JP2005111406A - Grinding device equipped with collision member cooling means - Google Patents

Grinding device equipped with collision member cooling means Download PDF

Info

Publication number
JP2005111406A
JP2005111406A JP2003350716A JP2003350716A JP2005111406A JP 2005111406 A JP2005111406 A JP 2005111406A JP 2003350716 A JP2003350716 A JP 2003350716A JP 2003350716 A JP2003350716 A JP 2003350716A JP 2005111406 A JP2005111406 A JP 2005111406A
Authority
JP
Japan
Prior art keywords
collision
fluid
collision member
cooling
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003350716A
Other languages
Japanese (ja)
Inventor
Yukiya Shinan
幸哉 市南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pneumatic Manufacturing Co Ltd
Original Assignee
Nippon Pneumatic Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pneumatic Manufacturing Co Ltd filed Critical Nippon Pneumatic Manufacturing Co Ltd
Priority to JP2003350716A priority Critical patent/JP2005111406A/en
Publication of JP2005111406A publication Critical patent/JP2005111406A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding device capable of effectively cooling a collision member without occurrence of retention of a fluid. <P>SOLUTION: In this grinding device 1 provided with the collision member 4 formed of a collision face against which a powder particle is collided, and a cooling means in the collision member 4 for cooling the collision member , the cooling means is equipped with a fluid supply channel L1 supplying the fluid to the central part of the inside of the collision face A of the collision member 4, and a cooling channel L3 flowing the fluid from the central part of the inside of the collision surface A of the collision member 4 along the inside of the collision surface A to the outer edge part of the inside of the collision surface A. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、粉粒体が衝突させられる衝突面が形成された衝突部材を備えた粉砕装置に関する。特に衝突部材を冷却する冷却手段を備えた粉砕装置に関する。     The present invention relates to a pulverizing apparatus including a collision member on which a collision surface on which powder particles are collided is formed. In particular, the present invention relates to a pulverizing apparatus provided with a cooling means for cooling a collision member.

衝突部材に粉粒体を衝突させて粉砕する粉砕装置においては、衝突した粉粒体が衝突面に融着し、粉砕効率や性能を低下させることがある。融着が進むと運転を停止し、衝突部材等の清掃することが必要となり作業効率の低下の大きな要因となる。これは衝突面の温度が上昇すると、特に顕著になる。そこで、衝突面を冷却する冷却手段を備えた粉砕装置が種々提案されている。この種、衝突部材冷却手段を備えた粉砕装置として以下のものがある(特許文献1参照)。   In a pulverizing apparatus that pulverizes a collision with a colliding member, the collided granular material may be fused to the collision surface, which may reduce pulverization efficiency and performance. When the fusion progresses, it is necessary to stop the operation and clean the collision member or the like, which is a major factor in reducing work efficiency. This becomes particularly noticeable when the temperature of the collision surface rises. Accordingly, various pulverization apparatuses having cooling means for cooling the collision surface have been proposed. There exists the following as a grinding | pulverization apparatus provided with this kind and the collision member cooling means (refer patent document 1).

この粉砕装置は、粉粒体が衝突させられて粉砕される衝突部材を備え、衝突部材を冷却する冷却手段として衝突部材内先端部に流体収容室およびこの流体収容室に流体を供給、排出する流体流路が形成されているものである。   The pulverizing apparatus includes a collision member that is pulverized by being collided with a granular material, and supplies and discharges a fluid storage chamber at a front end portion of the collision member and a fluid to the fluid storage chamber as cooling means for cooling the collision member. A fluid flow path is formed.

流体収容室に流体を供給する流体流路は流体収容室後端の一側部に開口し、流体収容室から流体を排出する流体流路は流体収容室後端の他側部に開口している。
特開平11−000109号公報
A fluid flow path for supplying fluid to the fluid storage chamber opens to one side of the rear end of the fluid storage chamber, and a fluid flow path for discharging fluid from the fluid storage chamber opens to the other side of the rear end of the fluid storage chamber. Yes.
JP-A-11-000109

上記、粉砕装置においては流体収容室内において供給口と排出口とが同じ側に設けられているため、一部の流体が滞留しやすい。流体収容室内に滞留した流体は温度が上昇するので衝突部材を有効に冷却することができなくなるという問題がある。衝突部材の温度が上昇すると、衝突面に衝突した粉粒体が粉砕されずに融着し、粉砕効率が著しく低下する。     In the above pulverizer, since the supply port and the discharge port are provided on the same side in the fluid storage chamber, a part of the fluid tends to stay. Since the temperature of the fluid staying in the fluid storage chamber rises, there is a problem that the collision member cannot be cooled effectively. When the temperature of the collision member rises, the granular material that collides with the collision surface is fused without being pulverized, and the pulverization efficiency is significantly reduced.

本発明は、上記問題を解決することを課題とし、流体の滞留が生じることがなく、衝突部材を有効に冷却することのできる粉砕装置を提供することを目的とする。   It is an object of the present invention to provide a pulverizing apparatus that can effectively cool a collision member without causing fluid retention and to solve the above problems.

上記課題を解決するために、本発明の粉砕装置は、粉粒体が衝突させられる衝突面が形成された衝突部材を備え、衝突部材の内部に衝突部材を冷却するための冷却手段が設けられた粉砕装置において、冷却手段が、衝突部材の衝突面の内側中央部に流体を供給する流体供給路と、衝突部材の衝突面内側中央部から衝突面内側に沿って衝突面内側外縁部まで流体を流す冷却流路とを備えている、ものである。   In order to solve the above problems, the pulverization apparatus of the present invention includes a collision member formed with a collision surface on which powder particles collide, and a cooling means for cooling the collision member is provided inside the collision member. In the pulverizing apparatus, the cooling means supplies the fluid to the inner central portion of the collision surface of the collision member and the fluid from the inner central portion of the collision member to the inner edge of the collision surface along the inner surface of the collision surface. And a cooling flow path for flowing.

上記粉砕装置において、衝突部材の内部に、衝突部材の先端部と略相似形をなすノズル部材が配され、ノズル部材の長さ方向中央部にノズル部材の軸線方向に伸びた流体供給路が形成され、冷却路が、衝突部材の内面およびノズル部材外面とにより囲まれて形成されている、ことがある。また、衝突部材の内部に、管状部と管状部に形成された鍔状部とよりなるノズル部材が配され、管状部内に、流体供給路が形成され、冷却路が、衝突部材の内面、ノズル部材の管状部および鍔状部により囲まれて形成されている、こともある。     In the pulverizing apparatus, a nozzle member that is substantially similar to the tip of the collision member is disposed inside the collision member, and a fluid supply path that extends in the axial direction of the nozzle member is formed at the center in the length direction of the nozzle member. In some cases, the cooling path is surrounded by the inner surface of the collision member and the outer surface of the nozzle member. In addition, a nozzle member including a tubular portion and a hook-shaped portion formed in the tubular portion is disposed inside the collision member, a fluid supply path is formed in the tubular portion, and a cooling path is formed on the inner surface of the collision member, the nozzle It may be formed surrounded by the tubular portion and the hook-shaped portion of the member.

また、衝突面は、鏡面加工されていることが好ましい。   Moreover, it is preferable that the collision surface is mirror-finished.

請求項1記載の粉砕装置では、衝突面中央部に流体が供給され衝突面内側先端中央部から衝突面内側に沿って流れるので、流体の滞留が生じることがなく衝突部材を有効に冷却することができる。さらに、粉粒体を粉砕する際にもっとも温度の上昇する衝突面内側先端部に流体が供給されるのでさらに有効に衝突部材を冷却することができる。   In the pulverizing apparatus according to claim 1, the fluid is supplied to the central portion of the collision surface and flows along the inner surface of the collision surface from the central portion on the inner side of the collision surface, so that the collision member is effectively cooled without causing the retention of the fluid. Can do. Furthermore, since the fluid is supplied to the tip portion on the inner side of the collision surface where the temperature rises the most when the granular material is pulverized, the collision member can be cooled more effectively.

請求項2および3記載の粉砕装置によれば、冷却流路を簡便な構造で形成することができる。   According to the pulverization apparatus of claims 2 and 3, the cooling flow path can be formed with a simple structure.

請求項4記載の粉砕装置によれば、衝突面内側中央部に乱流が形成され、衝突面内側先端中央部が有効に冷却される。   According to the pulverizing apparatus of the fourth aspect, a turbulent flow is formed at the center portion inside the collision surface, and the center portion at the tip end inside the collision surface is effectively cooled.

請求項5記載の粉砕装置によれば、衝突面の摩擦係数が小さいので、冷却効果とあいまって衝突した粉粒体が衝突面に融着するのが有効に防止される。   According to the pulverizing apparatus of the fifth aspect, since the friction coefficient of the collision surface is small, it is possible to effectively prevent the collided powder particles from being fused to the collision surface together with the cooling effect.

以下、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図3は、本発明の第一の実施形態の粉砕装置を示したものである。   1 to 3 show a crusher according to a first embodiment of the present invention.

この粉砕装置1は、圧縮空気の供給ノズル(図示せず)に加速ノズル2を接続し、その加速ノズル2の前側に設けられた粉砕室3内に衝突部材4を、および加速ノズル2内に開口する粉粒体を供給するホッパ9を有するものである。   In this pulverizing apparatus 1, an acceleration nozzle 2 is connected to a compressed air supply nozzle (not shown), a collision member 4 is provided in the pulverization chamber 3 provided on the front side of the acceleration nozzle 2, and the acceleration nozzle 2 is provided. It has the hopper 9 which supplies the granular material which opens.

加速ノズル2の下流側周壁上部に粉粒体供給部8が設けられている。なお、供給ノズル1、加速ノズル2、粉粒体供給部8およびホッパ9の構成は公知であるので詳細な説明は省略し、以下、衝突部材4について説明する。   The granular material supply part 8 is provided in the downstream peripheral wall upper part of the acceleration nozzle 2. As shown in FIG. In addition, since the structure of the supply nozzle 1, the acceleration nozzle 2, the granular material supply part 8, and the hopper 9 is well-known, detailed description is abbreviate | omitted and hereafter, the collision member 4 is demonstrated.

衝突部材4は、衝突部材本体10とこれを支持する支持部材11とよりなる。衝突部材本体10は、先端円錐状部10aとこれに連続した円筒状部10bとよりなり、先端円錐状部10a外面が衝突面Aとなっている。なお、衝突部材本体10は、熱伝達率のよい材料製であることが好ましい。さらに、衝突面Aには鏡面加工を施すことが好ましい。   The collision member 4 includes a collision member main body 10 and a support member 11 that supports the collision member main body 10. The collision member main body 10 includes a tip conical portion 10a and a cylindrical portion 10b continuous thereto, and the outer surface of the tip conical portion 10a is a collision surface A. The collision member body 10 is preferably made of a material having a good heat transfer coefficient. Further, it is preferable that the collision surface A is mirror-finished.

一方、支持部材11は、円筒状部10bに挿入されかつ後端が円筒状部10bから突出した円柱状部11bと、円柱状部11bの後端から周方向に等間隔をおいて放射状に突出し、先端が粉砕室3の壁から突出した3本の支持羽11cとを備えている。円柱状部11bの先端には、衝突部材本体10の先端部側内腔に位置し、衝突部材本体10の先端部と略相似形をなすノズル部材11dが取付られている。そして、このノズル部材11d外面と衝突部材本体10の先端部内面との間が、衝突面A内側先端中央部から衝突面A内側に沿って衝突面A内側外縁部まで流体を流す冷却流路L3となっている。すなわち冷却流路L3は傘状をなしている。   On the other hand, the support member 11 is inserted into the cylindrical portion 10b and has a columnar portion 11b whose rear end protrudes from the cylindrical portion 10b, and radially protrudes from the rear end of the columnar portion 11b at equal intervals in the circumferential direction. , And three support wings 11 c that protrude from the wall of the crushing chamber 3. A nozzle member 11d is attached to the tip of the columnar portion 11b and is located in the inner cavity of the tip of the collision member main body 10 and is substantially similar to the tip of the collision member main body 10. And between this nozzle member 11d outer surface and the front-end | tip part inner surface of the collision member main body 10, the cooling flow path L3 which flows a fluid from the collision surface A inner front-end | tip center part along the collision surface A inner side to the collision surface A inner outer edge part. It has become. That is, the cooling flow path L3 has an umbrella shape.

円柱状部11bおよびノズル部材11dの中心部には軸方向に伸び、かつノズル部材11dの先端で開口して流体を衝突面Aの内側先端中央部に供給する流体供給路L1が形成されている。流体供給路L1は、3本の支持羽11cの内の1つに形成された流路L2に接続されている。この流路L2は図示しない流体供給源に接続されている。   A fluid supply path L1 that extends in the axial direction and opens at the tip of the nozzle member 11d and supplies fluid to the inner tip center of the collision surface A is formed at the center of the cylindrical portion 11b and the nozzle member 11d. . The fluid supply path L1 is connected to a flow path L2 formed in one of the three support feathers 11c. This flow path L2 is connected to a fluid supply source (not shown).

さらに、円柱状部11bには、これの先端面に開口し、冷却流路L3に連通した二つの流体排出路L4が形成されている。L4は、3本の支持羽11cの内の2つに形成された流路L5に接続されている。   Further, two fluid discharge passages L4 are formed in the cylindrical portion 11b so as to open to the front end surface thereof and communicate with the cooling passage L3. L4 is connected to a flow path L5 formed in two of the three support wings 11c.

上記のような構成を有する粉砕装置1において、供給ノズル1から圧縮空気を供給して加速ノズル2で加速し、ホッパ9から供給された粉粒体を衝突面Aに衝突させて粉砕等する手順は、公知の粉砕装置と変わりないので説明は省略し、以下に粉粒体を粉砕する際に衝突面Aを冷却する手順について説明する。   In the pulverizing apparatus 1 having the above-described configuration, the compressed air is supplied from the supply nozzle 1 and accelerated by the accelerating nozzle 2, and the granular material supplied from the hopper 9 is collided with the collision surface A and pulverized. Since this is the same as a known pulverizer, the description thereof will be omitted, and a procedure for cooling the collision surface A when pulverizing the powder will be described below.

まず、流体供給源から流路L2を介して流体供給路L1に流体が供給される。供給された流体は、ノズル部材11dの先端から衝突面A内側先端中央部に供給される。この流体は、衝突面A内側に沿って衝突面Aの外縁後方に向かって流れ、衝突面Aが効果的に冷却される。特に最も高温となる衝突面Aの内側中央部に最初に流体が供給されるので、衝突面Aの内側中央部が効果的に冷却される。   First, fluid is supplied from the fluid supply source to the fluid supply path L1 via the flow path L2. The supplied fluid is supplied from the tip of the nozzle member 11d to the center of the inside of the collision surface A. This fluid flows along the inside of the collision surface A toward the rear of the outer edge of the collision surface A, and the collision surface A is effectively cooled. In particular, since the fluid is first supplied to the inner central portion of the collision surface A that is the hottest, the inner central portion of the collision surface A is effectively cooled.

衝突面A外縁後方まで流れた流体は、ノズル部材11d後端部と衝突部材本体10との間の横断面環状をなす流路を流れ、支持部材11の円柱状部11bの前端面に開口した流体排出路L4に流入した後、流路L5を通って装置外部へと排出される。   The fluid that has flowed to the rear of the outer edge of the collision surface A flows through a flow path having a circular cross section between the rear end portion of the nozzle member 11d and the collision member main body 10, and opens to the front end surface of the columnar portion 11b of the support member 11. After flowing into the fluid discharge path L4, it is discharged to the outside of the apparatus through the flow path L5.

以上述べたように、冷却流路L3を流れて衝突面Aを冷却した流体は速やかに装置外部へと排出されて、冷却流路L3や内腔に滞留することがない。   As described above, the fluid that has flowed through the cooling flow path L3 and cooled the collision surface A is quickly discharged to the outside of the apparatus and does not stay in the cooling flow path L3 or the lumen.

このため、衝突面Aの温度上昇は抑えられ、衝突した粉粒体が衝突面Aに融着するのが防止される。又,衝突面Aは鏡面加工が施されており摩擦係数が低くなっているので、粉粒体が衝突面Aに融着するのはさらに有効に防止される。   For this reason, the temperature rise of the collision surface A is suppressed, and the collided powder particles are prevented from being fused to the collision surface A. Further, since the collision surface A is mirror-finished and has a low coefficient of friction, it is more effectively prevented that the powder particles are fused to the collision surface A.

ついで図4を参照して本発明の第二実施形態の粉砕装置について説明する。   Next, a grinding device according to a second embodiment of the present invention will be described with reference to FIG.

なお、以下の説明において第一の実施形態の粉砕装置1と同じ部材および相当する部材については同じ符号を付して説明は省略する。   In addition, in the following description, the same code | symbol is attached | subjected about the same member as the grinding | pulverization apparatus 1 of 1st embodiment, and a corresponding member, and description is abbreviate | omitted.

この実施形態の粉砕装置は、衝突部材20が第一の実施形態と異なるものである。以下、衝突部材20について説明する。衝突部材20は、衝突部材本体21とこれを支持する支持部材22とよりなる。本体21は、先端円錐状部21aとこれに連続した円筒状部21bとよりなり、先端円錐状部21a外面が衝突面Aとなっている。   In the pulverizing apparatus of this embodiment, the collision member 20 is different from that of the first embodiment. Hereinafter, the collision member 20 will be described. The collision member 20 includes a collision member main body 21 and a support member 22 that supports the collision member main body 21. The main body 21 includes a tip conical portion 21a and a cylindrical portion 21b continuous thereto, and the outer surface of the tip conical portion 21a is a collision surface A.

一方、支持部材22は、先端が円筒状部21bに挿入された円柱状部22aと、図示はしていないが、円柱状部22a後端から放射状に突出し、先端が粉砕室3の壁から突出した3本の支持羽とを備えている。円柱状部22aの先端には、管状体と管状体後方に形成された鍔状体とよりなるノズル部材22dが取付けられている。そして、このノズル部材22dの外面と衝突部材本体21の先端部内面との間が、衝突面A内側先端中央部から衝突面A内側に沿って衝突面A内側外縁部後方まで流体を流す冷却流路L23となっている。   On the other hand, the support member 22 has a columnar portion 22a whose tip is inserted into the cylindrical portion 21b, and although not shown, projects radially from the rear end of the columnar portion 22a and the tip protrudes from the wall of the crushing chamber 3. And three supporting wings. A nozzle member 22d made of a tubular body and a bowl-shaped body formed at the rear of the tubular body is attached to the tip of the cylindrical portion 22a. A cooling flow between the outer surface of the nozzle member 22d and the inner surface of the front end portion of the collision member main body 21 allows fluid to flow from the center of the front end of the collision surface A to the rear of the outer edge of the collision surface A along the inner side of the collision surface A. Road L23.

円柱状部22aおよびノズル部材22dの中心部には軸方向に伸び、かつノズル部材22dの先端で開口し、流体を衝突面Aの内側中央部先端に供給する流体供給路L21が形成されている。L21は、先に述べた図示しない3本の支持羽の内の1つに形成された流路に接続されている。この流路は流体供給源に接続されている。   A fluid supply path L21 that extends in the axial direction and opens at the tip of the nozzle member 22d and supplies fluid to the tip of the inner central portion of the collision surface A is formed at the center of the cylindrical portion 22a and the nozzle member 22d. . L21 is connected to the flow path formed in one of the three support wings (not shown) described above. This flow path is connected to a fluid supply source.

さらに、円柱状部22aには、これの前端面周縁に開口し、冷却流路L23に連通した二つの流体排出路L22が形成されている。L22は、3本の支持羽の内の2つに形成された流路に接続されている。   Furthermore, two fluid discharge paths L22 that open to the peripheral edge of the front end face and communicate with the cooling path L23 are formed in the cylindrical portion 22a. L22 is connected to a flow path formed in two of the three support wings.

上記のような構成を有する粉砕装置においては、流体供給源から流体供給路L21に流体が供給される。供給された流体は、流路ノズル部材22dの先端から衝突面A内側先端中央部に供給される。供給された流体は、衝突面A内側に沿って衝突面Aの外縁に向かって流れ、衝突面Aが効果的に冷却される。衝突面A外縁後方まで流れた流体は、支持部材22の円柱状部22aの前端面に開口した流体排出路L22に流入した後、装置外部へと排出される。   In the pulverization apparatus having the above-described configuration, the fluid is supplied from the fluid supply source to the fluid supply path L21. The supplied fluid is supplied from the tip of the flow path nozzle member 22d to the center of the inside of the collision surface A. The supplied fluid flows along the inside of the collision surface A toward the outer edge of the collision surface A, and the collision surface A is effectively cooled. The fluid that has flowed to the rear of the outer edge of the collision surface A flows into the fluid discharge path L22 that opens at the front end surface of the columnar portion 22a of the support member 22, and is then discharged to the outside of the apparatus.

ついで図5に示した第三の実施形態の粉砕装置について説明する。この粉砕装置において、供給流路L31は、先端部で径方向に分岐した二つの分岐流路L31aを備えている。分岐流路L31aは、供給流路L31の接線方向かつやや後方に伸びて側面に開口している。このノズル部材30を備えた粉砕装置では、衝突部材4の衝突面Aの内側中央部において冷却流体が旋回しながら流れるので、最も温度の高い衝突面Aの内側中央部をより効果的に冷却することができる。   Next, the pulverizing apparatus of the third embodiment shown in FIG. 5 will be described. In this pulverization apparatus, the supply flow path L31 includes two branch flow paths L31a branched in the radial direction at the tip portion. The branch flow path L31a extends in the tangential direction and slightly rearward of the supply flow path L31 and opens to the side surface. In the pulverizing apparatus provided with the nozzle member 30, the cooling fluid flows while swirling in the inner central portion of the collision surface A of the collision member 4, so that the inner central portion of the collision surface A having the highest temperature is cooled more effectively. be able to.

本発明の第一実施形態の粉砕装置の縦断面図である。It is a longitudinal cross-sectional view of the grinding | pulverization apparatus of 1st embodiment of this invention. 図1のII−II線に沿った断面図である。It is sectional drawing along the II-II line of FIG. aは、同粉砕装置の要部の縦断面図、bはaのb−b線に沿った断面図である。a is a longitudinal cross-sectional view of the main part of the crusher, and b is a cross-sectional view taken along line bb of a. aは、第二実施形態の粉砕装置の要部の縦断面図、bはaのb−b線に沿った断面図である。a is a longitudinal cross-sectional view of the principal part of the grinding | pulverization apparatus of 2nd embodiment, b is sectional drawing along the bb line of a. aは、第三実施形態の粉砕装置の要部の縦断面図、bはaのb−b線に沿った断面図である。a is a longitudinal cross-sectional view of the principal part of the grinding | pulverization apparatus of 3rd embodiment, b is sectional drawing along the bb line of a.

符号の説明Explanation of symbols

1 粉砕装置
3 粉砕室
4 衝突部材
10 衝突部材本体
11 支持部材
20 衝突部材
21 衝突部材本体
22 支持部材
30 ノズル部材
DESCRIPTION OF SYMBOLS 1 Crusher 3 Crushing chamber 4 Collision member 10 Collision member main body 11 Support member 20 Collision member 21 Collision member main body 22 Support member 30 Nozzle member

Claims (5)

粉粒体が衝突させられる衝突面が形成された衝突部材を備え、衝突部材の内部に衝突部材を冷却するための冷却手段が設けられた粉砕装置において、
冷却手段が、衝突部材の先端側に設けた内腔と、内腔の先端中央部に流体を供給する流体供給路と、内腔後端面に開口する流体流路とからなり、衝突部材の衝突面内側中央部から衝突面内側に沿って衝突面内側外縁部まで流体を流す冷却流路を形成している、粉砕装置。
In a pulverizing apparatus provided with a collision member formed with a collision surface on which powder particles collide, and provided with a cooling means for cooling the collision member inside the collision member,
The cooling means includes a lumen provided on the front end side of the collision member, a fluid supply path for supplying a fluid to the center of the front end of the lumen, and a fluid flow path that opens to the rear end surface of the lumen. A pulverization apparatus that forms a cooling flow path for flowing a fluid from a central portion on the inner surface to an outer edge portion on the inner surface of the collision surface along the inner surface of the collision surface.
衝突部材の内部に、衝突部材の内腔形状と略相似形をなすノズル部材が配され、ノズル部材の長さ方向中央部に軸線方向に伸びた流体供給路が形成され、冷却流路が、衝突部材の内面およびノズル部材外面により囲まれて形成されている、請求項1記載の粉砕装置。 A nozzle member having a shape substantially similar to the shape of the lumen of the collision member is disposed inside the collision member, a fluid supply path extending in the axial direction is formed at the center in the longitudinal direction of the nozzle member, and the cooling flow path is The crushing apparatus according to claim 1, wherein the crushing apparatus is surrounded by an inner surface of the collision member and an outer surface of the nozzle member. 衝突部材の内部に、内腔の先端に沿って伸びている管状部と管状部に形成された鍔状部とよりなるノズル部材が配され、管状部内に、流体供給路が形成され、冷却流路が、衝突部材の内面およびノズル部材の外面により囲まれて形成されている、請求項1記載の粉砕装置。 Inside the impingement member, a nozzle member comprising a tubular portion extending along the distal end of the lumen and a hook-shaped portion formed in the tubular portion is disposed, and a fluid supply path is formed in the tubular portion, and the cooling flow The crushing apparatus according to claim 1, wherein the path is formed to be surrounded by an inner surface of the collision member and an outer surface of the nozzle member. 流体供給路が、ノズルの先端近くで半径方向に開口している、請求項 2〜3いずれかに記載の粉砕装置。 The pulverizing apparatus according to any one of claims 2 to 3, wherein the fluid supply path opens in a radial direction near the tip of the nozzle. 衝突部材の衝突面が、鏡面加工されている、請求項1〜4いずれかに記載の粉砕装置。 The crushing apparatus according to claim 1, wherein a collision surface of the collision member is mirror-finished.
JP2003350716A 2003-10-09 2003-10-09 Grinding device equipped with collision member cooling means Withdrawn JP2005111406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350716A JP2005111406A (en) 2003-10-09 2003-10-09 Grinding device equipped with collision member cooling means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350716A JP2005111406A (en) 2003-10-09 2003-10-09 Grinding device equipped with collision member cooling means

Publications (1)

Publication Number Publication Date
JP2005111406A true JP2005111406A (en) 2005-04-28

Family

ID=34542193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350716A Withdrawn JP2005111406A (en) 2003-10-09 2003-10-09 Grinding device equipped with collision member cooling means

Country Status (1)

Country Link
JP (1) JP2005111406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520673A (en) * 2005-12-23 2009-05-28 アルケマ フランス Method for synthesizing carbon nanotubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520673A (en) * 2005-12-23 2009-05-28 アルケマ フランス Method for synthesizing carbon nanotubes

Similar Documents

Publication Publication Date Title
EP3382150B1 (en) Blockage-resistant vane impingement tubes and turbine nozzles containing the same
CN101846320B (en) Swirl generator, method for preventing flashback in burner and burner
JP2008101619A (en) Fan platform fin
TWI233964B (en) Integral swirl knife edge injection assembly
JP2007185765A (en) Boring bar for inner diameter turning
JPH0546051B2 (en)
JP2009198083A (en) Burner and method of manufacturing spheronized particle using the same
CN106132606A (en) There is the instrument receiving member of nozzle ring
JPS61155999A (en) Intense radiation generator
JP4732747B2 (en) Conical nozzle
JP2008202836A (en) Pulverized coal burner
JP2005111406A (en) Grinding device equipped with collision member cooling means
JP5778934B2 (en) Crusher
CN103925014B (en) Draw to walk and the layout in sealed open chamber for overcoming hot gas
JP2008161829A (en) Bubble generator
JP5087636B2 (en) Improved jet used in jet mill micronizer
JP6074314B2 (en) Hot air generator for melting snow
JP5790042B2 (en) Crusher and cylindrical adapter
JP3799665B2 (en) Pulverized coal burner equipment
JP2000140675A (en) Pulverizer
JP2018051474A (en) Dry pulverizer
JP4277436B2 (en) Pulverized coal burner
JP2001230099A (en) Improved plasma torch
JP2005296873A (en) Solid-gas mixing ejector and jet mill
JPH11101429A (en) Soot blower

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109