JP2005128722A - Vehicle with obstruction avoidance function - Google Patents

Vehicle with obstruction avoidance function Download PDF

Info

Publication number
JP2005128722A
JP2005128722A JP2003362704A JP2003362704A JP2005128722A JP 2005128722 A JP2005128722 A JP 2005128722A JP 2003362704 A JP2003362704 A JP 2003362704A JP 2003362704 A JP2003362704 A JP 2003362704A JP 2005128722 A JP2005128722 A JP 2005128722A
Authority
JP
Japan
Prior art keywords
vehicle
obstacle
collision
dimensional
avoidance function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003362704A
Other languages
Japanese (ja)
Inventor
Hideki Yamashita
秀樹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003362704A priority Critical patent/JP2005128722A/en
Publication of JP2005128722A publication Critical patent/JP2005128722A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To avoid a collision with a step and a rollover into a ditch or the like in a vehicle with an obstruction avoidance function. <P>SOLUTION: During a travel of the vehicle 1, a two-dimensional laser radar LD2 scans ahead of the vehicle (#6), and observes and stores hazard points such as a step and a ditch (#7). The rotational speed of driving wheels is detected (#8) and the travel of the vehicle 1 is calculated (#9) for storage (#7). If collision predicting means produces a collision determination (#11) from the stored hazard points and changing vehicle travel information, and a vehicle travel direction (#10), a collision avoiding correction instruction is issued (#12) to correct the operator's steering angle setting (#2) and accelerator operation (#4) so that the vehicle avoids the collision. Measured points near the travel road surface by the two-dimensional laser radar LD2 are stored by coordinate conversion, so that obstruction positions can be recognized even in the radar dead angle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、障害物回避機能付き車両に関する。   The present invention relates to a vehicle with an obstacle avoidance function.

従来、配膳車、手術台、工場用運搬台車等の手押し台車、さらには、シニアカート、車椅子、ゴルフカート等の乗って操作する台車などのように、人が手などの身体の一部を用いて操作する車両において、衝突を回避する機能を組み込むことが行われている。例えば、障害物を検知する障害物検出部を備え、障害物検出信号に基づき、前進方向の駆動力をオフにし、後進方向の駆動力をオンにする駆動補助付小型車両が知られている。また、衝突の可能性が生じたとき、操舵パターンを修正することで、衝突を回避する車両の自動操舵装置が知られている(例えば、特許文献1参照)。
特開平5−50934号公報
Conventionally, a person uses a part of the body such as a hand such as a wheelbarrow, an operating table, a hand cart such as a factory transport cart, and a cart operated by senior cart, wheelchair, golf cart, etc. In a vehicle to be operated, a function for avoiding a collision is incorporated. For example, a small vehicle with driving assistance that includes an obstacle detection unit that detects an obstacle, turns off the driving force in the forward direction, and turns on the driving force in the backward direction based on the obstacle detection signal is known. There is also known an automatic steering device for a vehicle that avoids a collision by correcting a steering pattern when a possibility of a collision occurs (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 5-50934

しかしながら、台車などにおいて、比較的車輪の径が小さくて路面近傍における段差、溝などが走行上の問題となるにもかかわらず、上述したような駆動補助付小型車両や自動操舵装置では衝突回避の対象となる障害物として段差や溝などが考慮されていない。障害物検出に3次元距離センサ(3D距離センサ)を用いたものもあるが、車両近傍の走行路面上で検出した対象が道であるか段差であるかの判断が行われていなく、段差を回避することができない。また、車両の車輪接地面から所定の高さ以下において検出した対象物は道であるとする場合、なだらかに変化する坂などを障害物として誤検知することがある。   However, in a cart or the like, although the wheel diameter is relatively small and steps and grooves in the vicinity of the road surface cause a problem in traveling, the above-described small vehicle with driving assistance and the automatic steering device avoid collision. Steps and grooves are not taken into consideration as target obstacles. Although there is one using a three-dimensional distance sensor (3D distance sensor) for obstacle detection, it is not determined whether the object detected on the road surface in the vicinity of the vehicle is a road or a step, and the step is detected. It cannot be avoided. In addition, when an object detected below a predetermined height from the wheel ground contact surface of the vehicle is a road, a gently changing hill may be erroneously detected as an obstacle.

本発明は、上記課題を解消するものであって、人が操作する車両において、段差への衝突や、溝等への転落を回避できる障害物回避機能付き車両を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a vehicle with an obstacle avoidance function capable of avoiding a collision with a step or a fall into a groove or the like in a vehicle operated by a person.

上記課題を達成するために、請求項1の発明は、障害物を検知してそれを回避するように走行制御される車両において、走行路面近傍の障害物を3次元情報として認識できる3次元障害物認識手段と、前記3次元障害物認識手段によって得た障害物情報から衝突危険性を判断する衝突予測手段と、前記衝突予測手段で衝突すると予測した際に、衝突しないように走行状態を補正する走行補正手段とを有する障害物回避機能付き車両である。   In order to achieve the above object, the invention according to claim 1 is a three-dimensional obstacle capable of recognizing an obstacle near the traveling road surface as three-dimensional information in a vehicle that is travel-controlled so as to detect and avoid the obstacle. The object recognition means, the collision prediction means for judging the collision risk from the obstacle information obtained by the three-dimensional obstacle recognition means, and the traveling state are corrected so as not to collide when predicted to collide with the collision prediction means. A vehicle with an obstacle avoidance function having a travel correction means.

請求項2の発明は、請求項1に記載の障害物回避機能付き車両において、前記3次元障害物認識手段として複数の超音波センサ及び/又は1つ以上の首振り機構付き超音波センサを有するものである。   According to a second aspect of the present invention, in the vehicle with an obstacle avoidance function according to the first aspect, the three-dimensional obstacle recognition means includes a plurality of ultrasonic sensors and / or one or more ultrasonic sensors with a swing mechanism. Is.

請求項3の発明は、請求項1に記載の障害物回避機能付き車両において、前記3次元障害物認識手段として3次元レーザレーダを有するものである。   According to a third aspect of the present invention, in the vehicle with the obstacle avoidance function according to the first aspect, a three-dimensional laser radar is provided as the three-dimensional obstacle recognition means.

請求項4の発明は、請求項1又は請求項3に記載の障害物回避機能付き車両において、車両移動量計測手段をさらに有し、前記3次元障害物認識手段が障害物を検知した後その障害物が検知エリア外となったエリアにおける前記障害物の位置を、前記3次元障害物認識手段によって得た障害物情報と前記車両移動量計測手段によって得た車両移動量から推定するものである。   According to a fourth aspect of the present invention, in the vehicle with an obstacle avoidance function according to the first or third aspect, the vehicle further includes a vehicle movement amount measuring unit, and the three-dimensional obstacle recognition unit detects the obstacle and The position of the obstacle in the area where the obstacle is outside the detection area is estimated from the obstacle information obtained by the three-dimensional obstacle recognition means and the vehicle movement amount obtained by the vehicle movement amount measurement means. .

請求項5の発明は、請求項1に記載の障害物回避機能付き車両において、車両本体水平面に対し俯角をもって設置された2次元レーザレーダと、車両移動量計測手段とをさらに有し、前記2次元レーザレーダからの障害物情報と前記車両移動量計測手段からの車両移動量とから3次元障害物情報を得るものである。   According to a fifth aspect of the present invention, in the vehicle with an obstacle avoidance function according to the first aspect, the vehicle further includes a two-dimensional laser radar installed at a depression angle with respect to a horizontal plane of the vehicle main body, and a vehicle movement amount measuring means. The three-dimensional obstacle information is obtained from the obstacle information from the three-dimensional laser radar and the vehicle movement amount from the vehicle movement amount measuring means.

請求項6の発明は、請求項4又は請求項5に記載の障害物回避機能付き車両において、前記車両移動量計測手段は、車輪回転計測装置又は加速度計測装置である。   According to a sixth aspect of the present invention, in the vehicle with an obstacle avoidance function according to the fourth or fifth aspect, the vehicle movement amount measuring means is a wheel rotation measuring device or an acceleration measuring device.

請求項7の発明は、請求項1乃至請求項6のいずれかに記載の障害物回避機能付き車両において、前記障害物認識手段は、所定の水平面から所定以上の高さの変化があるところを障害物位置とするものである。   According to a seventh aspect of the present invention, in the vehicle with an obstacle avoidance function according to any one of the first to sixth aspects, the obstacle recognizing means has a height change greater than a predetermined level from a predetermined horizontal plane. It is assumed to be an obstacle position.

請求項8の発明は、請求項1乃至請求項7のいずれかに記載の障害物回避機能付き車両において、車両移動速度検出器をさらに有し、前記衝突予測手段は、前記障害物認識手段で認識した障害物位置と、前記車両移動速度検出器で求めた車両移動方向とから、衝突を予測するものである。   The invention according to claim 8 is the vehicle with an obstacle avoidance function according to any one of claims 1 to 7, further comprising a vehicle moving speed detector, wherein the collision prediction means is the obstacle recognition means. A collision is predicted from the recognized obstacle position and the vehicle movement direction obtained by the vehicle movement speed detector.

請求項9の発明は、請求項8に記載の障害物回避機能付き車両において、前記衝突予測手段は、前記障害物認識手段で認識した障害物位置と、前記車両移動速度検出器で求めた車両移動速度から、障害物に近づく速度を求め、障害物接近速度及び障害物と車両間の距離から、衝突を予測するものである。   According to a ninth aspect of the present invention, in the vehicle with an obstacle avoidance function according to the eighth aspect, the collision predicting means is a vehicle obtained by the obstacle position recognized by the obstacle recognizing means and the vehicle moving speed detector. The speed at which the vehicle approaches the obstacle is obtained from the moving speed, and the collision is predicted from the obstacle approach speed and the distance between the obstacle and the vehicle.

請求項10の発明は、請求項1乃至請求項9のいずれかに記載の障害物回避機能付き車両において、前記走行補正手段は、安全な方向へ旋回するための旋回力を左右駆動輪に対する駆動力の差として付加するものである。   According to a tenth aspect of the present invention, in the vehicle with an obstacle avoidance function according to any one of the first to ninth aspects, the travel correction means drives a turning force for turning in a safe direction to the left and right drive wheels. It is added as a difference in force.

請求項11の発明は、請求項1乃至請求項10のいずれかに記載の障害物回避機能付き車両において、前記走行補正手段は、衝突しないように推進又は旋回又は横移動の速度を制限するものである。   An eleventh aspect of the present invention is the vehicle with an obstacle avoidance function according to any one of the first to tenth aspects, wherein the travel correction means limits the speed of propulsion or turning or lateral movement so as not to collide. It is.

請求項1の発明によれば、3次元障害物認識手段により道路上の溝や段差などを検出して、走行状態を補正して回避できる。   According to the first aspect of the present invention, the three-dimensional obstacle recognizing means can detect a groove, a step or the like on the road, and can correct and avoid the traveling state.

請求項2の発明によれば、複数の超音波センサ又は首振り機構つき超音波センサを用いて3次元障害物認識手段を安価に形成して3次元情報を得ることができる。   According to the invention of claim 2, the three-dimensional obstacle recognition means can be formed at low cost using a plurality of ultrasonic sensors or ultrasonic sensors with a swing mechanism, and three-dimensional information can be obtained.

請求項3の発明によれば、3次元レーザレーダの高速スキャンによりリアルタイムに位置分解能良く3次元情報を得ることができる。   According to the invention of claim 3, it is possible to obtain three-dimensional information with high positional resolution in real time by high-speed scanning of a three-dimensional laser radar.

請求項4の発明によれば、センサ検知エリアを外れても車両近傍における障害物情報を記憶して、死角領域の障害物を回避できる。   According to the fourth aspect of the present invention, obstacle information in the vicinity of the vehicle can be stored even when the sensor detection area is left, and obstacles in the blind spot area can be avoided.

請求項5の発明によれば、2次元レーザレーダによる障害物情報に走行方向の情報を加えることで、比較的安価に3次元障害物情報を得ることができる。   According to the fifth aspect of the present invention, the three-dimensional obstacle information can be obtained at a relatively low cost by adding the traveling direction information to the obstacle information obtained by the two-dimensional laser radar.

請求項6の発明によれば、車輪回転計測によって安価で比較的正確に車両移動量を得ることができ、また、加速度計測によって車輪等がスリップしても正確に車両移動量を得ることができる。   According to the invention of claim 6, the vehicle movement amount can be obtained relatively inexpensively and accurately by measuring the wheel rotation, and the vehicle movement amount can be accurately obtained even if the wheel or the like slips by acceleration measurement. .

請求項7の発明によれば、所定水平面からの変化量で溝、段差、壁などを障害物として判断してこれらを回避できる。   According to the seventh aspect of the present invention, it is possible to avoid a groove, a step, a wall, and the like as an obstacle based on an amount of change from a predetermined horizontal plane.

請求項8及び請求項9の発明によれば、障害物位置と車両移動方向の情報から演算によって容易に衝突を予測できる。   According to the eighth and ninth aspects of the present invention, it is possible to easily predict a collision by calculation from information on an obstacle position and a vehicle moving direction.

請求項10乃至請求項11の発明によれば、車両を安全な状態へ自然に導くことができる。   According to the invention of claims 10 to 11, the vehicle can be naturally guided to a safe state.

以下、本発明の一実施形態に係る障害物回避機能付き車両について、図面を参照して説明する。図1は、障害物回避機能付き車両のブロック構成を示し、図2乃至図4は、それぞれ障害物回避機能付き車両の平面、側面、正面から見た構造を示す。障害物回避機能付き車両1(以下、車両1)は、障害物Bを検知してそれを回避するように走行制御される車両である。車両1は、図1に示すように、走行路面近傍の障害物Bを3次元情報として認識できる3次元障害物認識手段20と、3次元障害物認識手段20によって得た障害物情報から衝突危険性を判断する衝突予測手段21と、衝突予測手段21で衝突すると予測した際に、衝突しないように走行状態を補正する走行補正手段22と、さらに、3次元障害物認識手段20が障害物Bを検知した後、その障害物Bが検知エリア外となったエリアにおける障害物Bの位置を車両移動量から推定するための車両移動量計測手段23とを有している。これらの各手段は、制御部12によって統合制御される。また、制御部12やデータ等を記憶するメモリ15を含むデータ処理部は、自動制御ユニットACUに納められている。ブロック構成の詳細説明は、図2乃至図4の説明の後に行う。   Hereinafter, a vehicle with an obstacle avoidance function according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a block configuration of a vehicle with an obstacle avoidance function, and FIGS. 2 to 4 show structures of the vehicle with an obstacle avoidance function as seen from the plane, side, and front. The vehicle 1 with an obstacle avoidance function (hereinafter, vehicle 1) is a vehicle that is travel-controlled so as to detect the obstacle B and avoid it. As shown in FIG. 1, the vehicle 1 has a three-dimensional obstacle recognition unit 20 that can recognize an obstacle B in the vicinity of the traveling road surface as three-dimensional information, and a collision risk from obstacle information obtained by the three-dimensional obstacle recognition unit 20. A collision predicting means 21 for determining the nature, a travel correcting means 22 for correcting the traveling state so as not to collide when the collision predicting means 21 predicts a collision, and further, a three-dimensional obstacle recognizing means 20 includes an obstacle B Vehicle movement amount measuring means 23 for estimating the position of the obstacle B in the area where the obstacle B is outside the detection area from the vehicle movement amount. These units are integrated and controlled by the control unit 12. A data processing unit including the control unit 12 and a memory 15 for storing data and the like is housed in the automatic control unit ACU. A detailed description of the block configuration will be given after the description of FIGS.

車両1は、図2乃至図4に示すように、駆動輪2、操舵輪3、回転速度検出センサ5、、操舵角検出センサ7、超音波距離センサUS(US1〜US9)、自動制御ユニットACU等を備えた4輪の乗車型台車である。駆動輪2は、駆動用モータ4によって、デファレンシャルギア4aを介して駆動される。操舵輪3は、ハンドル6と操舵機構(ハンドル軸6aとその先のピニオンギヤ6b及びラック6c)により操舵される。すなわち、操作者がハンドル6を操作することにより、ハンドル6の回転が、ハンドル軸6aとその先のピニオンギヤ6bを介してラック6cに伝達され、ラック6cが左右に移動することによって操舵輪3の操舵角θが変えられる。また、操舵輪3は、操舵補正用モータ8及び補正駆動機構(ピニオン8aとラック6c)によっても操舵される(後述)。ハンドル6には、駆動力調整レバー(アクセル)4aと前後切替スイッチ4bが備えられている。駆動力調整レバー4aによって駆動用モータ4の出力が調整され、前後切替スイッチ4bによって駆動モータ4の回転方向、従って車両1の前進・後進方向が切り替えられる。   As shown in FIGS. 2 to 4, the vehicle 1 includes a drive wheel 2, a steering wheel 3, a rotation speed detection sensor 5, a steering angle detection sensor 7, an ultrasonic distance sensor US (US1 to US9), and an automatic control unit ACU. It is a four-wheel riding type carriage equipped with the above. The drive wheel 2 is driven by a drive motor 4 via a differential gear 4a. The steered wheels 3 are steered by a handle 6 and a steering mechanism (a handle shaft 6a, a pinion gear 6b and a rack 6c ahead thereof). That is, when the operator operates the handle 6, the rotation of the handle 6 is transmitted to the rack 6c via the handle shaft 6a and the pinion gear 6b ahead of the handle 6 and the rack 6c moves to the left and right to move the steering wheel 3 to the left and right. The steering angle θ can be changed. The steered wheels 3 are also steered by a steering correction motor 8 and a correction drive mechanism (pinion 8a and rack 6c) (described later). The handle 6 is provided with a driving force adjusting lever (accelerator) 4a and a front / rear selector switch 4b. The output of the driving motor 4 is adjusted by the driving force adjusting lever 4a, and the rotation direction of the driving motor 4, and thus the forward / backward direction of the vehicle 1 is switched by the front / rear selector switch 4b.

また、回転速度検出センサ5は、左右の駆動輪2の回転速度を検出する。操舵角検出センサ7は、例えば、ロータリエンコーダからなり、ハンドル軸6aの回転角を検出して操舵角θを検出する。超音波距離センサUS1〜US9は、車両1の前方空間における障害物を3次元的に検出できるように、検知方向を分担して車両1の前方に固定されている。すなわち、図4に示すように、縦横に3×3の格子状に配列された超音波センサUSのうち、上段列のものは前方上方、中段列のものは前方水平方向、下段列のものは前方下方を検知領域としている。例えば、縦方向に並んだ超音波距離センサUS4、US5、US6の検知エリアA4、A5、A6が図3に示されている。超音波距離センサUS3、US6、US9は、車両1の前方下方を検知エリアとしているため、路面10近傍の溝B1や段差B2等の障害物を検出することができる。また、データ処理を行う自動制御ユニットACUが座席Sの下に納められている。   The rotational speed detection sensor 5 detects the rotational speed of the left and right drive wheels 2. The steering angle detection sensor 7 is composed of, for example, a rotary encoder, and detects the steering angle θ by detecting the rotation angle of the handle shaft 6a. The ultrasonic distance sensors US <b> 1 to US <b> 9 are fixed to the front of the vehicle 1 so as to share the detection direction so that obstacles in the front space of the vehicle 1 can be detected three-dimensionally. That is, as shown in FIG. 4, among the ultrasonic sensors US arranged in a 3 × 3 grid in the vertical and horizontal directions, the upper row is the upper front, the middle row is the front horizontal direction, and the lower row is the lower row. The detection area is the front and lower part. For example, the detection areas A4, A5, A6 of the ultrasonic distance sensors US4, US5, US6 arranged in the vertical direction are shown in FIG. Since the ultrasonic distance sensors US3, US6, and US9 have a detection area in the lower front part of the vehicle 1, obstacles such as a groove B1 and a step B2 near the road surface 10 can be detected. An automatic control unit ACU that performs data processing is housed under the seat S.

次に、図1に戻って、車両1のブロック構成の詳細を説明する。3次元障害物認識手段20は、複数の超音波距離センサUSと距離データ処理部11とからなる。超音波距離センサUSは、障害物Bの位置を検知し、距離データ処理部11は、超音波距離センサUSで得た距離データを処理する。距離データ処理部11で処理された障害物情報は、制御部12を介してメモリ15に記憶される。   Next, returning to FIG. 1, the details of the block configuration of the vehicle 1 will be described. The three-dimensional obstacle recognition unit 20 includes a plurality of ultrasonic distance sensors US and a distance data processing unit 11. The ultrasonic distance sensor US detects the position of the obstacle B, and the distance data processing unit 11 processes the distance data obtained by the ultrasonic distance sensor US. Obstacle information processed by the distance data processing unit 11 is stored in the memory 15 via the control unit 12.

衝突予測手段21は、データ比較部13と衝突判断部14とからなる。データ比較部13は、車両1の走行中にメモリ15に記憶されたデータを一定時間間隔毎に比較し、衝突判断部14は、データ比較の結果に基づき、障害物との衝突の可能性を判断する。   The collision prediction unit 21 includes a data comparison unit 13 and a collision determination unit 14. The data comparison unit 13 compares the data stored in the memory 15 during traveling of the vehicle 1 at regular time intervals, and the collision determination unit 14 determines the possibility of a collision with an obstacle based on the result of the data comparison. to decide.

走行補正手段22は、操舵補正用モータ8と、補正モータドライバ8dと、補正駆動機構8mからなる。補正モータドライバ8dは、制御部12からの指令を受けて操舵補正用モータ8を回転させ、補正駆動機構8mを介して操舵論3の操舵補正を行う。操舵輪3は、通常、操作者Mが操舵ハンドル6を操作することによって、操舵機構6mを介して操舵される。その操舵角は操舵角検出センサ7によって検出され、制御部12を介してメモり15に記憶される。なお、補正駆動機構8mと操舵機構6mとがラック6c(図2)で結合されているので、操舵補正用モータ8による操舵角の変化も操舵角検出センサ7で検出される。   The travel correction means 22 includes a steering correction motor 8, a correction motor driver 8d, and a correction drive mechanism 8m. The correction motor driver 8d rotates the steering correction motor 8 in response to a command from the control unit 12, and performs the steering correction of the steering theory 3 through the correction drive mechanism 8m. The steering wheel 3 is normally steered via the steering mechanism 6m when the operator M operates the steering handle 6. The steering angle is detected by the steering angle detection sensor 7 and stored in the memory 15 via the control unit 12. Since the correction drive mechanism 8m and the steering mechanism 6m are coupled by the rack 6c (FIG. 2), a change in the steering angle by the steering correction motor 8 is also detected by the steering angle detection sensor 7.

操作者Mによる駆動力調整レバー(アクセル)4a及び前後切替スイッチ4bの操作情報は、駆動モータ制御部16に伝達され、その状態が制御部12に伝達されると共に、駆動モータドライバ4dに送られる。駆動モータドライバ4dは、駆動モータ制御部16からの指令を受けて駆動用モータ4を回転させ、駆動輪2を駆動させる。   The operation information of the driving force adjusting lever (accelerator) 4a and the front / rear selector switch 4b by the operator M is transmitted to the drive motor control unit 16, and the state is transmitted to the control unit 12 and also sent to the drive motor driver 4d. . The drive motor driver 4 d receives the command from the drive motor control unit 16 and rotates the drive motor 4 to drive the drive wheels 2.

車両移動量計測手段23は、回転速度検出センサ(エンコーダ)5と、移動量算出部17とからなる。回転速度検出センサ(エンコーダ)5は、駆動輪2の回転速度を検出し、移動量算出部17は、駆動輪2の回転速度と走行時間から車両1の移動量、及び移動方向を算出する。移動量及び移動方向情報は、制御部を介してメモリに記憶される。   The vehicle movement amount measuring means 23 includes a rotation speed detection sensor (encoder) 5 and a movement amount calculation unit 17. The rotation speed detection sensor (encoder) 5 detects the rotation speed of the drive wheel 2, and the movement amount calculation unit 17 calculates the movement amount and movement direction of the vehicle 1 from the rotation speed of the drive wheel 2 and the travel time. The movement amount and the movement direction information are stored in the memory via the control unit.

次に、上述したブロック構成を備えた車両1の障害物回避の動作例を説明する。図5は情報の流れに注目した車両1の動作を示し、図6は障害物と操舵の関係を示す。制御部12は、複数の超音波距離センサUSからの障害物情報、操舵角センサ7からの操舵輪3の情報、エンコーダ5からの駆動輪2の情報、を収集して、衝突判断部13に渡す。衝突判断部13は、障害物が検出された場合、検出した障害物に車両1が衝突するかどうか予測して判断する。具体的には、前進状態で操舵角θ(反時計回りを正とする)が正かつ所定値θL以上(つまり左旋回)の場合、超音波センサUS1〜US3のいずれかが障害物距離として所定値L1以下の値を返してきたとき(図6、障害物B3)、衝突判断部13は、車両1が障害物B3に衝突する可能性があると判断する。制御部12は、操舵補正指令を補正モータドライバ8dに発して、操舵補正用モータ8の操舵補正力を、操舵角θを小さくする方向に発生させる。   Next, an operation example of obstacle avoidance of the vehicle 1 having the block configuration described above will be described. FIG. 5 shows the operation of the vehicle 1 paying attention to the flow of information, and FIG. 6 shows the relationship between the obstacle and the steering. The control unit 12 collects obstacle information from the plurality of ultrasonic distance sensors US, information on the steered wheels 3 from the steering angle sensor 7, and information on the drive wheels 2 from the encoder 5, and sends them to the collision determination unit 13. hand over. When an obstacle is detected, the collision determination unit 13 predicts and determines whether the vehicle 1 collides with the detected obstacle. Specifically, when the steering angle θ (positive counterclockwise) is positive and greater than or equal to a predetermined value θL (ie, turning left) in the forward state, one of the ultrasonic sensors US1 to US3 is predetermined as the obstacle distance. When the value less than the value L1 is returned (FIG. 6, obstacle B3), the collision determination unit 13 determines that the vehicle 1 may collide with the obstacle B3. The control unit 12 issues a steering correction command to the correction motor driver 8d to generate the steering correction force of the steering correction motor 8 in the direction of decreasing the steering angle θ.

また、制御部12は、超音波距離センサUS1〜US6のいずれかがL1よりも小さい所定値L2以下の障害物距離を返してきた場合(図6、障害物B4)、駆動モータドライバ4dに対して前進速度を小さくする方向に駆動補正指令を出す。制御部12からの駆動補正指令値と操作者Mのアクセル4a操作によるモータ制御部16からの操作指令値とが重畳されて駆動モータドライバ4dに入力される。   In addition, when any of the ultrasonic distance sensors US1 to US6 returns an obstacle distance equal to or smaller than a predetermined value L2 that is smaller than L1 (FIG. 6, obstacle B4), the control unit 12 responds to the drive motor driver 4d. And issue a drive correction command in the direction to decrease the forward speed. The drive correction command value from the control unit 12 and the operation command value from the motor control unit 16 by the operation of the accelerator 4a of the operator M are superimposed and input to the drive motor driver 4d.

また、前進状態で操舵角θが負かつかつ絶対値が所定値θR以上(つまり右旋回、また、通常θR=θL)の場合、超音波センサUS7〜US9のいずれかが障害物距離として所定値R1以下の値を返してきたとき、衝突判断部13は、車両1が障害物に衝突する可能性があると判断する。制御部12は、操舵補正指令を補正モータドライバ8dに発して、操舵角θの絶対値を小さくする方向に操舵補正用モータ8に操舵補正力を発生させる。また、制御部12は、超音波距離センサUS4〜9のいずれかがR1よりも小さい所定値R2以下の障害物距離を返してきた場合、前述と同様に、駆動モータドライバ4dに対して前進速度を小さくする方向に駆動補正指令を出す。   Further, when the steering angle θ is negative and the absolute value is equal to or greater than the predetermined value θR in the forward state (that is, turning right, and usually θR = θL), any one of the ultrasonic sensors US7 to US9 is the predetermined value as the obstacle distance. When the value less than R1 is returned, the collision determination unit 13 determines that the vehicle 1 may collide with an obstacle. The control unit 12 issues a steering correction command to the correction motor driver 8d, and causes the steering correction motor 8 to generate a steering correction force in a direction to decrease the absolute value of the steering angle θ. Further, when any of the ultrasonic distance sensors US4 to US9 returns an obstacle distance equal to or smaller than a predetermined value R2 that is smaller than R1, the control unit 12 advances the driving speed with respect to the drive motor driver 4d as described above. A drive correction command is issued in a direction to decrease the value.

また、前進かつ操舵角θが−θRからθL間の値(つまり、ほぼ直進走行状態)の場合、超音波距離センサUS1〜US9のいずれかが所定値Dc以下の値を返してきたときは、前進速度を小さくする方向に駆動補正指令を出す。以上は、前進時について述べたが、車両後方に上記同様に距離センサを設けて、後進時に同様の障害物回避制御をしてもよい。また、上述した駆動補正指令の代わりに、駆動停止指令をモータ制御部16に入れるようにして、モータ制御部16は駆動停止指令がきたとき駆動用モータ4を停止する、というような構成としたり、ブレーキ機構を設けてそれを回避判断部が直接制御するようにしてもよい。   Further, when the forward and steering angle θ is a value between −θR and θL (that is, a substantially straight traveling state), when any of the ultrasonic distance sensors US1 to US9 returns a value equal to or smaller than the predetermined value Dc, A drive correction command is issued in a direction to decrease the forward speed. Although the foregoing has been described with respect to forward travel, a distance sensor may be provided at the rear of the vehicle in the same manner as described above, and similar obstacle avoidance control may be performed during reverse travel. Further, instead of the drive correction command described above, a drive stop command is input to the motor control unit 16, and the motor control unit 16 stops the drive motor 4 when the drive stop command is received. Alternatively, a brake mechanism may be provided and the avoidance determination unit may directly control it.

次に、上述した複数の固定した超音波距離センサUSの代わりに用いられる、3次元レーザレーダについて説明する。図7及び図8は、3次元レーダレーダ及びその測定の例を示す。図7に示す3次元レーザレーダは、上方の発光部からのレーザ光をミラー60で反射して対象空間に投光し、反射光があれば、ミラー60で反射して、上方の受光部で受光し、レーザ光発光受光間の時間から反射物体の距離を算出するレーダである。ミラー60は、素平軸回りの揺動運動と、垂直軸まわりの回転運動により、レーザ光を上下左右にスキャンする。   Next, a three-dimensional laser radar used in place of the above-described plurality of fixed ultrasonic distance sensors US will be described. 7 and 8 show an example of a three-dimensional radar radar and its measurement. The three-dimensional laser radar shown in FIG. 7 reflects the laser light from the upper light emitting unit by the mirror 60 and projects it onto the target space. If there is reflected light, it reflects by the mirror 60 and is received by the upper light receiving unit. It is a radar that receives light and calculates the distance of the reflecting object from the time between laser light emission and reception. The mirror 60 scans the laser beam vertically and horizontally by a swinging motion around the flat axis and a rotational motion around the vertical axis.

ミラー60の水平軸回りの揺動運動は、ミラー60を構成する磁性材料に対し、コイル64で発生した磁界を、ヨーク62,63を介して作用させて行われる。垂直軸回りの回転運動は、モータ61によって行われる。ミラー60の反射面姿勢は、ミラー60によるレーザ光の反射光を、2つの位置検出器PSD1,PSD2によって検出することで行われる。ミラー60の反射面姿勢からレーザ光を反射した物体の方向が求められる。また、ミラー60の揺動運動と回転運動の位相をずらすことで、図8に示すように、スキャンの軌跡をずらして面状のスキャンを行うことができる。   The oscillating motion around the horizontal axis of the mirror 60 is performed by applying a magnetic field generated by the coil 64 to the magnetic material constituting the mirror 60 via the yokes 62 and 63. The rotational movement around the vertical axis is performed by the motor 61. The reflection surface posture of the mirror 60 is performed by detecting the reflected light of the laser beam from the mirror 60 with the two position detectors PSD1 and PSD2. The direction of the object reflecting the laser beam is obtained from the reflecting surface posture of the mirror 60. Further, by shifting the phase of the oscillating motion and the rotational motion of the mirror 60, as shown in FIG. 8, the scanning trajectory can be shifted to perform a planar scan.

次に、3次元レーザレーダを備えた車両について説明する。図9(a)(b)は、3次元レーザレーダLD3を前方に備えた走行状態の車両1を示す。この車両1のブロック構成は、前述の図1に示したブロック構成において、3次元障害物認識手段20の複数の超音波距離センサUSを3次元レーザレーダLD3で置き換えたものと同じである。3次元レーザレーダの検知エリアA10は、3次元レーザレーダを頂点とする前方に広がる錐体の3次元空間であり、その空間における空間点毎に3次元的に障害物を認識することができる。しかしながら、図9(a)に示すように、3次元レーザレーダLD3で、放射状の検知エリアA10の中に障害物B5が一旦検出されても、図9(b)に示すように、車両1が障害物5に近付き過ぎると検出範囲から外れてしまう。検知エリアA10から外れた、上又は左右の空間における障害物に対しても、同様に死角となって検出されなくなる。   Next, a vehicle equipped with a three-dimensional laser radar will be described. FIGS. 9A and 9B show the vehicle 1 in a traveling state equipped with a three-dimensional laser radar LD3 in front. The block configuration of the vehicle 1 is the same as that in the block configuration shown in FIG. 1 described above, in which a plurality of ultrasonic distance sensors US of the three-dimensional obstacle recognition means 20 are replaced with a three-dimensional laser radar LD3. The detection area A10 of the three-dimensional laser radar is a three-dimensional space of a cone extending forward with the vertex of the three-dimensional laser radar, and an obstacle can be recognized three-dimensionally for each spatial point in the space. However, as shown in FIG. 9A, even if the obstacle B5 is once detected in the radial detection area A10 by the three-dimensional laser radar LD3, as shown in FIG. If it is too close to the obstacle 5, it will fall out of the detection range. Similarly, an obstruction in the upper or left space outside the detection area A10 becomes a blind spot and is not detected.

このような死角領域に対処して、障害物を回避するために、一旦検知エリアで検出した障害物が近づくことで検知エリアを外れるものは、車両本体の移動量からその障害物が、車両からどの位置にあるかの推定が行われる。従って、車両1が、現時点における自己位置を把握しておく必要がある。この自己位置把握は、走行距離等から軌跡推定をして現在位置を推定するいわゆるデッドレコニング(Dead Reckoning:自己位置推定)により行われる。以下、その方法を説明する。   In order to deal with such a blind spot area and avoid an obstacle, if the obstacle once detected in the detection area moves away from the detection area, the obstacle is removed from the vehicle from the movement amount of the vehicle body. An estimate of where it is is made. Therefore, it is necessary for the vehicle 1 to grasp the current position at the present time. This self-position determination is performed by so-called dead reckoning (self-position estimation) that estimates a trajectory from a travel distance or the like and estimates a current position. The method will be described below.

図10は、建物内の床面などに固定された絶対座標系ΣFと、時刻t=t(n−1)、t=t(n)における車両1に固定された車両座標系ΣD(n−1)、ΣD(n)、及び障害物Bの位置関係を示す。絶対座標系の座標軸をXYで表し、車両と共に移動する車両座標系の座標軸をxyで表すことにする。簡単のため、XY面及びxy面は、水平面として、Z、z方向は考えないこととする。車両座標系の原点は、車両1に固定した特定点を任意に選ぶことができる。そこで、車両1の中心を原点とし、車両1の正面前方方向をx軸方向、x軸に垂直左の方向をy軸方向とする。   FIG. 10 shows an absolute coordinate system ΣF fixed on the floor surface in the building and the vehicle coordinate system ΣD (n−) fixed to the vehicle 1 at times t = t (n−1) and t = t (n). 1) shows the positional relationship between ΣD (n) and obstacle B. The coordinate axis of the absolute coordinate system is represented by XY, and the coordinate axis of the vehicle coordinate system moving with the vehicle is represented by xy. For simplicity, the XY plane and the xy plane are horizontal planes and the Z and z directions are not considered. A specific point fixed to the vehicle 1 can be arbitrarily selected as the origin of the vehicle coordinate system. Therefore, the center of the vehicle 1 is the origin, the front front direction of the vehicle 1 is the x-axis direction, and the left direction perpendicular to the x-axis is the y-axis direction.

各測定時刻(例えば、制御周期ΔT毎)、各測定点において3次元レーザレーダ等のセンサで求めた車両座標系における障害物距離データを、車両の移動に応じて、新たな車両座標系における表現に変換することにより、車両1の現在位置と障害物との関係を把握することができる。まず、時刻t=t(n−1)において予測した車両の(現在)位置(X(n−1),Y(n−1))と、現時刻t=t(n)におけるエンコーダ値より測定値として算出された車両中心速度(Vx(n)、Vy(n)、ω(n))とを用いて、制御周期ΔT後(t(n)=t(n−1)+ΔT)の車両位置(X(n),Y(n))を算出する。θは操舵角であり、ωは各速度すなわち操舵角θの時間変化率である。絶対座標系ΣFにおける車両位置は、下式(1)〜(5)で表される。   The obstacle distance data in the vehicle coordinate system obtained by a sensor such as a three-dimensional laser radar at each measurement time (for example, every control cycle ΔT) is expressed in a new vehicle coordinate system according to the movement of the vehicle. By converting into, the relationship between the current position of the vehicle 1 and the obstacle can be grasped. First, measured from the (current) position (X (n−1), Y (n−1)) of the vehicle predicted at time t = t (n−1) and the encoder value at the current time t = t (n). The vehicle position after the control cycle ΔT (t (n) = t (n−1) + ΔT) using the vehicle center speed (Vx (n), Vy (n), ω (n)) calculated as the value (X (n), Y (n)) is calculated. θ is the steering angle, and ω is the time change rate of each speed, that is, the steering angle θ. The vehicle position in the absolute coordinate system ΣF is expressed by the following expressions (1) to (5).

Figure 2005128722
Figure 2005128722

次に、時刻t=t(n)、車両座標系ΣD(n)における障害物Bの座標(xb(n),yb(n))を求める。図11を参照して説明する。車両座標系ΣD(n)は、1制御周期ΔT前の、時刻t=t(n−1)における諸量によって表現される。そこで、車両座標系ΣD(n)における障害物Bの座標(xb(n),yb(n))は、車両座標系ΣD(n−1)における、車両座標系ΣD(n)の原点の座標(Δx(n)、Δy(n))と障害物Bの座標(xb(n−1),yb(n−1))を用いて、下式(6)のように表される。また、車両座標系ΣD(n)の原点の座標(Δx(n)、Δy(n))は、前出の式(1)(2)において、X(n−1),Y(n−1)をそれぞれ0とおいて、X(n)、Y(n)をそれぞれΔx(n)、Δy(n)として求めた下式(7)となる。   Next, at time t = t (n), the coordinates (xb (n), yb (n)) of the obstacle B in the vehicle coordinate system ΣD (n) are obtained. This will be described with reference to FIG. The vehicle coordinate system ΣD (n) is expressed by various quantities at time t = t (n−1) before one control cycle ΔT. Therefore, the coordinates (xb (n), yb (n)) of the obstacle B in the vehicle coordinate system ΣD (n) are the coordinates of the origin of the vehicle coordinate system ΣD (n) in the vehicle coordinate system ΣD (n−1). Using (Δx (n), Δy (n)) and the coordinates (xb (n−1), yb (n−1)) of the obstacle B, the following equation (6) is obtained. Further, the coordinates (Δx (n), Δy (n)) of the origin of the vehicle coordinate system ΣD (n) are X (n−1), Y (n−1) in the above equations (1) and (2). ) Are set to 0, and X (n) and Y (n) are obtained as Δx (n) and Δy (n), respectively.

Figure 2005128722
Figure 2005128722

上記の式(6)(7)を用いると、時刻t=0に3次元レーザレーダLD3で測定した障害物Bの位置座標(xb(0)、yb(0))をもとに、その後、障害物Bの位置を測定することなく、車両の制御周期ΔT毎の位置移動に合わせた座標変換を積み重ねることによって、時刻t=t(n)=n・ΔTにおける障害物Bの位置座標が得られる。そこで、前述のセンサの死角においても障害物情報を保持できるので、障害物回避が可能となる。なお、車両速度Vx、Vyは、角度計測器の微分や、加速度計の積分で求めてもよい。   Using the above equations (6) and (7), based on the position coordinates (xb (0), yb (0)) of the obstacle B measured by the three-dimensional laser radar LD3 at time t = 0, The position coordinates of the obstacle B at the time t = t (n) = n · ΔT are obtained by accumulating coordinate transformations according to the movement of the position for each control period ΔT of the vehicle without measuring the position of the obstacle B. It is done. Therefore, since the obstacle information can be held even in the blind spot of the aforementioned sensor, obstacle avoidance is possible. The vehicle speeds Vx and Vy may be obtained by differentiation of an angle measuring device or integration of an accelerometer.

次に、上述の3次元レーザレーダに替えて、2次元レーザレーダを用いて、障害物の3次元情報を得る方法について説明する。図12(a)(b)(c)は、2次元レーザレーダLD2を備えた車両1を示す。この車両1のブロック構成は、前述の図1に示したブロック構成において、3次元障害物認識手段20の複数の超音波距離センサUSを2次元レーザレーダLD2で置き換えたものと同じである。2次元レーザレーダLD2は、レーザ光が通過した空間が2次元であり、レーザ光を平面に照射した場合、軌跡が線状となる(前述の3次元レーザレーダLD3では、レーザ光が通過した空間は略3次元、軌跡が略面状)。   Next, a method for obtaining three-dimensional information of an obstacle using a two-dimensional laser radar instead of the above-described three-dimensional laser radar will be described. FIGS. 12A, 12B, and 12C show the vehicle 1 including the two-dimensional laser radar LD2. The block configuration of the vehicle 1 is the same as that obtained by replacing the plurality of ultrasonic distance sensors US of the three-dimensional obstacle recognition means 20 with the two-dimensional laser radar LD2 in the block configuration shown in FIG. In the two-dimensional laser radar LD2, the space through which the laser beam has passed is two-dimensional, and when the laser beam is irradiated onto a plane, the locus becomes linear (in the above-described three-dimensional laser radar LD3, the space through which the laser beam has passed). Is approximately three-dimensional and the locus is approximately planar).

2次元レーザレーダLD2は、図12に示すように、車両1の前方の1点から、扇を前方下方に向けて広げたように、同一平面内で左右にレーザ光をスキャンして用いられる。走行路面の大部分が略平面である場合、2次元レーザレーダLD2でスキャンした路面上の軌跡LSは、直線状となる。2次元レーザレーダLD2の検知エリアA11は、扇状となり、その俯角ηとスキャン角度ξ(検知エリアA11面内で定義される)、及び2次元レーザレーダLD2から障害物B7までの直線距離rによって、検知した障害物B7の3次元情報が得られる。すなわち、車両座標軸ΣDの原点を2次元レーザレーダLD2の真下の路面上とし、2次元レーザレーダLD2の高さ位置をHとすると、障害物B7の座標(xb、yb、zb)は、xb=r・cos(ξ)・cos(η)、yb=r・sin(ξ)、zb=H−r・cos(ξ)・sin(η)となる(図13参照)。   As shown in FIG. 12, the two-dimensional laser radar LD2 is used by scanning laser light left and right in the same plane as if a fan is spread forward and downward from one point in front of the vehicle 1. When most of the traveling road surface is substantially flat, the locus LS on the road surface scanned by the two-dimensional laser radar LD2 is linear. The detection area A11 of the two-dimensional laser radar LD2 has a fan shape, and the depression angle η and scan angle ξ (defined within the detection area A11 plane) and the linear distance r from the two-dimensional laser radar LD2 to the obstacle B7 are Three-dimensional information of the detected obstacle B7 is obtained. That is, when the origin of the vehicle coordinate axis ΣD is on the road surface directly below the two-dimensional laser radar LD2, and the height position of the two-dimensional laser radar LD2 is H, the coordinates (xb, yb, zb) of the obstacle B7 are xb = r · cos (ξ) · cos (η), yb = r · sin (ξ), and zb = Hr · cos (ξ) · sin (η) (see FIG. 13).

このような1回のスキャンによる障害物の3次元情報の取得を、自動制御ユニットの制御周期ΔT毎に行って、車両移動量計測手段からの車両移動量と共にメモリに記憶することにより、障害物に対するより完全な3次元情報を得ることができる。図14(a)(b)は、2次元レーザレーダによる障害物情報の取得例を示す。2次元レーザレーダLD2でスキャンしながら走行中に、図14(a)に示すように、時刻t=t(n−1)において、路面10近傍の凸部障害物B7を検出し、図14(b)に示すように、時刻t=t(n)において、路面10近傍の溝部障害物B8を検出したとする(図12参照)。車両座標系の設定は図13におけるものと同様である。   Obstacles are obtained by performing acquisition of the three-dimensional information of the obstacles by such a single scan every control cycle ΔT of the automatic control unit and storing them in the memory together with the vehicle movement amount from the vehicle movement amount measuring means. More complete three-dimensional information can be obtained. FIGS. 14A and 14B show examples of acquiring obstacle information by a two-dimensional laser radar. During traveling while scanning with the two-dimensional laser radar LD2, as shown in FIG. 14A, a convex obstacle B7 in the vicinity of the road surface 10 is detected at time t = t (n−1), and FIG. As shown in b), it is assumed that the groove obstacle B8 in the vicinity of the road surface 10 is detected at time t = t (n) (see FIG. 12). The setting of the vehicle coordinate system is the same as that in FIG.

2次元レーザレーダLD2による測定点を点p1〜p9で表すと、時刻t=t(n−1)では、測定点p2以外は直線上に並び、また、時刻t=t(n)では、測定点p6,p7以外は直線上に並んでいる。すなわち、測定点p2は、凸部障害物B7上の点であり、また、測定点p6,p7は、溝部障害物B8内の点である。このように、1回のレーザスキャンによる測定点の座標比較から、障害物情報をえることができる。例えば、時刻t=t(n−1)においては、測定点p2のxyz座標値が、互いに同じxz座標値を有する他の測定点と異なり、固有の座標値(xx2,yy2,zz2)を有している。時刻t=t(n)においても同様に、測定点p6,p7のxz座標値によって障害物B8を認識することができる。   When the measurement points by the two-dimensional laser radar LD2 are represented by points p1 to p9, at time t = t (n−1), the lines other than the measurement point p2 are arranged on a straight line, and at time t = t (n) Lines other than the points p6 and p7 are arranged on a straight line. That is, the measurement point p2 is a point on the convex obstacle B7, and the measurement points p6 and p7 are points in the groove obstacle B8. As described above, the obstacle information can be obtained from the coordinate comparison of the measurement points by one laser scan. For example, at time t = t (n−1), the xyz coordinate value of the measurement point p2 is different from other measurement points having the same xz coordinate value, and has unique coordinate values (xx2, yy2, zz2). doing. Similarly, at time t = t (n), the obstacle B8 can be recognized from the xz coordinate values of the measurement points p6 and p7.

また、所定の一定時間内における異なるレーザスキャンによる測定点の組の座標値を互いに比較することによって、走行路面を略平面と見做せない場合に対応して、障害物を認識することができる。このような方法によると、なだらかに路面形状が変化する場合などに対応することができる。移動する車両は、異なる時刻において異なる位置に存在するので、異なる時刻の各測定点を比較するには、測定点座標を同一の座標系で表現する必要がある。例えば、全ての測定点を絶対座標ΣFで表現したり、車両座標系ΣDで表現することができる。   Also, by comparing the coordinate values of a set of measurement points obtained by different laser scans within a predetermined time period, an obstacle can be recognized in response to a case where the traveling road surface cannot be regarded as a substantially flat surface. . Such a method can cope with a case where the road surface shape changes gently. Since the moving vehicle exists at different positions at different times, it is necessary to express the measurement point coordinates in the same coordinate system in order to compare the measurement points at different times. For example, all the measurement points can be expressed by the absolute coordinate ΣF or can be expressed by the vehicle coordinate system ΣD.

全ての測定点を車両座標系ΣDで表現する方法は、車両の現在位置における障害物の位置や方向の認識が容易である点で優れている。この場合、測定点の比較に際して、比較しようとする記憶した過去の測定点を全て現在の車両座標系ΣDに変換する必要があるが、その計算負荷は、現在の高速MPUやDSPによると特に問題とはならない。いずれにせよ、車両が移動しているので、測定値の座標変換が必要であり、前述のデッドレコニングと座標変換を適用することができる。変換に用いられる車両速度は、角度計測器の微分や、加速度計の積分で求めることができる。   The method of expressing all measurement points in the vehicle coordinate system ΣD is excellent in that it is easy to recognize the position and direction of an obstacle at the current position of the vehicle. In this case, when comparing the measurement points, it is necessary to convert all of the stored past measurement points to be compared to the current vehicle coordinate system ΣD, but the calculation load is particularly problematic according to the current high-speed MPU or DSP. It will not be. In any case, since the vehicle is moving, coordinate conversion of measured values is necessary, and the above-described dead reckoning and coordinate conversion can be applied. The vehicle speed used for the conversion can be obtained by differentiation of an angle measuring device or integration of an accelerometer.

次に、上記2次元レーザレーダLD2を用いて障害物回避を行いつつ走行する障害物回避機能付き車両の動作を説明する。図15は、車両1の走行状態を示す(操作者省略)。図1に示したブロック構成を適宜参照する。車両1の通常の走行状態では、操作者によるハンドル操作(#1)によってハンドル角の変化(#2)と操舵角の変化(#3)が発生し、また、操作者によるアクセル操作(#4)によって駆動モータの出力が変化する(#5)。車両1の走行中に、2次元レーザレーダLD2による車両前方スキャンが行われ(#6)、その測定結果は、自動制御ユニットACUにおいて、処理され、障害物等の危険個所の認識と記憶がなされる(#7)。また、エンコーダによって駆動輪の回転速度が検出され(#8)、自動制御ユニットACUにおいて車両1の移動量が算出され(#9)、記憶される(#7)。   Next, the operation of a vehicle with an obstacle avoidance function that travels while performing obstacle avoidance using the two-dimensional laser radar LD2 will be described. FIG. 15 shows the running state of the vehicle 1 (operator omitted). The block configuration shown in FIG. 1 will be referred to as appropriate. In the normal traveling state of the vehicle 1, a steering wheel angle change (# 2) and a steering angle change (# 3) are generated by the steering wheel operation (# 1) by the operator, and the accelerator operation (# 4) by the operator is also performed. ) Changes the output of the drive motor (# 5). While the vehicle 1 is traveling, a vehicle forward scan is performed by the two-dimensional laser radar LD2 (# 6), and the measurement result is processed in the automatic control unit ACU to recognize and store a dangerous part such as an obstacle. (# 7). Further, the rotational speed of the drive wheel is detected by the encoder (# 8), and the movement amount of the vehicle 1 is calculated (# 9) and stored in the automatic control unit ACU (# 7).

記憶された危険個所と時々刻々の車両の移動量の情報、及びエンコーダから得られる車両移動方向(#10)とに基いて、衝突予測手段21の衝突判断部14により衝突判定が行われると(#11)、制御部12から衝突回避用補正命令が出される(#12)。衝突回避用補正命令は、ハンドル角の補正とアクセルの補正からなり、操作者のハンドル角の設定(#2)及びアクセル操作(#4)のそれぞれに対して補正がなされ、車両が衝突しないように走行状態補正がなされる。   When the collision determination is performed by the collision determination unit 14 of the collision prediction means 21 based on the stored dangerous part and the information on the moving amount of the vehicle every moment and the vehicle moving direction (# 10) obtained from the encoder ( # 11) A collision avoidance correction command is issued from the control unit 12 (# 12). The collision avoidance correction command includes a correction of the steering wheel angle and a correction of the accelerator, and correction is made for each of the setting of the steering wheel angle (# 2) and the accelerator operation (# 4) so that the vehicle does not collide. The running state is corrected at the beginning.

次に、衝突予測手段による衝突予測の例を説明する。図16は、車両1の左旋回状態を示す。障害物認識手段で認識した障害物位置と車両移動速度検出器で求めた車両移動方向とから、障害物と車両の衝突可能性が予測される。車両1は、推進(x方向)や横移動(y方向)に加え旋回が可能な動力車である。図16に示すように、車両1は、旋回中心の推進速度Vx、横移動速度Vy、及び旋回速度ωをそれぞれ一定に保って左旋回移動中であり、現時刻において、点P1にいるとする。車両1には、その前方に所定の広がり角2φの衝突領域A21を設定しておく。車両1が、速度を一定に維持して移動して所定時間Tp後に予測移動経路RT上の点P2に達するものとする。ここで、点P1を中心とする所定半径Lの円周と衝突領域A21の右辺との交点P4、車両が点P2にいるときの衝突領域A22の左辺と前記半径Lの円周との交点P3を定める。点P4,P1,P2,P3を結ぶ線と円弧P3−P4とで囲まれた領域に障害物が存在する場合、車両1が点P1から一定速度で旋回移動を続けると障害物に衝突すると結論する。   Next, an example of collision prediction by the collision prediction unit will be described. FIG. 16 shows a left turning state of the vehicle 1. The possibility of collision between the obstacle and the vehicle is predicted from the obstacle position recognized by the obstacle recognition means and the vehicle movement direction obtained by the vehicle movement speed detector. The vehicle 1 is a powered vehicle capable of turning in addition to propulsion (x direction) and lateral movement (y direction). As shown in FIG. 16, it is assumed that the vehicle 1 is turning left while keeping the propulsion speed Vx, lateral movement speed Vy, and turning speed ω at the turning center constant, and is at the point P1 at the current time. . A collision area A21 having a predetermined divergence angle 2φ is set in front of the vehicle 1. It is assumed that the vehicle 1 moves while maintaining a constant speed and reaches a point P2 on the predicted movement route RT after a predetermined time Tp. Here, the intersection P4 between the circumference of the predetermined radius L centered on the point P1 and the right side of the collision area A21, the intersection P3 of the left side of the collision area A22 when the vehicle is at the point P2 and the circumference of the radius L Determine. When there is an obstacle in the area surrounded by the line connecting the points P4, P1, P2, P3 and the arc P3-P4, it is concluded that the vehicle 1 collides with the obstacle if the vehicle 1 continues to turn at a constant speed from the point P1. To do.

次に、衝突予測手段による衝突予測の他の例を説明する。図17(a)(b)は、車両1と障害物Bとの相対速度の関係を示す。衝突予測手段は、車両座標系ΣDで表した障害物Bの位置(xb、yb)と、車両移動速度検出器で求めた車両移動速度(Vx、Vy)から、障害物Bに近づく速度を求め、障害物接近速度Vbc及び障害物Bと車両1間の距離Lbから、衝突を予測する。走行路面に静止した障害物Bを、車両1に固定された車両座標系ΣDから観測すると、走行路面(絶対座標系ΣF)に対する車両1の旋回を含む移動速度(Vx、Vy、ω)によって、障害物Bが移動して見える。図17(a)に示すように、障害物Bが車両1の直線移動速度Vによって(−V)、旋回角速度ωによって(Lb・ω)の速度を持つ。そこで、これらの速度を合成して得られる障害物Bの速度VbはΣD座標系で(−Vx−yb・ω、−Vy+Lb・ω)となる。簡単のため、ωの項を無視してもよい。   Next, another example of collision prediction by the collision prediction unit will be described. 17A and 17B show the relationship between the relative speeds of the vehicle 1 and the obstacle B. FIG. The collision prediction means obtains the speed approaching the obstacle B from the position (xb, yb) of the obstacle B represented by the vehicle coordinate system ΣD and the vehicle movement speed (Vx, Vy) obtained by the vehicle movement speed detector. The collision is predicted from the obstacle approach speed Vbc and the distance Lb between the obstacle B and the vehicle 1. Observing the obstacle B stationary on the traveling road surface from the vehicle coordinate system ΣD fixed to the vehicle 1, due to the moving speed (Vx, Vy, ω) including turning of the vehicle 1 with respect to the traveling road surface (absolute coordinate system ΣF), Obstacle B appears to move. As shown in FIG. 17A, the obstacle B has a speed of (−V) depending on the linear movement speed V of the vehicle 1 and a speed of (Lb · ω) depending on the turning angular speed ω. Therefore, the velocity Vb of the obstacle B obtained by combining these velocities is (−Vx−yb · ω, −Vy + Lb · ω) in the ΣD coordinate system. For simplicity, the ω term may be ignored.

車両1から見た障害物速度Vbが求まると、Vbを車両1の旋回中心と障害物を結ぶ方向の成分Vbcと、それに垂直な成分Vbtに分ける。このVbc成分を障害物Bが車両1に衝突しようとする速度とし、VbcとLbとの関係から、障害物Bが危険域にあるかどうかを判断する。例えば、図18に示す障害物接近速度Vbcと障害物距離Lbとの関係グラフにおける斜線領域DGを危険域として、ある障害物接近速度Vbcに対する障害物距離Lbが近くて斜線領域DGに入れば衝突危険性有りと判断される。   When the obstacle speed Vb viewed from the vehicle 1 is obtained, Vb is divided into a component Vbc in the direction connecting the turning center of the vehicle 1 and the obstacle, and a component Vbt perpendicular thereto. The Vbc component is used as a speed at which the obstacle B tries to collide with the vehicle 1, and it is determined from the relationship between Vbc and Lb whether or not the obstacle B is in the danger zone. For example, with the hatched area DG in the relationship graph between the obstacle approach speed Vbc and the obstacle distance Lb shown in FIG. 18 as a dangerous area, a collision occurs if the obstacle distance Lb for a certain obstacle approach speed Vbc is close and enters the hatched area DG. Judged as dangerous.

次に、走行補正手段による衝突回避の例を説明する。図19は、独立に駆動力を与えられる駆動輪を有する車両1を示す。図20(a)(b)は、前進時と後進時の障害物回避動作を示す。走行補正手段は、安全な方向へ旋回するための旋回力を左右駆動輪に対する駆動力の差として付加して、障害物回避を図ることができる。この車両1は、左右独立の駆動源4L、4Rによって、左右駆動輪2に独立に左輪駆動力FL、右輪駆動力FRを与えることができる。また、車両1の前輪3aは自在車輪となっており、従って、車両1は左右の駆動輪2に与えられる駆動力によって操舵される。車両1の前進方向及び旋回の駆動力(Fx、M)は、左右の駆動輪2を結ぶ線分の中央を旋回中心とし、左右駆動輪2間の距離をLtとすると、Fx=FR+FL、M=(FR−FL)・Lt/2となる。旋回の駆動力Mは力のモーメントであり、M>0の場合、車両1は左旋回する。   Next, an example of collision avoidance by the travel correction unit will be described. FIG. 19 shows a vehicle 1 having driving wheels to which driving force can be applied independently. FIGS. 20 (a) and 20 (b) show the obstacle avoidance operation during forward and reverse travel. The travel correction means can avoid obstacles by adding a turning force for turning in a safe direction as a difference in driving force with respect to the left and right drive wheels. The vehicle 1 can apply the left wheel driving force FL and the right wheel driving force FR to the left and right driving wheels 2 independently by the left and right independent driving sources 4L and 4R. Further, the front wheel 3a of the vehicle 1 is a free wheel, and therefore the vehicle 1 is steered by the driving force applied to the left and right drive wheels 2. The forward driving direction and turning driving force (Fx, M) of the vehicle 1 is Fx = FR + FL, M, where the center of the line segment connecting the left and right driving wheels 2 is the turning center and the distance between the left and right driving wheels 2 is Lt. = (FR-FL) · Lt / 2. The driving force M for turning is a moment of force. When M> 0, the vehicle 1 turns left.

上述の駆動力の発生による障害物回避を説明する。図20(a)に示すように、現在位置から現在の移動速度(Vx、Vy、ω)、現在の駆動力(Fx、M)で前進、左旋回して移動するとき、前進中の予測移動経路RTの右側に障害物Bが存在し、その障害物Bを回避する必要があると判断される場合について述べる。走行補正手段は、衝突しないように推進又は旋回又は横移動の速度を制限する。そして、予測移動経路RTよりも左側に軌道修正して障害物回避が行われる。そこで、走行補正手段は、左右駆動輪2への駆動力を補正して、旋回の駆動力MをM+ΔM(ΔM>0)として左旋回強化、及び前進の駆動力FxをFx−ΔF(ΔF>0)として前進速度減速を行う。同様に、図20(b)に示すように、右旋回後退時に予測移動経路RTの曲率中心の反対側にある障害物Bとの衝突を回避するため、走行補正手段は旋回の駆動力Mを絶対値がより大きくなるように補正して、移動経路の曲率半径を小さくする。駆動力Fx、Mの補正は、車両1と障害物との距離や接近速度(図17におけるLb、Vbc)の関数として定めてもよい。なお、本発明は、上記構成に限られることなく種々の変形が可能である。   Obstacle avoidance by the generation of the driving force described above will be described. As shown in FIG. 20 (a), when the vehicle moves forward from the current position (Vx, Vy, ω) and current driving force (Fx, M) and turns left, the predicted movement path during the forward movement. A case will be described in which an obstacle B exists on the right side of RT and it is determined that the obstacle B needs to be avoided. The traveling correction means limits the speed of propulsion, turning, or lateral movement so as not to collide. Then, the obstacle is avoided by correcting the trajectory on the left side of the predicted movement route RT. Therefore, the traveling correction means corrects the driving force to the left and right driving wheels 2 to strengthen the left turning by setting the turning driving force M to M + ΔM (ΔM> 0) and the forward driving force Fx to Fx−ΔF (ΔF>). 0) The forward speed is decelerated. Similarly, as shown in FIG. 20B, in order to avoid a collision with an obstacle B on the opposite side of the center of curvature of the predicted movement route RT when the vehicle turns to the right, the traveling correction means uses a driving force M for turning. Is corrected so that the absolute value becomes larger, and the radius of curvature of the moving path is made smaller. The correction of the driving forces Fx and M may be determined as a function of the distance between the vehicle 1 and the obstacle and the approach speed (Lb and Vbc in FIG. 17). The present invention is not limited to the above-described configuration, and various modifications can be made.

本発明の一実施形態に係る障害物回避機能付き車両のブロック構成図。The block block diagram of the vehicle with an obstacle avoidance function which concerns on one Embodiment of this invention. 同上車両の構成を示す平面図。The top view which shows the structure of a vehicle same as the above. 同上車両の側面図。The side view of a vehicle same as the above. 同上車両の正面図。The front view of a vehicle same as the above. 同上車両の制御を説明する模式図。The schematic diagram explaining control of a vehicle same as the above. 同上車両の障害物回避を説明する平面図。The top view explaining the obstacle avoidance of a vehicle same as the above. 同上車両で用いられる3次元レーザレーダの構成を示す斜視図。The perspective view which shows the structure of the three-dimensional laser radar used with a vehicle same as the above. 同上3次元レーザレーダによる角度スキャンの説明図。Explanatory drawing of the angle scan by a three-dimensional laser radar same as the above. (a)(b)は3次元レーザレーダを備えた同上車両の側面図。(A) (b) is a side view of the same vehicle provided with the three-dimensional laser radar. 同上車両における自己位置推定(デッドレコニング)の説明図。Explanatory drawing of the self-position estimation (dead reckoning) in a vehicle same as the above. 同上車両における自己位置推定(デッドレコニング)の説明図。Explanatory drawing of the self-position estimation (dead reckoning) in a vehicle same as the above. (a)は2次元レーザレーダを備えた同上車両の平面図、(b)(c)は同側面図。(A) is a top view of the same vehicle provided with the two-dimensional laser radar, (b) (c) is a side view of the same. 同上2次元レーザレーダによる測定点座標の説明図。Explanatory drawing of the measurement point coordinate by a two-dimensional laser radar same as the above. (a)(b)は同上2次元レーザレーダによる3次元障害物認識を説明する斜視図。(A) (b) is a perspective view explaining the three-dimensional obstacle recognition by a two-dimensional laser radar same as the above. 同上車両の3次元障害物認識を行いながら走行する様子を示す斜視図。The perspective view which shows a mode that it drive | works while performing the three-dimensional obstacle recognition of a vehicle same as the above. 同上車両の旋回走行時における衝突予測を説明する平面図。The top view explaining the collision prediction at the time of turning driving | running | working of a vehicle same as the above. (a)(b)は同上車両における衝突予測を説明する平面図。(A) (b) is a top view explaining the collision prediction in a vehicle same as the above. 同上車両で用いる障害物接近速度に基づく衝突危険領域判断用のグラフ。The graph for a collision danger area judgment based on the obstacle approach speed used with a vehicle same as the above. 本発明に係る障害物回避機能付き車両の他の例を示す平面図。The top view which shows the other example of the vehicle with an obstacle avoidance function which concerns on this invention. (a)は同上車両における前進時の障害物回避動作を示す平面図、(b)は同上車両における後退時の障害物回避動作を示す平面図。(A) is a top view which shows the obstacle avoidance operation | movement at the time of advance in a vehicle same as the above, (b) is a top view which shows the obstacle avoidance operation at the time of reverse in the same vehicle.

符号の説明Explanation of symbols

1 障害物回避機能付き車両
5 エンコーダ(車輪回転計測装置)
20 3次元障害物認識手段
21 衝突予測手段
22 走行補正手段
23 車両移動量計測手段
LD2 2次元レーザレーダ
LD3 3次元レーザレーダ
US、US1〜US9 超音波センサ
1 Vehicle with obstacle avoidance function 5 Encoder (wheel rotation measuring device)
20 3D obstacle recognition means 21 Collision prediction means 22 Travel correction means 23 Vehicle movement amount measurement means LD2 2D laser radar LD3 3D laser radar US, US1 to US9 Ultrasonic sensor

Claims (11)

障害物を検知してそれを回避するように走行制御される車両において、
走行路面近傍の障害物を3次元情報として認識できる3次元障害物認識手段と、
前記3次元障害物認識手段によって得た障害物情報から衝突危険性を判断する衝突予測手段と、
前記衝突予測手段で衝突すると予測した際に、衝突しないように走行状態を補正する走行補正手段とを有することを特徴とする障害物回避機能付き車両。
In vehicles that are controlled to detect obstacles and avoid them,
3D obstacle recognition means capable of recognizing obstacles near the traveling road surface as 3D information;
A collision prediction means for judging a collision risk from the obstacle information obtained by the three-dimensional obstacle recognition means;
A vehicle with an obstacle avoidance function, comprising: a traveling correction unit that corrects a traveling state so that a collision does not occur when the collision prediction unit predicts a collision.
前記3次元障害物認識手段として複数の超音波センサ及び/又は1つ以上の首振り機構付き超音波センサを有することを特徴とする請求項1に記載の障害物回避機能付き車両。   The vehicle with an obstacle avoidance function according to claim 1, wherein the three-dimensional obstacle recognition means includes a plurality of ultrasonic sensors and / or one or more ultrasonic sensors with a swing mechanism. 前記3次元障害物認識手段として3次元レーザレーダを有することを特徴とする請求項1に記載の障害物回避機能付き車両。   The vehicle with an obstacle avoidance function according to claim 1, further comprising a three-dimensional laser radar as the three-dimensional obstacle recognition means. 車両移動量計測手段をさらに有し、前記3次元障害物認識手段が障害物を検知した後その障害物が検知エリア外となったエリアにおける前記障害物の位置を、前記3次元障害物認識手段によって得た障害物情報と前記車両移動量計測手段によって得た車両移動量から推定することを特徴とする請求項2又は請求項3に記載の障害物回避機能付き車両。   Vehicle movement amount measuring means is further included, and the position of the obstacle in an area where the obstacle is outside the detection area after the three-dimensional obstacle recognition means detects the obstacle is determined as the three-dimensional obstacle recognition means. The vehicle with an obstacle avoidance function according to claim 2 or 3, wherein the vehicle is estimated from the obstacle information obtained by the above and the vehicle movement amount obtained by the vehicle movement amount measuring means. 車両本体水平面に対し俯角をもって設置された2次元レーザレーダと、車両移動量計測手段とをさらに有し、
前記2次元レーザレーダからの障害物情報と前記車両移動量計測手段からの車両移動量とから3次元障害物情報を得ることを特徴とする請求項1に記載の障害物回避機能付き車両。
A two-dimensional laser radar installed at a depression angle with respect to the horizontal plane of the vehicle body, and a vehicle movement amount measuring means;
2. The vehicle with an obstacle avoidance function according to claim 1, wherein three-dimensional obstacle information is obtained from the obstacle information from the two-dimensional laser radar and the vehicle movement amount from the vehicle movement amount measuring means.
前記車両移動量計測手段は、車輪回転計測装置又は加速度計測装置であることを特徴とする請求項4又は請求項5に記載の障害物回避機能付き車両。   The vehicle with an obstacle avoidance function according to claim 4 or 5, wherein the vehicle movement amount measuring means is a wheel rotation measuring device or an acceleration measuring device. 前記障害物認識手段は、所定の水平面から所定以上の高さの変化があるところを障害物位置とすることを特徴とする請求項1乃至請求項6のいずれかに記載の障害物回避機能付き車両。   The obstacle avoidance function according to any one of claims 1 to 6, wherein the obstacle recognizing means sets an obstacle position where there is a change in height above a predetermined level from a predetermined horizontal plane. vehicle. 車両移動速度検出器をさらに有し、前記衝突予測手段は、前記障害物認識手段で認識した障害物位置と、前記車両移動速度検出器で求めた車両移動方向とから、衝突を予測することを特徴とする請求項1乃至請求項7のいずれかに記載の障害物回避機能付き車両。   A vehicle movement speed detector; and the collision prediction means predicts a collision from the obstacle position recognized by the obstacle recognition means and the vehicle movement direction obtained by the vehicle movement speed detector. The vehicle with an obstacle avoidance function according to any one of claims 1 to 7. 前記衝突予測手段は、前記障害物認識手段で認識した障害物位置と、前記車両移動速度検出器で求めた車両移動速度から、障害物に近づく速度を求め、障害物接近速度及び障害物と車両間の距離から、衝突を予測することを特徴とする請求項8に記載の障害物回避機能付き車両。   The collision prediction means obtains a speed approaching the obstacle from the obstacle position recognized by the obstacle recognition means and the vehicle movement speed obtained by the vehicle movement speed detector, and calculates the obstacle approach speed and the obstacle and vehicle. The vehicle with an obstacle avoidance function according to claim 8, wherein a collision is predicted from a distance between them. 前記走行補正手段は、安全な方向へ旋回するための旋回力を左右駆動輪に対する駆動力の差として付加することを特徴とする請求項1乃至請求項9のいずれかに記載の障害物回避機能付き車両。   The obstacle avoidance function according to any one of claims 1 to 9, wherein the travel correction unit adds a turning force for turning in a safe direction as a difference in driving force with respect to the left and right driving wheels. Vehicle with. 前記走行補正手段は、衝突しないように推進又は旋回又は横移動の速度を制限することを特徴とする請求項1乃至請求項10のいずれかに記載の障害物回避機能付き車両。   The vehicle with an obstacle avoidance function according to any one of claims 1 to 10, wherein the travel correction means limits a speed of propulsion, turning, or lateral movement so as not to collide.
JP2003362704A 2003-10-23 2003-10-23 Vehicle with obstruction avoidance function Pending JP2005128722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003362704A JP2005128722A (en) 2003-10-23 2003-10-23 Vehicle with obstruction avoidance function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362704A JP2005128722A (en) 2003-10-23 2003-10-23 Vehicle with obstruction avoidance function

Publications (1)

Publication Number Publication Date
JP2005128722A true JP2005128722A (en) 2005-05-19

Family

ID=34642249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362704A Pending JP2005128722A (en) 2003-10-23 2003-10-23 Vehicle with obstruction avoidance function

Country Status (1)

Country Link
JP (1) JP2005128722A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153022A (en) * 2005-12-01 2007-06-21 Mazda Motor Corp Obstruction detection device of vehicle
EP1912081A2 (en) 2006-10-11 2008-04-16 Hitachi, Ltd. Active safety apparatus
JP2009286222A (en) * 2008-05-28 2009-12-10 Toyota Motor Corp Accident predicting device
JP2012011886A (en) * 2010-06-30 2012-01-19 Toyota Central R&D Labs Inc Motive power car
GB2494020A (en) * 2011-07-07 2013-02-27 Lrb Global Consulting Ltd Directional sensor system for detecting ground profile changes so as to prevent a vehicle from reversing into an obstacle
JP2013217309A (en) * 2012-04-10 2013-10-24 Mitsubishi Motors Corp Safety control device of vehicle
US8907839B2 (en) 2012-10-19 2014-12-09 Hyundai Motor Company Method and system for recognizing space of shoulder of road
CN105549600A (en) * 2016-02-05 2016-05-04 哈尔滨工程大学 Evading method based on opposite-direction sailing of virtual puffed motion obstacle and UUV
KR20160072341A (en) * 2014-12-12 2016-06-23 삼성중공업 주식회사 Apparatus and method for transferring fluid
CN106933230A (en) * 2017-04-11 2017-07-07 江苏东方金钰智能机器人有限公司 A kind of control method for robotic tracking and the ultrasonic transducer system of avoidance
JP2017126367A (en) * 2010-12-30 2017-07-20 アイロボット コーポレイション Coverage Robot Navigation
KR20180098360A (en) 2016-01-29 2018-09-03 각코호진 메이지다이가쿠 Laser scanning system, laser scanning method, moving laser scanning system and program
JP2019105995A (en) * 2017-12-12 2019-06-27 株式会社豊田自動織機 Automatic operation forklift
WO2021024305A1 (en) * 2019-08-02 2021-02-11 オムロン株式会社 Radar device and mobile body device
CN115431967A (en) * 2022-10-14 2022-12-06 中国第一汽车股份有限公司 Vehicle four-wheel emergency danger avoiding method and device, storage medium and electronic equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954898A (en) * 1995-06-09 1997-02-25 Yazaki Corp Vehicle surrounding monitoring device
JPH10117341A (en) * 1996-10-11 1998-05-06 Yazaki Corp Vehicle periphery monitoring device, obstacle detecting method to be used for the same and medium storing obstacle detection program to be used for the same
JPH1138142A (en) * 1997-07-23 1999-02-12 Denso Corp Obstacle-recognizing device for vehicle
JPH11115709A (en) * 1997-10-21 1999-04-27 Fuji Heavy Ind Ltd Vehicle motion control device
JPH11304455A (en) * 1998-04-23 1999-11-05 Toa Doro Kogyo Co Ltd Surface condition measuring device
JP2000039321A (en) * 1998-07-23 2000-02-08 Nippon Signal Co Ltd:The Body detecting device
JP2000267729A (en) * 1999-03-16 2000-09-29 Honda Motor Co Ltd Obstacle detecting device of vehicle
JP2001191876A (en) * 1999-10-26 2001-07-17 Honda Motor Co Ltd Object detecting device and travel safety device for vehicle
JP2001212189A (en) * 2000-01-31 2001-08-07 Sanyo Electric Co Ltd Guiding device for visually handicapped person
JP2002225741A (en) * 2001-01-29 2002-08-14 Matsushita Electric Works Ltd Power vehicle
JP2003149338A (en) * 2001-11-09 2003-05-21 Denso Corp Object recognition device and distance measuring device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954898A (en) * 1995-06-09 1997-02-25 Yazaki Corp Vehicle surrounding monitoring device
JPH10117341A (en) * 1996-10-11 1998-05-06 Yazaki Corp Vehicle periphery monitoring device, obstacle detecting method to be used for the same and medium storing obstacle detection program to be used for the same
JPH1138142A (en) * 1997-07-23 1999-02-12 Denso Corp Obstacle-recognizing device for vehicle
JPH11115709A (en) * 1997-10-21 1999-04-27 Fuji Heavy Ind Ltd Vehicle motion control device
JPH11304455A (en) * 1998-04-23 1999-11-05 Toa Doro Kogyo Co Ltd Surface condition measuring device
JP2000039321A (en) * 1998-07-23 2000-02-08 Nippon Signal Co Ltd:The Body detecting device
JP2000267729A (en) * 1999-03-16 2000-09-29 Honda Motor Co Ltd Obstacle detecting device of vehicle
JP2001191876A (en) * 1999-10-26 2001-07-17 Honda Motor Co Ltd Object detecting device and travel safety device for vehicle
JP2001212189A (en) * 2000-01-31 2001-08-07 Sanyo Electric Co Ltd Guiding device for visually handicapped person
JP2002225741A (en) * 2001-01-29 2002-08-14 Matsushita Electric Works Ltd Power vehicle
JP2003149338A (en) * 2001-11-09 2003-05-21 Denso Corp Object recognition device and distance measuring device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153022A (en) * 2005-12-01 2007-06-21 Mazda Motor Corp Obstruction detection device of vehicle
EP1912081A2 (en) 2006-10-11 2008-04-16 Hitachi, Ltd. Active safety apparatus
US7864033B2 (en) 2006-10-11 2011-01-04 Hitachi, Ltd. Active safety apparatus
JP2009286222A (en) * 2008-05-28 2009-12-10 Toyota Motor Corp Accident predicting device
JP2012011886A (en) * 2010-06-30 2012-01-19 Toyota Central R&D Labs Inc Motive power car
US11157015B2 (en) 2010-12-30 2021-10-26 Irobot Corporation Coverage robot navigating
JP2017126367A (en) * 2010-12-30 2017-07-20 アイロボット コーポレイション Coverage Robot Navigation
GB2494020A (en) * 2011-07-07 2013-02-27 Lrb Global Consulting Ltd Directional sensor system for detecting ground profile changes so as to prevent a vehicle from reversing into an obstacle
JP2013217309A (en) * 2012-04-10 2013-10-24 Mitsubishi Motors Corp Safety control device of vehicle
US8907839B2 (en) 2012-10-19 2014-12-09 Hyundai Motor Company Method and system for recognizing space of shoulder of road
KR101644514B1 (en) * 2014-12-12 2016-08-02 삼성중공업(주) Apparatus and method for transferring fluid
KR20160072341A (en) * 2014-12-12 2016-06-23 삼성중공업 주식회사 Apparatus and method for transferring fluid
KR20180098360A (en) 2016-01-29 2018-09-03 각코호진 메이지다이가쿠 Laser scanning system, laser scanning method, moving laser scanning system and program
KR20200110823A (en) 2016-01-29 2020-09-25 각코호진 메이지다이가쿠 The laser scan system, the laser scan method, and the movement laser scan system and program
US11187790B2 (en) 2016-01-29 2021-11-30 Meiji University Laser scanning system, laser scanning method, movable laser scanning system, and program
KR20210152036A (en) 2016-01-29 2021-12-14 각코호진 메이지다이가쿠 The laser scan system, the laser scan method, and the movement laser scan system and program
CN105549600B (en) * 2016-02-05 2018-03-02 哈尔滨工程大学 A kind of bypassing method navigated by water in opposite directions with UUV based on virtual expanded dyskinesia
CN105549600A (en) * 2016-02-05 2016-05-04 哈尔滨工程大学 Evading method based on opposite-direction sailing of virtual puffed motion obstacle and UUV
CN106933230A (en) * 2017-04-11 2017-07-07 江苏东方金钰智能机器人有限公司 A kind of control method for robotic tracking and the ultrasonic transducer system of avoidance
CN106933230B (en) * 2017-04-11 2019-09-10 江苏东方金钰智能机器人有限公司 Control method for robotic tracking and the ultrasonic transducer system of avoidance
JP2019105995A (en) * 2017-12-12 2019-06-27 株式会社豊田自動織機 Automatic operation forklift
WO2021024305A1 (en) * 2019-08-02 2021-02-11 オムロン株式会社 Radar device and mobile body device
CN115431967A (en) * 2022-10-14 2022-12-06 中国第一汽车股份有限公司 Vehicle four-wheel emergency danger avoiding method and device, storage medium and electronic equipment

Similar Documents

Publication Publication Date Title
KR101503418B1 (en) Semiautomatic parking machine
US9182762B2 (en) Autonomous moving body, its control method, and control system
JP2005128722A (en) Vehicle with obstruction avoidance function
JP5130638B2 (en) Avoidance operation calculation device, avoidance control device, vehicle including each device, avoidance operation calculation method, and avoidance control method
JP5510081B2 (en) Obstacle avoidance support device, obstacle avoidance support method, and moving object
JP5385009B2 (en) Vehicle control apparatus and vehicle control method
JP5337408B2 (en) Autonomous mobile body and its movement control method
JP5598119B2 (en) Motor vehicle
JP5310285B2 (en) Self-position estimation apparatus and self-position estimation method
JP2010134742A (en) Movement control device having obstacle avoiding function
JP7315039B2 (en) How to find an avoidance route for a car
JP5553220B2 (en) Moving body
JP5152898B2 (en) Obstacle recognition device, autonomous mobile body having the same, and control method thereof
JP5065206B2 (en) Mobile body, inverted mobile body, and control method thereof
US20200081443A1 (en) Autonomous mobile apparatus
JP5947644B2 (en) Unmanned mobile system
JP2006247803A (en) Autonomous moving robot
JP6962027B2 (en) Mobile vehicle
JP5811576B2 (en) Vehicle with collision prevention function
JP5476887B2 (en) Group traveling control device and group traveling control method
JP2020114689A (en) Vehicle driving support system
KR20200084938A (en) Method and Apparatus for Planning Car Motion
JP5195591B2 (en) Control device
JP2019200700A (en) Autonomous moving entity
JP4975693B2 (en) Mobile robot apparatus and mobile robot control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819