, so the amount of dissolved gas also increases. This also increases the amount of microbubbles generated, thereby realizing both prevention of dust adhesion and reliable generation of a large amount of microbubbles.

(実施の形態3)
図6は本発明の第3の実施の形態における気泡発生装置の微細気泡発生部の断面図である。なお、第1の実施の形態および第2の実施の形態の気泡発生装置と同一構造のものは同一符号を付与し、説明を省略する。図6において、第1の実施の形態および第2の実施の形態の構成と異なるところは、円錐台形状に形成された中空部32を有するように器体33が構成され、中空部32の回転対称軸端部の小底円側に気液噴出孔34が設けられている点にある。
(Embodiment 3)
FIG. 6 is a cross-sectional view of the fine bubble generating part of the bubble generating device according to the third embodiment of the present invention. In addition, the thing of the same structure as the bubble generator of 1st Embodiment and 2nd Embodiment attaches | subjects the same code | symbol, and abbreviate | omits description. In FIG. 6, the difference from the configuration of the first embodiment and the second embodiment is that the vessel body 33 is configured to have the hollow portion 32 formed in a truncated cone shape, and the rotation of the hollow portion 32. The gas-liquid jet hole 34 is provided on the small bottom circle side of the end portion of the symmetrical axis.

以上の構成とすることにより、器体33内の中空部32形状を気液噴出孔34にむかって先細りの円錐台形状になっているので、実施の形態2と同様の効果が生じることは明らかである。   By adopting the above configuration, the shape of the hollow portion 32 in the vessel body 33 is tapered toward the gas-liquid ejection hole 34, so that it is clear that the same effect as in the second embodiment is produced. It is.

(実施の形態4)
図7は本発明の第4の実施の形態における気泡発生装置の微細気泡発生部の断面図である。なお、第1〜第3の実施の形態の気泡発生装置と同一構造のものは同一符号を付与し、説明を省略する。図7において、第1〜第3の実施の形態の構成と異なるところは、円柱形状に形成された中空部35を有するように器体36が有底有蓋円筒状に構成され、気液噴出孔37は中空部35の回転対称軸の両軸端の一方に開口し、器体36への流入口23を回転対称軸の軸長中心よりも気液噴出孔37側に設けるとともに、中空部35の周壁部近傍に径方向の複数の羽根38を有し、旋回流の旋回軸を回転軸とする羽根車39を中空部35内に設けられている点にある。
(Embodiment 4)
FIG. 7 is a cross-sectional view of a fine bubble generation unit of a bubble generation device according to a fourth embodiment of the present invention. In addition, the thing of the same structure as the bubble generator of 1st-3rd embodiment gives the same code | symbol, and abbreviate | omits description. In FIG. 7, the difference from the configurations of the first to third embodiments is that the vessel body 36 is configured in a bottomed covered cylindrical shape so as to have a hollow portion 35 formed in a columnar shape, and a gas-liquid ejection hole 37 opens to one of both axial ends of the rotationally symmetric axis of the hollow portion 35, and the inflow port 23 to the vessel body 36 is provided closer to the gas-liquid ejection hole 37 than the axial length center of the rotationally symmetric axis. In the hollow portion 35, a plurality of blades 38 in the radial direction are provided in the vicinity of the peripheral wall portion, and an impeller 39 having a rotation axis of the swirling flow as a rotation axis is provided.

以上の構成で、その動作、作用について説明する。図に示す実施の形態の気泡発生装置においてポンプを運転することにより、空気が加圧溶解された混気水が流入口23から器体36の中空部35に内周壁の接線方向から流入する。この流れは中空部35の周壁に沿って旋回するとともに、中空部35の周壁部にある羽根38を周方向に押すことで羽根車39が旋回流とともに回転し、安定した旋回流を発生させる。この水流の旋回運動によって旋回外周部と中心部には圧力差が生じ、旋回外周部は高圧に中心部は低圧になるので、旋回中心近傍では導入された混気水の一部に減圧が生じて溶解気体が分離するとともに、旋回中心となる器体36の回転対称軸部に気体軸28が形成される。   The operation and action of the above configuration will be described. By operating the pump in the bubble generator of the embodiment shown in the figure, the mixed water in which air is pressurized and dissolved flows from the inlet 23 into the hollow portion 35 of the vessel body 36 from the tangential direction of the inner peripheral wall. This flow swirls along the peripheral wall of the hollow portion 35, and the impeller 39 rotates with the swirl flow by pushing the blades 38 on the peripheral wall portion of the hollow portion 35 in the circumferential direction, thereby generating a stable swirl flow. The swirling motion of this water flow causes a pressure difference between the swirling outer periphery and the central portion, and the swirling outer periphery is at a high pressure and the center is at a low pressure. As a result, the dissolved gas is separated, and a gas shaft 28 is formed at the rotationally symmetric shaft portion of the vessel 36 serving as the turning center.

このとき、中空部35は回転対称軸両端部が軸に垂直な略平面の円柱状空間になり、この円柱状空間の円周部から接線方向に液体が流入することで、旋回流を乱す旋回軸方向の流速成分がほとんど無くなり、旋回軸に垂直な旋回の流速成分ばかりにすることができるので、強く安定した旋回流を生じさせることができるので、気体軸28の形成が容易になる。この気体軸28を有する器体36内の旋回流が気液噴出孔37より噴出する際に、気体軸28が剪断されて微細気泡となり、噴出した混気水は噴出抵抗により減圧され、前述の微細気泡を核として溶解気体を分離し、多量の微細気泡を発生させることができる。このように、微細気泡発生部19を微細なオリフィス形状や網を用いたものにしないので、確実な微細気泡発生とゴミの付着停滞防止の両立を図ることができる。   At this time, the hollow portion 35 becomes a substantially planar cylindrical space whose both ends are rotationally symmetric and perpendicular to the axis, and the liquid flows in a tangential direction from the circumferential portion of the cylindrical space, and thereby swirling the turbulent flow. Since the flow velocity component in the axial direction is almost eliminated and only the flow velocity component of the swirl perpendicular to the swirl axis can be obtained, a strong and stable swirl flow can be generated, and the formation of the gas shaft 28 is facilitated. When the swirl flow in the container body 36 having the gas shaft 28 is ejected from the gas-liquid ejection hole 37, the gas shaft 28 is sheared to become fine bubbles, and the ejected mixed water is decompressed by the ejection resistance, A large amount of fine bubbles can be generated by separating the dissolved gas using the fine bubbles as nuclei. Thus, since the fine bubble generating part 19 is not made of a fine orifice shape or a net, it is possible to achieve both reliable generation of fine bubbles and prevention of stagnation of dust.

また、羽根車39の作用により旋回軸方向の流速成分に乱されることなく旋回流がより一層安定して生じるので、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。   Further, since the swirl flow is more stably generated by the action of the impeller 39 without being disturbed by the flow velocity component in the swirl axis direction, formation of the swivel center gas axis by depressurization of liquid near the swirl center and separation of dissolved gas. And a large amount of fine bubbles can be generated more reliably.

さらに、流入口23を気液噴出孔37側に近づけて配置し、流入口23から器体対称軸の他端までの距離を十分に設けることにより、流入口23から導入された混気水が気液噴出孔37へすぐに向かわず、他端の方へ旋回流を成長・促進することができるので旋回流が安定し、旋回中心近傍の混気水の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。   Furthermore, by arranging the inlet 23 close to the gas-liquid ejection hole 37 side and providing a sufficient distance from the inlet 23 to the other end of the body symmetry axis, the mixed water introduced from the inlet 23 can be reduced. Since the swirling flow can be grown and promoted toward the other end instead of immediately going to the gas-liquid ejection hole 37, the swirling flow is stabilized, and the swirling center is reduced by the decompression of the mixed water near the swirling center and separation of dissolved gas. Formation of the gas shaft can be ensured, and a large amount of fine bubbles can be generated more reliably.

なお、本実施の形態では器体36の周囲壁に接線方向に開口された流入口23に対して、中空部35の周壁部近傍に径方向の複数の羽根38を有し、旋回流の旋回軸を回転軸とする羽根車39を中空部35内に設けた構成としたが、加圧液導入管24からの水流の力を受けて旋回を生じる羽根車であればよく、例えば中空部35の周壁部近傍では略径方向のひねり羽根を用いた構成や、器体36周囲壁接線方向から傾けて設けた流入口とひねり羽根との組み合わせでも同様の効果が得られる。   In the present embodiment, a plurality of radial blades 38 are provided in the vicinity of the peripheral wall portion of the hollow portion 35 with respect to the inflow port 23 opened in a tangential direction to the peripheral wall of the vessel body 36, and swirling of the swirling flow The impeller 39 having the shaft as the rotation shaft is provided in the hollow portion 35. However, the impeller 39 may be any impeller that can turn by receiving the force of the water flow from the pressurized liquid introduction pipe 24. For example, the hollow portion 35 In the vicinity of the peripheral wall portion, the same effect can be obtained by a configuration using a substantially radial twist blade, or a combination of an inflow port and a twist blade provided inclined from the tangential direction of the peripheral wall of the vessel body 36.

(実施の形態5)
図8は本発明の第5の実施の形態における気泡発生装置の微細気泡発生部の斜視図である。なお、第1〜第4の実施の形態の気泡発生装置と同一構造のものは同一符号を付与し、説明を省略する。図8において、第1〜第4の実施の形態の構成と異なるところは、円柱形状に形成された中空部35を有するように器体36が有底有蓋円筒状に構成され、器体36周囲壁円周上の回転対称軸を挟んで対向する位置に接線方向に開口した2つの流入口40が設けられ、分岐した2本の加圧液導入管41を通って2つの流入口40から混気水が中空部35に送られるようになっているとともに、気液噴出孔37は中空部35の回転対称軸の両軸端の一方に開口し、2つの流入口40は気液噴出孔37側に近づけて配置され、流入口40と気液噴出孔37との距離が回転対称軸軸長の半分よりも短くなっている点にある。
(Embodiment 5)
FIG. 8 is a perspective view of a fine bubble generating part of a bubble generating apparatus according to the fifth embodiment of the present invention. In addition, the thing of the same structure as the bubble generator of 1st-4th embodiment gives the same code | symbol, and abbreviate | omits description. In FIG. 8, the difference from the configuration of the first to fourth embodiments is that the vessel body 36 is formed in a bottomed and covered cylindrical shape so as to have a hollow portion 35 formed in a columnar shape. Two inflow ports 40 opened in a tangential direction are provided at positions opposed to each other across the rotational symmetry axis on the wall circumference, and mixed from the two inflow ports 40 through two branched pressurized liquid introduction pipes 41. Gas water is sent to the hollow portion 35, and the gas / liquid ejection hole 37 is opened to one of both axial ends of the rotational symmetry axis of the hollow portion 35, and the two inflow ports 40 are the gas / liquid ejection holes 37. The distance between the inlet 40 and the gas-liquid ejection hole 37 is shorter than half the axial length of the rotationally symmetric axis.

以上の構成で、その動作、作用について説明する。図に示す実施の形態の気泡発生装置においてポンプを運転することにより、空気が加圧溶解された混気水が2つの流入口40から器体36の中空部35に内周壁の接線方向から流入し、中空部35の周壁に沿って旋回する。この水流の旋回運動によって旋回外周部と中心部には圧力差が生じ、旋回外周部は高圧になり中心部は低圧になるので、旋回中心近傍では導入された混気水の一部に減圧が生じて溶解気体が分離するとともに、旋回中心となる器体36の回転対称軸部に気体軸が形成される。   The operation and action of the above configuration will be described. By operating the pump in the bubble generator of the embodiment shown in the figure, the mixed water in which air is pressurized and dissolved flows from the two inlets 40 into the hollow portion 35 of the vessel body 36 from the tangential direction of the inner peripheral wall. Then, it turns along the peripheral wall of the hollow portion 35. Due to the swirling motion of the water flow, a pressure difference is generated between the swirling outer peripheral portion and the central portion, and the swirling outer peripheral portion has a high pressure and the central portion has a low pressure. As a result, the dissolved gas is separated, and a gas axis is formed at the rotationally symmetric shaft portion of the vessel body 36 serving as the center of rotation.

このとき、中空部35は回転対称軸両端部が軸に垂直な略平面の円柱状空間になり、この円柱状空間の円周部から接線方向に液体が流入することで、旋回流を乱す旋回軸方向の流速成分がほとんど無くなり、旋回軸に垂直な旋回の流速成分ばかりにすることができるので、強く安定した旋回流を生じさせることができるので、気体軸の形成が容易になる。この気体軸を有する器体36内の旋回流が気液噴出孔37より噴出する際に、気体軸が剪断されて微細気泡となり、噴出した混気水は噴出抵抗により減圧され、前述の微細気泡を核として溶解気体を分離し、多量の微細気泡を発生させることができる。このように、微細気泡発生部19を微細なオリフィス形状や網を用いたものにしないので、確実な微細気泡発生とゴミの付着停滞防止の両立を図ることができる。   At this time, the hollow portion 35 becomes a substantially planar cylindrical space whose both ends are rotationally symmetric and perpendicular to the axis, and the liquid flows in a tangential direction from the circumferential portion of the cylindrical space, and thereby swirling the turbulent flow. Since the flow velocity component in the axial direction is almost eliminated and only the flow velocity component of the swirl perpendicular to the swirl axis can be obtained, a strong and stable swirl flow can be generated, and the formation of the gas shaft is facilitated. When the swirling flow in the container body 36 having the gas axis is ejected from the gas-liquid ejection hole 37, the gas axis is sheared to become fine bubbles, and the ejected mixed water is depressurized by the ejection resistance, and the aforementioned fine bubbles are obtained. It is possible to separate dissolved gas by using as a nucleus and generate a large amount of fine bubbles. Thus, since the fine bubble generating part 19 is not made of a fine orifice shape or a net, it is possible to achieve both reliable generation of fine bubbles and prevention of stagnation of dust.

また、旋回流の同一円周上に2つの流入口40を備えて、同一回転方向に複数の箇所から旋回を促進させるので、強く安定した旋回流を生じさせることができ、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。   In addition, since two inflow ports 40 are provided on the same circumference of the swirl flow and swirl is promoted from a plurality of locations in the same rotation direction, a strong and stable swirl flow can be generated, and the liquid near the swirl center can be generated. It is possible to secure the formation of a gas axis at the center of rotation by reducing the pressure and separating the dissolved gas, and more reliably generate a large amount of fine bubbles.

なお、本実施の形態では器体36周囲壁円周上の対向する位置に2つの流入口40を設けた構成としたが、中空部35周壁の同一円周上に対向しなくとも所定の間隔を置いて2個以上配置した構成としても同様の効果が得られる。   In the present embodiment, the two inflow ports 40 are provided at opposite positions on the circumference of the peripheral wall of the vessel 36. However, the predetermined interval may be provided without facing the same circumference of the peripheral wall of the hollow portion 35. A similar effect can be obtained even when two or more of the components are arranged.

以上のように、本発明にかかる気泡発生装置は、微細気泡発生部を微細なオリフィス形状や網状部材の使用を避けて確実な微細気泡発生とゴミの付着停滞防止の両立を図ることが可能となるので、微細気泡風呂や、湖沼などの汚濁水の水質浄化装置、溶存酸素濃度増加用などの曝気装置、水生生物などの養殖用装置、飲料水や食品の改質装置、健康福祉機器、気液反応装置等の用途にも適用できる。   As described above, the bubble generating apparatus according to the present invention can achieve both the generation of fine bubbles and the prevention of stagnation of dust by avoiding the use of a fine orifice shape or a net-like member in the fine bubble generation unit. Therefore, a microbubble bath, water purification equipment for polluted water such as lakes, aeration equipment for increasing dissolved oxygen concentration, aquaculture equipment such as aquatic organisms, drinking water and food reforming equipment, health and welfare equipment, It can also be applied to applications such as liquid reactors.

本発明の実施の形態1における気泡発生装置の回路構成図The circuit block diagram of the bubble generator in Embodiment 1 of this invention 本発明の実施の形態1における気泡発生装置の微細気泡発生部の斜視図The perspective view of the fine bubble generation | occurrence | production part of the bubble generator in Embodiment 1 of this invention 本発明の実施の形態1における気泡発生装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the bubble generator in Embodiment 1 of this invention 本発明の実施の形態2における気泡発生装置の微細気泡発生部の斜視図The perspective view of the fine bubble generation | occurrence | production part of the bubble generator in Embodiment 2 of this invention 本発明の実施の形態2における気泡発生装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the bubble generator in Embodiment 2 of this invention 本発明の実施の形態3における気泡発生装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the bubble generator in Embodiment 3 of this invention 本発明の実施の形態4における気泡発生装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the bubble generator in Embodiment 4 of this invention 本発明の実施の形態5における気泡発生装置の微細気泡発生部の斜視図The perspective view of the fine bubble generation part of the bubble generator in Embodiment 5 of this invention 従来の気泡発生装置の構成図Configuration of conventional bubble generator 他の従来の気泡発生装置の構成図Configuration of another conventional bubble generator

符号の説明Explanation of symbols

21 中空部
22 器体
23 流入口
24 加圧液導入管
25 気液噴出孔
26 バッフル板
28 気体軸
29 中空部
30 器体
31 気液噴出孔
32 中空部
33 器体
34 気液噴出孔
35 中空部
36 器体
37 気液噴出孔
38 羽根
39 羽根車
40 流入口
41 加圧液導入管
DESCRIPTION OF SYMBOLS 21 Hollow part 22 Body 23 Inlet 24 Pressurized liquid introduction pipe 25 Gas-liquid ejection hole 26 Baffle plate 28 Gas shaft 29 Hollow part 30 Body 31 Gas-liquid ejection hole 32 Hollow part 33 Body 34 Gas-liquid ejection hole 35 Hollow Part 36 body 37 gas-liquid ejection hole 38 blade 39 impeller 40 inflow port 41 pressurized liquid introduction pipe

Claims (8)

中空部を有する器体と、前記器体に開口された流入口と、前記流入口に接続される加圧液導入管と、前記器体に開口した気液噴出孔とを備え、気体が加圧溶解した液体を前記流入口に導入して前記器体内で旋回流とし前記気液噴出孔より噴出させることで、減圧が生じて気泡を発生できる気泡発生装置。 A container having a hollow portion; an inlet opening in the container; a pressurized liquid introduction pipe connected to the inlet; and a gas-liquid jet hole opening in the container; A bubble generating device capable of generating bubbles by introducing a pressure-dissolved liquid into the inflow port to form a swirling flow in the vessel body and ejecting the liquid from the gas-liquid ejection holes. 器体の中空部は略回転対称に形成され、流入口は前記器体の周壁部に接線方向に開口されて構成した請求項1記載の気泡発生装置。 The bubble generating device according to claim 1, wherein the hollow portion of the vessel body is formed substantially rotationally symmetric, and the inflow port is opened in a tangential direction to the peripheral wall portion of the vessel body. 器体の周壁部に接線方向に開口された流入口は、前記器体の周壁部の円周上に所定の間隔を置いて複数個備えた請求項2記載の気泡発生装置。 The bubble generating apparatus according to claim 2, wherein a plurality of inflow ports opened in a tangential direction to the peripheral wall portion of the vessel body are provided at predetermined intervals on a circumference of the peripheral wall portion of the vessel body. 器体は略中空円筒状に形成された請求項1〜3のいずれか1項に記載の気泡発生装置。 The bubble generating apparatus according to any one of claims 1 to 3, wherein the container body is formed in a substantially hollow cylindrical shape. 器体の気液噴出孔と所定の間隔を有して前記器体外部に噴出流が衝突する衝突部を備えた請求項1〜4のいずれか1項に記載の気泡発生装置。 The bubble generating apparatus of any one of Claims 1-4 provided with the collision part which a jet flow collides with the gas-liquid ejection hole of a container body on the said exterior with a predetermined space | interval. 器体中空部の周壁部近傍に羽根を有し、旋回流の旋回軸を回転軸とする羽根車を器体内に設けた請求項1〜5のいずれか1項に記載の気泡発生装置。 The bubble generating apparatus of any one of Claims 1-5 which has a blade | wing near the surrounding wall part of a container hollow part, and provided the impeller which makes a rotating shaft the rotating shaft of a swirl | vortex flow in a container body. 気液噴出孔は旋回流の旋回軸の両軸端の一方に開口し、器体は前記気液噴出孔にむかって断面積が縮小する先細り形状とした請求項1〜6のいずれか1項に記載の気泡発生装置。 The gas-liquid ejection hole is opened to one of both axial ends of the swirling axis of the swirling flow, and the vessel is tapered so that the cross-sectional area decreases toward the gas-liquid ejection hole. The bubble generator described in 1. 気液噴出孔は器体中空部の回転対称軸の両軸端の一方に開口し、前記器体の流入口を前記回転対称軸の軸長中心よりも前記気液噴出孔側に設けた請求項2〜7のいずれか1項に記載の気泡発生装置。 The gas-liquid ejection hole is opened to one of both axial ends of the rotationally symmetric axis of the container hollow portion, and the inlet of the container is provided on the gas-liquid ejection hole side of the axial length center of the rotationally symmetric axis. Item 9. The bubble generating device according to any one of Items 2 to 7.
JP2003396876A 2003-11-27 2003-11-27 Air bubble generator Pending JP2005152824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396876A JP2005152824A (en) 2003-11-27 2003-11-27 Air bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396876A JP2005152824A (en) 2003-11-27 2003-11-27 Air bubble generator

Publications (1)

Publication Number Publication Date
JP2005152824A true JP2005152824A (en) 2005-06-16

Family

ID=34722182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396876A Pending JP2005152824A (en) 2003-11-27 2003-11-27 Air bubble generator

Country Status (1)

Country Link
JP (1) JP2005152824A (en)

Similar Documents

Publication Publication Date Title
JP5573879B2 (en) Microbubble generator
JP5712292B2 (en) Bubble generation mechanism and shower head with bubble generation mechanism
JP4426612B2 (en) Fine bubble generation nozzle
JP2007069071A (en) Minute bubble generator and minute bubble circulation system incorporated with it
KR20170104351A (en) Apparatus for generating micro bubbles
JP5804175B1 (en) Microbubble generator
JP6842249B2 (en) Fine bubble generation nozzle
JP4142728B1 (en) Bubble refiner
TWI694860B (en) Micro-bubble acquisition device
JP2006116365A (en) Revolving type fine air bubble generator and fine air bubble generating method
TWI690364B (en) Progressive-perforation-type crushing and refining structure
CN110891674A (en) Microbubble generating apparatus and microbubble generating method, and shower apparatus and oil-water separating apparatus having the same
JP2002273183A (en) Gas-liquid mixing and dissolving apparatus
TWM581942U (en) Micro-bubble obtaining device
CN112177107A (en) Water outlet device
JP2007000848A (en) Method for generating fine bubble
JP2007111616A (en) Fine air-bubble generating device
JP2007268390A (en) Bubble generating device
JP6646300B2 (en) Bubble generator for sewage purification and sewage purification method
JP2005169269A (en) Bubble generator
JP2019166493A (en) Fine bubble generation nozzle
JP4903292B1 (en) Swivel type micro bubble generator
JP2006122813A (en) Mixer and mixing apparatus using this
US20240198300A1 (en) Device and method for dispersing gases into liquids
KR100854687B1 (en) Micro bubble system