JP2005089793A - Method for manufacturing thin film, method for manufacturing wire rod with thin film, and vapor deposition apparatus with pulsed laser - Google Patents

Method for manufacturing thin film, method for manufacturing wire rod with thin film, and vapor deposition apparatus with pulsed laser Download PDF

Info

Publication number
JP2005089793A
JP2005089793A JP2003322406A JP2003322406A JP2005089793A JP 2005089793 A JP2005089793 A JP 2005089793A JP 2003322406 A JP2003322406 A JP 2003322406A JP 2003322406 A JP2003322406 A JP 2003322406A JP 2005089793 A JP2005089793 A JP 2005089793A
Authority
JP
Japan
Prior art keywords
target
thin film
axis
substrate
taken
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003322406A
Other languages
Japanese (ja)
Inventor
Shiyuuji Mokura
修司 母倉
Kazuya Daimatsu
一也 大松
Masaya Konishi
昌也 小西
Kozo Fujino
剛三 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003322406A priority Critical patent/JP2005089793A/en
Priority to PCT/JP2004/011680 priority patent/WO2005028696A1/en
Publication of JP2005089793A publication Critical patent/JP2005089793A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming superconductor layers
    • H10N60/0521Processes for depositing or forming superconductor layers by pulsed laser deposition, e.g. laser sputtering; laser ablation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin film, which forms the thin film on a substrate with a large area and a wide wire rod and solves a problem that a vapor deposition method with a conventional pulsed laser beam forms a practically-uniform thin film on just a narrow region. <P>SOLUTION: In the vapor deposition method with the pulsed laser beam for forming the thin film on the substrate through irradiating a target with a laser beam to form plasma and depositing the vaporized target material on the substrate, this film-forming method comprises condensing the laser beam 33 on the target 31 so as to form a linear shape, and arranging the substrate to be film-formed within a range of plus and minus 45 degrees from the Y axis when viewed from a Z direction, when the origin is supposed to be located in the center of the linear laser beam on the irradiated surface of the target 31, the Z axis to be a long side direction, an X-axis to be a short side direction and the Y axis to be the normal direction with respect to a target face. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はレーザ光を用いた気相蒸着法により基板上に超電導物質等の薄膜を形成する薄膜の製造方法に関するものである。   The present invention relates to a thin film manufacturing method for forming a thin film such as a superconducting material on a substrate by vapor deposition using laser light.

超電導素子や超電導線材として、基板上に超電導物質の薄膜を形成した構造のものが開発されている。このような超電導薄膜の形成は、各種のスパッタリング法、レーザアブレーション法、MBE法などが知られており、レーザ光を用いたパルスレーザ蒸着法(PLD法)もその一つである。たとえば非特許文献1では、高温超電導薄膜線材の製造方法としてのPLD法を示している。   Superconducting elements and superconducting wires have been developed that have a structure in which a thin film of a superconducting material is formed on a substrate. For forming such a superconducting thin film, various sputtering methods, laser ablation methods, MBE methods and the like are known, and a pulse laser deposition method (PLD method) using laser light is one of them. For example, Non-Patent Document 1 shows a PLD method as a method for manufacturing a high-temperature superconducting thin film wire.

PLD法の概要を図7にて説明する。パルスレーザ10からのレーザ光11はレンズ12により集光されて、超電導物質であるターゲット13にを照射される。ここでレーザ光はレンズ等の光学系によってターゲット上に集光され円形あるいは矩形に焦点を結ぶように構成されている。レーザ光の照射されたターゲット面ではレーザ光のエネルギーによってターゲット物質がプラズマ化して飛散し、プルーム14と呼ばれる発光部分が形成される。プルーム14はレーザ光の照射点を基点にターゲット物質面の法線方向を軸として回転させた略紡錘形状となる。薄膜を堆積させたい基板15をプルーム内部かプルーム先端付近に配置することにより、飛散粒子を基板上にエピタキシャルに成長させ、薄膜を形成することができる。   The outline of the PLD method will be described with reference to FIG. Laser light 11 from the pulse laser 10 is condensed by a lens 12 and irradiated onto a target 13 which is a superconducting material. Here, the laser light is condensed on the target by an optical system such as a lens and is focused on a circle or a rectangle. On the target surface irradiated with the laser light, the target material is turned into plasma by the energy of the laser light and scattered, and a light emitting portion called plume 14 is formed. The plume 14 has a substantially spindle shape that is rotated with the normal direction of the target material surface as an axis from the irradiation point of the laser beam. By disposing the substrate 15 on which the thin film is to be deposited inside the plume or in the vicinity of the plume tip, the scattered particles can be epitaxially grown on the substrate to form a thin film.

このようなPLDではレーザ光の照射された部分のターゲット物質は消耗してゆくため、継続して薄膜製造を行うには順次新しいターゲット物質を供給する必要がある。そのため、ターゲット上でのレーザ光の照射点を順次ずらすようにレーザ光を走査したり、ターゲットを移動することが行われている。ターゲットの移動としては円筒状のターゲットを回転させる方法も考えられている。
藤野ほか「ISD法による高温超電導薄膜線材の開発」,SEIテクニカルレビュー,第155号,1999年9月,p131−132
In such a PLD, the target material irradiated with the laser light is consumed, so that it is necessary to sequentially supply new target material in order to continuously manufacture the thin film. For this reason, the laser light is scanned or the target is moved so as to sequentially shift the irradiation point of the laser light on the target. A method of rotating a cylindrical target is also considered as the target movement.
Fujino et al. "Development of high-temperature superconducting thin film wire by ISD method", SEI Technical Review, No.155, September 1999, p131-132

従来の方法では薄膜を形成したい基板をたとえばプルーム先端付近に配置する。しかしプルームが紡錘形状であるように飛散粒子の密度や活性の程度等は場所により違っており、実用上均一な薄膜形成の可能な範囲(以下本願では「薄膜形成領域」と呼ぶ)は限られているため、プルームの大きさに比べて基板面積の大きい場合には均一な膜が得られない。大面積の基板上に薄膜を形成するには、基板を走査する方法があるが、ターゲットの走査および基板の走査は飛散する物質の量および堆積する物質の量の制御が困難で、均一な大面積の膜を形成することは非常に難しい。また、長尺の薄膜線材を製造する場合は、テープ上の基板を順次送り込むことで連続的に薄膜を形成することが行われるが、幅広の線材の形成は困難である。   In the conventional method, a substrate on which a thin film is to be formed is disposed, for example, near the plume tip. However, as the plume has a spindle shape, the density of scattered particles and the degree of activity vary depending on the location, and the range where practically uniform thin film formation is possible (hereinafter referred to as “thin film formation region” in this application) is limited. Therefore, a uniform film cannot be obtained when the substrate area is larger than the plume size. In order to form a thin film on a large-area substrate, there is a method of scanning the substrate. However, it is difficult to control the amount of material to be scattered and the amount of material to be deposited in the target scanning and the substrate scanning. It is very difficult to form an area film. In the case of producing a long thin film wire, a thin film is continuously formed by sequentially feeding substrates on a tape, but it is difficult to form a wide wire.

さらに、照射点を順次変更するためのターゲットの走査においても問題がある。走査しながらレーザ光を照射したターゲット表面は溝状になるため、次にその隣接部分にレーザ光を照射する場合には溝と溝が重ならないように照射しないと一定の飛散を生じることができない。よって走査においてはある程度の間隔をあけてゆく必要が生じ、ターゲットの全面を有効に使用することは困難である。   Further, there is a problem in the scanning of the target for sequentially changing the irradiation point. Since the surface of the target irradiated with laser light while scanning is in the form of a groove, if the next adjacent part is irradiated with the laser light, a certain amount of scattering cannot be produced unless the groove is overlapped with the groove. . Therefore, it is necessary to leave a certain interval in scanning, and it is difficult to effectively use the entire surface of the target.

上記の問題点を解消するために、レーザ光を拡げて照射することによって、ターゲットの広い面積の材料を同時に使用する事が考えられる。ビームを拡げて照射すれば、形成されるプルーム自体も拡がって形成され、結果として大面積の基板に同時にあるいは均一に薄膜を形成することが可能となる。   In order to solve the above problems, it is conceivable to simultaneously use a material having a large area of the target by spreading and irradiating the laser beam. When the beam is expanded and irradiated, the plume itself is also expanded, and as a result, a thin film can be formed simultaneously or uniformly on a large-area substrate.

このため、レーザ光をターゲットに照射してプラズマ化したターゲット物質を基板上に堆積させることにより基板上に薄膜を形成するパルスレーザ蒸着法において、当該レーザ光は当該ターゲット上においてライン状に集光されており、該ターゲット上の照射位置における該ライン状のレーザ光の中心に原点をとり長辺方向にZ軸、短辺方向にX軸、ターゲット面の法線方向にY軸をとった場合に、Z方向から見てY軸から正負45度の範囲に配置した当該基板上に薄膜を形成することを特徴とする薄膜の製造方法とした。   For this reason, in the pulsed laser deposition method in which a thin film is formed on a substrate by depositing a target material that has been turned into plasma by irradiating the target with laser light, the laser light is focused in a line on the target. When the origin is set at the center of the line-shaped laser beam at the irradiation position on the target and the Z axis is taken in the long side direction, the X axis is taken in the short side direction, and the Y axis is taken in the normal direction of the target surface. In addition, a thin film manufacturing method is characterized in that a thin film is formed on the substrate disposed in a range of 45 degrees from the Y axis when viewed from the Z direction.

これにより、従来に比べて薄膜形成領域を飛躍的に広く確保することができ、薄膜製造の効率を向上することが可能である。また、ターゲット面を効率良く利用できる。   As a result, the thin film formation region can be remarkably widened as compared with the conventional case, and the efficiency of thin film production can be improved. Moreover, the target surface can be used efficiently.

ここでライン状とは、レーザ光がターゲット上の照射部分において短辺と長辺を有する略長方形の照射範囲であることをいい、楕円に近い形状であっても良い。レーザ光の照射方向に短辺、照射方向と直交する方向に長辺を有することが均等なプルーム形成の点で好ましい。   Here, the line shape means a substantially rectangular irradiation range having a short side and a long side in the irradiated portion on the target, and may be a shape close to an ellipse. It is preferable in terms of uniform plume formation to have a short side in the laser light irradiation direction and a long side in a direction orthogonal to the irradiation direction.

さらに、第2の課題解決手段は、レーザ光照射によってターゲットがプラズマ化して飛散することによりターゲット面上部に生じるプルームの、先端位置高さに基板を配置することとした。これにより比較的特性の良い薄膜が効率良く形成できる点で好ましい。   Further, the second problem solving means is to arrange the substrate at the tip position height of the plume generated in the upper part of the target surface when the target is turned into plasma by laser irradiation and scattered. This is preferable in that a thin film having relatively good characteristics can be formed efficiently.

また、第3の課題解決手段として、高温超電導薄膜線材を製造する場合には、基板としての線材(「線材基板」と呼ぶ。)を薄膜形成領域に順次送り込むことで連続的に線材基板上に薄膜を形成することが行われるが、上記のライン状のレーザ光照射を用いた製造方法においては、薄膜形成領域が広く確保できることを利用して、線材基板を複数同時に薄膜形成領域に送り込むことを特徴とする薄膜線材の製造方法とした。   As a third problem solving means, when a high-temperature superconducting thin film wire is manufactured, a wire rod (referred to as a “wire substrate”) as a substrate is successively fed into the thin film formation region to continuously form the substrate on the wire substrate. Although a thin film is formed, in the manufacturing method using the above-mentioned line-shaped laser light irradiation, a plurality of wire substrate substrates can be simultaneously fed into the thin film forming area by utilizing the fact that a thin film forming area can be secured widely. It was set as the manufacturing method of the thin film wire characterized.

これは薄膜形成領域が広く得られることに伴うものであり、薄膜線材の製造能力の向上、すなわち製造の時間短縮あるいは大量生産によるコスト削減に効果がある。   This is due to the fact that a thin film forming region is widely obtained, and is effective in improving the manufacturing capability of the thin film wire, that is, in reducing the manufacturing time or in mass production.

さらにこの応用として、第4の課題解決手段は、送り込まれる複数の線材は別個の線材ではなく、同一の線材を繰り返し送り込むことで、形成される薄膜の膜厚を厚く形成することができる。   In addition, as a fourth application, the fourth problem solving means can form a thick thin film by repeatedly feeding the same wire, not the plurality of wires to be fed, as separate wires.

これにより、同一の基板上に繰り返し薄膜形成を行うことで、厚膜を形成することができるため、超伝導線材のように膜の厚さに応じて通電できる電流を大きくすることが可能な用途においては製造効率を飛躍的に向上させることができる。   As a result, a thick film can be formed by repeatedly forming a thin film on the same substrate, so that the current that can be applied according to the thickness of the film, such as a superconducting wire, can be increased. The production efficiency can be dramatically improved.

以上は、製造方法に関して説明したが、パルスレーザ蒸着装置自体を上記の方法が可能なように構成することにより、当該装置を使用した薄膜および薄膜線材の製造を行うことができるのである。   Although the above has described the manufacturing method, the thin film and the thin film wire using the apparatus can be manufactured by configuring the pulse laser deposition apparatus itself so that the above method is possible.

上記のようなライン状のレーザ光を用いることによって超電導薄膜等の薄膜を基板上に形成する場合に、従来よりも広い面積に同時に、より均一な薄膜を作成することが容易になる。また、ターゲットを幅広く利用することにより、ターゲット上のレーザ光走査においてターゲット面を無駄なく利用することができ、効率的な製造が可能である。よって、いわゆる一般にRE123系と呼ばれるような希土類系の高温超電導薄膜素子や線材を製造する場合に、大面積の高温超電導薄膜素子や幅広の高温超電導薄膜線材を製造することができる点で特に効果的である。さらには、幅の狭い線材の製造においても、複数本の線材を同時に成膜することができる点で、製造時間の短縮等によるコスト低減においても特段の効果がある。また、同一の線材を繰り返し成膜することで膜厚の厚い薄膜線材を効率よく製造することが可能である。   When a thin film such as a superconducting thin film is formed on a substrate by using the above-described line-shaped laser light, it becomes easy to form a more uniform thin film simultaneously with a larger area than in the past. In addition, by using the target widely, the target surface can be used without waste in laser light scanning on the target, and efficient production is possible. Therefore, when manufacturing a rare earth-based high-temperature superconducting thin film element or wire generally called RE123, it is particularly effective in that a large-area high-temperature superconducting thin-film element or a wide high-temperature superconducting thin-film wire can be manufactured. It is. Furthermore, even in the manufacture of a narrow wire, a plurality of wires can be formed at the same time, so that there is a special effect in reducing the cost by shortening the manufacturing time. In addition, a thin film wire having a large thickness can be efficiently manufactured by repeatedly forming the same wire.

本発明者は、このような目的でレーザ光をライン状に拡げて照射し、ライン状に拡がったプルームを形成して幅の広い領域に成膜を行う技術を開発した。その中で、本発明者はレーザ光をライン状に拡げて平面ターゲットに照射することで形成されるプルームが、一点照射の場合に形成される紡錘形状のプルームを単に横に引き延ばした形状ではなく、特異な形状に形成されることに着目した。すなわち、レーザ光照射範囲の形状を略矩形として、照射範囲の中心に原点をとり、長辺方向にZ軸、短辺方向にX軸、ターゲット面の法線方向にY軸をとった場合に、ライン状に照射されたターゲットから生じるプルームは、Z軸方向からX−Y平面を見た場合に原点からの拡がりが点照射の場合よりも拡がっており、薄膜形成領域が広くとれるのである。   The inventor has developed a technique for forming a plume that expands in a line to form a plume that expands in a line and forms a film in a wide region. Among them, the present inventor does not have a plume that is formed by spreading laser light in a line shape and irradiating a planar target with a spindle-shaped plume formed in the case of single point irradiation. Focused on the formation of a unique shape. That is, when the shape of the laser beam irradiation range is substantially rectangular, the origin is at the center of the irradiation range, the Z axis is in the long side direction, the X axis is in the short side direction, and the Y axis is in the normal direction of the target surface In the plume generated from the target irradiated in a line shape, when viewed in the XY plane from the Z-axis direction, the spread from the origin is larger than that in the case of point irradiation, and the thin film formation region can be widened.

この様子を図1にて説明する。図1(a)は従来の点照射の場合、図1(b)はライン照射の場合である。それぞれにおいて、ターゲット21,31にレーザ光23,33を照射して生じたプルーム22,32を表す。図の(上面)は形成されるプルームをY軸方向からX−Z平面に見た形状を示す上面図、(側面)はプルームをZ軸方向からX−Y平面に見た形状を示す側面図、(ビーム)は照射点でのレーザ光の形状を示す図であり、それぞれ違いの説明のため概略形状として模式的に表している。図1(a)の点照射ではレーザ光が正方形に近い矩形状で1点に照射され、生じるプルームはY軸を中心とした紡錘形状である。よって、上面図では略円形となる。本発明にかかる図1(b)のライン照射では、レーザ光はライン状に照射される。ここでライン状とは、照射範囲のZ軸方向の幅(長辺)bとX軸方向の幅(短辺)aの比b/aが4以上のもの、好ましくは6以上のものであるとする。レーザ光33は側面図におけるθが30度以上の角度で照射される。図1(a)のプルーム22に比べて図1(b)のプルーム32は、Y軸からの拡がり角αが大きく、プルーム上部先端が平坦になっているという2つの特徴を持つことが側面図に示されている。もちろん上面図でのZ軸方向には照射範囲をbに延ばしたことに伴ってプルーム範囲が拡がっている。したがって、図1(b)から、薄膜形成領域がZ軸方向に拡がっているだけでなく、X軸方向にも拡がっているのである。結果として、側面図においてのY軸から左右に45度の範囲に基板をおくことによって、基板上にほぼ均一な成膜が可能となるのである。したがって点照射の場合に比べて、Z方向のみならずX方向にも薄膜形成領域を広くとることができ、大面積の成膜が可能となる。   This will be described with reference to FIG. FIG. 1A shows the case of conventional point irradiation, and FIG. 1B shows the case of line irradiation. In each case, plumes 22 and 32 generated by irradiating laser beams 23 and 33 to the targets 21 and 31 are shown. In the figure, (upper surface) is a top view showing the shape of the formed plume as viewed from the Y-axis direction in the XZ plane, and (side) is a side view of the plume as viewed from the Z-axis direction in the XY plane. , (Beam) is a diagram showing the shape of the laser beam at the irradiation point, and is schematically represented as a schematic shape for explaining the difference. In the point irradiation of FIG. 1A, the laser light is irradiated to one point in a rectangular shape close to a square, and the resulting plume has a spindle shape with the Y axis as the center. Therefore, it becomes a substantially circular shape in the top view. In the line irradiation of FIG. 1B according to the present invention, the laser beam is irradiated in a line shape. Here, the line shape means that the ratio b / a of the width (long side) b in the Z-axis direction and the width (short side) a in the X-axis direction of the irradiation range is 4 or more, preferably 6 or more. And The laser beam 33 is irradiated at an angle θ of 30 degrees or more in the side view. The plume 32 of FIG. 1B has two characteristics that the divergence angle α from the Y axis is large and the top end of the plume is flat compared to the plume 22 of FIG. Is shown in Of course, in the Z-axis direction in the top view, the plume range is expanded as the irradiation range is extended to b. Therefore, from FIG. 1B, the thin film formation region not only extends in the Z-axis direction but also extends in the X-axis direction. As a result, a substantially uniform film can be formed on the substrate by placing the substrate within a range of 45 degrees to the left and right from the Y axis in the side view. Therefore, compared with the point irradiation, the thin film formation region can be widened not only in the Z direction but also in the X direction, and a large area film can be formed.

ライン状のレーザ光の形成方法例を図2に示す。図2はレーザ光をターゲット状に照射する光学系の構成を上面図と側面図によって示している。使用するパルスレーザ装置の出力40が矩形状のビーム(矩形ビーム)であるとする。このようなビームを単一の凸レンズにて集光すると、矩形ビームの縦横の拡がりが異なること等の要因により、いわゆる焦点ぼけが生じやすい。また、縦横比を任意に変更して所望の形状に集光することはできない。そこで、かかるビームを2枚のシリンドリカルレンズ42,43によってターゲット状に集光する。シリンドリカルレンズ43は、上面図で見る方向においてビーム40を集光し、側面図で見る方向においては集光しない。一方、シリンドリカルレンズ42は側面図で見る方向においてビーム40を集光し、上面図で見る方向においては集光しない。この2枚の組み合わせにおいて、それぞれのレンズの焦点距離、すなわち集光の角度を任意に選択することによって、矩形ビームの縦横を個別に集光し、ターゲット上での所望のビーム形状、すなわち照射位置での幅(図1におけるaとb)を作り出すことができるのである。ここで、パルスレーザから出力されるビーム形状が略円形の場合には、ターゲット上でのライン状ビームは楕円形状となるが、この場合には楕円の長径をb、短径をaとして図1に示される長方形のライン状と同等に扱うことができる。   An example of a method for forming a line-shaped laser beam is shown in FIG. FIG. 2 shows a configuration of an optical system for irradiating a laser beam in a target shape with a top view and a side view. Assume that the output 40 of the pulse laser device to be used is a rectangular beam (rectangular beam). When such a beam is condensed by a single convex lens, so-called defocusing tends to occur due to factors such as different vertical and horizontal spreads of the rectangular beam. Further, it cannot be condensed into a desired shape by arbitrarily changing the aspect ratio. Therefore, the beam is condensed into a target shape by the two cylindrical lenses 42 and 43. The cylindrical lens 43 condenses the beam 40 in the direction seen from the top view and does not converge in the direction seen from the side view. On the other hand, the cylindrical lens 42 condenses the beam 40 in the direction seen from the side view and does not converge in the direction seen from the top view. In the combination of these two lenses, the focal length of each lens, that is, the condensing angle is arbitrarily selected to individually collect the vertical and horizontal directions of the rectangular beam, and the desired beam shape on the target, that is, the irradiation position. The width (a and b in FIG. 1) can be created. Here, when the shape of the beam output from the pulse laser is substantially circular, the line beam on the target has an elliptical shape. In this case, the major axis of the ellipse is b and the minor axis is a. It can be handled in the same way as the rectangular line shape shown in.

さらに任意の集光を行う手段として、凹レンズと凸レンズを組み合わせることが可能である。図4はその構成を説明する図であり、矩形ビームのいずれか一方向を見たものである。レーザ光50は一旦凹レンズ51によって拡げられ、その後に凸レンズ52によって集光されてターゲット53に照射される。こうすることによって、集光の幅を変えることができるだけでなく、レンズからターゲットまでの距離も任意に設計することが可能となる。   Furthermore, a concave lens and a convex lens can be combined as a means for performing arbitrary light collection. FIG. 4 is a diagram for explaining the configuration, and shows one direction of the rectangular beam. The laser beam 50 is once expanded by the concave lens 51, and then condensed by the convex lens 52 and irradiated onto the target 53. This makes it possible not only to change the width of light collection, but also to arbitrarily design the distance from the lens to the target.

図5はその応用を示したものである。図5において、ターゲット65は真空容器66に配置されている。パルスレーザ装置は真空容器外におかれるため、レーザ光は真空容器66に設けられた入射窓61を通して照射される必要がある。ここで、従来の集光方法であれば、容器の大きさと集光の度合いによっては図5(a)のように、真空容器内にレンズ62を配置する必要があった。しかし、図4にて説明したような光学系を使用することで、焦点距離を適切に設計することで、図5(b)のように凹レンズ63と凸レンズ64の組み合わせレンズ光学系を真空容器外に配置してターゲット上に集光することが容易となる。レンズの選択等の光学系設計は真空容器の大きさ、レーザ光のサイズ、使用可能なレンズの焦点距離、所望のターゲット上での集光サイズなどの条件から適切なものを選択すればよく、特に限定されるものではない。   FIG. 5 shows the application. In FIG. 5, the target 65 is disposed in the vacuum container 66. Since the pulse laser device is placed outside the vacuum vessel, the laser beam needs to be irradiated through an incident window 61 provided in the vacuum vessel 66. Here, according to the conventional condensing method, it is necessary to arrange the lens 62 in the vacuum container as shown in FIG. 5A depending on the size of the container and the degree of condensing. However, by using the optical system as described with reference to FIG. 4, the focal length is appropriately designed, so that the combined lens optical system of the concave lens 63 and the convex lens 64 is removed from the vacuum container as shown in FIG. It becomes easy to condense on the target. For the optical system design such as the selection of the lens, an appropriate one may be selected from the conditions such as the size of the vacuum vessel, the size of the laser beam, the focal length of the usable lens, the condensing size on the desired target, It is not particularly limited.

図6は、本発明により薄膜線材を製造する方法を示したものである。レーザ光および光学系などは図示せず、複数の線材を薄膜形成領域に送り込む構成のみを説明する。図6において斜線で示される領域がターゲット71上部に生じた薄膜形成領域を表している。図の左側から送り込まれた線材基板70は薄膜形成領域を通過し、基板上に薄膜が形成される。当該線材基板は2つのローラ72,73により構成される送り機構によって、再び薄膜形成領域に送り込まれ、二度目の薄膜形成を行う。同様に三度目以降(図では4度目まで)の薄膜形成を繰り返した後、図の右側に送り出されるのである。このよう、一つのターゲットから生じる同一の薄膜形成領域に同一の線材基板を複数回送り込み、複数回の薄膜形成を繰り返すことで、効率よく膜厚の厚い薄膜が形成可能である。これは従来の製造方法に比べて飛躍的に薄膜形成領域を拡大することができる本発明において特に有効である。   FIG. 6 shows a method of manufacturing a thin film wire according to the present invention. Only a configuration in which a plurality of wires are fed into the thin film formation region will be described without showing a laser beam and an optical system. In FIG. 6, a region indicated by diagonal lines represents a thin film formation region generated on the target 71. The wire substrate 70 fed from the left side of the figure passes through the thin film formation region, and a thin film is formed on the substrate. The wire substrate is again fed into the thin film formation region by a feed mechanism constituted by two rollers 72 and 73, and a second thin film is formed. Similarly, after repeating the thin film formation from the third time (up to the fourth time in the figure), the thin film is sent out to the right side of the figure. In this way, a thick thin film can be efficiently formed by feeding the same wire substrate multiple times into the same thin film forming region generated from one target and repeating the thin film formation multiple times. This is particularly effective in the present invention in which the thin film formation region can be dramatically expanded as compared with the conventional manufacturing method.

この構成とは別に、複数の線材基板を同一の薄膜形成領域に平行して送り込むこともできる。その場合は複数同時製造による効率的な製造、それによる低コストの製造が可能となる。   Apart from this configuration, a plurality of wire substrates can be fed in parallel to the same thin film formation region. In that case, efficient production by multiple simultaneous production and low-cost production by it are possible.

図3により本願発明を実施した実験例を説明する。図3(b)は本願発明の実施、図3(a)は比較のための従来例の実施を示す。基本的な装置構成は従来例として説明した図6の通りであり、以下それぞれの内容を示す。   An experimental example in which the present invention is implemented will be described with reference to FIG. FIG. 3B shows the implementation of the present invention, and FIG. 3A shows the implementation of a conventional example for comparison. The basic apparatus configuration is as shown in FIG. 6 described as a conventional example, and the contents of each are shown below.

[比較例]パルスレーザとしてKr−Fエキシマレーザを使用した。レーザ出力は40mm×15mmの矩形であり、レンズによりターゲット面上に6mm×4mmに集光した。高温超伝導物質としてのHoBCO(HoBa2Cu3Ox)ターゲットにレーザ光をエネルギー20W,エネルギー密度3J/cmで照射して、アルミン酸ランタン基板上にHoBCO膜を形成した。ここで膜厚0.5μmになるように成膜時間を調整した。このとき生じるプルームの形状は図1(a)のようになり、プルーム先端の高さはY軸(法線)上でターゲットから80mm、Y軸40mm高さ位置でのプルーム半径は20mm(幅40mm)であった。 [Comparative Example] A Kr-F excimer laser was used as a pulse laser. The laser output was a rectangle of 40 mm × 15 mm, and was condensed to 6 mm × 4 mm on the target surface by a lens. A HoBCO (HoBa 2 Cu 3 O x ) target as a high-temperature superconductive material was irradiated with laser light at an energy of 20 W and an energy density of 3 J / cm 2 to form a HoBCO film on a lanthanum aluminate substrate. Here, the film formation time was adjusted so that the film thickness was 0.5 μm. The shape of the plume generated at this time is as shown in FIG. 1A. The height of the plume tip is 80 mm from the target on the Y axis (normal line), and the plume radius at the Y axis 40 mm height position is 20 mm (width 40 mm). )Met.

ここで、図3(a)にaからaで示すようにプルーム先端高さでのX軸方向およびY軸上に測定点をとり、それぞれの場所に基板をおいて成膜した超電導薄膜の臨界電流密度を測定した結果が表1である。Y軸上ではプルーム内部に比べてプルーム先端部の方が良好な特性の薄膜が形成できており、プルーム先端高さではおよそ半径4cmの範囲で良好な特性の薄膜が得られていることがわかる。

Figure 2005089793
Here, taking a measurement point on the X-axis direction and the Y-axis in the plume tip height as indicated by a 7 from a 0 in FIG. 3 (a), a superconducting thin film formed at a substrate at each location Table 1 shows the result of measuring the critical current density. On the Y axis, a thin film with better characteristics can be formed at the plume tip than in the plume, and a thin film with good characteristics can be obtained within a radius of about 4 cm at the plume tip height. .
Figure 2005089793

[実施例]パルスレーザとしてKr−Fエキシマレーザを使用した。レーザ出力は40mm×15mmの矩形であり、シリンドリカルレンズ2枚によりターゲット面上に0.6mm×40mmに集光した。HoBCO(HoBa2Cu3Ox)ターゲットにレーザ光をエネルギー20W,エネルギー密度3J/cm、角度45度で照射して、アルミン酸ランタン基板上にHoBCO膜を、膜厚0.5μmになるように成膜時間を調整して形成した。このとき生じるプルームの形状は図1(b)のようになり、プルーム先端のY軸(法線)上の位置はターゲットから60mmで、先端はX軸方向に略平坦に拡がりを持ち、そのX軸方向の幅は約60mmであった。 [Example] A Kr-F excimer laser was used as a pulse laser. The laser output was a rectangle of 40 mm × 15 mm, and was condensed to 0.6 mm × 40 mm on the target surface by two cylindrical lenses. A HoBCO (HoBa 2 Cu 3 O x ) target is irradiated with laser light at an energy of 20 W, an energy density of 3 J / cm 2 , and an angle of 45 degrees so that the HoBCO film has a thickness of 0.5 μm on the lanthanum aluminate substrate. The film formation time was adjusted. The shape of the plume generated at this time is as shown in FIG. 1B. The position of the plume tip on the Y axis (normal line) is 60 mm from the target, and the tip has a substantially flat extension in the X axis direction. The axial width was about 60 mm.

ここで、図3(b)にbからbで示すようにプルーム先端高さでのX軸方向に測定点をとり、それぞれの場所に基板をおいて成膜した超電導薄膜の臨界電流密度を測定した結果が表2である。比較例に比べて良好な特性の薄膜が得られる範囲が拡がっていることがわかる。すなわち、比較例でのプルーム先端位置での成膜に相当するレベルを良好な成膜と考えた場合、実施例ではX方向位置60mmであるbの点までの広い範囲で良好な成膜ができている。これは、プルーム先端高さ位置での高さと同等の幅の範囲、あるいは照射点を基準に法線から±45度の範囲での成膜が適していることを示している。当該プルームはZ軸方向にはレーザ光照射幅である40mm+プルーム拡がりである両側各20mmの80mmの範囲で良好な成膜ができる。従って、薄膜形成領域は面積として4800mmにおよぶ。これは比較例での半径40mmの範囲、すなわち約1200mmの範囲に比べ約4倍にも拡がっている。

Figure 2005089793
Here, take the measurement points from b 0 to the X-axis direction in the plume tip height as indicated by b 8 in FIG. 3 (b), the critical current density of the superconducting thin film formed at a substrate at each location The results of measuring are shown in Table 2. It can be seen that the range in which a thin film with good characteristics can be obtained is larger than that of the comparative example. That is, when the level corresponding to the film formation at the plume tip position in the comparative example is considered as good film formation, in the example, good film formation is possible in a wide range up to the point b 6 which is 60 mm in the X direction. is made of. This indicates that film formation in the range equivalent to the height at the plume tip height position or in the range of ± 45 degrees from the normal line with respect to the irradiation point is suitable. The plume can be satisfactorily formed in the Z-axis direction in the range of 40 mm which is the laser beam irradiation width + 20 mm on both sides which is the plume expansion, and 80 mm. Therefore, the thin film formation region covers an area of 4800 mm 2 . This is about four times as large as the radius of 40 mm in the comparative example, that is, about 1200 mm 2 .
Figure 2005089793

本発明の製造方法の特徴(b)を従来例(a)と比較して説明する図である。It is a figure explaining the characteristic (b) of the manufacturing method of this invention compared with a prior art example (a). 本発明のライン状集光の方法を説明する図である。It is a figure explaining the method of the linear condensing of this invention. 本発明の実施例(b)を比較例(a)とともに説明する図である。It is a figure explaining the Example (b) of this invention with the comparative example (a). レーザ光を集光する光学系の構成を例示する図である。It is a figure which illustrates the structure of the optical system which condenses a laser beam. レーザ光を集光する光学系の応用を示す図である。It is a figure which shows the application of the optical system which condenses a laser beam. 本発明による薄膜線材の製造方法を示す図である。It is a figure which shows the manufacturing method of the thin film wire by this invention. 従来技術としてのレーザ蒸着法を説明する図である。It is a figure explaining the laser vapor deposition method as a prior art.

符号の説明Explanation of symbols

10 パルスレーザ
11,23,33,40,50,60 レーザ光
12 レンズ
13,21,31,41,53,65,71 ターゲット
14,22,32 プルーム
15 基板
42,43 シリンドリカルレンズ
51,63 凹レンズ
52,64 凸レンズ
61 入射窓
66 真空容器
70 線材基板
72,73 ローラ
10 Pulse laser 11, 23, 33, 40, 50, 60 Laser beam 12 Lens 13, 21, 31, 41, 53, 65, 71 Target 14, 22, 32 Plume 15 Substrate 42, 43 Cylindrical lens 51, 63 Concave lens 52 , 64 Convex lens 61 Entrance window 66 Vacuum container 70 Wire substrate 72, 73 Roller

Claims (7)

レーザ光をターゲットに照射してプラズマ化したターゲット物質を基板上に堆積させることにより基板上に薄膜を形成するパルスレーザ蒸着法において、
当該レーザ光は当該ターゲット上においてライン状に集光されており、
該ターゲット上の照射位置における該ライン状のレーザ光の中心に原点をとり長辺方向にZ軸、短辺方向にX軸、ターゲット面の法線方向にY軸をとった場合に、Z方向から見てY軸から正負45度の範囲の薄膜形成領域に当該基板を配置すること
を特徴とする薄膜の製造方法。
In a pulsed laser deposition method in which a thin film is formed on a substrate by depositing a target material that has been turned into plasma by irradiating the target with laser light.
The laser beam is collected in a line on the target,
When the origin is set at the center of the line-shaped laser beam at the irradiation position on the target and the Z axis is taken in the long side direction, the X axis is taken in the short side direction, and the Y axis is taken in the normal direction of the target surface, the Z direction A method for producing a thin film, comprising: arranging the substrate in a thin film forming region in a range of 45 degrees from the Y axis as viewed from the Y axis.
前記基板は、レーザ光照射によってターゲット面上部に生じるプルームの先端位置高さ近傍に配置されることを特徴とする請求項1に記載の薄膜の製造方法。   2. The method of manufacturing a thin film according to claim 1, wherein the substrate is arranged in the vicinity of a height of a tip position of a plume generated in an upper portion of the target surface by laser light irradiation. レーザ光をターゲットに照射してプラズマ化したターゲット物質を基板上に堆積させることにより基板上に薄膜を形成するパルスレーザ蒸着法において、
当該レーザ光は当該ターゲット上においてライン状に集光されており、
該ターゲット上の照射位置における該ライン状のレーザ光の中心に原点をとり長辺方向にZ軸、短辺方向にX軸、ターゲット面の法線方向にY軸をとった場合に、Z方向から見てY軸から正負45度の範囲の薄膜形成領域に、
線材状の基板を複数本並行して送り込むことを特徴とする薄膜線材の製造方法。
In a pulsed laser deposition method in which a thin film is formed on a substrate by depositing a target material that has been turned into plasma by irradiating the target with laser light.
The laser beam is collected in a line on the target,
When the origin is set at the center of the line-shaped laser beam at the irradiation position on the target and the Z axis is taken in the long side direction, the X axis is taken in the short side direction, and the Y axis is taken in the normal direction of the target surface, the Z direction From the Y axis to the thin film formation region in the range of 45 degrees positive and negative,
A method of manufacturing a thin film wire, comprising feeding a plurality of wire-like substrates in parallel.
レーザ光をターゲットに照射してプラズマ化したターゲット物質を基板上に堆積させることにより基板上に薄膜を形成するパルスレーザ蒸着法において、
当該レーザ光は当該ターゲット上においてライン状に集光されており、
該ターゲット上の照射位置における該ライン状のレーザ光の中心に原点をとり長辺方向にZ軸、短辺方向にX軸、ターゲット面の法線方向にY軸をとった場合に、Z方向から見てY軸から正負45度の範囲の薄膜形成領域に、
線材状の基板を複数回繰り返して送り込むことを特徴とする薄膜線材の製造方法。
In a pulsed laser deposition method in which a thin film is formed on a substrate by depositing a target material that has been turned into plasma by irradiating the target with laser light.
The laser beam is collected in a line on the target,
When the origin is set at the center of the line-shaped laser beam at the irradiation position on the target and the Z axis is taken in the long side direction, the X axis is taken in the short side direction, and the Y axis is taken in the normal direction of the target surface, the Z direction From the Y axis to the thin film formation region in the range of 45 degrees positive and negative,
A method for producing a thin film wire, characterized in that a wire-like substrate is repeatedly sent in multiple times.
レーザ光をターゲットに照射してプラズマ化したターゲット物質を基板上に堆積させることにより基板上に薄膜を形成するためのパルスレーザ蒸着装置において、
当該レーザ光を当該ターゲット上においてライン状に集光する手段を具え、
該ターゲット上の照射位置における該ライン状のレーザ光の中心に原点をとり長辺方向にZ軸、短辺方向にX軸、ターゲット面の法線方向にY軸をとった場合に、Z方向から見てY軸から正負45度の範囲の薄膜形成領域に当該基板が配置されていること
を特徴とするパルスレーザ蒸着装置。
In a pulse laser deposition apparatus for forming a thin film on a substrate by depositing a target material that has been converted into plasma by irradiating the target with laser light,
Means for condensing the laser beam in a line on the target;
When the origin is set at the center of the line-shaped laser beam at the irradiation position on the target and the Z axis is taken in the long side direction, the X axis is taken in the short side direction, and the Y axis is taken in the normal direction of the target surface, the Z direction A pulse laser deposition apparatus, wherein the substrate is disposed in a thin film forming region in a range of 45 degrees positive and negative from the Y axis as viewed from the top.
レーザ光をターゲットに照射してプラズマ化したターゲット物質を基板上に堆積させることにより基板上に薄膜を形成するパルスレーザ蒸着装置において、
当該レーザ光を当該ターゲット上においてライン状に集光する手段を具え、
該ターゲット上の照射位置における該ライン状のレーザ光の中心に原点をとり長辺方向にZ軸、短辺方向にX軸、ターゲット面の法線方向にY軸をとった場合に、Z方向から見てY軸から正負45度の範囲の薄膜形成領域に、
線材状の基板を複数本並行して送り込む手段を具えることを特徴とするパルスレーザ蒸着装置。
In a pulsed laser deposition apparatus that forms a thin film on a substrate by depositing on the substrate a target material that has been turned into plasma by irradiating the target with laser light,
Means for condensing the laser beam in a line on the target;
When the origin is set at the center of the line-shaped laser beam at the irradiation position on the target and the Z axis is taken in the long side direction, the X axis is taken in the short side direction, and the Y axis is taken in the normal direction of the target surface, the Z direction From the Y axis to the thin film formation region in the range of 45 degrees positive and negative,
A pulse laser deposition apparatus comprising means for feeding a plurality of wire-like substrates in parallel.
レーザ光をターゲットに照射してプラズマ化したターゲット物質を基板上に堆積させることにより基板上に薄膜を形成するパルスレーザ蒸着装置において、
当該レーザ光を当該ターゲット上においてライン状に集光する手段を具え、
該ターゲット上の照射位置における該ライン状のレーザ光の中心に原点をとり長辺方向にZ軸、短辺方向にX軸、ターゲット面の法線方向にY軸をとった場合に、Z方向から見てY軸から正負45度の範囲の薄膜形成領域に、
線材状の基板を複数回繰り返して送り込む手段を具えることを特徴とするパルスレーザ蒸着装置。
In a pulsed laser deposition apparatus that forms a thin film on a substrate by depositing on the substrate a target material that has been turned into plasma by irradiating the target with laser light,
Means for condensing the laser beam in a line on the target;
When the origin is set at the center of the line-shaped laser beam at the irradiation position on the target and the Z axis is taken in the long side direction, the X axis is taken in the short side direction, and the Y axis is taken in the normal direction of the target surface, the Z direction From the Y axis to the thin film formation region in the range of 45 degrees positive and negative,
A pulse laser vapor deposition apparatus comprising means for repeatedly feeding a wire-like substrate a plurality of times.
JP2003322406A 2003-09-16 2003-09-16 Method for manufacturing thin film, method for manufacturing wire rod with thin film, and vapor deposition apparatus with pulsed laser Pending JP2005089793A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003322406A JP2005089793A (en) 2003-09-16 2003-09-16 Method for manufacturing thin film, method for manufacturing wire rod with thin film, and vapor deposition apparatus with pulsed laser
PCT/JP2004/011680 WO2005028696A1 (en) 2003-09-16 2004-08-06 Production method for thin film and production method for thin film wire and pulse laser vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322406A JP2005089793A (en) 2003-09-16 2003-09-16 Method for manufacturing thin film, method for manufacturing wire rod with thin film, and vapor deposition apparatus with pulsed laser

Publications (1)

Publication Number Publication Date
JP2005089793A true JP2005089793A (en) 2005-04-07

Family

ID=34372696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322406A Pending JP2005089793A (en) 2003-09-16 2003-09-16 Method for manufacturing thin film, method for manufacturing wire rod with thin film, and vapor deposition apparatus with pulsed laser

Country Status (2)

Country Link
JP (1) JP2005089793A (en)
WO (1) WO2005028696A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008002463T5 (en) 2007-09-14 2010-09-16 International Superconductivity Technology Center, The Juridical Foundation RE123-based oxide superconductor and process for its production
JP2011060668A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Manufacturing method of long oxide superconductor by laser vapor deposition method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI126769B (en) 2014-12-23 2017-05-15 Picodeon Ltd Oy Lighthouse type scanner with rotating mirror and annular focus
EP4097271A1 (en) * 2020-04-09 2022-12-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Thermal laser evaporation system and method of providing a thermal laser beam at a source

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD252009A1 (en) * 1986-08-07 1987-12-02 Ardenne Forschungsinst DEVICE FOR STEAMING THE WIRE
DE3914476C1 (en) * 1989-05-02 1990-06-21 Forschungszentrum Juelich Gmbh, 5170 Juelich, De
JPH03104861A (en) * 1989-05-26 1991-05-01 Rockwell Internatl Corp Device for use in laser abrasion
JP3168579B2 (en) * 1990-11-20 2001-05-21 松下電器産業株式会社 Laser ablation equipment
JP3245999B2 (en) * 1992-10-22 2002-01-15 石川島播磨重工業株式会社 Continuous wire coating equipment
JP3255469B2 (en) * 1992-11-30 2002-02-12 三菱電機株式会社 Laser thin film forming equipment
JPH10229053A (en) * 1997-02-18 1998-08-25 Toshiba Corp Method and apparatus for burying and semiconductor device manufacturing apparatus
JP2002012965A (en) * 2000-06-29 2002-01-15 Sumitomo Electric Ind Ltd Method and target for laser vapor deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008002463T5 (en) 2007-09-14 2010-09-16 International Superconductivity Technology Center, The Juridical Foundation RE123-based oxide superconductor and process for its production
JP2011060668A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Manufacturing method of long oxide superconductor by laser vapor deposition method

Also Published As

Publication number Publication date
WO2005028696A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP7125678B2 (en) Evaporation mask, organic EL substrate manufacturing method, and organic EL substrate
CN102233485B (en) Destination object processing method and destination object treating apparatus
CN1200320C (en) Process and mask projection system for laser crystallization processing of semiconductor film regions on substrate
CN101595572B (en) System and method for deliverying laser beam and laser lift-off method using the same
JP2014041924A (en) Method for cutting workpiece
JP2014041925A (en) Method for cutting workpiece
US10515832B2 (en) Laser processing apparatus and method for manufacturing the same
WO2014030520A1 (en) Workpiece cutting method
WO2012165903A2 (en) Semiconductor light-emitting device, method for manufacturing same, and semiconductor light-emitting device package and laser-processing apparatus comprising same
KR102417323B1 (en) Partial shield processing method for semiconductor member
DE102007009924A1 (en) Continuous coating apparatus comprises vacuum chamber containing PVD unit for coating surface of substrate and laser crystallization system which illuminates section being coated
JP2011060668A (en) Manufacturing method of long oxide superconductor by laser vapor deposition method
US6037313A (en) Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
TW201414000A (en) Selective and/or faster removal of a coating from an underlying layer, and solar cell applications thereof
JP2010194560A (en) Laser machining method of solar battery panel
JP5306374B2 (en) Laser processing apparatus, laser processing method, and method for manufacturing photovoltaic device
US8021913B2 (en) Method and apparatus for forming the separating lines of a photovoltaic module with series-connected cells
JP2005089793A (en) Method for manufacturing thin film, method for manufacturing wire rod with thin film, and vapor deposition apparatus with pulsed laser
CN211840637U (en) Device for cutting pi net plate by laser imaging method
EP2297792A2 (en) Solar cell chips with new geometry and method for the production thereof
US9024233B2 (en) Side edge cleaning methods and apparatus for thin film photovoltaic devices
US20040096580A1 (en) Film forming method and film forming device
JP2001140059A (en) Film deposition method by laser evaporation
US9536696B1 (en) Microstructured surface with low work function
EP0526331B1 (en) Method for preparing a superconducting thin film of compound oxide

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027