JP2005069683A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2005069683A
JP2005069683A JP2004353678A JP2004353678A JP2005069683A JP 2005069683 A JP2005069683 A JP 2005069683A JP 2004353678 A JP2004353678 A JP 2004353678A JP 2004353678 A JP2004353678 A JP 2004353678A JP 2005069683 A JP2005069683 A JP 2005069683A
Authority
JP
Japan
Prior art keywords
compressor
air conditioner
expansion valve
heat exchanger
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004353678A
Other languages
Japanese (ja)
Inventor
Sunao Saito
直 斉藤
Yoshihiro Tanabe
義浩 田辺
Yasuo Imashiro
康雄 今城
Isao Funayama
功 舟山
Katsuyuki Aoki
克之 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004353678A priority Critical patent/JP2005069683A/en
Publication of JP2005069683A publication Critical patent/JP2005069683A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner provided with a compressor driven by an inverter system, ensure the reliability of the compressor and enable accurate failure diagnosis of an electronic controlled expansion valve at the time of service. <P>SOLUTION: This is an air conditioner wherein a compressor, an indoor side heat exchanger, an electronic controlled expansion valve and an outdoor side heat exchanger constitute a refrigerating cycle, and the compressor is driven by an inverter system. This air conditioner is configured to change the maximum frequency of the compressor in the case where the discharge temperature of the compressor is abnormally reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、インバータ駆動する圧縮機を備えた空気調和機に係り、冷媒量を電子制御式膨張弁により制御するようにした空気調和機に関する。   The present invention relates to an air conditioner including a compressor driven by an inverter, and relates to an air conditioner in which the amount of refrigerant is controlled by an electronically controlled expansion valve.

室内側熱交換器の入口出口温度差の時間的変化のうち傾きの反転を検出することにより、減圧弁4を制御する技術が開示されている。(例えば特許文献1参照)   A technique is disclosed in which the pressure reducing valve 4 is controlled by detecting a reversal of the inclination in a temporal change in the inlet / outlet temperature difference of the indoor heat exchanger. (For example, see Patent Document 1)

また、運転周波数に応じた膨張弁4開度を設定し、室内側熱交換器5中間と出口温度検知センサーで検知された温度差に応じた弁開度指令信号を出力し、膨張弁の弁開度を調整する技術が開示されている。(例えば特許文献2参照)
特開昭60−11075号公 特開昭58−205057号公報
Further, the opening degree of the expansion valve 4 corresponding to the operating frequency is set, and a valve opening degree command signal corresponding to the temperature difference detected by the middle of the indoor heat exchanger 5 and the outlet temperature detection sensor is output. A technique for adjusting the opening is disclosed. (For example, see Patent Document 2)
Japanese Unexamined Patent Publication No. 60-11075 JP 58-205057 A

従来の冷媒流量制御を減圧装置で行っている空気調和機では、もし減圧装置が故障した場合、故障した時点での減圧弁の位置によっては、圧縮機が液冷媒を吸入する液バックという現象を起こし、圧縮機の信頼性という面で問題があった。
また、サービス時に運転状況のみでは、電子制御式膨張弁の故障は把握しきれないという問題点があった。
In an air conditioner in which conventional refrigerant flow control is performed by a decompression device, if the decompression device fails, the phenomenon of a liquid back where the compressor sucks liquid refrigerant may occur depending on the position of the decompression valve at the time of failure. This caused problems with the reliability of the compressor.
In addition, there is a problem that the failure of the electronically controlled expansion valve cannot be grasped only by the operating state at the time of service.

この発明は、上記のような課題を解決するためになされたもので、圧縮機の信頼性の確保を目的としている。   The present invention has been made to solve the above-described problems, and aims to ensure the reliability of the compressor.

また、サービス時の電子制御式膨張弁の正確な故障診断を目的としている。   It is also aimed at accurate fault diagnosis of electronically controlled expansion valves during service.

この発明の空気調和機は、圧縮機、室内側熱交換器、電子制御式膨張弁、室外側熱交換器で冷凍サイクルを構成し、圧縮機がインバータ駆動する空気調和機において、圧縮機の吐出温度が異常低下した場合圧縮機の最大周波数を変更するものである。   An air conditioner according to the present invention includes a compressor, an indoor heat exchanger, an electronically controlled expansion valve, and an outdoor heat exchanger that constitute a refrigeration cycle, and the compressor is inverter-driven. When the temperature drops abnormally, the maximum frequency of the compressor is changed.

この発明の空気調和機は、圧縮機、室内側熱交換器、電子制御式膨張弁、室外側熱交換器で冷凍サイクルを構成し、圧縮機がインバータ駆動する空気調和機において、圧縮機の吐出温度が異常低下した場合圧縮機の最大周波数を変更する構成にしたから、圧縮機が故障するという危険を回避できる効果を有する。   An air conditioner according to the present invention includes a compressor, an indoor heat exchanger, an electronically controlled expansion valve, and an outdoor heat exchanger that constitute a refrigeration cycle, and the compressor is inverter-driven. Since the maximum frequency of the compressor is changed when the temperature is abnormally lowered, there is an effect of avoiding a risk that the compressor breaks down.

実施の形態1.
以下、図1はこの発明の実施の形態1の冷凍サイクルの構成図を示すものである。1は圧縮機、2は電動機、3は室外側熱交換器、4は電子制御式膨張弁、5は室内側熱交換器である。6は周波数可変装置、7は制御装置、8は圧縮機1の吐出温度を検知するサーミスタ、9は室内側熱交換器5の入口温度を検知するサーミスタ、10は室内側熱交換器5の中間温度を検知するサーミスタである。また、制御装置7は上記吐出温度検知サーミスタ8、入口温度検知サーミスタ9及び中間温度検知サーミスタ10からの入力信号により記憶機能、演算機能およびこれらの機能を制御する制御部71と、この制御部71の出力信号(弁開度指令信号)に基づき電子制御式膨張弁4を作動させる弁駆動部72とから構成される。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a refrigeration cycle according to Embodiment 1 of the present invention. 1 is a compressor, 2 is an electric motor, 3 is an outdoor heat exchanger, 4 is an electronically controlled expansion valve, and 5 is an indoor heat exchanger. 6 is a frequency variable device, 7 is a control device, 8 is a thermistor that detects the discharge temperature of the compressor 1, 9 is a thermistor that detects the inlet temperature of the indoor heat exchanger 5, and 10 is the middle of the indoor heat exchanger 5. This is a thermistor that detects temperature. In addition, the control device 7 includes a control unit 71 that controls a storage function, a calculation function, and these functions based on input signals from the discharge temperature detection thermistor 8, the inlet temperature detection thermistor 9, and the intermediate temperature detection thermistor 10, and the control unit 71. The valve drive unit 72 operates the electronically controlled expansion valve 4 based on the output signal (valve opening command signal).

次に、この発明の実施の形態1の空気調和機の動作について詳細に説明する。周波数可変装置により圧縮機1の回転数を周波数制御して変化させれば、図2に示すように空気調和機の冷暖房能力を略比例的に変えることができる。そこで、図3、図4に示すように周波数可変装置6の出力周波数を例えば100段階に変化させる場合、この100段階のうち例えば10段階ごとに区切り10の周波数帯を設けた場合、その周波数帯で圧縮機1を回転させてそのときの最適膨張弁開度(PULn)、最適吐出温度(TDn)を実験等で求めておき、この各周波数帯に対する最適膨張弁開度(PULn)、最適吐出温度(TDn)を制御部71に予め記憶させておく。周波数可変装置6の出力周波数が変化すれば、この変化後の周波数に対応した前記最適弁開度(PULn)を前記制御部71で選択し、この選択値に応じた弁開度指令信号を制御部71から出力して弁駆動部72を介して電子制御式膨張弁4の開度を目標値と一致するように制御する。次いで、所定時間(例えば、数分間)経過してサイクルが安定した後、制御部71ではサーミスタ8からの検出信号に基づき吐出温度と現周波数帯での設定吐出温度(TDn)との偏差量を算出してその偏差量に応じた弁開度指令信号を出力する。この出力信号に基づき電子制御式膨張弁が調整され、負荷変動に応じた冷媒流量に制御される。以上のようにして冷媒流量が制御される。   Next, the operation of the air conditioner according to Embodiment 1 of the present invention will be described in detail. If the rotation speed of the compressor 1 is changed by controlling the frequency by the frequency variable device, the air conditioning capacity of the air conditioner can be changed approximately proportionally as shown in FIG. Therefore, when the output frequency of the frequency variable device 6 is changed to, for example, 100 steps as shown in FIGS. 3 and 4, when 10 frequency bands are provided for every 10 steps among the 100 steps, the frequency band is set. Then, the compressor 1 is rotated to obtain the optimum expansion valve opening (PULn) and the optimum discharge temperature (TDn) at that time by experiments, etc., and the optimum expansion valve opening (PULn) and optimum discharge for each frequency band are obtained. The temperature (TDn) is stored in the control unit 71 in advance. When the output frequency of the frequency variable device 6 changes, the optimum valve opening (PULn) corresponding to the changed frequency is selected by the control unit 71, and the valve opening command signal corresponding to the selected value is controlled. The opening degree of the electronically controlled expansion valve 4 is controlled so as to match the target value via the valve drive unit 72 output from the unit 71. Next, after a predetermined time (for example, several minutes) has passed and the cycle is stabilized, the control unit 71 determines the deviation amount between the discharge temperature and the set discharge temperature (TDn) in the current frequency band based on the detection signal from the thermistor 8. A valve opening command signal corresponding to the calculated deviation amount is output. The electronically controlled expansion valve is adjusted based on this output signal, and the refrigerant flow rate is controlled according to the load fluctuation. The refrigerant flow rate is controlled as described above.

上記のような冷媒流量の制御のみでは(上記従来技術も同様)、大きな負荷変動時もしくは冷媒不足時等では最適な吐出温度(上記従来技術ではスーパーヒート量)が変化し、冷房運転時の室内側熱交換器において過熱蒸気領域が冷媒の流れる方向に対して出口から入口方向に向けて進行するか、もしくは略中間位置に部分的に現れる。そのため、その過熱蒸気領域の室内側熱交換器の部分を湿った空気が入り込み吹き出し口からの露垂れや、露飛びという現象を引き起こす。   With only the control of the refrigerant flow rate as described above (same as in the above prior art), the optimum discharge temperature (superheat amount in the above prior art) changes when there is a large load fluctuation or when the refrigerant is insufficient, etc. In the inner heat exchanger, the superheated steam region advances from the outlet toward the inlet with respect to the direction in which the refrigerant flows, or partially appears at a substantially intermediate position. For this reason, moist air enters the indoor heat exchanger portion of the superheated steam region, causing a phenomenon of dew dripping from the outlet and dew splattering.

そこで、この発明の実施の形態1では上記の冷媒流量制御に加えて、その現象を検知するために冷房運転時の室内側熱交換器の入口にサーミスタ9、略中間にサーミスタ10を設置し(例えば図5(a)、(b)に示すような2列の熱交換器の場合は過熱蒸気領域が基本的には出口方向から入口方向へと進み2列目から1列目へと回り込んでいく訳であるがその過熱蒸気領域を2列目までで進行を止め1列目まで進行させなければ1列目で湿った空気は除湿されエアコン内部に湿った空気が入り込むことはなくなり露飛び・露垂れが起こり得ない。センサーの位置として出口でなく略中間位置であるのは、1列目と2列目の熱交換や風速分布のアンバランス等によって過熱度が最も大きいポイントが出口とは限らないためであり、過熱度が最も大きくしかも最低限1列目に過熱蒸気領域を回り込ませない位置である必要があるので例えば図5(a)(b)に示すような位置である。図5に示すパスパターン以外の場合も同様の考えである。)、上記のような現象が起こりやすい条件にて実験等を行いサーミスタ9とサーミスタ10の温度差(TH10-TH9=ΔTH10−9)が何度以上で(ΔTHk10−9)、また何分続いた場合(Tk)に上記現象が起こるのかを求め、また目標吐出温度を何度まで下げれば(つまり膨張弁は開方向で流量を増やす方向であり過熱領域が減少する方向である)上記現象が解消されるかを図4に示すように上記周波数帯(TDk)ごとに求め、それぞれの値を制御部71に記憶させておく。そして上記の冷媒流量制御時に常時その温度差ΔTH10−9を検知し、その値が制御部71に記憶させた値(ΔTHk10−9)以上で、上記制御部に記憶させた時間(Tk)続いたならば、目標吐出温度をTDnからTDkへ変更し、制御部71では現温度差(ΔTH10−9)と設定温度差(ΔTHk10−9)との偏差量(ΔTH10−9ーΔTHk10−9)とサーミスタ8から検出した現吐出温度(TD)と変更後の設定吐出温度(TDk)との偏差量(TD−TDk)をそれぞれ算出してそれに応じた弁開度信号を出力し、この信号に基づき電子制御式膨張弁4が開方向へと調整され、上記現象が起こるのを回避する。   Therefore, in the first embodiment of the present invention, in addition to the refrigerant flow rate control described above, a thermistor 9 is installed at the inlet of the indoor heat exchanger during cooling operation, and the thermistor 10 is installed approximately in the middle in order to detect the phenomenon ( For example, in the case of two rows of heat exchangers as shown in FIGS. 5 (a) and 5 (b), the superheated steam region basically advances from the outlet direction to the inlet direction, and wraps around from the second row to the first row. However, if the superheated steam area stops at the second row and does not advance to the first row, the moist air in the first row is dehumidified and the moist air does not enter the air conditioner.・ Dew dripping cannot occur.The sensor position is not at the exit, but at a substantially intermediate position.The point where the degree of superheat is the largest due to heat exchange in the first and second rows, imbalance in the wind speed distribution, etc. This is because there is no limit. For example, the position is as shown in Fig. 5 (a) and Fig. 5 (b) because it is necessary to be a position that does not wrap around the superheated steam region in the first row at least. The experiment is performed under the condition that the above phenomenon is likely to occur, and the temperature difference (TH10−TH9 = ΔTH10−9) between the thermistor 9 and the thermistor 10 is more than (ΔTHk10−9), Also, the number of minutes (Tk) when the above phenomenon occurs and the target discharge temperature is lowered to how many times (that is, the expansion valve is in the direction of increasing the flow rate in the opening direction and in the direction of decreasing the overheating region). 4) Whether the above phenomenon is eliminated is obtained for each frequency band (TDk) as shown in FIG. 4, and each value is stored in the control unit 71. The temperature difference ΔTH10-9 is always detected during the refrigerant flow rate control, and the value is equal to or greater than the value (ΔTHk10-9) stored in the control unit 71, and the time (Tk) stored in the control unit continues. Then, the target discharge temperature is changed from TDn to TDk, and the controller 71 determines the deviation amount (ΔTH10-9−ΔTHk10-9) between the current temperature difference (ΔTH10-9) and the set temperature difference (ΔTHk10-9) and the thermistor. 8 calculates a deviation amount (TD-TDk) between the current discharge temperature (TD) detected from 8 and the set discharge temperature (TDk) after the change, and outputs a valve opening signal corresponding to the calculated deviation amount (TD-TDk). The controlled expansion valve 4 is adjusted in the opening direction to avoid the above phenomenon.

図6は前記制御部71のプログラムを示すフローチャートである。即ち、周波数可変装置6の出力周波数信号が制御部71のブロック711に入力され、ブロック712に進む。ブロック712では吐出温度検知サーミスタ8、入口温度検知サーミスタ9、中間温度検知サーミスタ10の温度検出信号が入力され、ブロック713に進む。ブロック713では前記周波数に対応する最適弁解度値(PULn)を選択し、ブロック714へ進む。ブロック714では前記周波数に対応する設定吐出温度がTDnかTDkどちらかを選択し、ブロック715へむ。ブロック715では膨張弁4の制御開度を設定し(上記最適弁開度(PULn)+下記補正弁解度(ΔPUL))それに応じた弁開度指令信号を出力する。その出力信号に基づき電子制御式膨張弁4の弁開度が調整される。ブロック716ではサイクル安定化時間(Tb)のカウントを行い前記時間Tb経過前と判断すればブロック711に戻り、前記時間Tbが経過したと判断すればブロック717に進む。ブロック717ではサーミスタ8から検出した現吐出温度(TD)と設定吐出温度(TDnもしくはTDk)との偏差量(TD−TDnもしくはTD−TDk)、サーミスタ9、10から検出した上記現温度差(ΔTH10−9)と上記設定温度差(ΔTHk10−9)との偏差量(ΔTH10−9−ΔTHk10−9)を算出し、設定吐出温度がTDnのときは偏差量(TD−TDn)より、設定吐出温度がTDkのときは偏差量(TD−TDk)と偏差量(ΔTH10−9−ΔTHk10−9)よりそれに応じた補正弁開度(ΔPUL)を求め、ブロック711へ戻る。   FIG. 6 is a flowchart showing a program of the control unit 71. That is, the output frequency signal of the frequency variable device 6 is input to the block 711 of the control unit 71, and the process proceeds to block 712. In block 712, the temperature detection signals of the discharge temperature detection thermistor 8, the inlet temperature detection thermistor 9, and the intermediate temperature detection thermistor 10 are input, and the flow proceeds to block 713. In block 713, an optimum valve solution value (PULn) corresponding to the frequency is selected, and the process proceeds to block 714. In block 714, the set discharge temperature corresponding to the frequency is selected from TDn and TDk, and the process goes to block 715. In block 715, the control opening degree of the expansion valve 4 is set (the optimum valve opening degree (PULn) + the corrected valve solution degree (ΔPUL) described below), and a valve opening degree command signal corresponding thereto is output. Based on the output signal, the opening degree of the electronically controlled expansion valve 4 is adjusted. In block 716, the cycle stabilization time (Tb) is counted. If it is determined that the time Tb has not elapsed, the process returns to block 711. If it is determined that the time Tb has elapsed, the process proceeds to block 717. In block 717, the deviation amount (TD-TDn or TD-TDk) between the current discharge temperature (TD) detected from the thermistor 8 and the set discharge temperature (TDn or TDk), and the current temperature difference (ΔTH10) detected from the thermistors 9 and 10. -9) and the set temperature difference (ΔTHk10-9) are calculated (ΔTH10-9-ΔTHk10-9). When the set discharge temperature is TDn, the set discharge temperature is calculated from the deviation (TD-TDn). When TDk is TDk, a correction valve opening degree (ΔPUL) corresponding to the deviation amount (TD−TDk) and the deviation amount (ΔTH10-9−ΔTHk10-9) is obtained, and the process returns to block 711.

図7は前記ブロック714の詳細である。上記現温度差(ΔTH10−9)が上記設定温度差(ΔTHk10−9)以上でかつ上記時間(Tk)続いたなら、設定吐出温度はTDkを選択し、それ以外の場合はTDnを選択する。   FIG. 7 shows details of the block 714. If the current temperature difference (ΔTH10-9) is equal to or greater than the set temperature difference (ΔTHk10-9) and continues for the time (Tk), the set discharge temperature is selected as TDk, otherwise, TDn is selected.

上記この発明の実施の形態1では、通常時の冷媒流量制御を吐出温度で行っている場合において説明したが、従来同様に室内側熱交換器の入口と出口又は略中間と出口との温度差でスーパーヒート量を検知することにより通常時の冷媒流量制御を行う場合においても、さらにもう一つセンサーを追加し(入口と出口にセンサーを設けている場合略は中間に、略中間と出口にセンサーを設けている場合は入口に)上記実施例同様に入口と略中間のセンサーの温度差から露飛び・露垂れの危険性を察知し、危険性があると判断した場合に電子制御式膨張弁の開度を開き冷媒流量を増やし過熱蒸気領域を減らすことにより、露飛び・露垂れを防ぐという方法でもかまわない。   The first embodiment of the present invention has been described in the case where the refrigerant flow rate control at the normal time is performed at the discharge temperature. However, the temperature difference between the inlet and outlet of the indoor heat exchanger or the substantially middle and outlet is the same as in the past. Even when controlling the flow rate of refrigerant at normal time by detecting the amount of superheat at the top, add another sensor (if the sensor is provided at the inlet and outlet, it is roughly in the middle, and roughly in the middle and outlet Like the above example, the sensor is installed at the inlet) Like the above example, the temperature difference between the sensor and the middle of the sensor is used to detect the risk of dew and dripping. A method of preventing dew stagnation and dripping by opening the valve opening and increasing the refrigerant flow rate to reduce the superheated steam region may be used.

上記のようにして、この発明では、室内側熱交換器の入口と略中間に温度感知センサーを取り付けその温度差を検知することにより、湿った空気が室内機ケーシング内に吸入され風路壁、送風機、及び風向偏向板等に着露が起こりうる蒸発器の過熱蒸気領域を直接検知することができるので、露飛び・露垂れを確実に防ぐことができる。   As described above, in the present invention, by attaching a temperature detection sensor approximately in the middle of the inlet of the indoor heat exchanger and detecting the temperature difference, the humid air is sucked into the indoor unit casing and the air passage wall, Since it is possible to directly detect the superheated steam region of the evaporator in which dew condensation may occur on the blower, the wind direction deflecting plate, and the like, it is possible to reliably prevent dew jumping and dripping.

次に、この発明の他の実施の形態による空気調和機の構成図を図8に示す。1は圧縮機、2は電動機、3は室外側熱交換器、4は電子制御式膨張弁、5は室内側熱交換器である。6は周波数可変装置、7は制御装置、8はサーミスタである。また、制御装置は、記憶機能、演算機能およびこれらの機能を制御する制御部71と制御部71の出力信号(弁開度指令信号)に基づき電子制御式膨張弁4を作動する弁駆動部72とから構成される。   Next, the block diagram of the air conditioner by other Embodiment of this invention is shown in FIG. 1 is a compressor, 2 is an electric motor, 3 is an outdoor heat exchanger, 4 is an electronically controlled expansion valve, and 5 is an indoor heat exchanger. 6 is a frequency variable device, 7 is a control device, and 8 is a thermistor. The control device also includes a storage function, an arithmetic function, a control unit 71 that controls these functions, and a valve drive unit 72 that operates the electronically controlled expansion valve 4 based on an output signal (valve opening command signal) of the control unit 71. It consists of.

次に、この発明の他の実施の形態における空気調和機の動作について詳細に説明する。図2に示すように、周波数可変装置により圧縮機1の回転数を周波数制御して変化させれば、空気調和機の冷暖房能力を略比例的に変えることができる。そこで、図3、図4に示すように周波数可変装置6の出力周波数を例えば100段階に変化させる場合、この100段階のうち例えば10段階ごとに区切り10の周波数帯を設けた場合、その周波数帯で圧縮機1を回転させてそのときの最適膨張弁開度(PULn)、最適吐出温度(TDn)を実験等で求めておき)、この各周波数帯に対する最適膨張弁開度(PULn)、最適吐出温度(TDn)を制御部71に予め記憶させておく。周波数可変装置6の出力周波数が変化すれば、この変化後の周波数に対応した前記最適弁開度(PULn)を前記制御部71で選択し、この選択値に応じた弁開度指令信号を制御部71から出力して弁駆動部72を介して電子制御式膨張弁4の開度を目標値と一致するように制御する。次いで、所定時間(例えば、数分間)経過してサイクルが安定した後、制御部71では温度検出器8からの検出信号に基づき吐出温度と現周波数帯での設定吐出温度(TDn)との偏差量を算出してその偏差量に応じた弁開度指令信号を出力する。この出力信号に基づき電子制御式膨張弁が調整され、負荷変動に応じた冷媒流量に制御される。以上のようにして冷媒流量が制御される。   Next, the operation of the air conditioner according to another embodiment of the present invention will be described in detail. As shown in FIG. 2, if the frequency of the compressor 1 is changed by frequency control using a frequency variable device, the air conditioning capacity of the air conditioner can be changed approximately proportionally. Therefore, when the output frequency of the frequency variable device 6 is changed to, for example, 100 steps as shown in FIGS. 3 and 4, when 10 frequency bands are provided for every 10 steps among the 100 steps, the frequency band is set. The optimum expansion valve opening (PULn) and the optimum discharge temperature (TDn) at that time are obtained through experiments and the like, and the optimum expansion valve opening (PULn) and optimum for each frequency band The discharge temperature (TDn) is stored in the control unit 71 in advance. When the output frequency of the frequency variable device 6 changes, the optimum valve opening (PULn) corresponding to the changed frequency is selected by the control unit 71, and the valve opening command signal corresponding to the selected value is controlled. The opening degree of the electronically controlled expansion valve 4 is controlled so as to match the target value via the valve drive unit 72 output from the unit 71. Next, after a predetermined time (for example, several minutes) has passed and the cycle is stabilized, the control unit 71 makes a deviation between the discharge temperature and the set discharge temperature (TDn) in the current frequency band based on the detection signal from the temperature detector 8. An amount is calculated and a valve opening command signal corresponding to the deviation is output. The electronically controlled expansion valve is adjusted based on this output signal, and the refrigerant flow rate is controlled according to the load fluctuation. The refrigerant flow rate is controlled as described above.

以上の冷媒量制御に加えて、この発明の実施の形態2では、電子制御式膨張弁の故障が起きた場合(例えば、メカ部故障、駆動部故障、配線不良等)、弁の止まった位置によっては、圧縮機液バック運転によって圧縮機が故障する恐れがあるため、それを防ぐためにその危険性があると判断した場合圧縮機の最大周波数を変更するという制御が加えられている。   In addition to the above refrigerant amount control, in Embodiment 2 of the present invention, when a failure of the electronically controlled expansion valve occurs (for example, mechanical part failure, drive part failure, wiring failure, etc.), the position where the valve stops In some cases, the compressor may be damaged due to the compressor liquid back operation, and in order to prevent this, control is performed to change the maximum frequency of the compressor when it is determined that there is a risk.

以下、図に基づき詳細に述べる。膨張弁4が故障した場合、上記の冷媒流量制御において、制御部71から駆動部72へ膨張弁を閉方向の信号が出力されても吐出温度(TH8)は上昇してこない。そのため、故障したときの膨張弁の弁の位置によっては目標吐出温度まで上がらずに制御部71は閉方向への信号を出力し続けることになる。
そこで、圧縮機が液バック運転を何Hz以上(HZ1)で何分間(T1)運転した場合圧縮機の故障の危険性が生じるか、何Hz以下(HZg)で運転すれば確実にその危険性が無くなるかを信頼性の実験等で求め、予め制御部71に記憶させておく。また、液バック運転であると判断する吐出温度(TDl)、何パルス以下で故障であると判断するかその開度(PUL1)も予め制御部71に記憶させておく。つまり、冷暖房運転中にTH8がTl以下で、かつ制御部71の開度指令信号がPUL1以下で、かつ運転周波数がHZ1以上である状態がT1分以上続いた場合に、制御部71で運転周波数の最大をHZgに変更し、圧縮機が故障するという危険性を回避する。
Hereinafter, it will be described in detail with reference to the drawings. When the expansion valve 4 is out of order, the discharge temperature (TH8) does not rise even if a signal for closing the expansion valve is output from the control unit 71 to the drive unit 72 in the refrigerant flow control described above. Therefore, depending on the position of the expansion valve at the time of failure, the control unit 71 continues to output a signal in the closing direction without rising to the target discharge temperature.
Therefore, how many Hz (HZ1) and how many minutes (T1) the liquid back operation of the compressor will cause a risk of failure of the compressor. Is determined by reliability experiments or the like, and stored in the control unit 71 in advance. In addition, the discharge temperature (TDl) at which it is determined that the liquid back operation is performed, and the number of pulses or less at which it is determined that the failure has occurred (PUL1) are also stored in the control unit 71 in advance. That is, when the state where TH8 is equal to or less than Tl, the opening degree command signal of the control unit 71 is equal to or less than PUL1, and the operation frequency is equal to or greater than HZ1 during the air conditioning operation, the control unit 71 performs the operation frequency. Is changed to HZg to avoid the risk of compressor failure.

図9は前記制御部71のプログラムを示すフローチャートである。即ち、制御部71のブロック710では上記最大周波数の規制をするか否かを判断する。規制を行うと判断した場合は、その最大周波数規制信号を周波数可変装置6に出力しその結果圧縮機1の回転数が制御される。ブロック711では、周波数可変装置6の出力周波数信号が入力され、ブロック712に進む。ブロック712ではサーミスタ8の温度検出信号が入力され、ブロック713に進む。ブロック713では前記周波数に対応する最適弁解度値(PULn)を選択し、ブロック714へ進む。ブロック714では前記周波数に対応する設定吐出温度(TDn)を選択し、ブロック715へ進む。ブロック715では膨張弁4の制御開度を設定し(上記最適弁開度(PULn)+下記補正弁解度(ΔPUL))それに応じた弁開度指令信号を出力する。その出力信号に基づき電子制御式膨張弁4の弁開度が調整される。ブロック716ではサイクル安定化時間(Tb)のカウントを行い前記時間Tb経過前と判断すればブロック710に戻り、前記時間Tbが経過したと判断すればブロック717に進む。ブロック717ではサーミスタ8から検出した現吐出温度(TD)と設定吐出温度(TDn)との偏差量(TD−TDn)を算出し、それに応じた補正弁開度(ΔPUL)を求め、ブロック710へ戻る。   FIG. 9 is a flowchart showing a program of the control unit 71. That is, in block 710 of the control unit 71, it is determined whether or not the maximum frequency is restricted. When it is determined that the restriction is to be performed, the maximum frequency restriction signal is output to the frequency variable device 6 and, as a result, the rotational speed of the compressor 1 is controlled. In block 711, the output frequency signal of the frequency variable device 6 is input, and the process proceeds to block 712. In block 712, the temperature detection signal of the thermistor 8 is input, and the process proceeds to block 713. In block 713, an optimum valve solution value (PULn) corresponding to the frequency is selected, and the process proceeds to block 714. In block 714, the set discharge temperature (TDn) corresponding to the frequency is selected, and the process proceeds to block 715. In block 715, the control opening degree of the expansion valve 4 is set (the optimum valve opening degree (PULn) + the corrected valve solution degree (ΔPUL) described below), and a valve opening degree command signal corresponding thereto is output. Based on the output signal, the opening degree of the electronically controlled expansion valve 4 is adjusted. In block 716, the cycle stabilization time (Tb) is counted. If it is determined that the time Tb has not elapsed, the process returns to block 710, and if it is determined that the time Tb has elapsed, the process proceeds to block 717. In block 717, a deviation amount (TD−TDn) between the current discharge temperature (TD) detected from the thermistor 8 and the set discharge temperature (TDn) is calculated, and a correction valve opening (ΔPUL) corresponding to the deviation is calculated, and the flow goes to block 710. Return.

図10はブロック710の詳細図である。即ち、サーミスタ8の温度(TH8)が上記TD1以下かつ弁開度指令信号が上記PUL1以下かつ運転周波数がHZ1以上である状態がT1以上続いた場合最大周波数をHZgに規制する。それ以外の場合は規制は行わない。   FIG. 10 is a detailed view of block 710. That is, when the temperature (TH8) of the thermistor 8 is TD1 or less, the valve opening command signal is PUL1 or less, and the operating frequency is HZ1 or more, the maximum frequency is regulated to HZg. In other cases, there is no restriction.

上記のようにして、この発明の他の実施の形態では、電子制御式膨張弁の故障が起きた場合、弁の止まった位置によっては、圧縮機液バック運転によって圧縮機が故障する恐れがあるため、圧縮機の周波数及び弁の開度及び圧縮機の吐出温度から圧縮機の運転状態を推定し、圧縮機の最大周波数を規制することにより、圧縮機の信頼性を高めることの成功している。   As described above, in another embodiment of the present invention, when a failure occurs in the electronically controlled expansion valve, the compressor may be damaged due to the compressor liquid back operation depending on the position where the valve stops. Therefore, the reliability of the compressor has been successfully improved by estimating the operating state of the compressor from the compressor frequency, valve opening and compressor discharge temperature, and regulating the maximum frequency of the compressor. Yes.

なお、この様な状態は必ずしも膨張弁の故障とは限らず、例えば、外気温が非常に低い場合も起こり得る。そのために、圧縮機の停止はせずに、圧縮機のベーン飛び、圧縮機からの油の持ち出し量、圧縮機の軸負荷等が圧縮機にとって有利な低速回転で運転することにより対処している。   Note that such a state is not always a failure of the expansion valve, and may occur, for example, when the outside air temperature is very low. Therefore, without stopping the compressor, the compressor vanes jump, the amount of oil taken out from the compressor, the axial load of the compressor, etc. are dealt with by operating at a low speed rotation advantageous for the compressor. .

また、この発明の他の実施の形態による空気調和機の構成図を図11に示す。1は圧縮機、2は電動機、3は室外側熱交換器、4は電子制御式膨張弁、5は室内側熱交換器である。6は周波数可変装置、7は制御装置である。また、制御装置7は、記憶機能、演算機能およびこれらの機能を制御する制御部71と制御部71の出力信号(弁開度指令信号)に基づき電子制御式膨張弁4を作動する弁駆動部72とから構成される。   Moreover, the block diagram of the air conditioner by other Embodiment of this invention is shown in FIG. 1 is a compressor, 2 is an electric motor, 3 is an outdoor heat exchanger, 4 is an electronically controlled expansion valve, and 5 is an indoor heat exchanger. 6 is a frequency variable device, and 7 is a control device. The control device 7 includes a storage function, a calculation function, a control unit 71 that controls these functions, and a valve drive unit that operates the electronically controlled expansion valve 4 based on an output signal (valve opening command signal) of the control unit 71. 72.

上記のようなこの発明の他の実施の形態の冷媒回路構成を用いた空気調和機では、冷媒流量制御を上記圧縮機2と上記電子制御式膨張弁4で行っているため、電子制御式膨張弁が故障した場合には冷媒流量の制御が不可能になる。しかし、サービス時にその電子制御式膨張弁の故障は運転状況のみでは正確な故障診断ができないため、実際に膨張弁が駆動していることを確認する必要がある。そこで、電子制御式膨張弁が、開方向に通電され駆動した場合全開時に、カチッ、カチッと音がすることを利用して、サービス時の故障診断モードとして開方向通電を行い、音によって故障の判定を行う。音がした場合は、電子制御式膨張は、駆動しているので正常であり、音がしない場合は、故障である。   In the air conditioner using the refrigerant circuit configuration according to another embodiment of the present invention as described above, the refrigerant flow rate control is performed by the compressor 2 and the electronically controlled expansion valve 4, so that the electronically controlled expansion is performed. If the valve fails, the refrigerant flow rate cannot be controlled. However, it is necessary to confirm that the expansion valve is actually driven because the failure of the electronically controlled expansion valve cannot be accurately diagnosed only by the operating state during service. Therefore, when the electronically controlled expansion valve is driven by being energized in the open direction, the open direction energization is performed as a failure diagnosis mode at the time of service by utilizing the clicking sound when fully opened. Make a decision. If there is a sound, the electronically controlled expansion is normal because it is driving, and if there is no sound, it is a failure.

次に、電子制御式膨張弁が全開時に音がする仕組みの例を図12を基に説明する。図12は電子制御式膨張弁の一例の断面図である。駆動原理を簡単に説明すると、図に示した部分はステッピングモータになっておりローター11が回転し、その回転動作は、ねじにより上下運動に変換され、弁12に開閉運動を与える仕組みになっている。そして、弁が開方向へ進んでいくとローターについている突起部A13は、突起部B14に接触し音が発する様になっている。   Next, an example of a mechanism that makes a sound when the electronically controlled expansion valve is fully opened will be described with reference to FIG. FIG. 12 is a cross-sectional view of an example of an electronically controlled expansion valve. The driving principle will be briefly explained. The portion shown in the figure is a stepping motor, and the rotor 11 rotates. The rotating operation is converted into a vertical motion by a screw, and the valve 12 is provided with an opening / closing motion. Yes. Then, when the valve advances in the opening direction, the protrusion A13 attached to the rotor comes into contact with the protrusion B14 to make a sound.

上記のようにして、この発明の他の実施の形態では、サービス時に開方向通電を行い、電子制御式膨張弁の全開時に発生する音を確認することにより、確実な故障診断ができるようになる。   As described above, in another embodiment of the present invention, energization in the opening direction is performed at the time of service, and the sound generated when the electronically controlled expansion valve is fully opened can be confirmed, so that a reliable failure diagnosis can be performed. .

この発明の実施の形態1による空気調和機を示す構成図である。It is a block diagram which shows the air conditioner by Embodiment 1 of this invention. この発明の実施の形態1による空気調和機の周波数と能力の関係を示す説明図である。It is explanatory drawing which shows the relationship between the frequency and capability of the air conditioner by Embodiment 1 of this invention. この発明の実施の形態1による空気調和機の周波数と設定最適弁開度値の関係を示す説明図である。It is explanatory drawing which shows the relationship between the frequency of the air conditioner by Embodiment 1 of this invention, and a setting optimal valve-opening value. この発明の実施の形態1による空気調和機の周波数と設定吐出温度の関係を示す説明図である。It is explanatory drawing which shows the relationship between the frequency of the air conditioner by Embodiment 1 of this invention, and preset discharge temperature. この発明の実施の形態1による空気調和機の熱交換器の入口サーミスタ及び中間サーミスタの位置関係を示す詳細図である。It is detail drawing which shows the positional relationship of the inlet thermistor and intermediate | middle thermistor of the heat exchanger of the air conditioner by Embodiment 1 of this invention. この発明の実施の形態1による空気調和機を示す制御フローチャートである。It is a control flowchart which shows the air conditioner by Embodiment 1 of this invention. この発明の実施の形態1による空気調和機の図6のブロック714の詳細を示すフローチャートある。It is a flowchart which shows the detail of the block 714 of FIG. 6 of the air conditioner by Embodiment 1 of this invention. この発明の他の実施の形態による空気調和機を示す構成図である。It is a block diagram which shows the air conditioner by other Embodiment of this invention. この発明の他の実施の形態による空気調和機を示す制御フローチャートである。It is a control flowchart which shows the air conditioner by other Embodiment of this invention. この発明の他の実施の形態による空気調和機を示す制御ブロックの詳細を示すフローチャートである。It is a flowchart which shows the detail of the control block which shows the air conditioner by other Embodiment of this invention. この発明の他の実施の形態による空気調和機を示す構成図である。It is a block diagram which shows the air conditioner by other Embodiment of this invention. この発明の他の実施の形態による空気調和機を示す電子制御式膨張弁の断面図である。It is sectional drawing of the electronically controlled expansion valve which shows the air conditioner by other Embodiment of this invention.

符号の説明Explanation of symbols

1 圧縮機、2 電動機、3 室外側熱交換器、4 電子制御式膨張弁、5 室内側熱交換器、6 周波数可変装置、7 制御装置、8 吐出温度検出サーミスタ、9 入口温度検出サーミスタ、10 中間温度検出サーミスタ、   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Electric motor, 3 Outdoor heat exchanger, 4 Electronically controlled expansion valve, 5 Indoor heat exchanger, 6 Frequency variable device, 7 Control device, 8 Discharge temperature detection thermistor, 9 Inlet temperature detection thermistor, 10 Intermediate temperature detection thermistor,

Claims (3)

圧縮機、室内側熱交換器、電子制御式膨張弁、室外側熱交換器で冷凍サイクルを構成し、圧縮機がインバータ駆動する空気調和機において、圧縮機の吐出温度が異常低下した場合圧縮機の最大周波数を変更する事を特徴とする空気調和機。 Compressor, indoor heat exchanger, electronically controlled expansion valve, outdoor heat exchanger constitute a refrigeration cycle, and the compressor discharge temperature is abnormally reduced in an air conditioner driven by an inverter An air conditioner characterized by changing the maximum frequency. 圧縮機の吐出温度の異常低下に加え、圧縮機の周波数がある一定値以上かつ電子制御式膨張弁への弁開度駆動信号がある一定値以下である場合圧縮機の最大周波数を変更する事を特徴とする請求項1記載の空気調和機 In addition to abnormally lowering the discharge temperature of the compressor, if the compressor frequency is above a certain value and the valve opening drive signal to the electronically controlled expansion valve is below a certain value, change the maximum frequency of the compressor. The air conditioner according to claim 1, wherein 圧縮機、室内側熱交換器、電子制御式膨張弁、室外側熱交換器で冷凍サイクルを構成し、圧縮機がインバータ駆動する空気調和機において、サービス時の電子制御式膨張弁の故障診断モードとして、電子制御式膨張弁の開方向通電を行うことを特徴とする空気調和機。 Compressor, indoor heat exchanger, electronically controlled expansion valve, outdoor heat exchanger constitute the refrigeration cycle, and the compressor is inverter-driven air conditioner. As an air conditioner, the electronically controlled expansion valve is energized in the opening direction.
JP2004353678A 2004-12-07 2004-12-07 Air conditioner Pending JP2005069683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353678A JP2005069683A (en) 2004-12-07 2004-12-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353678A JP2005069683A (en) 2004-12-07 2004-12-07 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27236195A Division JP3663692B2 (en) 1995-10-20 1995-10-20 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006342422A Division JP4017014B2 (en) 2006-12-20 2006-12-20 Air conditioner

Publications (1)

Publication Number Publication Date
JP2005069683A true JP2005069683A (en) 2005-03-17

Family

ID=34420440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353678A Pending JP2005069683A (en) 2004-12-07 2004-12-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP2005069683A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062657A (en) * 2012-09-20 2014-04-10 Fujitsu General Ltd Heat pump cycle device
JP2015075294A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Air conditioner
WO2021111559A1 (en) * 2019-12-04 2021-06-10 三菱電機株式会社 Control device for refrigeration cycle device and refrigeration cycle device
CN113790511A (en) * 2021-09-09 2021-12-14 珠海格力电器股份有限公司 Rapid detection method and device for outdoor exhaust temperature sensing bulb fault

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062657A (en) * 2012-09-20 2014-04-10 Fujitsu General Ltd Heat pump cycle device
JP2015075294A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Air conditioner
WO2021111559A1 (en) * 2019-12-04 2021-06-10 三菱電機株式会社 Control device for refrigeration cycle device and refrigeration cycle device
JPWO2021111559A1 (en) * 2019-12-04 2021-06-10
GB2604464A (en) * 2019-12-04 2022-09-07 Mitsubishi Electric Corp Control device for refrigeration cycle device and refrigeration cycle device
GB2604464B (en) * 2019-12-04 2023-09-20 Mitsubishi Electric Corp Controller for refrigeration cycle apparatus and refrigeration cycle
CN113790511A (en) * 2021-09-09 2021-12-14 珠海格力电器股份有限公司 Rapid detection method and device for outdoor exhaust temperature sensing bulb fault

Similar Documents

Publication Publication Date Title
JP4017014B2 (en) Air conditioner
US5042264A (en) Method for detecting and correcting reversing valve failures in heat pump systems having a variable speed compressor
CA2492465C (en) Stability control system and method for centrifugal compressors operating in parallel
EP3164648B1 (en) Refrigerant cooling for variable speed drive
JP2009522533A (en) Flash tank refrigerant control
US11703242B2 (en) Avoiding coil freeze in HVAC systems
KR20030075194A (en) Freezer
JP2010249452A (en) Air conditioner
CN104024763A (en) Air conditioner and method for controlling opening of expansion valve thereof
JP4475660B2 (en) Refrigeration equipment
JP2004020064A (en) Method for controlling multi-chamber type air conditioner
JP2005069683A (en) Air conditioner
KR101397897B1 (en) Air conditioner and method thereof
JP3663692B2 (en) Air conditioner
JP2002195629A (en) Air conditioner
KR100557760B1 (en) Air conditioner
JP2001241799A (en) Multi-room air conditioner
JPS633220B2 (en)
JP7350151B2 (en) Refrigeration cycle equipment
CN110906611B (en) Air-cooled refrigerator
JP3835310B2 (en) Air conditioner
WO2023209969A1 (en) Air conditioning device
WO2023062908A1 (en) Air conditioner
JP6301789B2 (en) Compressor step-out detection system and step-out detection method in a refrigeration cycle
EP3891396B1 (en) Apparatus and process for controlling a compressor assembly lubrication status and refrigerating machine comprising said apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731