JP2005071709A - Ion removing filter for fuel cell - Google Patents

Ion removing filter for fuel cell Download PDF

Info

Publication number
JP2005071709A
JP2005071709A JP2003297631A JP2003297631A JP2005071709A JP 2005071709 A JP2005071709 A JP 2005071709A JP 2003297631 A JP2003297631 A JP 2003297631A JP 2003297631 A JP2003297631 A JP 2003297631A JP 2005071709 A JP2005071709 A JP 2005071709A
Authority
JP
Japan
Prior art keywords
fuel cell
fluid
exchange resin
ion exchange
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003297631A
Other languages
Japanese (ja)
Inventor
Koji Suzuki
晃次 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roki Co Ltd
Original Assignee
Toyo Roki Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Roki Mfg Co Ltd filed Critical Toyo Roki Mfg Co Ltd
Priority to JP2003297631A priority Critical patent/JP2005071709A/en
Publication of JP2005071709A publication Critical patent/JP2005071709A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion removing filter a for fuel cell in which the contact area of an ion exchange resin and a fluid can be taken large without making large the total size of the ion removing filter for the fuel cell. <P>SOLUTION: The ion removing filter for the fuel cell is constructed of a case 1 having an inlet port 2 and an exit port 3 of a fluid and a container 5 which is provided inside the case 1 and is formed in a cylindrical shape having a hollow space where the ion exchange resin is filled. The fluid flowed from the inlet port 2 is made to flow from the outer circumference toward the inner circumference or from the inner circumference toward the outer circumference of the hollow cylindrical shape. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池の回路内を流れる流体の不純物を除去するための燃料電池用イオン除去フィルタに関し、特に自動車等の移動体に搭載される固体高分子型燃料電池(PEFC)用の冷却システム及び燃料電池用イオン除去フィルタに関する。   TECHNICAL FIELD The present invention relates to a fuel cell ion removal filter for removing impurities in a fluid flowing in a fuel cell circuit, and more particularly to a cooling system for a polymer electrolyte fuel cell (PEFC) mounted on a moving body such as an automobile. And an ion removal filter for a fuel cell.

燃料電池は、水素と大気中の酸素を電気化学的に反応させることによって電気を発生させる。発電効率が高く、また消費地に設置できるため送電損失がなく、しかもコージェネレーション(熱・電気併給)用としても適していることから、燃料電池には省エネルギー効果も期待できる。   A fuel cell generates electricity by electrochemically reacting hydrogen and oxygen in the atmosphere. Because it has high power generation efficiency and can be installed in the consumption area, it has no transmission loss and is suitable for cogeneration (cogeneration of heat and electricity).

固体高分子型燃料電池は、水素(H2)が持っている化学エネルギーを、燃焼過程を経ずに直接電気エネルギーに変換する。小容量のものでは、従来のガソリンエンジン、ディーゼルエンジンなど熱機関と比較するとエネルギー変換効率が高く、また低コストでコンパクト性に優れていることから、次世代自動車などの高効率動力源として期待されている。 A polymer electrolyte fuel cell directly converts chemical energy of hydrogen (H 2 ) into electrical energy without going through a combustion process. Small-capacity engines are expected to be high-efficiency power sources for next-generation automobiles because they have higher energy conversion efficiency than conventional gasoline engines, diesel engines, and other heat engines, as well as low cost and compactness. ing.

燃料電池本体を冷却するために冷却水の循環回路が設けられる。冷却回路中を冷却水が循環中に、冷却回路内の配管等からイオンが冷却水中に徐々に溶出する。冷却水中にイオンが溶出すると、電気伝導度が上がり、燃料電池本体の発電効率が落ちてしまう。このため燃料電池の冷却水の循環回路には、燃料電池用イオン除去フィルタが設けられる。   A cooling water circulation circuit is provided to cool the fuel cell body. As cooling water circulates in the cooling circuit, ions gradually elute into the cooling water from piping in the cooling circuit. If ions elute in the cooling water, the electrical conductivity increases, and the power generation efficiency of the fuel cell body decreases. For this reason, an ion removal filter for a fuel cell is provided in the circulating circuit of the cooling water for the fuel cell.

また燃料電池の改質器で燃料ガスから水素を生成する際に、より純度の高い水素をつくり出すために純水が必要になる。改質器で使われる水をクリーンにするためにも、燃料電池用イオン除去フィルタが設けられる。   Further, when hydrogen is generated from fuel gas by a reformer of a fuel cell, pure water is required to produce higher purity hydrogen. In order to clean the water used in the reformer, a fuel cell ion removal filter is provided.

従来の燃料電池用イオン除去フィルタは、図7に示されるように、筒状の容器内にイオン交換樹脂を充填して構成されていた。そして容器の一端から他端に向かってイオンを含んだ流体を流すことによって、流体中のイオンを除去していた。   As shown in FIG. 7, a conventional ion removal filter for a fuel cell is configured by filling an ion exchange resin in a cylindrical container. And the ion in a fluid was removed by flowing the fluid containing ion toward the other end from the one end of a container.

従来の燃料電池用イオン除去フィルタでは、イオンの交換能力を向上させることができるという利点があるが、圧力損失が高くなってしまうという問題がある。圧力損失が高くなると、流体を循環させる循環用ポンプの負荷が高くなる。燃料電池自動車は自己発電して走行するので、発電した電力が循環用ポンプに奪われると、電力を効率良く走行に結びつけることができなくなる。   A conventional ion removal filter for a fuel cell has an advantage that ion exchange ability can be improved, but has a problem that pressure loss increases. When the pressure loss increases, the load on the circulation pump that circulates the fluid increases. Since the fuel cell vehicle travels by self-power generation, if the generated power is taken by the circulation pump, the power cannot be efficiently linked to the travel.

イオンの交換能力をあまり低減することなく、圧力損失を下げるには、イオン交換樹脂と流体との接触面積を大きくすることが有効である。ところが最近の機械分野、特に自動車分野においては、部品においても軽量化及び小型化が求められており、イオン交換樹脂と流体との接触面積も大きくしにくくなっている。   Increasing the contact area between the ion exchange resin and the fluid is effective in reducing the pressure loss without significantly reducing the ion exchange capacity. However, in the recent mechanical field, particularly in the automobile field, parts are required to be reduced in weight and size, and it is difficult to increase the contact area between the ion exchange resin and the fluid.

そこで本発明は、燃料電池用イオン除去フィルタの全体の大きさを大きくすることなく、イオン交換樹脂と流体との接触面積を大きくとれる燃料電池用イオン除去フィルタを提供することを目的とする。   Therefore, an object of the present invention is to provide a fuel cell ion removal filter that can increase the contact area between the ion exchange resin and the fluid without increasing the overall size of the fuel cell ion removal filter.

以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照番号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものでない。   The present invention will be described below. In addition, in order to make an understanding of this invention easy, the reference number of an accompanying drawing is attached in parenthesis writing, However, This invention is not limited to the form of illustration.

上記課題を解決するために本発明者は、中空の円筒形状の空間内にイオン交換樹脂を充填し、中空の円筒形状の内周から外周に向かって又は外周から内周に向かって流体を流すようにした。   In order to solve the above-mentioned problems, the present inventor fills a hollow cylindrical space with ion exchange resin, and flows a fluid from the inner periphery of the hollow cylindrical shape toward the outer periphery or from the outer periphery toward the inner periphery. I did it.

すなわち請求項1の発明は、流体中の不純物を除去する燃料電池用イオン除去フィルタであって、流体の流入口(2)及び流出口(3)を有するケース(1)と、前記ケース(1)の内部に設けられ、イオン交換樹脂が充填される空間が中空の円筒形状に形成される容器(5)と、を備え、前記流入口(2)から流入する流体を、前記中空の円筒形状の外周から内周に向かって又は内周から外周に向かって流すことを特徴とする燃料電池用イオン除去フィルタにより、上述した課題を解決する。   That is, the invention of claim 1 is an ion removal filter for a fuel cell that removes impurities in a fluid, and includes a case (1) having a fluid inlet (2) and an outlet (3), and the case (1). ) And a container (5) in which the space filled with the ion exchange resin is formed in a hollow cylindrical shape, and the fluid flowing in from the inflow port (2) is transferred to the hollow cylindrical shape The above-described problem is solved by an ion removal filter for a fuel cell that flows from the outer periphery to the inner periphery or from the inner periphery to the outer periphery.

請求項2の発明は、請求項1に記載の燃料電池用イオン除去フィルタにおいて、前記容器(5)は、前記流入口(2)及び前記流出口(3)の一方に接続され、複数の穴が形成された内筒(6)と、前記内筒(6)の外側に設けられ、複数の穴が形成された外筒(7)と、前記外筒(6)の軸線方向の両端部に設けられる一対の端板(8,9)と、を備えることを特徴とする。   According to a second aspect of the present invention, in the ion removal filter for a fuel cell according to the first aspect, the container (5) is connected to one of the inlet (2) and the outlet (3), and has a plurality of holes. Formed on the outer side of the inner cylinder (6), the outer cylinder (7) formed with a plurality of holes, and the axial ends of the outer cylinder (6). And a pair of end plates (8, 9) provided.

請求項3の発明は、流体中の不純物を除去する燃料電池用イオン除去フィルタであって、流体の流入口(2)及び流出口(3)を有するケース(1)と、前記ケース(1)の内部に設けられ、イオン交換樹脂が充填される空間が中空の円筒形状に形成される容器(5)と、を備え、前記容器(5)は、前記流入口(2)及び前記流出口(3)の一方に接続され、複数の穴が形成された内筒(6)と、前記内筒(6)の外側に設けられ、複数の穴が形成された外筒(7)と、前記外筒(7)の軸線方向の両端部に設けられる一対の端板(8,9)と、を有することを特徴とする燃料電池用イオン除去フィルタにより、上述した課題を解決する。   The invention of claim 3 is an ion removal filter for a fuel cell that removes impurities in a fluid, and includes a case (1) having a fluid inlet (2) and an outlet (3), and the case (1). And a container (5) in which a space filled with an ion exchange resin is formed in a hollow cylindrical shape, and the container (5) includes the inlet (2) and the outlet ( 3) an inner cylinder (6) connected to one of the plurality of holes, an outer cylinder (7) provided outside the inner cylinder (6) and formed with a plurality of holes, and the outer cylinder The above-described problem is solved by a fuel cell ion removal filter having a pair of end plates (8, 9) provided at both ends in the axial direction of the cylinder (7).

請求項1の発明によれば、中空の円筒形状の内周から外周に向かって又は外周から内周に向かって流体を流すことで、イオン交換樹脂と流体との接触面積を大きくとることがきる。このためイオン交換樹脂の交換能力をあまり低減することなく、且つ圧力損失を下げることができる。イオン交換樹脂に流体を流すことによって流体中のイオンを除去するという現象は、化学反応の反応速度と大きく関係があり、いわば自然現象である。効率的にイオンを除去するためには流体の流速が遅いことが好ましい。イオン交換樹脂と流体との接触面積が大きくなると流体の流速が遅くなり、効率的にイオンを除去することができる。   According to the first aspect of the present invention, the contact area between the ion exchange resin and the fluid can be increased by flowing the fluid from the inner periphery to the outer periphery of the hollow cylindrical shape or from the outer periphery to the inner periphery. . For this reason, the pressure loss can be reduced without significantly reducing the exchange capacity of the ion exchange resin. The phenomenon of removing ions in the fluid by flowing the fluid through the ion exchange resin is largely related to the reaction rate of the chemical reaction, which is a natural phenomenon. In order to remove ions efficiently, the fluid flow rate is preferably slow. When the contact area between the ion exchange resin and the fluid increases, the flow velocity of the fluid decreases and ions can be efficiently removed.

請求項2の発明によれば、内筒、外筒及び一対の端板との間で中空の円筒形状の空間を形成することができる。また容器の外周から内周に向かって又は内周から外周に向かって流体の流れを形成することができる。   According to the invention of claim 2, a hollow cylindrical space can be formed between the inner cylinder, the outer cylinder and the pair of end plates. Further, a fluid flow can be formed from the outer periphery to the inner periphery or from the inner periphery to the outer periphery.

請求項1の発明は、請求項3の発明のように構成することもできる。   The invention of claim 1 can also be configured as the invention of claim 3.

以下添付図面に基づいて本発明の燃料電池用イオン除去フィルタの実施形態を説明する。燃料電池用イオン除去フィルタは、特に限定されるものではないが、燃料電池本体を冷却する冷却回路や、燃料電池本体のイオン交換膜を加湿する加湿回路に組み込まれるのが一般的である。冷却水用の流体には水、あるいは耐凍結を考慮してエチレングリコールと水の溶液が使用され、加湿用の流体には純水が使用される。燃料電池用イオン除去フィルタは、これら水、エチレングリコール水、純水中のイオンを除去して導電率(電気伝導度)を低減させる。   Hereinafter, embodiments of an ion removal filter for a fuel cell according to the present invention will be described with reference to the accompanying drawings. The ion removal filter for a fuel cell is not particularly limited, but is generally incorporated in a cooling circuit that cools the fuel cell main body or a humidification circuit that humidifies the ion exchange membrane of the fuel cell main body. Water or a solution of ethylene glycol and water is used for the cooling fluid in consideration of anti-freezing, and pure water is used for the humidifying fluid. The ion removal filter for a fuel cell removes ions in these water, ethylene glycol water, and pure water to reduce conductivity (electrical conductivity).

イオン交換樹脂は、溶液中のイオンと結合あるいはイオン交換できる合成樹脂であり、酸性基、あるいは塩基性基をもつ。陽イオン交換樹脂は、固体の酸でスルホン基やカルボキシル基をもち、その官能基(分子の一部)の水素がイオンとなって放出され、周りの溶液中の陽イオンと入れ替わる。陰イオン交換樹脂は固体の塩基で、その水酸基が他の陰イオンと交換して放出され、陰イオンが樹脂に結合する。イオン交換樹脂の量、極性は、流体の流量、不純物の量に応じて様々に設定される。   An ion exchange resin is a synthetic resin capable of binding or ion exchange with ions in a solution, and has an acidic group or a basic group. The cation exchange resin is a solid acid having a sulfone group or a carboxyl group, and hydrogen of the functional group (part of the molecule) is released as an ion, which is replaced with a cation in the surrounding solution. Anion exchange resins are solid bases whose hydroxyl groups are exchanged with other anions and released, and the anions bind to the resin. The amount and polarity of the ion exchange resin are variously set according to the flow rate of the fluid and the amount of impurities.

図1及び図2は、本発明の第1の実施形態における燃料電池用イオン除去フィルタの断面図を示す。ケース1は流体の流入口2及び流出口3とを有する。ケース1は円筒形状の外周部1aと、外周部1aの軸線方向の両端に固定された一対の円盤状の端部1b,1bとで構成される。流入口2及び流出口3は端部1b,1bに形成される。この実施形態ではケースを複数の部材から一体に構成しているが、ケースをケース本体とケース本体を覆うカバーとで構成し、カバーがケースに対して着脱可能にしてもよい。なお流入口2及び流出口3が形成されるものであれば、ケース1の形状、構造は特に限定されるものではない。   1 and 2 are sectional views of an ion removal filter for a fuel cell according to the first embodiment of the present invention. The case 1 has a fluid inlet 2 and an outlet 3. The case 1 includes a cylindrical outer peripheral portion 1a and a pair of disk-shaped end portions 1b and 1b fixed to both ends in the axial direction of the outer peripheral portion 1a. The inflow port 2 and the outflow port 3 are formed at the end portions 1b and 1b. In this embodiment, the case is integrally formed of a plurality of members, but the case may be formed of a case main body and a cover that covers the case main body, and the cover may be detachable from the case. As long as the inlet 2 and the outlet 3 are formed, the shape and structure of the case 1 are not particularly limited.

ケース1の内部には、イオン交換樹脂が充填される容器5が組み込まれる。図3及び図4は容器5の詳細図を示す。容器5は、内筒6と、内筒6の外側に内筒6と軸線が一致するように設けられる外筒7と、外筒7の軸線方向の両端部に設けられる一対の端板8,9とを備える。   Inside the case 1, a container 5 filled with an ion exchange resin is incorporated. 3 and 4 show detailed views of the container 5. The container 5 includes an inner cylinder 6, an outer cylinder 7 provided on the outer side of the inner cylinder 6 so that the axis thereof coincides with the inner cylinder 6, and a pair of end plates 8 provided at both ends in the axial direction of the outer cylinder 7 9.

内筒6の周囲には、流体の流出穴6aが多数形成される。内筒6の上端部6bは上側の端板8よりも上方に突出し、その周囲にはシール部材10が巻かれる。この内筒6の上端部6bはケース1の流出口3に接続される。外筒7の周囲にも、流体の流入穴7aが多数形成される。一対の端板8,9は環状に形成される。底側の端板9は内筒6の下端と外筒7の下端とを接続し、上側の端板8は内筒6の上端と外筒7の上端とを接続する。   A large number of fluid outflow holes 6 a are formed around the inner cylinder 6. The upper end portion 6b of the inner cylinder 6 protrudes upward from the upper end plate 8, and a seal member 10 is wound around the upper end portion 6b. The upper end 6 b of the inner cylinder 6 is connected to the outlet 3 of the case 1. A large number of fluid inflow holes 7 a are also formed around the outer cylinder 7. The pair of end plates 8 and 9 are formed in an annular shape. The bottom end plate 9 connects the lower end of the inner cylinder 6 and the lower end of the outer cylinder 7, and the upper end plate 8 connects the upper end of the inner cylinder 6 and the upper end of the outer cylinder 7.

上側の端板8は、容器5内に充填されたイオン交換樹脂を押える機能を有し、外筒7及び内筒6に対してスライド可能となっている。端板8の上方には外筒7に固定された天板12が設けられる。端板8天板12との間には、イオン交換樹脂を押えるための力を付与するコイルスプリング13が配置される。端板8の外周及び内周それぞれにはシール部材8a,8bが設けられる。このシール部材8a,8bは外筒7の内周及び内筒6の外周それぞれに接触して流体が漏れるのを防止する。下側の端板9には必要に応じて流体の流入口が形成される。   The upper end plate 8 has a function of pressing the ion exchange resin filled in the container 5 and is slidable with respect to the outer cylinder 7 and the inner cylinder 6. A top plate 12 fixed to the outer cylinder 7 is provided above the end plate 8. A coil spring 13 is disposed between the end plate 8 and the top plate 12 to apply a force for pressing the ion exchange resin. Seal members 8a and 8b are provided on the outer periphery and inner periphery of the end plate 8, respectively. The seal members 8a and 8b prevent the fluid from leaking by contacting the inner periphery of the outer cylinder 7 and the outer periphery of the inner cylinder 6, respectively. A fluid inlet is formed in the lower end plate 9 as necessary.

これら内筒6、外筒7及び一対の端板8,9によって、イオン交換樹脂が充填される中空の円筒形状の空間が形成される。例えば直径500μm程度の粒状のイオン交換樹脂をこの空間に収容できるように、内筒6及び外筒7の回りには例えば100μm程度のメッシュの網が張られる。   The inner cylinder 6, the outer cylinder 7, and the pair of end plates 8 and 9 form a hollow cylindrical space filled with an ion exchange resin. For example, a mesh net of about 100 μm is stretched around the inner cylinder 6 and the outer cylinder 7 so that a granular ion exchange resin having a diameter of about 500 μm can be accommodated in this space.

ケース1の下部の流入口2から流入する流体は、ケース1の底部と端板9との間の隙間、ケース1の内周面と外筒7との間の断面環状の通路を経由して、外筒7の複数の流入穴7aからイオン交換樹脂が充填されている領域に流れ込む。イオン交換樹脂によりイオンが除去された流体は、内筒6の複数の流出穴6aから内筒6内に流れ込み、その後、内筒の軸線方向(上方向)に移動し、ケース1の流出口3から流出する。なお流体をこれとは逆方向に、流出口3から流入口2に向かって流しても良い。   The fluid flowing in from the inflow port 2 at the lower part of the case 1 passes through a gap between the bottom of the case 1 and the end plate 9 and an annular passage between the inner peripheral surface of the case 1 and the outer cylinder 7. Then, it flows from the plurality of inflow holes 7a of the outer cylinder 7 into the region filled with the ion exchange resin. The fluid from which the ions have been removed by the ion exchange resin flows into the inner cylinder 6 from the plurality of outflow holes 6a of the inner cylinder 6, and then moves in the axial direction (upward) of the inner cylinder. Spill from. Note that the fluid may flow from the outlet 3 toward the inlet 2 in the opposite direction.

図5は容器5に収容されるイオン交換樹脂の全体形状を示す。図5中(A)は平面形状を示し、図5中(B)は断面形状を示す。図5に示されるように、イオン交換樹脂の全体形状は中空の円筒形状に形成される。流体は中空の円筒形状のイオン交換樹脂の外周から内周に向かって通過する。イオン交換樹脂を通過した冷却水は、イオン交換樹脂の内周側を軸線方向に流れる。   FIG. 5 shows the overall shape of the ion exchange resin accommodated in the container 5. 5A shows a planar shape, and FIG. 5B shows a cross-sectional shape. As shown in FIG. 5, the overall shape of the ion exchange resin is formed in a hollow cylindrical shape. The fluid passes from the outer periphery to the inner periphery of the hollow cylindrical ion exchange resin. The cooling water that has passed through the ion exchange resin flows in the axial direction on the inner peripheral side of the ion exchange resin.

本実施形態によれば、イオン交換樹脂の全体形状を中空の円筒形状に形成したので、イオン交換樹脂と流体との接触面積を大きくとることができ、流体の流速を遅くすることができる。したがって効率的にイオンを除去することができる。   According to this embodiment, since the entire shape of the ion exchange resin is formed in a hollow cylindrical shape, the contact area between the ion exchange resin and the fluid can be increased, and the flow rate of the fluid can be reduced. Therefore, ions can be efficiently removed.

イオン交換樹脂の全体形状を中空の円筒形状に形成した場合、イオン交換樹脂の外周面では流速が遅く、内側へ行くにしたがって流速が速くなる。ここでイオン交換樹脂の外周から内周に向かって流体を流すと、外周では除去される前のイオン濃度が高い流体が流れるので、流速を遅くして効率的にイオンを除去することができる。一方内周ではイオンが除去され、イオン濃度が低くなっている流体が流れるので、流速が速くてもかまわない。外周から内周に向かって、あるいは内周から外周に向かって、どちらに向かって流体を流してもよいが、このようなことから外周から内周に向かって流体を流すのが除去効率の面では理想的である。   When the overall shape of the ion exchange resin is formed in a hollow cylindrical shape, the flow rate is slow on the outer peripheral surface of the ion exchange resin, and the flow rate increases as it goes inward. Here, when a fluid is flowed from the outer periphery to the inner periphery of the ion exchange resin, a fluid having a high ion concentration before being removed flows on the outer periphery, so that ions can be efficiently removed by slowing the flow rate. On the other hand, ions are removed on the inner circumference, and a fluid having a low ion concentration flows, so the flow rate may be high. The fluid may flow from either the outer periphery to the inner periphery or from the inner periphery to the outer periphery, but for this reason, the flow of fluid from the outer periphery to the inner periphery is the aspect of removal efficiency. Then it is ideal.

図6は本発明の第2の実施形態における燃料電池用イオン除去フィルタを示す。この実施形態でも、ケース21の内部に設けられる容器22には、イオン交換樹脂が収容される中空の円筒形状の空間が形成される。   FIG. 6 shows a fuel cell ion removal filter according to a second embodiment of the present invention. Also in this embodiment, a hollow cylindrical space in which the ion exchange resin is accommodated is formed in the container 22 provided inside the case 21.

ケース21は、流入口23及び流出口24が形成されたケース本体25と、ケース本体25に着脱可能に取り付けられる有底円筒状のカバー26とから構成される。ケース本体25の側面には流入口23を構成する流入通路27が形成され、ケース本体25の下部には流出口24を構成する流出通路28が形成される。流入通路27と流出通路28との間には、流入通路27から流入する流体が、イオン交換樹脂を経由せずに流出通路28に流出できるようにバイパス通路29が形成される。このバイパス通路29には、流体の温度変化によってイオン交換樹脂に流れる流体の流量を調整する弁機構34が設けられる。   The case 21 includes a case main body 25 in which an inflow port 23 and an outflow port 24 are formed, and a bottomed cylindrical cover 26 that is detachably attached to the case main body 25. An inflow passage 27 that forms the inflow port 23 is formed on the side surface of the case body 25, and an outflow passage 28 that forms the outflow port 24 is formed in the lower portion of the case body 25. A bypass passage 29 is formed between the inflow passage 27 and the outflow passage 28 so that the fluid flowing in from the inflow passage 27 can flow out to the outflow passage 28 without passing through the ion exchange resin. The bypass passage 29 is provided with a valve mechanism 34 that adjusts the flow rate of the fluid flowing through the ion exchange resin according to the temperature change of the fluid.

容器22は、内筒30と、内筒30の外側に軸線が一致するように設けられる外筒31と、外筒31の軸線方向の両端部に設けられる一対の端板32,33とを備える。内筒30の下端が下側の端板32よりも下方に突出し、流出通路28に接続されている。内筒30には流体が通過可能に複数の穴が形成され、外筒31にも複数穴の穴が形成されている。外筒31よりも外側が流入口23に連通し、内筒30よりも内側が流出口24に連通している。   The container 22 includes an inner cylinder 30, an outer cylinder 31 provided so that the axis line coincides with the outer side of the inner cylinder 30, and a pair of end plates 32 and 33 provided at both ends in the axial direction of the outer cylinder 31. . The lower end of the inner cylinder 30 projects downward from the lower end plate 32 and is connected to the outflow passage 28. The inner cylinder 30 is formed with a plurality of holes through which fluid can pass, and the outer cylinder 31 is also formed with a plurality of holes. The outside of the outer cylinder 31 communicates with the inlet 23 and the inner side of the inner cylinder 30 communicates with the outlet 24.

流入口23から流入する流体は、イオン交換樹脂の外周から内周に向かって通過する。イオン交換樹脂を通過した冷却水は、イオン交換樹脂の内周側を軸線方向に流れ、流出口24から流出する。   The fluid flowing in from the inflow port 23 passes from the outer periphery to the inner periphery of the ion exchange resin. The cooling water that has passed through the ion exchange resin flows in the axial direction on the inner peripheral side of the ion exchange resin and flows out from the outlet 24.

この実施形態の燃料電池用イオン除去フィルタは流体として冷却水中の不純物を除去するのに用いられる。バイパス通路29に設けられる弁機構34は、冷却水の温度変化によってイオン交換樹脂に流れる冷却水の流量を調整する。具体的には冷却水が低温時(始動時)には弁を閉じる方に移動させ、イオン交換樹脂に流れる冷却水の流量を大きくする。一方、高温時には弁を開ける方向に移動させ、イオン交換樹脂に流れる冷却水の流量を小さくする。燃料電池の始動時には、冷却水の温度が低く、且つ冷却水が滞留するため、冷却水に多量のイオンが溶出する。一方燃料電池の運転中には、冷却水の温度が高く、且つ冷却水中には少量のイオンしか溶出しない。弁機構34が、始動時にイオン交換樹脂に多量の冷却水を流し、運転時にはイオン交換樹脂に少量の冷却水しか流さないので、燃料電池本体に悪影響を及ぼさないように効率的に冷却水中のイオンを除去することができる。   The fuel cell ion removal filter of this embodiment is used to remove impurities in cooling water as a fluid. The valve mechanism 34 provided in the bypass passage 29 adjusts the flow rate of the cooling water flowing through the ion exchange resin according to the temperature change of the cooling water. Specifically, when the cooling water is at a low temperature (starting), the valve is moved to close the valve to increase the flow rate of the cooling water flowing through the ion exchange resin. On the other hand, when the temperature is high, the valve is moved in the direction of opening, and the flow rate of the cooling water flowing through the ion exchange resin is reduced. When the fuel cell is started, the temperature of the cooling water is low and the cooling water stays, so that a large amount of ions are eluted in the cooling water. On the other hand, during operation of the fuel cell, the temperature of the cooling water is high and only a small amount of ions are eluted in the cooling water. Since the valve mechanism 34 causes a large amount of cooling water to flow through the ion exchange resin at the start and only a small amount of cooling water to flow through the ion exchange resin during operation, the ions in the cooling water can be efficiently prevented so as not to adversely affect the fuel cell body. Can be removed.

本発明の第1の実施形態における燃料電池用イオン除去フィルタを示す断面斜視図。1 is a cross-sectional perspective view showing a fuel cell ion removal filter according to a first embodiment of the present invention. 本発明の第1の実施形態における燃料電池用イオン除去フィルタを示す断面図。Sectional drawing which shows the ion removal filter for fuel cells in the 1st Embodiment of this invention. 容器の斜視図。The perspective view of a container. 容器の斜視断面図。The perspective sectional view of a container. 容器に収容されるイオン交換樹脂の全体形状(図中(A)は平面図を示し、図中(B)は断面図を示す)。The whole shape of the ion exchange resin accommodated in the container ((A) in the figure shows a plan view, and (B) in the figure shows a sectional view). 本発明の第2の実施形態における燃料電池用イオン除去フィルタを示す断面図。Sectional drawing which shows the ion removal filter for fuel cells in the 2nd Embodiment of this invention. 従来の燃料電池用イオン除去フィルタを示す概念図。The conceptual diagram which shows the conventional ion removal filter for fuel cells.

符号の説明Explanation of symbols

1,21・・・ケース
2,23・・・流入口
3,24・・・流出口
5,22・・・容器
6,30・・・内筒
6a・・・流出穴(穴)
7,31・・・外筒
7a・・・流入穴(穴)
8,9,32,33・・・端板
1,21 ... Case 2,23 ... Inlet 3,24 ... Outlet 5,22 ... Vessel 6,30 ... Inner cylinder 6a ... Outlet hole (hole)
7, 31 ... outer cylinder 7a ... inflow hole (hole)
8, 9, 32, 33 ... end plate

Claims (3)

流体中の不純物を除去する燃料電池用イオン除去フィルタであって、
流体の流入口及び流出口を有するケースと、
前記ケースの内部に設けられ、イオン交換樹脂が充填される空間が中空の円筒形状に形成される容器と、を備え、
前記流入口から流入する流体を、前記中空の円筒形状の外周から内周に向かって又は内周から外周に向かって流すことを特徴とする燃料電池用イオン除去フィルタ。
An ion removal filter for a fuel cell that removes impurities in a fluid,
A case having a fluid inlet and outlet;
A container provided inside the case and having a hollow cylindrical shape filled with an ion exchange resin,
An ion removing filter for a fuel cell, wherein the fluid flowing in from the inflow port flows from the outer periphery of the hollow cylindrical shape toward the inner periphery or from the inner periphery to the outer periphery.
前記容器は、
前記流入口及び前記流出口の一方に接続され、複数の穴が形成された内筒と、
前記内筒の外側に設けられ、複数の穴が形成された外筒と、
前記外筒の軸線方向の両端部に設けられる一対の端板と、を備えることを特徴とする請求項1に記載の燃料電池用イオン除去フィルタ。
The container is
An inner cylinder connected to one of the inlet and the outlet and formed with a plurality of holes;
An outer cylinder provided outside the inner cylinder and having a plurality of holes;
The fuel cell ion removal filter according to claim 1, further comprising: a pair of end plates provided at both ends of the outer cylinder in the axial direction.
流体中の不純物を除去する燃料電池用イオン除去フィルタであって、
流体の流入口及び流出口を有するケースと、
前記ケースの内部に設けられ、イオン交換樹脂が充填される空間が中空の円筒形状に形成される容器と、を備え、
前記容器は、
前記流入口及び前記流出口の一方に接続され、複数の穴が形成された内筒と、
前記内筒の外側に設けられ、複数の穴が形成された外筒と、
前記外筒の軸線方向の両端部に設けられる一対の端板と、を有することを特徴とする燃料電池用イオン除去フィルタ。
An ion removal filter for a fuel cell that removes impurities in a fluid,
A case having a fluid inlet and outlet;
A container provided inside the case and having a hollow cylindrical shape filled with an ion exchange resin,
The container is
An inner cylinder connected to one of the inlet and the outlet and formed with a plurality of holes;
An outer cylinder provided outside the inner cylinder and having a plurality of holes;
An ion removal filter for a fuel cell, comprising: a pair of end plates provided at both end portions in the axial direction of the outer cylinder.
JP2003297631A 2003-08-21 2003-08-21 Ion removing filter for fuel cell Pending JP2005071709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297631A JP2005071709A (en) 2003-08-21 2003-08-21 Ion removing filter for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297631A JP2005071709A (en) 2003-08-21 2003-08-21 Ion removing filter for fuel cell

Publications (1)

Publication Number Publication Date
JP2005071709A true JP2005071709A (en) 2005-03-17

Family

ID=34403426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297631A Pending JP2005071709A (en) 2003-08-21 2003-08-21 Ion removing filter for fuel cell

Country Status (1)

Country Link
JP (1) JP2005071709A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135271A (en) * 2006-11-28 2008-06-12 Kyocera Corp Fuel cell device
JP2009512169A (en) * 2005-10-18 2009-03-19 ミシュラン ルシェルシュ エ テクニーク ソシエテ アノニム Integrated fluid management fuel cell
US7947171B2 (en) * 2003-11-13 2011-05-24 Nissan Motor Co., Ltd. Cooling device for fuel cell
CN102222793A (en) * 2010-04-15 2011-10-19 现代自动车株式会社 Coolant demineralizer for fuel cell vehicle
WO2013054758A1 (en) * 2011-10-14 2013-04-18 日産自動車株式会社 Ion exchanger and cooling device equipped with ion exchanger
KR101379823B1 (en) * 2012-07-23 2014-04-01 말레동현필터시스템 주식회사 Ion filter apparatus for fuel cell vehicle
WO2014174982A1 (en) * 2013-04-26 2014-10-30 日産自動車株式会社 Ion exchanger and cooling device, and method for controlling cooling device
EP2883843A1 (en) * 2013-12-16 2015-06-17 Roki Co., Ltd. Ion-exchangeer for fuel cell
US10069151B2 (en) * 2015-05-29 2018-09-04 Hyundai Motor Company De-mineralizer for fuel cell and manufacturing method of same
WO2022124472A1 (en) * 2019-12-13 2022-06-16 한온시스템 주식회사 Reservoir tank for vehicle
WO2024032184A1 (en) * 2022-08-10 2024-02-15 上海弗列加滤清器有限公司 Deionizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111081A (en) * 1980-01-18 1981-09-02 Fichtel & Sachs Ag Filter
JPH0919678A (en) * 1995-07-05 1997-01-21 Tokyo Gas Co Ltd Structure of tank
JP2002298885A (en) * 2001-03-30 2002-10-11 Nissan Motor Co Ltd Fuel cell system
JP2003229152A (en) * 2001-11-30 2003-08-15 Toyo Roki Mfg Co Ltd Ion removal filter for fuel cell
JP2003249249A (en) * 2002-02-22 2003-09-05 Toyo Roki Mfg Co Ltd Ion removing filter for fuel cell and cooling system for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111081A (en) * 1980-01-18 1981-09-02 Fichtel & Sachs Ag Filter
JPH0919678A (en) * 1995-07-05 1997-01-21 Tokyo Gas Co Ltd Structure of tank
JP2002298885A (en) * 2001-03-30 2002-10-11 Nissan Motor Co Ltd Fuel cell system
JP2003229152A (en) * 2001-11-30 2003-08-15 Toyo Roki Mfg Co Ltd Ion removal filter for fuel cell
JP2003249249A (en) * 2002-02-22 2003-09-05 Toyo Roki Mfg Co Ltd Ion removing filter for fuel cell and cooling system for fuel cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947171B2 (en) * 2003-11-13 2011-05-24 Nissan Motor Co., Ltd. Cooling device for fuel cell
JP2013127978A (en) * 2005-10-18 2013-06-27 Michelin Recherche & Technique Sa Fuel cell
JP2009512169A (en) * 2005-10-18 2009-03-19 ミシュラン ルシェルシュ エ テクニーク ソシエテ アノニム Integrated fluid management fuel cell
JP2008135271A (en) * 2006-11-28 2008-06-12 Kyocera Corp Fuel cell device
CN102222793A (en) * 2010-04-15 2011-10-19 现代自动车株式会社 Coolant demineralizer for fuel cell vehicle
KR101091666B1 (en) 2010-04-15 2011-12-08 기아자동차주식회사 De-Mineralizer for fuel cell
JPWO2013054758A1 (en) * 2011-10-14 2015-03-30 日産自動車株式会社 Ion exchanger and cooling device provided with ion exchanger
CN103857628B (en) * 2011-10-14 2016-06-15 日产自动车株式会社 Ion-exchanger and there is the cooling device of ion-exchanger
CN103857628A (en) * 2011-10-14 2014-06-11 日产自动车株式会社 Ion exchanger and cooling device equipped with ion exchanger
US9620801B2 (en) 2011-10-14 2017-04-11 Nissan Motor Co., Ltd. Ion exchanger and cooler having ion exchanger
WO2013054758A1 (en) * 2011-10-14 2013-04-18 日産自動車株式会社 Ion exchanger and cooling device equipped with ion exchanger
KR101379823B1 (en) * 2012-07-23 2014-04-01 말레동현필터시스템 주식회사 Ion filter apparatus for fuel cell vehicle
JP6069718B2 (en) * 2013-04-26 2017-02-01 日産自動車株式会社 Ion exchanger, cooling device, and control method of cooling device
WO2014174982A1 (en) * 2013-04-26 2014-10-30 日産自動車株式会社 Ion exchanger and cooling device, and method for controlling cooling device
EP2883843A1 (en) * 2013-12-16 2015-06-17 Roki Co., Ltd. Ion-exchangeer for fuel cell
JP2015112592A (en) * 2013-12-16 2015-06-22 株式会社Roki Ion exchanger
US9614234B2 (en) 2013-12-16 2017-04-04 Roki Co., Ltd. Ion-exchange equipment
US10069151B2 (en) * 2015-05-29 2018-09-04 Hyundai Motor Company De-mineralizer for fuel cell and manufacturing method of same
WO2022124472A1 (en) * 2019-12-13 2022-06-16 한온시스템 주식회사 Reservoir tank for vehicle
WO2024032184A1 (en) * 2022-08-10 2024-02-15 上海弗列加滤清器有限公司 Deionizer

Similar Documents

Publication Publication Date Title
JP4102744B2 (en) Ion exchange filter
JP4007725B2 (en) Cooling water circulation device for fuel cell
EP1929568B1 (en) Fuel cell stacks and systems with fluid-responsive temperature regulation
US8492044B2 (en) Systems and methods for starting and operating fuel cell systems in subfreezing temperatures
JP4113715B2 (en) Fuel cell cooling system
JP2005071709A (en) Ion removing filter for fuel cell
US11607648B2 (en) Assembly-type cartridge block and hollow-fiber membrane module comprising same
KR102304857B1 (en) Humidification device for fuel cell
WO2005083826A1 (en) Fuel cell system
JP6604277B2 (en) Ion exchanger
JP2011083744A (en) Ion exchanger of cooling water supply device
JP6617685B2 (en) Ion exchanger
CN109962264B (en) Built-in deionization system of water tank of fuel cell
JP4815105B2 (en) Ion removal filter for fuel cell and manufacturing method thereof
KR20190081735A (en) Fuel cell membrane humidifier capable of controlling flow direction of fluid
JP4454221B2 (en) Ion removal filter for fuel cell
KR102471030B1 (en) Humidifier for Fuel Cell
CN102403521A (en) Fluid storage and purification integrated device for fuel cell and fluid cooling system of fuel cell
CN213636050U (en) Fuel cell cooling device and fuel cell system
KR100778480B1 (en) Heat storaging apparatus of fuel cell system
CN101209668B (en) Heat radiating method for fuel cell car
JP2010192225A (en) Ion exchange apparatus
CN2600923Y (en) Radiator with deionization device for fuel cell engine
JP2007205678A (en) Humidifier
CN200988423Y (en) Heat radiator for fuel battery vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005