JP2005143218A - Control unit and control method for energy system - Google Patents

Control unit and control method for energy system Download PDF

Info

Publication number
JP2005143218A
JP2005143218A JP2003377011A JP2003377011A JP2005143218A JP 2005143218 A JP2005143218 A JP 2005143218A JP 2003377011 A JP2003377011 A JP 2003377011A JP 2003377011 A JP2003377011 A JP 2003377011A JP 2005143218 A JP2005143218 A JP 2005143218A
Authority
JP
Japan
Prior art keywords
cost
storage
storage battery
amount
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003377011A
Other languages
Japanese (ja)
Other versions
JP4064334B2 (en
Inventor
Akira Takeuchi
章 竹内
Kuni Endo
久仁 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003377011A priority Critical patent/JP4064334B2/en
Publication of JP2005143218A publication Critical patent/JP2005143218A/en
Application granted granted Critical
Publication of JP4064334B2 publication Critical patent/JP4064334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

<P>PROBLEM TO BE SOLVED: To perform control which is lower in cost than the control performed by only an optimum operation plan, in an energy system which has a distributed power supply including a storage battery and is connected to a power system and power load. <P>SOLUTION: An optimum operation making part 32 estimates the demand for the generated power load of a solar cell 11 and the demand for hot water supply, using weather forecast information, and makes the optimum operation plan of a fuel cell 13 and a storage battery 12, using the results of this estimation. A command deciding part 33 stores the quantity of accumulation and the cost of accumulation obtained by measuring and adding up the quantity of charge/discharge of the storage battery 12 and the cost of charge, and when determined that the sum of the amount of the variation of the cost of buying and selling power due to the transmission and reception of power with a power system and the amount of variation of the above power accumulation cost by the quantity of charge/discharge of the storage battery 12 becomes negative by the computation of having simulated the time when the quantity of charge/discharge of the storage battery 12 is increased or decreased, it changes the control command of the quantity of charge/discharge of the storage battery 12 in planning of optimum operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、蓄電池を含む分散電源装置を有し、電力系統と電力負荷に接続されたエネルギーシステムの制御装置および制御方法に関する。   The present invention relates to a control device and a control method for an energy system having a distributed power supply device including a storage battery and connected to a power system and a power load.

複数の分散電源装置を有するエネルギーシステムの低コストな運用制御を行うため、発電計画を作成する方法としては、特許文献1に記載されているように、タブーサーチや遺伝的アルゴリズム等のメタヒューリスティック手法を用いた方法がある。近年では、分散電源の普及等に伴い非線形や不連続な特性および制約条件を考慮する必要性が高まり、メタヒューリスティック手法は関数形に依らず比較的高速に大域的最適解の高精度な近似解を求めることができるため、発電計画等に用いられるようになってきた。   As a method of creating a power generation plan for performing low-cost operation control of an energy system having a plurality of distributed power supply devices, as described in Patent Document 1, a metaheuristic method such as tabu search or genetic algorithm is used. There is a method using In recent years, with the spread of distributed power sources, etc., the need to consider nonlinear and discontinuous characteristics and constraints has increased, and the metaheuristic method is a high-precision approximate solution of a global optimal solution at a relatively high speed regardless of the function form. Therefore, it has come to be used for power generation planning.

また、リアルタイムで制御する方法としては、特許文献2に記載されている燃料電池システム制御法のように、発電コストと蓄電池の放電コストを考慮してエネルギーコストが最小となるように制御する方法がある。
特開2001−258157号公報 特開2003−163013号公報
In addition, as a method for controlling in real time, there is a method for controlling the energy cost to be minimized in consideration of the power generation cost and the discharge cost of the storage battery, as in the fuel cell system control method described in Patent Document 2. is there.
JP 2001-258157 A JP 2003-163013 A

蓄電池を含むエネルギーシステムを低コスト化等の最適制御を行う場合には、蓄電池の充放電バランスを考慮しなければならないため、例えば一日における最適運用計画を作成して制御する必要がある。しかしながら家庭等の電力需要のように時間変動が大きく高精度の需要予測が困難な場合には、従来のように最適な計画を作成しただけでは、実際の電力需要の変動に対応して運用計画を修正し低コストな制御をリアルタイムで行うことが困難であるといった問題があった。上述したリアルタイム制御法では、一時的に低コスト化が図れるかを簡易的に評価しているだけであるため、一日トータルでの最適運用になるという保証がなかった。   When performing optimal control such as cost reduction for an energy system including a storage battery, it is necessary to consider the charge / discharge balance of the storage battery, and for example, it is necessary to create and control an optimal operation plan for one day. However, when there is a large amount of time fluctuation and high-precision demand forecasting is difficult, such as household power demand, simply creating an optimal plan as in the past will enable operation planning corresponding to actual power demand fluctuations. There is a problem that it is difficult to correct low-cost control in real time. The above-described real-time control method simply evaluates whether the cost can be temporarily reduced, so there is no guarantee that the operation will be optimal for the entire day.

また、従来の制御方法のようにランニングコストのみで低コスト化を評価していると、設備の寿命による更改によりトータルのコスト削減にならない運用・制御になる場合があった。   In addition, when the cost reduction is evaluated only by running cost as in the conventional control method, there is a case where the operation / control does not result in a total cost reduction due to renewal due to the life of the equipment.

本発明の目的は、最適運用計画のみによる制御よりも低コストな制御を行うことができる、エネルギーシステムの制御装置および制御方法を提供することにある。   The objective of this invention is providing the control apparatus and control method of an energy system which can perform low-cost control rather than control by only an optimal operation plan.

上記目的を達成するために、本発明のエネルギーシステムの制御装置は、
分散電源装置の最適運用計画を作成する最適運用計画作成手段と、
蓄電池の充放電量および充電コストを計測・積算することにより得られる蓄電量および蓄電コストを記憶し、蓄電池の充放電量を増加あるいは減少させたときをシミュレーションした計算によって、電力系統との受送電による売買電コストの変動分と、蓄電池の充放電量による蓄電コストの変動分の和が負になる(コスト的に安くなる)と判断された場合に、最適運用計画中の蓄電池の充放電量の制御指令値を変更し、分散電源装置に送信する制御指令値決定手段を有する。
In order to achieve the above object, a control device for an energy system of the present invention comprises:
An optimum operation plan creation means for creating an optimum operation plan for the distributed power supply;
Storage and storage costs obtained by measuring and integrating the storage battery charge and discharge amount and charge cost, and storing and receiving power to and from the power system through calculations that simulate when the charge and discharge amount of the storage battery is increased or decreased The amount of charge / discharge of the storage battery in the optimal operation plan when it is determined that the sum of the change in the power purchase / purchase cost due to the battery and the change in the storage cost due to the charge / discharge amount of the storage battery will be negative (lower in cost) Control command value determining means for changing the control command value and transmitting it to the distributed power supply device.

本発明によれば、自然エネルギー発電や電力需要の一時的な変動に対応し、蓄電池の充放電量を変更した方がエネルギーコストを低減できるかどうかをシミュレーション計算により繰り返し判断し制御指令値を修正することによって、最適運用計画のみによる制御よりも低コストな制御を行うことができる。   According to the present invention, in response to temporary fluctuations in natural energy power generation or power demand, it is repeatedly determined by simulation calculation whether the energy cost can be reduced by changing the charge / discharge amount of the storage battery, and the control command value is corrected. By doing so, it is possible to perform control at a lower cost than control based only on the optimum operation plan.

また、運転により装置の寿命が短縮されたコスト分を制御において考慮するため、蓄電池等の更改までの長期的にみた場合においても最適に近い運用制御が可能となる。   In addition, since the cost for which the life of the apparatus has been shortened by the operation is taken into consideration in the control, even near-optimal operation control is possible even in the long term until the renewal of the storage battery or the like.

次に、本発明の実施の形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態のエネルギーシステムの構成図である。   FIG. 1 is a configuration diagram of an energy system according to an embodiment of the present invention.

本エネルギーシステムは分散電源装置1と電力系統2と制御装置3で構成されている。   The energy system includes a distributed power supply device 1, a power system 2, and a control device 3.

分散電源装置1は太陽電池11と燃料電池13と蓄電池12で構成されている。   The distributed power supply device 1 includes a solar cell 11, a fuel cell 13, and a storage battery 12.

制御装置3は通信部31と最適運用計画作成部32と制御指令値決定部33から構成されている。通信部31は制御装置3をインターネット等に接続して気象予報等に関する情報を得る。最適運用計画作成部32は気象予報情報を用いて、太陽電池11の発電電力負荷需要、および給湯需要を予測し、この予測結果を用いて燃料電池13と蓄電池12の最適運用計画を作成する。指令値決定部33は、この最適運用計画に基づき燃料電池13と蓄電池12への制御指令値を決定し、分散電源装置1に送信する。   The control device 3 includes a communication unit 31, an optimum operation plan creation unit 32, and a control command value determination unit 33. The communication unit 31 connects the control device 3 to the Internet or the like to obtain information related to weather forecasts and the like. The optimum operation plan creation unit 32 predicts the generated power load demand and hot water supply demand of the solar cell 11 using the weather forecast information, and creates the optimum operation plan of the fuel cell 13 and the storage battery 12 using the prediction result. The command value determination unit 33 determines control command values for the fuel cell 13 and the storage battery 12 based on the optimum operation plan, and transmits them to the distributed power supply device 1.

図2は制御装置3の処理の流れを示す概略図である。   FIG. 2 is a schematic diagram showing the flow of processing of the control device 3.

まず、最適運用計画作成部32は、電力系統2との受送電による売買電力の価格と、一日の電力/熱負荷需要予測および太陽電池11の発電予測を用いて、制御可能な分散電源である燃料電池13の発電、蓄電池12の充放電の運用計画を作成する(ステップ101)。運用計画作成においては、例えば、一日のエネルギーコスト、すなわち発電等に用いる燃料コストに電力系統2との受送電による電力コストを加減算したコストを目的関数として、この目的関数が最小となるような運転パターンを探索する。燃料コストは、燃料電池13の効率特性、起動特性や応答特性等をモデル化し、発電電力目標パターンにおける発電電力に対する燃料流量から算出する。蓄電池12や貯湯槽は充放電ロスや放熱ロス等を考慮してモデル化し、その残容量を算出しておき、蓄電池や貯湯槽の一日におけるバランスをとるために、充電コストや貯湯コストの一日における差分をペナルティー関数として目的関数に加算する。また、蓄電池12の過充電や過放電等は、制約条件として扱うか、同様にペナルティー関数として加算してもよい。探索方法としては、様々な最適アルゴリズムを適用することができるが、タブーサーチや遺伝的アルゴリズム等のメタヒューリスティック手法を用いることにより現実的な時間内に大域的最適解の高精度な近似解を得ることができる。この運用計画は例えば一日単位あるいは現時刻から24時間先まで作成され、予測データの修正等により随時更新する。   First, the optimum operation plan creation unit 32 is a distributed power source that can be controlled using the price of purchased / sold power received and transmitted to / from the power system 2, the daily power / heat load demand forecast, and the power generation forecast of the solar cell 11. An operation plan for power generation of a certain fuel cell 13 and charge / discharge of the storage battery 12 is created (step 101). In creating an operation plan, for example, the objective function is minimized with the cost obtained by adding / subtracting the power cost of power transmission / reception with the power grid 2 to / from the energy cost of the day, that is, the fuel cost used for power generation or the like. Search for driving patterns. The fuel cost is calculated from the fuel flow rate with respect to the generated power in the generated power target pattern by modeling the efficiency characteristics, start-up characteristics, response characteristics, etc. of the fuel cell 13. The storage battery 12 and hot water storage tank are modeled in consideration of charging / discharging loss, heat dissipation loss, etc., and the remaining capacity is calculated, and in order to balance the storage battery and hot water tank in one day, one of the charging costs and hot water storage costs is calculated. The difference in days is added to the objective function as a penalty function. Further, overcharge, overdischarge, etc. of the storage battery 12 may be handled as a constraint condition or added as a penalty function in the same manner. Various optimal algorithms can be applied as search methods. By using metaheuristic techniques such as tabu search and genetic algorithm, a highly accurate approximate solution of the global optimal solution can be obtained within a realistic time. be able to. This operation plan is created, for example, on a daily basis or 24 hours ahead of the current time, and is updated as needed by correcting the forecast data.

次に、指令値作成部33は、蓄電池12の充放電電流等の計測データから蓄電池12の蓄電量と蓄電コストを算出する(ステップ102)。図3に、この算出フローの一例を示す。充電中の場合においては、計測される充電電流を積算し、記憶している蓄電量に加算する(ステップ201)。満充電となった場合には、蓄電量を定格値にセットする(ステップ202,203)。この時点において、蓄電池12における自己放電による誤差や測定値の積算誤差を補正することができる。蓄電コストは、そのときの系統電力価格と充電量および充電効率等から充電コストを算出し、記憶している蓄電コストに加算する(ステップ204)。発電中の場合には、系統電力価格の代わりに発電コストを用いてもよいし、あるいはそれらの平均コストで算出してもよい。放電中の場合においては、計測される放電電流を積算し、記憶している蓄電量から減算する(ステップ205)。もし、蓄電池電圧から蓄電量が下限値と判断された場合には、蓄電量や蓄電コストをリセットする(ステップ206,207)。また、蓄電コストは蓄電単価に放電電流の積算値を乗算した値を算出し(ステップ208)、記憶している蓄電コストから減算する(ステップ209)。ここで、蓄電単価は、単位蓄電量あたりの蓄電コストから算出される。   Next, the command value creation unit 33 calculates the storage amount and the storage cost of the storage battery 12 from the measurement data such as the charge / discharge current of the storage battery 12 (step 102). FIG. 3 shows an example of this calculation flow. In the case of charging, the measured charging current is integrated and added to the stored power storage amount (step 201). When the battery is fully charged, the charged amount is set to the rated value (steps 202 and 203). At this time, the error due to self-discharge in the storage battery 12 and the accumulated error of the measured value can be corrected. The storage cost is calculated from the grid power price, charge amount, charging efficiency, etc. at that time, and added to the stored storage cost (step 204). In the case of power generation, the power generation cost may be used instead of the grid power price, or the average cost may be calculated. In the case of discharging, the measured discharge current is integrated and subtracted from the stored power storage amount (step 205). If it is determined from the storage battery voltage that the storage amount is the lower limit, the storage amount and storage cost are reset (steps 206 and 207). Further, the storage cost is calculated by multiplying the storage unit price by the integrated value of the discharge current (step 208), and subtracted from the stored storage cost (step 209). Here, the power storage unit price is calculated from the power storage cost per unit power storage amount.

次に、最適運用計画にしたがった指令値を変更するためのシミュレーションによる計算を行う必要があるかどうかを判断する(ステップ103)。例えば、太陽電池11の発電電力量や需要の予測値と計測値との誤差が所定値以上のときに、変更の可能性があると判断し、蓄電池12の充放電量を一段階増減した場合をシュミレーション計算する(ステップ104)。電力需要から太陽電池発電量を差し引いた計測値が、その予測値と比較して、所定値以上大きくなったかどうかで判断してもよい。すなわち、一時的に予測値よりも多くの電力供給を必要とした場合に、その電力を電力系統2から受電するよりも、蓄電池12からの放電量を増加させた方が低コストになるか等の判断を行う。一方、一時的に予測値よりも少ない電力供給で十分となった場合には、電力系統2の受電を減らすよりも蓄電池12の放電量を減らした方がよいかどうかを判断する。   Next, it is determined whether or not it is necessary to perform calculation by simulation for changing the command value according to the optimum operation plan (step 103). For example, when the error between the predicted value and the measured value of the power generation amount or demand of the solar battery 11 is greater than or equal to a predetermined value, it is determined that there is a possibility of change, and the charge / discharge amount of the storage battery 12 is increased or decreased by one step. Is calculated (step 104). The measurement value obtained by subtracting the solar cell power generation amount from the power demand may be determined based on whether or not the measured value is greater than a predetermined value compared to the predicted value. In other words, when it is necessary to supply more power than expected, temporarily, it is cheaper to increase the amount of discharge from the storage battery 12 than to receive the power from the power system 2. Make a decision. On the other hand, when the power supply less than the predicted value is temporarily sufficient, it is determined whether it is better to reduce the discharge amount of the storage battery 12 than to reduce the power reception of the power system 2.

図4に、図2のフローにおける蓄電池12の充放電量を一段階増減した場合をシミュレーション計算する処理(ステップ104)の一例を示す。この一段階は、蓄電池12の応答性や制御装置3における計算速度等に応じて決める。シミュレーション計算は、前述した燃料電池13や蓄電池12のモデル化を用いて行う。   FIG. 4 shows an example of a process (step 104) for performing simulation calculation when the charge / discharge amount of the storage battery 12 in the flow of FIG. This one stage is determined according to the responsiveness of the storage battery 12, the calculation speed in the control device 3, and the like. The simulation calculation is performed using the modeling of the fuel cell 13 and the storage battery 12 described above.

充電中の場合においては、まず、充電量を一段階増加させた場合に、蓄電池12における最大充電電流等の制約条件を満たすかどうかを判断する(ステップ301)。この制約条件を満たす場合にのみ、この場合のシミュレーション計算を行う(ステップ302)。記憶している蓄電量・蓄電コストから算出される蓄電単価で充電されたとした蓄電コストの増加分から、売買電コストの増加分を減じた値を、充電量を一段階増加させた場合のコスト減少分として算出する。次に、充電量を一段階減少させた場合に、蓄電池における最小充電電流等の制約条件を満たすかどうか判断する(ステップ303)。この制約条件を満たす場合にのみ、この場合のシミュレーション計算を行う。売買電コストの減少分から蓄電単価で充電されたとした蓄電コストの減少分を減じた値を、充電量を一段階減少させた場合のコスト減少分として算出する(ステップ304)。   In the case of charging, it is first determined whether or not a constraint condition such as the maximum charging current in the storage battery 12 is satisfied when the amount of charge is increased by one step (step 301). Only when this constraint condition is satisfied, simulation calculation in this case is performed (step 302). Cost reduction when charging amount is increased by one step from the increase in storage cost that is charged at the storage unit price calculated from the stored storage amount / storage cost. Calculate as minutes. Next, when the charge amount is decreased by one step, it is determined whether or not a constraint condition such as a minimum charging current in the storage battery is satisfied (step 303). The simulation calculation in this case is performed only when this constraint condition is satisfied. A value obtained by subtracting the decrease in the power storage cost that is charged at the power storage unit price from the decrease in the buying and selling power cost is calculated as the cost decrease when the charge amount is decreased by one step (step 304).

放電中の場合においては、まず、放電量を一段階増加させた場合に、蓄電池12における最大放電量等の制約条件を満たすかどうかを判断する(ステップ305)。この制約条件を満たす場合にのみ、この場合のシミュレーション計算を行う。売買電コストの減少分から蓄電単価で放電されたとした蓄電コストの減少分を減じた値を、放電量を一段階増加させた場合のコスト減少分として算出する(ステップ305)。さらに、蓄電池12のサイクル充放電による寿命短縮を考慮する場合においては、このコスト減少分から、放電量増加分による蓄電池寿命コストの増加分を減算する(ステップ307)。この蓄電池寿命コストは、蓄電池の単位放電量あたりの初期コストを、(サイクル寿命×放電深度)で除算し、放電量を乗算して得られる。ここで、鉛蓄電池の場合には、サイクル寿命と放電深度とが反比例の関係にあるため、(サイクル寿命×放電深度)は一定値として扱える(特開2003−161768号公報)。次に、放電量を一段階減少させた場合に、蓄電池12における最小放電電流等の制約条件を満たすかどうかを判定する(ステップ308)。この制約条件を満たす場合にのみ、この場合のシミュレーション計算を行う。蓄電単価で放電されたとした蓄電コストの増加分から、売買電コストの増加分を減じた値を、放電量を一段階減少させた場合のコスト減少分として算出する(ステップ309)。さらに、蓄電池のサイクル充放電による寿命短縮を考慮する場合においては、このコスト減少分から、放電量減少分による蓄電池寿命コストの減少分を加算する(ステップ310)。   In the case of discharging, it is first determined whether or not a constraint condition such as the maximum discharge amount in the storage battery 12 is satisfied when the discharge amount is increased by one step (step 305). The simulation calculation in this case is performed only when this constraint condition is satisfied. A value obtained by subtracting the decrease in the power storage cost that was discharged at the power storage unit price from the decrease in the buying and selling power cost is calculated as the cost decrease when the discharge amount is increased by one step (step 305). Furthermore, when considering the shortening of the life of the storage battery 12 due to cycle charge / discharge, the increase in the storage battery life cost due to the increase in the discharge amount is subtracted from the decrease in the cost (step 307). This storage battery life cost is obtained by dividing the initial cost per unit discharge amount of the storage battery by (cycle life × discharge depth) and multiplying by the discharge amount. Here, in the case of a lead storage battery, since the cycle life and the depth of discharge are inversely proportional, (cycle life × discharge depth) can be treated as a constant value (Japanese Patent Laid-Open No. 2003-161768). Next, when the discharge amount is decreased by one step, it is determined whether or not a constraint condition such as the minimum discharge current in the storage battery 12 is satisfied (step 308). The simulation calculation in this case is performed only when this constraint condition is satisfied. A value obtained by subtracting the increase in the power purchase cost from the increase in the power storage cost assumed to have been discharged at the power storage unit price is calculated as the cost decrease when the discharge amount is reduced by one step (step 309). Further, when considering the shortening of the life due to the cycle charge / discharge of the storage battery, the decrease in the storage battery life cost due to the decrease in the discharge amount is added from the decrease in the cost (step 310).

以上のシミュレーション計算により得られた、充放電量を一段階増減することにより蓄電池12の制約条件を満たし、かつコスト減少分が所定値以上であれば、蓄電池12の充放電量の指令値を変更する(ステップ106,107)。   The command value of the charge / discharge amount of the storage battery 12 is changed if the constraint condition of the storage battery 12 is satisfied by increasing / decreasing the charge / discharge amount by one step and the cost reduction is equal to or greater than a predetermined value. (Steps 106 and 107).

蓄電池12の指令値を変更するためのこのような計算を、一定時間間隔毎に継続して行っていく。発電・需要等の予測データが修正されるタイミング等で、発電計画も含めた最適運用計画の更新を行う場合には、エネルギーコスト最小化等の運用計画の更新を行った後に、蓄電池12の指令値変更の計算を行う。   Such calculation for changing the command value of the storage battery 12 is continuously performed at regular time intervals. When updating the optimal operation plan including the power generation plan at the timing when the forecast data such as power generation / demand is corrected, etc., after updating the operation plan such as minimizing the energy cost, the command of the storage battery 12 Calculate the value change.

本発明の一実施形態のエネルギーシステムの構成図である。It is a block diagram of the energy system of one Embodiment of this invention. 制御装置3の処理の流れを示すフローチャートである。3 is a flowchart showing a flow of processing of a control device 3. 図2における、蓄電量・蓄電コストの算出処理のフローチャートである。It is a flowchart of the calculation process of the electrical storage amount and electrical storage cost in FIG. 図2における、蓄電池12の充放電量を一段階増減させた場合のシミュレーション計算のフローチャートである。It is a flowchart of the simulation calculation at the time of increasing / decreasing the charging / discharging amount of the storage battery 12 in FIG.

符号の説明Explanation of symbols

1 分散電源装置
2 電力系統
3 制御装置
11 太陽電池
12 蓄電池
13 燃料電池
31 通信部
32 最適運用計画作成部
33 指令値作成部
101〜107,201〜209,301〜310 ステップ
DESCRIPTION OF SYMBOLS 1 Distributed power supply device 2 Electric power system 3 Control apparatus 11 Solar cell 12 Storage battery 13 Fuel cell 31 Communication part 32 Optimal operation plan preparation part 33 Command value preparation part 101-107, 201-209, 301-310 Step

Claims (6)

蓄電池を含む分散電源装置を有し、電力系統と電力負荷に接続されたエネルギーシステムの制御装置であって、
前記分散電源装置の最適運用計画を作成する最適運用計画作成手段と、
前記蓄電池の充放電量および充電コストを計測・積算することにより得られる蓄電量および蓄電コストを記憶し、前記蓄電池の充放電量を増加あるいは減少させたときをシミュレーションした計算によって、前記電力系統との受送電による売買電コストの変動分と、前記蓄電池の充放電量による前記蓄電コストの変動分の和が負になると判断された場合に、前記最適運用計画中の前記蓄電池の充放電量の制御指令値を変更し、前記分散電源装置に送信する制御指令値決定手段を有する、エネルギーシステムの制御装置。
A control device of an energy system having a distributed power supply device including a storage battery and connected to a power system and a power load,
An optimum operation plan creating means for creating an optimum operation plan of the distributed power supply device;
The storage amount and storage cost obtained by measuring and integrating the charge / discharge amount and charge cost of the storage battery are stored, and the power system is calculated by simulating when the charge / discharge amount of the storage battery is increased or decreased. When it is determined that the sum of fluctuations in the buying and selling power costs due to power transmission and reception and the fluctuations in the power storage costs due to the charge / discharge amount of the storage battery is negative, the charge / discharge amount of the storage battery in the optimum operation plan A control device for an energy system, comprising control command value determination means for changing a control command value and transmitting the control command value to the distributed power supply device.
前記制御指令値決定手段は、前記電力負荷の需要の予測値と計測値の差および前記分散電源装置が自然エネルギー源を含む場合はその発電の予測値と計測値との差が所定値以上になったとき、前記制御指令値変更のためのシミュレーションによる計算を行う、請求項1に記載のエネルギーシステムの制御装置。   The control command value determining means is configured such that a difference between a predicted value and a measured value of the power load demand and, if the distributed power supply includes a natural energy source, a difference between the predicted value and the measured value of the power generation are not less than a predetermined value. When it becomes, the control apparatus of the energy system of Claim 1 which performs calculation by the simulation for the said control command value change. 前記蓄電池の充放電量による前記蓄電コストの増加分に、蓄電池の初期コストに放電量による蓄電池の寿命短縮率を乗算した値の増加分を加算した値を前記蓄電コストの変動分とする、請求項1に記載のエネルギーシステムの制御装置。   A value obtained by adding an increase in a value obtained by multiplying an initial cost of the storage battery by a life reduction rate of the storage battery due to the discharge amount to the increase in the storage cost due to the charge / discharge amount of the storage battery is defined as a change in the storage cost. Item 4. The energy system control device according to Item 1. 蓄電池を含む分散電源装置を有し、電力系統と電力負荷に接続されたエネルギーシステムの制御方法であって、
前記エネルギーシステムのエネルギーコストを最小化する最適運用計画を作成する段階と、
前記蓄電池の充放電量および充電コストを計測することにより得られた計測データから蓄電量および蓄電コストを算出する段階と、
発電・需要の予測値と計測値の差が所定値以上かどうか判定する段階と、
前記予測値と計測値の差が所定値以上のとき、蓄電池の充放電量を一段階増減させた場合のコスト減少分を計算する段階と、
前記コスト減少分が所定値以上かどうか判定する段階と、
前記コスト減少分が所定値以上の場合、前記最適運用計画中の前記蓄電池の充放電量の指令値を変更する段階を有する、エネルギーシステムの制御方法。
A method for controlling an energy system having a distributed power supply including a storage battery and connected to a power system and a power load,
Creating an optimal operation plan that minimizes the energy cost of the energy system;
Calculating a storage amount and a storage cost from measurement data obtained by measuring a charge / discharge amount and a charge cost of the storage battery;
Determining whether the difference between the predicted value of power generation / demand and the measured value is greater than or equal to a predetermined value;
When the difference between the predicted value and the measured value is equal to or greater than a predetermined value, calculating a cost reduction amount when the charge / discharge amount of the storage battery is increased or decreased by one step; and
Determining whether the cost reduction is greater than or equal to a predetermined value;
When the said cost reduction part is more than predetermined value, it has the step which changes the command value of the charging / discharging amount of the said storage battery in the said optimal operation plan, The control method of an energy system.
前記蓄電量・蓄電コストを算出する段階は、
前記蓄電池が充電中であれば、充電電流の積算値を前記蓄電量に加算し、満充電であれば、蓄電量を定格値にセットし、電力コストから充電コストを算出し、前記蓄電コストに加算し、
前記蓄電池が放電中であれば、放電電流の積算値を前記蓄電量から減算し、放電の限界であれば、蓄電量と蓄電コストをリセットし、蓄電量と蓄電コストから蓄電単価を算出し、蓄電単価に放電電流の積算値を乗じた値を前記蓄電コストから減算することを含む、請求項4に記載のエネルギーシステムの制御方法。
The step of calculating the storage amount / storage cost includes
If the storage battery is being charged, the integrated value of charging current is added to the amount of electricity stored.If the battery is fully charged, the amount of electricity stored is set to the rated value, the charge cost is calculated from the power cost, and the storage cost is calculated. Add,
If the storage battery is discharging, the accumulated value of the discharge current is subtracted from the storage amount, and if the discharge limit, the storage amount and storage cost are reset, and the storage unit price is calculated from the storage amount and storage cost. The energy system control method according to claim 4, comprising subtracting a value obtained by multiplying a unit price of power storage by an integrated value of discharge current from the power storage cost.
前記コスト減少分を計算する段階は、
前記蓄電池が充電中であれば、前記蓄電池の充電量を一段階増加させた場合、充電量が最大充電量以下であれば、(蓄電単価で充電されたとした蓄電コストの増加分)−(売買電コストの増加分)を算出し、次に、前記蓄電池の充電量を一段階減少させた場合、充電量が最小充電量以上であれば、(売買電コストの減少分)−(蓄電単価で充電されたとした蓄電コストの減少分)を算出し、
前記蓄電池が放電中であれば、前記蓄電池の放電量を一段階増加させた場合、充電量が最大放電量以下であれば、(売買電コストの減少分)−(蓄電単価で放電されたとした蓄電コストの減少分)を算出し、次に(放電量増加分による蓄電池寿命コストの増加分)を減算し、次に前記蓄電池の放電量を一段階減少させた場合、放電量が最小放電量以上であれば、(蓄電単価で放電されたとした蓄電コストの増加分)−(売買電コストの増加分)を算出し、これに(放電量減少分による蓄電池寿命コストの減少分)を加算する、請求項4または5に記載のエネルギーシステムの制御方法。
The step of calculating the cost reduction is as follows:
If the storage battery is being charged, if the charge amount of the storage battery is increased by one step, if the charge amount is less than or equal to the maximum charge amount, (the increase in the storage cost that is charged at the storage unit price)-(trading When the charge amount of the storage battery is decreased by one step, if the charge amount is equal to or greater than the minimum charge amount, (the decrease in the power purchase cost)-(the unit price of electricity storage) Calculated as a reduction in storage cost)
If the storage battery is being discharged, when the discharge amount of the storage battery is increased by one step, if the charge amount is equal to or less than the maximum discharge amount, it is assumed that (the decrease in the buying and selling power cost)-(discharged at the unit price of electricity storage) If the storage battery's discharge amount is reduced by one step, then the discharge amount is the minimum discharge amount. If it is above, calculate (increased power storage cost that was discharged at the unit price of storage)-(increase in buying and selling power cost), and add (reduced battery life cost due to reduced discharge amount) to this The control method of the energy system of Claim 4 or 5.
JP2003377011A 2003-11-06 2003-11-06 Energy system control device and control method Expired - Fee Related JP4064334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377011A JP4064334B2 (en) 2003-11-06 2003-11-06 Energy system control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377011A JP4064334B2 (en) 2003-11-06 2003-11-06 Energy system control device and control method

Publications (2)

Publication Number Publication Date
JP2005143218A true JP2005143218A (en) 2005-06-02
JP4064334B2 JP4064334B2 (en) 2008-03-19

Family

ID=34687884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377011A Expired - Fee Related JP4064334B2 (en) 2003-11-06 2003-11-06 Energy system control device and control method

Country Status (1)

Country Link
JP (1) JP4064334B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094054A1 (en) 2006-02-15 2007-08-23 Mitsubishi Denki Kabushiki Kaisha Power system stabilizing system
JP2007336621A (en) * 2006-06-12 2007-12-27 Nippon Telegr & Teleph Corp <Ntt> Controller, method and program for distributed energy system
JP2009240080A (en) * 2008-03-27 2009-10-15 Nippon Telegr & Teleph Corp <Ntt> Device and method for preparing operation plan of energy system
JP2010136557A (en) * 2008-12-05 2010-06-17 Toshiba Corp Cogeneration energy system
WO2010079745A1 (en) * 2009-01-07 2010-07-15 新神戸電機株式会社 System for control of wind power electricity generation accumulator and method of control thereof
KR101051886B1 (en) * 2009-06-30 2011-07-27 한국산업기술대학교산학협력단 Solar energy management system and its management method
WO2011102515A1 (en) * 2010-02-22 2011-08-25 トヨタ自動車株式会社 Power supply control device and information provision device
JP2011229238A (en) * 2010-04-16 2011-11-10 Fujitsu Ltd Power control method, program and apparatus
JP2013041723A (en) * 2011-08-12 2013-02-28 Kyocera Corp Power control unit and power control method
KR101251554B1 (en) * 2010-12-17 2013-04-08 주식회사 케이티 Charging/discharging system for solar light power generator in smart grid environment with real-time price, duplex convertor of charging/discharging system, and charging/discharging method for solar light power generator
JP2013074689A (en) * 2011-09-27 2013-04-22 Panasonic Corp Energy control system and energy control device
JP2013132174A (en) * 2011-12-22 2013-07-04 Sanyo Electric Co Ltd Charge/discharge controller
US20140012428A1 (en) * 2011-03-18 2014-01-09 Fujitsu Limited Operation plan preparation method, operation plan preparation device, and recording medium
US8700511B2 (en) 2010-05-10 2014-04-15 Panasonic Corporation Control device, charge storage system, control method, and computer program
WO2014119153A1 (en) * 2013-01-31 2014-08-07 株式会社 東芝 Energy management system, energy management method, program and server
WO2014192119A1 (en) * 2013-05-30 2014-12-04 東芝三菱電機産業システム株式会社 Power management device
JP5654179B1 (en) * 2013-12-10 2015-01-14 中国電力株式会社 Charge / discharge control device, program
WO2015118747A1 (en) * 2014-02-06 2015-08-13 株式会社東芝 Energy management system
US9148018B2 (en) 2010-03-24 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Power supply device, power storage device, and power control device
WO2016013089A1 (en) * 2014-07-24 2016-01-28 三菱電機株式会社 Supply-demand control device, charge-discharge control device, accumulator device, supply-demand control system, and supply-demand control method
JP2016073113A (en) * 2014-09-30 2016-05-09 富士通株式会社 Charge/discharge control program, charge/discharge control method, and charge/discharge control device
WO2017116084A1 (en) * 2015-12-30 2017-07-06 주식회사 효성 Power supply control method and system
JP2017211763A (en) * 2016-05-24 2017-11-30 株式会社東芝 Information processor, information processing system and information processing program
EP2571130A4 (en) * 2010-05-11 2017-12-20 Panasonic Intellectual Property Management Co., Ltd. Electric power control apparatus and grid connection system having same
US9876350B2 (en) 2010-09-28 2018-01-23 Panasonic Intellectual Property Management Co., Ltd. Power supply system
KR101827158B1 (en) * 2016-10-20 2018-02-08 한국전력공사 Apparatus and method for operating energy storage system connected to microgrid
JP2021069264A (en) * 2019-10-28 2021-04-30 京セラ株式会社 Power control system, power control unit, power control method, and program
CN115173586A (en) * 2022-08-09 2022-10-11 云南大学 Far-field wireless charging scheduling method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104573847B (en) * 2014-12-09 2021-04-06 国家电网公司 Energy storage multi-target control method and system considering wind power climbing rate and operation cost

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094054A1 (en) 2006-02-15 2007-08-23 Mitsubishi Denki Kabushiki Kaisha Power system stabilizing system
US7925597B2 (en) 2006-02-15 2011-04-12 Mitsubishi Electric Corporation Power system stabilization system
JP4657987B2 (en) * 2006-06-12 2011-03-23 日本電信電話株式会社 Control device, method and program for distributed energy system
JP2007336621A (en) * 2006-06-12 2007-12-27 Nippon Telegr & Teleph Corp <Ntt> Controller, method and program for distributed energy system
JP2009240080A (en) * 2008-03-27 2009-10-15 Nippon Telegr & Teleph Corp <Ntt> Device and method for preparing operation plan of energy system
JP4550914B2 (en) * 2008-03-27 2010-09-22 日本電信電話株式会社 Energy system operation plan creation device and method
JP2010136557A (en) * 2008-12-05 2010-06-17 Toshiba Corp Cogeneration energy system
EP2386754A4 (en) * 2009-01-07 2014-02-26 Shin Kobe Electric Machinery System for control of wind power electricity generation accumulator and method of control thereof
KR101260137B1 (en) * 2009-01-07 2013-05-02 신코베덴키 가부시키가이샤 System for control of wind power electricity generation accumulator and method of control thereof
CN102124219A (en) * 2009-01-07 2011-07-13 新神户电机株式会社 System for control of wind power electricity generation accumulator and method of control thereof
US9124135B2 (en) 2009-01-07 2015-09-01 Shin-Kobe Electric Machinery Co., Ltd. System for control of wind power generation storage battery and method of control thereof
WO2010079745A1 (en) * 2009-01-07 2010-07-15 新神戸電機株式会社 System for control of wind power electricity generation accumulator and method of control thereof
JP2010159661A (en) * 2009-01-07 2010-07-22 Shin Kobe Electric Mach Co Ltd Storage battery control system for wind power generation and method for controlling the same
EP2386754A1 (en) * 2009-01-07 2011-11-16 Shin-Kobe Electric Machinery Co., Ltd. System for control of wind power electricity generation accumulator and method of control thereof
KR101051886B1 (en) * 2009-06-30 2011-07-27 한국산업기술대학교산학협력단 Solar energy management system and its management method
US9126493B2 (en) 2010-02-22 2015-09-08 Toyota Jidosha Kabushiki Kaisha Power supply control device and information provision device
WO2011102515A1 (en) * 2010-02-22 2011-08-25 トヨタ自動車株式会社 Power supply control device and information provision device
CN102770304A (en) * 2010-02-22 2012-11-07 丰田自动车株式会社 Power supply control device and information provision device
US9148018B2 (en) 2010-03-24 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Power supply device, power storage device, and power control device
JP2011229238A (en) * 2010-04-16 2011-11-10 Fujitsu Ltd Power control method, program and apparatus
US8700511B2 (en) 2010-05-10 2014-04-15 Panasonic Corporation Control device, charge storage system, control method, and computer program
EP2571130A4 (en) * 2010-05-11 2017-12-20 Panasonic Intellectual Property Management Co., Ltd. Electric power control apparatus and grid connection system having same
US9876350B2 (en) 2010-09-28 2018-01-23 Panasonic Intellectual Property Management Co., Ltd. Power supply system
US9236638B2 (en) 2010-12-17 2016-01-12 Kt Corporation Charging/discharging system for solar light power generator in smart grid environment with real-time pricing, duplex convertor of charging/discharging system, and charging/discharging method for solar light power generator
KR101251554B1 (en) * 2010-12-17 2013-04-08 주식회사 케이티 Charging/discharging system for solar light power generator in smart grid environment with real-time price, duplex convertor of charging/discharging system, and charging/discharging method for solar light power generator
US20140012428A1 (en) * 2011-03-18 2014-01-09 Fujitsu Limited Operation plan preparation method, operation plan preparation device, and recording medium
US9425636B2 (en) * 2011-03-18 2016-08-23 Fujitsu Limited Operation plan preparation method, operation plan preparation device, and recording medium
JP2013041723A (en) * 2011-08-12 2013-02-28 Kyocera Corp Power control unit and power control method
JP2013074689A (en) * 2011-09-27 2013-04-22 Panasonic Corp Energy control system and energy control device
JP2013132174A (en) * 2011-12-22 2013-07-04 Sanyo Electric Co Ltd Charge/discharge controller
WO2014119153A1 (en) * 2013-01-31 2014-08-07 株式会社 東芝 Energy management system, energy management method, program and server
WO2014192119A1 (en) * 2013-05-30 2014-12-04 東芝三菱電機産業システム株式会社 Power management device
JPWO2014192119A1 (en) * 2013-05-30 2017-02-23 東芝三菱電機産業システム株式会社 Power management equipment
JP5654179B1 (en) * 2013-12-10 2015-01-14 中国電力株式会社 Charge / discharge control device, program
CN105580236A (en) * 2013-12-10 2016-05-11 中国电力株式会社 Charge/discharge control device, and program
WO2015087391A1 (en) * 2013-12-10 2015-06-18 中国電力株式会社 Charge/discharge control device, and program
WO2015118747A1 (en) * 2014-02-06 2015-08-13 株式会社東芝 Energy management system
JP2015149840A (en) * 2014-02-06 2015-08-20 株式会社東芝 energy management system
US10600132B2 (en) 2014-07-24 2020-03-24 Mitsubishi Electric Corporation Supply-demand control device, charge-discharge control device, power storage device, supply-demand control system, and supply-demand control method
JP2016095863A (en) * 2014-07-24 2016-05-26 三菱電機株式会社 Supply/demand control device, power storage device, charge/discharge control device, supply/demand control system, and supply/demand control method
WO2016013089A1 (en) * 2014-07-24 2016-01-28 三菱電機株式会社 Supply-demand control device, charge-discharge control device, accumulator device, supply-demand control system, and supply-demand control method
JP2017076422A (en) * 2014-07-24 2017-04-20 三菱電機株式会社 Demand/supply control device, charge/discharge control device, power storage device, demand/supply control system, and demand/supply control method
JP5864821B1 (en) * 2014-07-24 2016-02-17 三菱電機株式会社 Supply / demand control device, charge / discharge control device, power storage device, supply / demand control system, and supply / demand control method
JP2016073113A (en) * 2014-09-30 2016-05-09 富士通株式会社 Charge/discharge control program, charge/discharge control method, and charge/discharge control device
WO2017116084A1 (en) * 2015-12-30 2017-07-06 주식회사 효성 Power supply control method and system
JP2017211763A (en) * 2016-05-24 2017-11-30 株式会社東芝 Information processor, information processing system and information processing program
KR101827158B1 (en) * 2016-10-20 2018-02-08 한국전력공사 Apparatus and method for operating energy storage system connected to microgrid
WO2018074651A1 (en) * 2016-10-20 2018-04-26 한국전력공사 Operating device and method for energy storage device for microgrid
JP7215986B2 (en) 2019-10-28 2023-01-31 京セラ株式会社 POWER CONTROL SYSTEM, POWER CONTROL DEVICE, POWER CONTROL METHOD AND PROGRAM
JP2021069264A (en) * 2019-10-28 2021-04-30 京セラ株式会社 Power control system, power control unit, power control method, and program
CN115173586A (en) * 2022-08-09 2022-10-11 云南大学 Far-field wireless charging scheduling method and system

Also Published As

Publication number Publication date
JP4064334B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP4064334B2 (en) Energy system control device and control method
JP3980541B2 (en) Distributed energy community control system, central controller, distributed controller, and control method thereof
Badawy et al. Power flow management of a grid tied PV-battery system for electric vehicles charging
JP2006304402A (en) Control device for dispersed energy system, control method, program, and recording medium
JP4808754B2 (en) Natural energy power generation control system
US20140350743A1 (en) Tiered power management system for microgrids
US9568901B2 (en) Multi-objective energy management methods for micro-grids
JP5959783B1 (en) Power management equipment
Goebel et al. Model-based dispatch strategies for lithium-ion battery energy storage applied to pay-as-bid markets for secondary reserve
US9367108B2 (en) Reduction of operational cost using energy storage management and demand response
Jirdehi et al. Multi objective stochastic microgrid scheduling incorporating dynamic voltage restorer
Helseth et al. Detailed long‐term hydro‐thermal scheduling for expansion planning in the Nordic power system
JP5639540B2 (en) Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method
WO2014115556A1 (en) Power system control system
KR102008922B1 (en) System and Method of Simplified Robust Optimal Operation of Microgrids by Band of Wirtual Equivalent Load Variation Considering the Uncertainty of Renewable Generation and Loads
KR101716343B1 (en) Scheduling apparatus and method for charging and discharging energy storage system
WO2015037307A1 (en) Power storage control device, management system, power storage control method, power storage control program, and memory medium
US20190072921A1 (en) Systems and methods to control a power split between energy generation and energy storage assets
Martinez-Rico et al. Multi-objective optimization of production scheduling using particle swarm optimization algorithm for hybrid renewable power plants with battery energy storage system
KR20110136803A (en) Distributed electrical power production system and method of control thereof
Cheng et al. A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint
WO2016147788A1 (en) Storage battery operation plan creating device, storage battery operation plan creating method, and permanent recording medium
Mohan et al. Economic and network feasible online power management for renewable energy integrated smart microgrid
CN107204615A (en) A kind of method and system for realizing power prediction
Yilmaz et al. A model predictive control for microgrids considering battery aging

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees