JP2005112678A - Highly adhesive oxide coating film and method of manufacturing the same - Google Patents

Highly adhesive oxide coating film and method of manufacturing the same Download PDF

Info

Publication number
JP2005112678A
JP2005112678A JP2003350216A JP2003350216A JP2005112678A JP 2005112678 A JP2005112678 A JP 2005112678A JP 2003350216 A JP2003350216 A JP 2003350216A JP 2003350216 A JP2003350216 A JP 2003350216A JP 2005112678 A JP2005112678 A JP 2005112678A
Authority
JP
Japan
Prior art keywords
oxide
film
oxide ceramic
base material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003350216A
Other languages
Japanese (ja)
Other versions
JP4178239B2 (en
Inventor
Doni Jayaseelan Daniel
ドニ ジャヤシラン ダニエル
Shunkichi Ueno
俊吉 上野
Tatsuki Oji
達樹 大司
Shuzo Kanzaki
修三 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003350216A priority Critical patent/JP4178239B2/en
Publication of JP2005112678A publication Critical patent/JP2005112678A/en
Application granted granted Critical
Publication of JP4178239B2 publication Critical patent/JP4178239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of film-forming a dense oxide coating film having high adhesion property to a base material inexpensively and simply on the base material of a non-oxide ceramic, and to provide a non-oxide ceramic structure for suppressing the high temperature oxidation and the high temperature corrosion of the base material. <P>SOLUTION: In the method of manufacturing the corrosion resistant oxide coating film formed on the non-oxide ceramic base material, (1) a silica scale is formed by using silicon nitride, silicon carbide or their combined material as the base material and heating the same in the atmosphere, (2) the non-oxide ceramic is buried in the oxide powder of packing powder and reacted and sintered under a high pressure inert gas atmosphere and (3) the oxide layer is formed on the base material by the processes of (1) and (2). A high temperature corrosion resistant non-oxide ceramic structural member is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非酸化物セラミックス上にコーティングする耐酸化、耐環境性皮膜に関するものであり、更に詳しくは、緻密で、基材との密着性が良い酸化物皮膜を、安価で、且つ簡単な方法で基材上に成膜することにより、非酸化物セラミックス基材の高温酸化、高温腐食を抑制する高密着性酸化物皮膜及びその製造方法に関するものである。
本発明は、従来、例えば、ガスタービン等の構造部材として応用されている、窒化ケイ素や炭化ケイ素セラミックス材料について、それらの高温における酸化、及び水蒸気腐食を防止するための耐腐食性皮膜に関する技術分野において、緻密で、基材との密着性が良く、高温に長時間晒されても構造変化を起こさず、優れた高温耐腐食性を有する新規酸化物皮膜からなる新素材、その製造方法、及び該酸化物皮膜を形成した耐高温腐食性非酸化物セラミックス構造体を提供するものとして有用である。
The present invention relates to an oxidation-resistant and environmental-resistant film that is coated on non-oxide ceramics, and more specifically, an oxide film that is dense and has good adhesion to a substrate is inexpensive and simple. The present invention relates to a high adhesion oxide film that suppresses high temperature oxidation and high temperature corrosion of a non-oxide ceramic substrate by forming a film on the substrate by the method, and a method for producing the same.
TECHNICAL FIELD The present invention relates to a technical field relating to a corrosion-resistant coating for preventing oxidation at high temperatures and steam corrosion of silicon nitride and silicon carbide ceramic materials that have been conventionally applied as structural members such as gas turbines. A new material composed of a novel oxide film that is dense, has good adhesion to the base material, does not cause structural changes even when exposed to high temperatures for a long time, and has a high temperature corrosion resistance, and its production method, and This is useful for providing a high temperature corrosion resistant non-oxide ceramic structure having the oxide film formed thereon.

窒化ケイ素や炭化ケイ素セラミックスは、1600℃までの高温で酸化して表面にシリカを生成し、更に、高温では蒸気相のSiOを生成し、このSiOが昇華するため、減肉しながら損耗する。これらの非酸化物セラミックスは、高温で水蒸気が存在する環境下では、酸化に加えて水蒸気による腐食が生じ、損耗が加速され、更に、ガスタービン燃焼場のような高速気流中では、エロージョン効果も加わり、減肉が加速される。したがって、例えば、非酸化物セラミックスをガスタービン部材として応用する際には、その表面に、高温における酸化、水蒸気腐食を防止する耐腐食層を形成させる必要がある。   Silicon nitride and silicon carbide ceramics are oxidized at a high temperature up to 1600 ° C. to form silica on the surface, and further, vapor phase SiO is generated at a high temperature. These non-oxide ceramics cause corrosion due to water vapor in addition to oxidation in an environment where water vapor exists at high temperature, and wear is accelerated. In addition, thinning is accelerated. Therefore, for example, when applying non-oxide ceramics as a gas turbine member, it is necessary to form a corrosion-resistant layer for preventing oxidation and steam corrosion at high temperatures on the surface.

上記非酸化物セラミックスが酸化して形成されるシリカ層は、非酸化物セラミックスと密着性が良いものの、シリカ層と非酸化物セラミックスの熱膨張係数が大きく異なるため、シリカ層及び非酸化物セラミックスの表層に大きなクラックが生じ、セラミックス構造体の強度が低下することが知られている。したがって、高温における非酸化物セラミックスの酸化、水蒸気腐食を防止する耐腐食層は、酸素分子、或いは水蒸気分子を通さない緻密な皮膜であることが必要であり、高温に長時間晒されても構造変化を起こさず、高温耐腐食性に優れる相を選択する必要がある。   Although the silica layer formed by oxidation of the non-oxide ceramic has good adhesion to the non-oxide ceramic, the silica layer and the non-oxide ceramic are greatly different in the thermal expansion coefficient between the silica layer and the non-oxide ceramic. It is known that a large crack is generated in the surface layer of the ceramic and the strength of the ceramic structure is lowered. Therefore, the anti-corrosion layer that prevents oxidation and water vapor corrosion of non-oxide ceramics at high temperatures must be a dense film that does not allow oxygen molecules or water vapor molecules to pass through. It is necessary to select a phase that does not change and has excellent high-temperature corrosion resistance.

また、このような耐環境性皮膜を形成した非酸化物セラミックスのガスタービン部材としての応用を考慮した場合、繰り返しの熱衝撃や高速気流に晒されても、皮膜が基材から剥離しないように、基材と皮膜の密着強度が大きくなければならない。更に、非酸化物セラミックスは、熱膨張係数が3〜4.5×10-6/℃と小さいので、皮膜となる複酸化物の熱膨張係数も同程度に小さくなる相を選択することが、密着強度を考慮すると必然的に要求される。シリカの熱膨張係数は、窒化ケイ素や炭化ケイ素の熱膨張係数よりも大きいため、非酸化物セラミックス基材と耐環境性皮膜との間にシリカ層が生成すると、繰り返しの熱衝撃で皮膜が破損する。したがって、非酸化物セラミックスを高温で応用する際の耐環境性皮膜は、その下層にシリカ層を生成させないことが要求される。 Also, considering the application of non-oxide ceramics with such an environment-resistant coating as a gas turbine member, the coating will not peel off from the substrate even when exposed to repeated thermal shocks or high-speed airflow. The adhesion strength between the substrate and the film must be large. Furthermore, since the non-oxide ceramic has a small coefficient of thermal expansion of 3 to 4.5 × 10 −6 / ° C., it is possible to select a phase in which the coefficient of thermal expansion of the double oxide serving as the film is also reduced to the same extent. This is inevitably required in consideration of adhesion strength. Since the thermal expansion coefficient of silica is larger than that of silicon nitride and silicon carbide, when a silica layer is formed between a non-oxide ceramic substrate and an environmental resistant film, the film is damaged by repeated thermal shocks. To do. Therefore, it is required that the environment-resistant film when applying non-oxide ceramics at a high temperature does not generate a silica layer in the lower layer.

希土類シリケートやムライト、チタン酸アルミニウム、ジルコンは、高温耐酸化、高温耐食性皮膜材料として有望視されており、その成膜と応用が検討され始めているのは、公知である。しかし、高温耐酸化、高温耐環境性皮膜として、これらの層を成膜させるには、(1)緻密であること、(2)密着性を高める必要性があること、及び、(3)下層にシリカ層を生成させてはいけないこと、などの必要条件が厳しいため、CVDやPVD法、或いはゾルゲル法、更には、プラズマ溶射法などの気相法、液相法、溶融法、イオン注入法が種々検討され、広く研究されている。   Rare earth silicates, mullite, aluminum titanate, and zircon are regarded as promising as high-temperature oxidation-resistant and high-temperature corrosion-resistant coating materials, and it is well known that their film formation and application are being studied. However, in order to form these layers as a high temperature oxidation resistance and high temperature environment resistance film, (1) it must be dense, (2) there is a need to improve adhesion, and (3) a lower layer Because of the strict requirements such as the absence of a silica layer, CVD, PVD, or sol-gel, and gas phase methods such as plasma spraying, liquid phase methods, melting methods, ion implantation methods Have been studied and studied extensively.

高密着性のセラミックス皮膜を成膜する手法としては、先行技術文献(例えば、特許文献1、2、3、4、5、6参照)に記載されているように、イオン注入法、熱プラズマ溶射法、プラズマ溶射法、スパッタ法、レーザーイオンプレーティング法により、チタニア、ガラス、金属間化合物、ジルコニア、を金属基材やC/Cコンポジット基材にコーティングする技術が提案されている。   As a method for forming a highly adhesive ceramic film, as described in prior art documents (see, for example, Patent Documents 1, 2, 3, 4, 5, and 6), ion implantation, thermal plasma spraying, and the like. Techniques have been proposed in which titania, glass, intermetallic compounds, and zirconia are coated on a metal substrate or a C / C composite substrate by a method, a plasma spraying method, a sputtering method, or a laser ion plating method.

CVDやPVD法は緻密で、且つ複雑形状の基材へも成膜が可能となるため、有用であるが、このプロセスは、高価で、且つ多くの時間を費やす工程となる、という問題がある。ゾルゲル法は、より簡便な手法であるが、原料となるゾルが高価なため、この工程も高価な工程となる、という問題がある。プラズマ溶射法は、減圧下で成膜しても酸素や水蒸気分子の侵入を許すほどのポロシティを有する皮膜しか作製することができないため、最下層には、緻密な皮膜が要求されることがよく知られている。   CVD and PVD methods are useful because they can be formed on a dense and complex substrate, but this process is expensive and requires a lot of time. . The sol-gel method is a simpler method, but there is a problem that this process is also an expensive process because the sol as a raw material is expensive. Since the plasma spraying method can only produce a film having a porosity sufficient to allow oxygen and water vapor molecules to penetrate even if the film is formed under reduced pressure, a dense film is often required for the lowermost layer. Are known.

したがって、高温耐酸化皮膜、高温耐環境性皮膜の作製においては、(1)緻密であること、(2)密着性を高める必要性があること、及び、(3)下層にシリカ層を生成させてはいけないこと、に付け加えて、(4)簡便であること、及び、(5)安価であること、を満たす新しい成膜プロセスの開発が望まれているのが現状である。
すなわち、簡便な皮膜の作製法としては、基材に酸化物スラリーを含浸させ、反応焼結させる方法があるが、この方法を採用すると、多くの場合、皮膜と基材との間にシリカ層が生成する。基材と皮膜との間に生成するシリカ層の熱膨張係数は、基材及び皮膜層の熱膨張係数と大きく異なるため、皮膜が破損するのみならず、基材の強度を低下させることが問題となる。したがって、基材と目的とする耐環境皮膜との間にシリカ層を全く生成させない簡便な成膜手法が求められる。
Therefore, in the production of the high temperature oxidation resistant film and the high temperature environment resistant film, (1) it is dense, (2) there is a need to improve adhesion, and (3) a silica layer is formed in the lower layer. In addition to what must not be done, it is currently desired to develop a new film forming process that satisfies (4) simplicity and (5) low cost.
That is, as a simple method for producing a film, there is a method in which a base material is impregnated with an oxide slurry and subjected to reactive sintering. In many cases, when this method is employed, a silica layer is formed between the film and the base material. Produces. The thermal expansion coefficient of the silica layer formed between the base material and the film is greatly different from the thermal expansion coefficient of the base material and the film layer, so that not only the film is damaged but also the strength of the base material is lowered. It becomes. Therefore, there is a need for a simple film formation technique that does not generate a silica layer between the base material and the target environmental resistant film.

更に、基材に酸化物スラリーを含浸させディップコートを行なった後に、酸化物のつめ粉に埋めて反応焼結法で皮膜を作製する場合、反応焼結により、目的とする皮膜の作製は可能となるが、基材と皮膜との間にシリカ層が生成する場合が多く、また、基材の表面にシリカ層を形成させた後に、酸化物のつめ粉に埋めて常圧下で反応焼結法で皮膜を作製する場合、基材との密着性が悪く、つめで引っ掻いただけで皮膜が剥離するような脆弱な皮膜となる場合が多い。したがって、基材と皮膜の密着性に優れ、緻密な酸化物皮膜を簡便に作製する新しい手法の開発が要求される。   Furthermore, after impregnating the base material with an oxide slurry and dip-coating it, filling it with oxide powder and producing a film by reactive sintering, the target film can be produced by reactive sintering. In many cases, however, a silica layer is formed between the base material and the coating, and after forming the silica layer on the surface of the base material, it is buried in oxide nail flour and subjected to reactive sintering under normal pressure. When a film is produced by the method, the adhesion to the substrate is poor, and the film often becomes a fragile film that peels off only by scratching with a nail. Therefore, it is required to develop a new method for easily producing a dense oxide film having excellent adhesion between the substrate and the film.

特開平7−54149号公報JP-A-7-54149 特開平9−228070号公報JP-A-9-228070 特開平8−253876号公報Japanese Patent Laid-Open No. 8-253876 特開平8−253874号公報JP-A-8-253874 特開平6−10112号公報JP-A-6-10112 特開平5−171426号公報JP-A-5-171426

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における諸問題であるプロセスの簡略化及び低コスト化に関する問題を抜本的に解決することを可能とする新しい高密着性、高密度の高耐環境性皮及びその成膜手法を開発することを目標として鋭意研究を積み重ねた結果、反応焼結法を応用して、不活性雰囲気の下、高圧条件下で成膜することにより、簡便で、且つ安価なプロセスで緻密で基材との密着性に優れた皮膜を成膜することが可能であることを見出し、更に研究を重ねて、本発明を完成するに至った。   Under such circumstances, in view of the prior art, the present inventors can drastically solve the problems relating to simplification of processes and cost reduction, which are various problems in the prior art. As a result of intensive research aimed at developing new high-adhesion, high-density, high-environmental resistant skins and their film-forming methods, we applied reactive sintering to create high-pressure conditions under inert atmosphere. It has been found that it is possible to form a dense film with excellent adhesion to the substrate by a simple and inexpensive process, and further research is completed to complete the present invention. It came to do.

本発明は、非酸化物セラミックスを高温材料として応用する際に要求される耐酸化・耐環境皮膜の作製を簡便に行なわせることができる新しい成膜方法を提供することを目的とするものである。また、本発明は、基材との密着強度に優れ、緻密で、基材と皮膜の間にシリカ層が全く存在しない皮膜の作製を、高圧下における反応焼結法を応用することで、簡便で、低コストのプロセスで行なう方法を提供することを目的とするものである。更に、本発明は、皮膜内部が緻密で、表面がウィスカーライクの結晶相で覆われた、高温耐環境皮膜材料の、ムライト、ジルコン、ハフノン、チタン酸アルミニウム、希土類シリケート、希土類アルミネート、希土類ジルコネート、希土類ハフネート皮膜を有する、非酸化物セラミックス構造体及びその製造方法を提供することを目的とするものである。   An object of the present invention is to provide a new film forming method capable of easily producing an oxidation resistant and environmental resistant film required when non-oxide ceramics are applied as a high temperature material. . In addition, the present invention is simple by applying a reactive sintering method under high pressure to produce a coating that is excellent in adhesion strength with the substrate, is dense, and has no silica layer between the substrate and the coating. Therefore, an object of the present invention is to provide a method for performing a low-cost process. Furthermore, the present invention provides a high temperature environmental resistant coating material having a dense coating interior and a surface covered with a whisker-like crystal phase, mullite, zircon, hafnon, aluminum titanate, rare earth silicate, rare earth aluminate, rare earth zirconate. An object of the present invention is to provide a non-oxide ceramic structure having a rare earth hafnate film and a method for producing the same.

上記方法を解決摩すための本発明は、以下の技術的手段から構成される。
(1)非酸化物セラミックス基材上に形成させる耐腐食性酸化物皮膜の製造方法であって、
1)窒化ケイ素、炭化ケイ素、或いはそれらの複合材を基材として、それらを大気中で加熱処理してシリカスケールを形成させる、
2)上記非酸化物セラミックスを、つめ粉の酸化物粉末に埋め、高圧下、不活性雰囲気下で反応焼結させる、
3)上記1)〜2)により、基材に酸化物層からなる耐腐食性酸化物皮膜を形成する、
ことを特徴とする酸化物皮膜の製造方法。
(2)Al23 、Ln23 (Ln=Y,Yb,Lu)、SiO2 、TiO2 、ZrO2 、HfO2 の酸化物又はそれらの複酸化物を、つめ粉の酸化物粉末として用いる、前記(1)記載の方法。
(3)高圧下で、反応焼結法を利用して、高密着性のAl23 、Ln23 (Ln=Y,Yb,Lu)、SiO2 、TiO2 、ZrO2 、HfO2 の酸化物又はそれらの複酸化物の皮膜を形成する、前記(1)記載の方法。
(4)大気中での加熱処理を、800〜1600℃の温度範囲で行ない、基材表面に1〜10ミクロンのシリカスケールを析出させる、前記(1)記載の方法。
(5)非酸化物セラミックスを、つめ粉の酸化物粉末に埋め、1200〜1600℃の温度範囲で3〜8気圧の高圧下、窒素又はアルゴンの不活性雰囲気下で反応焼結させる、前記(1)記載の方法。
(6)前記(1)から(5)のいずれかに記載の方法で作製した、窒化ケイ素、炭化ケイ素、或いはそれらの複合材の非酸化物セラミックス基材に耐腐食性複酸化物皮膜を形成したことを特徴とする高温耐腐食性非酸化物セラミックス材料。
(7)皮膜の表面がウィスカーライクの結晶相で覆われ、皮膜と基材との間にシリカ層の生成がなく、基材と高密着性の酸化物皮膜を有する、前記(6)記載の非酸化物セラミックス材料。
(8)皮膜の酸化物が、ムライト、ジルコン、ハフノン、チタン酸アルミニウム、希土類シリケート、希土類アルミネート、希土類ジルコネート、希土類ハフネートを含む、前記(6)記載の非酸化物セラミックス材料。
(9)前記(6)から(8)のいずれかに記載の非酸化物セラミックス材料を構成要素として含むことを特徴とする高温耐腐食性非酸化物セラミックス構造部材。
The present invention for solving the above-mentioned method comprises the following technical means.
(1) A method for producing a corrosion-resistant oxide film formed on a non-oxide ceramic substrate,
1) Using silicon nitride, silicon carbide, or a composite thereof as a base material, they are heat-treated in the atmosphere to form a silica scale.
2) The above non-oxide ceramic is embedded in oxide powder of a nail powder and subjected to reactive sintering under high pressure and inert atmosphere.
3) According to the above 1) to 2), a corrosion-resistant oxide film comprising an oxide layer is formed on the substrate.
The manufacturing method of the oxide film characterized by the above-mentioned.
(2) Al 2 O 3 , Ln 2 O 3 (Ln = Y, Yb, Lu), SiO 2 , TiO 2 , ZrO 2 , HfO 2 oxides or their double oxides, and powdered oxide powder The method according to (1), which is used as
(3) High pressure adhesion Al 2 O 3 , Ln 2 O 3 (Ln = Y, Yb, Lu), SiO 2 , TiO 2 , ZrO 2 , HfO 2 using a reactive sintering method under high pressure The method of said (1) description which forms the film | membrane of these oxides or those double oxides.
(4) The method according to (1) above, wherein the heat treatment in the atmosphere is performed in a temperature range of 800 to 1600 ° C., and a silica scale of 1 to 10 microns is precipitated on the surface of the substrate.
(5) The non-oxide ceramic is embedded in an oxide powder of a nail powder and subjected to reaction sintering in a temperature range of 1200 to 1600 ° C. under a high pressure of 3 to 8 atm under an inert atmosphere of nitrogen or argon. 1) The method described.
(6) Forming a corrosion-resistant double oxide film on a non-oxide ceramic base material of silicon nitride, silicon carbide, or a composite material produced by the method according to any one of (1) to (5) A high-temperature corrosion-resistant non-oxide ceramic material characterized by
(7) The surface of the film is covered with a whisker-like crystal phase, no silica layer is formed between the film and the base material, and has a highly adhesive oxide film with the base material. Non-oxide ceramic material.
(8) The non-oxide ceramic material according to (6), wherein the oxide of the film contains mullite, zircon, hafnon, aluminum titanate, rare earth silicate, rare earth aluminate, rare earth zirconate, rare earth hafnate.
(9) A high-temperature corrosion-resistant non-oxide ceramic structural member comprising the non-oxide ceramic material according to any one of (6) to (8) as a constituent element.

次に、本発明について更に詳細に説明する。
本発明は、一旦、基材となる非酸化物セラミックスを大気中で加熱処理を行ない、数ミクロン厚のシリカ層を基材表面に形成させる、処理を施した基材を、つめ粉の酸化物粉末に埋めて、窒素又はアルゴンの不活性雰囲気中、3〜8気圧の高圧下で、つめ粉の酸化物と基材表面のシリカ層を完全に反応させることにより、目的とする緻密な酸化物層を基材表面に形成させることにより、耐酸化・耐環境性皮膜を製造することを特徴とするものである。この方法で作製される皮膜は、内部が緻密になり、表面がウィスカーライクの結晶相で覆われるのが特徴である。
Next, the present invention will be described in more detail.
In the present invention, a non-oxide ceramic as a base material is once heat-treated in the atmosphere to form a silica layer having a thickness of several microns on the surface of the base material. The target dense oxide is obtained by completely reacting the oxide of the nail powder with the silica layer on the surface of the base material under a high pressure of 3 to 8 atm in an inert atmosphere of nitrogen or argon. By forming the layer on the surface of the base material, an oxidation resistant / environmental resistant film is produced. The film produced by this method is characterized in that the inside is dense and the surface is covered with a whisker-like crystal phase.

本発明では、窒化ケイ素、炭化ケイ素、或いはそれらの複合体を基材として使用し、これらを800〜1600℃の温度範囲で大気中で加熱処理を行ない、1〜10ミクロン厚のシリカスケールを生成させる。窒化ケイ素及び炭化ケイ素の高温における酸化挙動及びスケール生成速度は既知であるので、文献を参照し、時間の調節は容易に行なうことができる。上記非酸化物セラミックスの酸化物スケールは、800℃から生成し始めるが、1600℃を超える高温になると、スケールの生成速度が大きくなり、1〜10ミクロン厚の均一なシリカスケール生成の制御が困難となる。したがって、この工程における加熱処理は、800〜1600℃の温度範囲で行なうことが好ましい。ここで得られるシリカスケールは、窒化ケイ素、或いは炭化ケイ素とシリカの熱膨張係数が大きく異なるため、スケール表面にはクラックが生じている。10ミクロンを超える厚膜スケールを形成させると、その後の反応焼結により作製される酸化物皮膜にもクラックが生じるようになるため、最初の工程として行なう基材の加熱処理によるシリカスケールの厚さは、1〜10ミクロンが好適である。   In the present invention, silicon nitride, silicon carbide, or a composite thereof is used as a base material, and these are heat-treated in the air at a temperature range of 800 to 1600 ° C. to produce a silica scale having a thickness of 1 to 10 microns. Let Since the oxidation behavior and scale formation rate of silicon nitride and silicon carbide at high temperatures are known, the time can be easily adjusted with reference to the literature. The oxide scale of the non-oxide ceramic starts to be generated at 800 ° C. However, when the temperature exceeds 1600 ° C., the generation rate of the scale increases, and it is difficult to control the generation of uniform silica scale having a thickness of 1 to 10 microns. It becomes. Therefore, the heat treatment in this step is preferably performed in a temperature range of 800 to 1600 ° C. The silica scale obtained here has cracks on the surface of the scale because the thermal expansion coefficients of silicon nitride or silicon carbide and silica differ greatly. When a thick film scale exceeding 10 microns is formed, cracks also occur in the oxide film produced by the subsequent reaction sintering. Therefore, the thickness of the silica scale by the heat treatment of the substrate performed as the first step Is preferably 1 to 10 microns.

上記工程で得られたシリカスケールを表面に形成させた非酸化物セラミックスを、つめ粉の酸化物粉末に埋め、1200〜1600℃の温度範囲で3〜8気圧の高圧下、窒素又はアルゴンの不活性雰囲気下で反応焼結させる。雰囲気が不活性ガスであるため、基材の更なる酸化を抑制され、つめ粉の酸化物とシリカスケールが反応し、目的の酸化物層が得られる。   The non-oxide ceramic formed on the surface with silica scale obtained in the above process is embedded in the oxide powder of the nail powder, and the non-nitrogen or argon gas is used under a high pressure of 3 to 8 atm in the temperature range of 1200 to 1600 ° C. Reaction sintering is performed under an active atmosphere. Since the atmosphere is an inert gas, further oxidation of the base material is suppressed, and the oxide of the nail powder reacts with the silica scale to obtain the target oxide layer.

焼結温度は、目的とする皮膜の種類により種々選択する。また、基材表面に形成させたシリカスケールの厚さと焼結温度及び焼結時間は互いに関連があり、焼結温度を低くすると、焼結時間を長くする必要が生じる。本発明は、簡便で、低コストの成膜手法を提供することが目的であるため、焼結時間が1日以内に行なえるように、目的の酸化物層の形成に対して、基材のシリカスケールの厚みに対応した焼結温度及び焼結時間を調整する。   Various sintering temperatures are selected depending on the type of the target film. Further, the thickness of the silica scale formed on the substrate surface, the sintering temperature, and the sintering time are related to each other, and if the sintering temperature is lowered, it is necessary to lengthen the sintering time. The object of the present invention is to provide a simple and low-cost film formation technique. Therefore, the substrate can be formed with respect to the formation of the target oxide layer so that the sintering time can be performed within one day. The sintering temperature and sintering time corresponding to the thickness of the silica scale are adjusted.

得られた焼結体の表面に付着した、つめ粉に用いた酸化物粉末を、ブロアーで吹き飛ばした後、超音波洗浄して、完全に付着物を除去する。基材表面に形成されたシリカ層とつめ粉との反応は、表面からのX線回折法により確認し、その回折パターンにおいて、シリカのピークが完全に消滅し、基材と目的の酸化物層のピークが確認された時点で反応が完結したものと判断する。   The oxide powder used for the nail powder adhered to the surface of the obtained sintered body is blown off with a blower, and then ultrasonically cleaned to completely remove the deposits. The reaction between the silica layer formed on the substrate surface and the nail powder is confirmed by the X-ray diffraction method from the surface. In the diffraction pattern, the silica peak completely disappears, and the substrate and the target oxide layer The reaction is judged to be complete when the peak of is confirmed.

本発明により、(1)本発明の工程で得られる耐酸化・耐環境性皮膜は、基材と皮膜の密着性が良好であり、基材と皮膜の間のシリカ層を完全に除去することができる、(2)本発明の工程は、気相法や特別な成膜法とは異なり、簡便で、低コストの工程となり得る、(3)本発明の工程で作製される皮膜表面は、ウィスカーライクの結晶相で覆われることが特徴となる、(4)基材の酸化処理前に基材表面を研磨或いは粗すことにより、成膜される被膜の表面状態を任意に変化させることが可能となることから、更にその被膜の上に成膜を施す場合、成膜が容易になる、という効果が奏される。   According to the present invention, (1) the oxidation / environment resistant film obtained by the process of the present invention has good adhesion between the substrate and the film, and completely removes the silica layer between the substrate and the film. (2) The process of the present invention can be a simple and low-cost process, unlike the vapor phase method or special film formation method. (3) The surface of the film produced by the process of the present invention is It is characterized by being covered with a whisker-like crystal phase. (4) The surface state of a film to be formed can be arbitrarily changed by polishing or roughening the surface of the base material before the oxidation treatment of the base material. Therefore, when the film is further formed on the coating film, the effect of facilitating the film formation is obtained.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。本発明の実施例を図1〜図9に基づいて説明する。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples. An embodiment of the present invention will be described with reference to FIGS.

(1)成膜方法
本発明の工程は、(1)基材の酸化処理、(2)高圧下における反応焼結、の2段階で構成され、基材表面に形成させるシリカ層の厚さ、目的とする酸化物皮膜の種類により、温度、圧力の条件は好適なものを選択するが、ここでは、一例として、ムライト層を成膜した手法、及びジルコン及びハフノン層を成膜した例をもって、皮膜の性状を説明する。ここで示される条件は、本発明の一例であり、基材表面にシリカスケールを形成させる温度やスケールの厚さ、反応焼結時の温度及び圧力は、本発明の範囲内で、目的の化合物により任意に選択されるものである。したがって、ここで説明する例は、温度や圧力などの条件に制約を加えるものではない。また、密着性の比較のため、常圧下で反応焼結させた例も示し、比較した結果を説明する。
(1) Film formation method The process of the present invention comprises two steps of (1) oxidation treatment of the substrate and (2) reactive sintering under high pressure, and the thickness of the silica layer formed on the substrate surface, Depending on the type of the target oxide film, suitable conditions for temperature and pressure are selected, but here, as an example, with a method of forming a mullite layer and an example of forming a zircon and hafnon layer, The properties of the film will be described. The conditions shown here are examples of the present invention, and the temperature at which the silica scale is formed on the substrate surface, the thickness of the scale, the temperature and pressure during reaction sintering are within the scope of the present invention, and the target compound Is arbitrarily selected. Therefore, the example described here does not place restrictions on conditions such as temperature and pressure. For comparison of adhesion, an example of reaction sintering under normal pressure is also shown, and the comparison result will be described.

図1に、本発明の工程の概念図を示す。非酸化物セラミックス基材を大気中で加熱処理することにより、厚さが1〜10ミクロンのシリカスケールを基材表面に形成させる。次いで、シリカスケールを有する基材を、酸化物粉末のつめ粉に埋めて、高温で、シリカスケールとつめ粉として使用する酸化物粉末を反応焼結させて、目的の酸化物皮膜を成膜する。   In FIG. 1, the conceptual diagram of the process of this invention is shown. By heating the non-oxide ceramic substrate in the air, a silica scale having a thickness of 1 to 10 microns is formed on the substrate surface. Next, the base material having silica scale is embedded in the claw powder of the oxide powder, and the silica powder and the oxide powder used as the claw powder are reacted and sintered at a high temperature to form a target oxide film. .

一例として、窒化セラミックスの上にムライト皮膜を成膜した手順を説明する。基材の窒化セラミックスとしては、市販の窒化ケイ素(京セラ製、SN−282)を用いた。窒化セラミックスを大気中、1200℃で24時間熱処理することにより、図2に示すように、窒化ケイ素の表面にシリカスケールを形成した。シリカと窒化ケイ素セラミックスの熱膨張係数が大きく異なるために、シリカスケール表面にはクラックが発生したが、シリカスケールは、窒化セラミックスが酸化して生じるため、シリカ層と窒化セラミックスの密着性は良好であり、また、シリカスケールは、クラックはあるものの、緻密な層となった。この場合は、およそ5ミクロンのシリカスケールとなった。   As an example, a procedure for forming a mullite film on a nitride ceramic will be described. Commercially available silicon nitride (manufactured by Kyocera, SN-282) was used as the base nitride ceramic. As shown in FIG. 2, a silica scale was formed on the surface of the silicon nitride by heat-treating the nitride ceramics in the atmosphere at 1200 ° C. for 24 hours. Because the thermal expansion coefficients of silica and silicon nitride ceramics are significantly different, cracks occurred on the surface of the silica scale. In addition, the silica scale was a dense layer with cracks. In this case, the silica scale was approximately 5 microns.

このようにして得られたシリカスケールを全表面に有する窒化ケイ素試料を、アルミナ粉(純度99.99%、中心粒径が4ミクロン、高純度化学社製)に埋め、窒素雰囲気中、1550℃、6気圧の圧力下で3時間反応焼結させた。炉冷した後、試料をつめ粉から取り出し、ブロアーで付着紛を吹き飛ばした後、水中で超音波洗浄した。   The silicon nitride sample having the silica scale thus obtained on the entire surface was embedded in alumina powder (purity 99.99%, center particle size 4 microns, manufactured by Kojundo Kagaku Co., Ltd.), and 1550 ° C. in a nitrogen atmosphere. The reaction was sintered for 3 hours under a pressure of 6 atm. After cooling in the furnace, the sample was taken out from the nail powder, and the adhered powder was blown off with a blower, followed by ultrasonic cleaning in water.

(2)結果
得られた試料の外観(図3)は、均一で薄い皮膜が形成されていることが判る。この試料の断面写真を図4に示す。およそ5ミクロン厚のムライト皮膜が形成されており、窒化ケイ素基材との密着性が非常に優れ、且つ非常に緻密な層を形成していることが判る。この試料の表面を写真を図5に示す。皮膜内部は、非常に緻密になっているにもかかわらず、その表面は、ウィスカーライクの結晶相で覆われている。表面には、クラックは観察されない。
(2) Results The appearance of the obtained sample (FIG. 3) shows that a uniform and thin film is formed. A cross-sectional photograph of this sample is shown in FIG. It can be seen that a mullite film having a thickness of about 5 microns is formed, and the adhesion to the silicon nitride substrate is very excellent and a very dense layer is formed. A photograph of the surface of this sample is shown in FIG. Although the inside of the film is very dense, the surface is covered with a whisker-like crystal phase. No cracks are observed on the surface.

(1)成膜方法
上記窒化ケイ素試料を、つめ粉として、ジルコニア粉末(純度99.9%、平均粒径が4ミクロン、高純度化学社製)を用いて、窒素雰囲気中、1550℃、6気圧の圧力下で3時間反応焼結させ、窒化ケイ素上にジルコン層が形成させた。また、上記窒化ケイ素試料を、つめ粉として、ハフニア粉末(純度99.9%、平均粒径が4ミクロン、高純度化学社製)を用いて、窒素雰囲気中、1550℃、6気圧の圧力下で3時間反応焼結させ、窒化ケイ素上にハフノン層が形成させた。
(1) Film formation method Using the above silicon nitride sample as a nail powder, using zirconia powder (purity 99.9%, average particle size 4 microns, manufactured by Kojundo Chemical Co., Ltd.) in a nitrogen atmosphere at 1550 ° C., 6 Reaction sintering was performed for 3 hours under atmospheric pressure to form a zircon layer on silicon nitride. In addition, using the above silicon nitride sample as a nail powder, a hafnia powder (purity of 99.9%, average particle size of 4 microns, manufactured by High Purity Chemical Co., Ltd.) is used in a nitrogen atmosphere at a pressure of 1550 ° C. and 6 atm. For 3 hours to form a hafnon layer on silicon nitride.

(2)結果
図6に、ジルコン層を成膜させた時とハフノン層を成膜させた時の外観写真を示す。均一で薄い皮膜が形成されていることが判る。図7に、ジルコン層表面のSEM写真を示す。図5のムライトのときと同様に、表面はウィスカーライクの結晶層で覆われている。本発明の工程で作製される皮膜表面は、図5、或いは図7に示すような、ウィスカーライクの結晶相で覆われるのが特徴である。
(2) Results FIG. 6 shows external photographs when the zircon layer is formed and when the hafnon layer is formed. It can be seen that a uniform and thin film is formed. FIG. 7 shows an SEM photograph of the zircon layer surface. Similar to the case of mullite in FIG. 5, the surface is covered with a whisker-like crystal layer. The film surface produced by the process of the present invention is characterized by being covered with a whisker-like crystal phase as shown in FIG. 5 or FIG.

図8に、ジルコンを成膜した試料の表面から得られたX線回折図形を示す。この試料は、基材として用いた窒化ケイ素のピーク、目的の酸化物皮膜であるジルコンのピーク、及び若干のジルコニアピークからなり、本発明の最初の工程で形成させたシリカのピークは、完全に消滅している。   FIG. 8 shows an X-ray diffraction pattern obtained from the surface of a sample on which zircon is formed. This sample consists of the peak of silicon nitride used as the substrate, the peak of zircon which is the target oxide film, and a few zirconia peaks. The peak of silica formed in the first step of the present invention is completely It has disappeared.

窒化ケイ素基材と酸化物皮膜との密着性は、図4の断面写真を見ても、その良好性は認められる。また、比較例として、窒化ケイ素にハフニアを塗布し、1400℃で仮焼結した試料をハフニア粉末に埋め、常圧下、1550℃で反応焼結させた試料を図9に示す。このようにして得られる試料は、手で擦る程度で、図に示すように、皮膜が剥離し、表面のX線回折図形ではシリカ相が確認される場合が多い。シリカ層が基材と目的の皮膜の間に形成されるため、基材と皮膜との密着性が劣化する。一方、本発明の工程で作製された皮膜は、鉛筆で引っ掻く程度では皮膜の剥離は起こらない。   The adhesiveness between the silicon nitride base material and the oxide film can be recognized by looking at the cross-sectional photograph of FIG. As a comparative example, FIG. 9 shows a sample in which hafnia is applied to silicon nitride, a sample preliminarily sintered at 1400 ° C. is embedded in hafnia powder, and subjected to reaction sintering at 1550 ° C. under normal pressure. In the sample thus obtained, the film is peeled off as much as it is rubbed by hand, and the silica phase is often confirmed in the surface X-ray diffraction pattern as shown in the figure. Since the silica layer is formed between the base material and the target film, the adhesion between the base material and the film is deteriorated. On the other hand, the film produced by the process of the present invention does not peel off when scratched with a pencil.

本発明により、非酸化物セラミックス上にコーティングした耐酸化、耐環境性皮膜を簡便で、低コストで製造することができる。基材との密着性に優れ、緻密で、基材と皮膜の間にシリカ層が全く存在しない皮膜を作製できる。ガスタービン部材等に利用し得る耐高温腐食性非酸化物セラミックス構造体を製造し、提供することができる。
本発明は、非酸化物セラミックスを高温材料として応用する際に要求される耐酸化・耐環境皮膜の作製を簡便に行なうことを可能とするものであり、基材との密着強度に優れ、緻密で、基材と皮膜の間にシリカ層が全く存在しない皮膜の作製が、高圧下における反応焼結法を応用することで、簡便で、低コストのプロセスで行なえる。本発明により、皮膜内部が緻密で表面がウィスカーライクの結晶相で覆われた高温耐環境皮膜材料の、ムライト、ジルコン、ハフノン、チタン酸アルミニウム、希土類シリケート、希土類アルミネート、希土類ジルコネート、希土類ハフネート皮膜を有する非酸化物セラミックス構造体とその製造方法を提供することができる。
According to the present invention, an oxidation-resistant and environmental-resistant film coated on a non-oxide ceramic can be easily produced at low cost. It is possible to produce a film that is excellent in adhesion to the substrate, is dense, and has no silica layer between the substrate and the film. A high temperature corrosion resistant non-oxide ceramic structure that can be used for a gas turbine member or the like can be manufactured and provided.
The present invention makes it possible to easily produce an oxidation / environment-resistant film required when non-oxide ceramics are applied as a high-temperature material. Thus, the production of a film having no silica layer between the substrate and the film can be performed by a simple and low-cost process by applying the reactive sintering method under high pressure. According to the present invention, mullite, zircon, hafnon, aluminum titanate, rare earth silicate, rare earth aluminate, rare earth zirconate, rare earth hafnate film of a high temperature environmental resistant coating material in which the inside of the film is dense and covered with a whisker-like crystal phase It is possible to provide a non-oxide ceramic structure having the above and a method for producing the same.

本発明の工程の概念図を示す。The conceptual diagram of the process of this invention is shown. 大気中での熱処理で得られるシリカスケールを示す。The silica scale obtained by the heat processing in air | atmosphere is shown. ムライト皮膜を成膜した例の外観を示す。An appearance of an example in which a mullite film is formed is shown. ムライト皮膜を成膜した例の断面写真を示す。The cross-sectional photograph of the example which formed the mullite film was shown. ムライト皮膜を成膜した例の表面写真を示す。The surface photograph of the example which formed the mullite film was shown. ジルコンとハフノン皮膜を成膜した例の外観を示す。The appearance of an example in which zircon and a hafnon film are formed is shown. ジルコン皮膜を成膜した例の表面写真を示す。The surface photograph of the example which formed the zircon film into a film is shown. ジルコン皮膜を成膜した例の表面からのX線回折図形を示す。The X-ray diffraction pattern from the surface of the example which formed the zircon film into a film is shown. 常圧下で反応焼結させた場合の剥離性を示す。The peelability when reaction-sintered under normal pressure is shown.

Claims (9)

非酸化物セラミックス基材上に形成させる耐腐食性酸化物皮膜の製造方法であって、
(1)窒化ケイ素、炭化ケイ素、或いはそれらの複合材を基材として、それらを大気中で加熱処理してシリカスケールを形成させる、
(2)上記非酸化物セラミックスを、つめ粉の酸化物粉末に埋め、高圧下、不活性雰囲気下で反応焼結させる、
(3)上記(1)〜(2)により、基材に酸化物層からなる耐腐食性酸化物皮膜を形成する、
ことを特徴とする酸化物皮膜の製造方法。
A method for producing a corrosion-resistant oxide film formed on a non-oxide ceramic substrate,
(1) Using silicon nitride, silicon carbide, or a composite material thereof as a base material, heat-treat them in the atmosphere to form a silica scale.
(2) The non-oxide ceramic is embedded in an oxide powder of a nail powder and subjected to reactive sintering under high pressure and inert atmosphere.
(3) According to the above (1) to (2), a corrosion-resistant oxide film composed of an oxide layer is formed on the substrate.
The manufacturing method of the oxide film characterized by the above-mentioned.
Al23 、Ln23 (Ln=Y,Yb,Lu)、SiO2 、TiO2 、ZrO2 、HfO2 の酸化物又はそれらの複酸化物を、つめ粉の酸化物粉末として用いる、請求項1記載の方法。 An oxide of Al 2 O 3 , Ln 2 O 3 (Ln = Y, Yb, Lu), SiO 2 , TiO 2 , ZrO 2 , HfO 2 or a double oxide thereof is used as the oxide powder of the nail powder. The method of claim 1. 高圧下で、反応焼結法を利用して、高密着性のAl23 、Ln23 (Ln=Y,Yb,Lu)、SiO2 、TiO2 、ZrO2 、HfO2 の酸化物又はそれらの複酸化物の皮膜を形成する、請求項1記載の方法。 High pressure adhesion oxides of Al 2 O 3 , Ln 2 O 3 (Ln = Y, Yb, Lu), SiO 2 , TiO 2 , ZrO 2 , HfO 2 using a reactive sintering method under high pressure The method according to claim 1, wherein a film of the double oxide is formed. 大気中での加熱処理を、800〜1600℃の温度範囲で行ない、基材表面に1〜10ミクロンのシリカスケールを析出させる、請求項1記載の方法。   The method according to claim 1, wherein the heat treatment in the atmosphere is performed in a temperature range of 800 to 1600 ° C. to deposit 1 to 10 micron silica scale on the surface of the substrate. 非酸化物セラミックスを、つめ粉の酸化物粉末に埋め、1200〜1600℃の温度範囲で3〜8気圧の高圧下、窒素又はアルゴンの不活性雰囲気下で反応焼結させる、請求項1記載の方法。   The non-oxide ceramic is embedded in an oxide powder of a nail powder and subjected to reactive sintering in a temperature range of 1200 to 1600 ° C under a high pressure of 3 to 8 atmospheres and in an inert atmosphere of nitrogen or argon. Method. 請求項1から5のいずれかに記載の方法で作製した、窒化ケイ素、炭化ケイ素、或いはそれらの複合材の非酸化物セラミックス基材に耐腐食性複酸化物皮膜を形成したことを特徴とする高温耐腐食性非酸化物セラミックス材料。   A corrosion-resistant double oxide film is formed on a non-oxide ceramic base material of silicon nitride, silicon carbide, or a composite material produced by the method according to claim 1. High temperature corrosion resistant non-oxide ceramic material. 皮膜の表面がウィスカーライクの結晶相で覆われ、皮膜と基材との間にシリカ層の生成がなく、基材と高密着性の酸化物皮膜を有する、請求項6記載の非酸化物セラミックス材料。   The non-oxide ceramic according to claim 6, wherein the surface of the coating is covered with a whisker-like crystal phase, no silica layer is formed between the coating and the substrate, and the oxide coating has a high adhesion to the substrate. material. 皮膜の酸化物が、ムライト、ジルコン、ハフノン、チタン酸アルミニウム、希土類シリケート、希土類アルミネート、希土類ジルコネート、希土類ハフネートを含む、請求項6記載の非酸化物セラミックス材料。   The non-oxide ceramic material according to claim 6, wherein the oxide of the film includes mullite, zircon, hafnon, aluminum titanate, rare earth silicate, rare earth aluminate, rare earth zirconate, rare earth hafnate. 請求項6から8のいずれかに記載の非酸化物セラミックス材料を構成要素として含むことを特徴とする高温耐腐食性非酸化物セラミックス構造部材。
A high-temperature corrosion-resistant non-oxide ceramic structural member comprising the non-oxide ceramic material according to claim 6 as a constituent element.
JP2003350216A 2003-10-09 2003-10-09 High adhesion oxide film and method for producing the same Active JP4178239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350216A JP4178239B2 (en) 2003-10-09 2003-10-09 High adhesion oxide film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350216A JP4178239B2 (en) 2003-10-09 2003-10-09 High adhesion oxide film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005112678A true JP2005112678A (en) 2005-04-28
JP4178239B2 JP4178239B2 (en) 2008-11-12

Family

ID=34541829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350216A Active JP4178239B2 (en) 2003-10-09 2003-10-09 High adhesion oxide film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4178239B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520149A (en) * 2007-03-07 2010-06-10 ゼネラル・エレクトリック・カンパニイ Processed refractory material and manufacturing method
JP2012513946A (en) * 2008-12-24 2012-06-21 スネクマ・プロピュルシオン・ソリド Environmental barrier for heat-resistant substrates containing silicon
CN103144773A (en) * 2013-03-01 2013-06-12 溧阳市科技开发中心 Nacelle for airplane engine
CN103253364A (en) * 2013-03-01 2013-08-21 溧阳市科技开发中心 Shock-resistance composite wing cover
CN103449845A (en) * 2013-09-11 2013-12-18 广东致远新材料有限公司 Manufacturing method of crucible for producing niobium oxide or tantalum oxide
CN105777205A (en) * 2016-03-07 2016-07-20 宁波泰格尔陶瓷有限公司 Preparing method of abrasion-resistant and corrosion-resistant transparent aluminum oxide ceramic tube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520149A (en) * 2007-03-07 2010-06-10 ゼネラル・エレクトリック・カンパニイ Processed refractory material and manufacturing method
JP2012513946A (en) * 2008-12-24 2012-06-21 スネクマ・プロピュルシオン・ソリド Environmental barrier for heat-resistant substrates containing silicon
CN103144773A (en) * 2013-03-01 2013-06-12 溧阳市科技开发中心 Nacelle for airplane engine
CN103253364A (en) * 2013-03-01 2013-08-21 溧阳市科技开发中心 Shock-resistance composite wing cover
CN103449845A (en) * 2013-09-11 2013-12-18 广东致远新材料有限公司 Manufacturing method of crucible for producing niobium oxide or tantalum oxide
CN105777205A (en) * 2016-03-07 2016-07-20 宁波泰格尔陶瓷有限公司 Preparing method of abrasion-resistant and corrosion-resistant transparent aluminum oxide ceramic tube

Also Published As

Publication number Publication date
JP4178239B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP6878504B2 (en) Heat treatment of heat treated ceramic substrates with ceramic coatings and coated ceramics
US20070014996A1 (en) Coating system for silicon based substrates
JP3723719B2 (en) Article having silicon-containing substrate and barrier layer and method for producing the same
JP3866002B2 (en) Article having silicon-containing substrate and yttrium-containing barrier layer and method for producing the same
CN1935746A (en) Silicon based substrate with hafnium containing barrier layer
CN107964650A (en) Chamber part, plasma resistant lid or the method for nozzle and article of manufacture
JP4178239B2 (en) High adhesion oxide film and method for producing the same
US20110033630A1 (en) Techniques for depositing coating on ceramic substrate
JP2007229704A (en) High-density protective coating, method for manufacturing the same and coated article
JP4690709B2 (en) Heat resistant material and manufacturing method thereof
JP5014656B2 (en) Plasma processing apparatus member and manufacturing method thereof
JP2003212598A (en) Quartz glass and ceramic part, and manufacturing method
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP2001226783A (en) Smooth composite material, gas turbine blade and steam turbine blade
JP2006052467A (en) Process for deposition of protective coating and composite article
JP2006117975A (en) Structure of thermal barrier coating, and method for manufacturing thermal barrier coating
CN110284097B (en) Environmental barrier coating and coating method and application thereof
JPH0873288A (en) Ceramic coating member and its production
JP2004200462A (en) Electrostatic chuck and manufacturing method therefor
JP2014172767A (en) Silicon carbide composite and method of manufacturing the same
JP4090335B2 (en) Corrosion resistant ceramics
JP4570372B2 (en) Materials for plasma-resistant semiconductor manufacturing equipment
JP2020050536A (en) Alumina sintered body
JP2006045606A (en) Ingot for ceramic coating, ceramic-coated member, its manufacturing method, and thermal barrier coated high-temperature component
JP2008007343A (en) Alumina coated material and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350