JP2005056592A - X線管 - Google Patents

X線管 Download PDF

Info

Publication number
JP2005056592A
JP2005056592A JP2003205664A JP2003205664A JP2005056592A JP 2005056592 A JP2005056592 A JP 2005056592A JP 2003205664 A JP2003205664 A JP 2003205664A JP 2003205664 A JP2003205664 A JP 2003205664A JP 2005056592 A JP2005056592 A JP 2005056592A
Authority
JP
Japan
Prior art keywords
silicon
electron source
electrode
ray tube
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003205664A
Other languages
English (en)
Inventor
Hitoshi Shoji
仁 小路
Takayuki Matsuyama
隆之 松山
Masae Imaizumi
征恵 今泉
Ichiro Uchisaki
一郎 内崎
Nobuyoshi Koshida
信義 越田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Electronic Engineering Co Ltd
Priority to JP2003205664A priority Critical patent/JP2005056592A/ja
Publication of JP2005056592A publication Critical patent/JP2005056592A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

【課題】半導体からの電子放出を利用し、しかも半導体素子に損傷を与えずに安定的に構築できるX線管を提供することを目的とする。
【解決手段】上部開口及び下部開口を有し、側壁を貫通する金属電極を有するセラミック胴体部と、前記セラミック胴体部の前記下部開口を封止する下蓋部と、前記下蓋部の上に設けられ、シリコン基板と、シリコンを構成元素のひとつとする絶縁層と、金属薄膜電極と、を有し、前記シリコン基板と前記金属薄膜電極との間に電界を印加することにより電子を放出するシリコン電子源と、前記セラミック胴体部の前記上部開口を封止し、開口を有するコレクタ電極と、前記コレクタ電極の前記開口を封止するベリリウム板と、前記ベリリウム板の前記シリコン電子源に対向する側に被着され前記シリコン電子源から放出された電子が衝突することによりX線を発生させるターゲットと、を備えたことを特徴とするX線管を提供する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、X線管に関し、特に、ターゲットに電子を与える電子源として半導体素子を備えたX線管に関する。
【0002】
【従来の技術】
従来のX線管における電子源は、真空中でヒーターに通電することにより陰極(ヒーターと共通でもよい)から熱電子を放出させる熱電子放出機構を利用したものであった。このようなX線管は、陰極の寿命に限界があり、半導体デバイスに比べて寿命が短い点で改善の余地がある。また、ヒーターの電気的接続のためにリード線などを設ける必要もあり、小型化にも不利であった。
【0003】
一方、近年、半導体からの電子放出について研究が進められている(例えば、特許文献1)。すなわち、金属・絶縁体・半導体(metal insulator semiconductor:MIS)構造において絶縁膜が薄いと、トンネル効果により電子が絶縁膜を通過して金属電極に到達する。そして、金属電極も同等に薄いと、到達した電子のうちの一部は金属電極をも通過し、もし金属電極よりも高い電位を有する別の電極があればそこへ到達する。
【0004】
また、シリコン基板上の一部に多孔質のポリシリコン層を形成後、金属薄膜を形成して電子を放出させる提案もある(特許文献2)。
【0005】
【特許文献1】
特開平5−342995号公報
【特許文献2】
特許第2987410号公報
【0006】
【発明が解決しようとする課題】
従来のX線管は、陰極からの熱電子放出を利用していたため、3次元に比較的大きな形状を持つ陰極部(電極、ヒーター、リード部、支持部などで構成される)が必要であった。しかし、例えば電子部品の製造装置に付属させる静電除去装置や医療用装置では、X線管の小型化が必須である。このためには陰極部の小型化が不可欠である。
また、従来の電子流は「点」に近い陰極から放射されるため、10KeV近い高電圧で加速された電子がターゲットに衝突して局所的に発熱が起こり 装置設計において放熱が大きな問題であった。これを解決するには発熱部の分散が必要である。
【0007】
さらにまた、X線管を長寿命化するには、熱電子放出型の電子放出源よりも半導体を利用した電子放出源を用いることが望ましい。
しかしながら、従来は半導体素子を電子源とする電子管は皆無であったため、仮に、電子放出効率に優れた半導体電子源が開発されても これを電子管の内部にいかに組み込むべきかという点についての設計・実装の指針はまったく無かった。
【0008】
半導体素子を電子源とする電子管を実現するには、数多くの課題がある。そのうちのいくつかを挙げると以下の如くである。
▲1▼半導体素子の真空中での動作に対する配慮がなされていない。すなわち、真空中で半導体素子を動作させるには、ガスを発生する材料が使えない。具体的には、エポキシ接着剤や高分子膜などは気化することにより真空管内やコレクタ電極などを汚染し、かつガス発生による放電などのため高電圧動作を不可能とする。したがって、これらに代わる材料の選択が必要である。
【0009】
▲2▼半導体素子は、電子管製造工程での温度上昇に耐えねばならない。すなわち、電子管を真空封止する工程では、部品のガス出しのため高温下における排気が不可欠である。通常は、500℃以上に加熱して真空排気することが望ましい。しかし、殆どの半導体素子は、金属電極を形成後に500℃以上に加熱すると、金属と半導体との反応や、実装部材との熱膨張率の違いによるチップのクラックなどの劣化や故障が生ずる。
【0010】
▲3▼ガラスまたはセラミックを主たる真空容器とする電子管内部に半導体素子を実装するための実装技術を新たに開発する必要がある。すなわち、電子管では、溶接や銀(Ag)ロウつけなどの接合技術が主として用いられるが、半導体素子に対してこれらの技術を適用することは無理がある。
【0011】
本発明は、かかる課題の認識に基づいてなされたものであり、その目的は、半導体からの電子放出を利用し、しかも半導体素子に損傷を与えずに安定的に構築できるX線管を提供することにある。
【0012】
【課題を解決するための手段】
本発明においては、半導体電子源を用いることによって、ヒーターが不要となり且つ平面状の電子源が可能となる。この結果、X線管の小型化が可能となる。特に、X線管の管軸方向にコンパクトにすることができ、つまり、従来よりも大幅に管長の短いX線管を実現できる。
また、平面状電子源とすることにより、ほぼ2次元的広がりを持った平行な電子流が得られるため、ターゲットでの熱発生を分散できる。その結果として、発熱による弊害を抑制しつつ、大出力化が容易となる。
【0013】
すなわち、上記目的を達成するため、本発明のX線管は、上部開口及び下部開口を有し、側壁を貫通する金属電極を有するセラミック胴体部と、前記セラミック胴体部の前記下部開口を封止する下蓋部と、前記下蓋部の上に設けられ、シリコン基板と、シリコンを構成元素のひとつとする絶縁層と、金属薄膜電極と、を有し、前記シリコン基板と前記金属薄膜電極との間に電界を印加することにより電子を放出するシリコン電子源と、前記セラミック胴体部の前記上部開口を封止し、開口を有するコレクタ電極と、前記コレクタ電極の前記開口を封止するベリリウム板と、前記ベリリウム板の前記シリコン電子源に対向する側に被着され前記シリコン電子源から放出された電子が衝突することによりX線を発生させるターゲットと、を備えたことを特徴とする。
【0014】
上記構成によれば、半導体からの電子放出を利用し、しかも半導体素子に損傷を与えずに安定的に構築できるX線管を提供することができる。
【0015】
また、本発明の第2のX線管は、開口を有するガラス容器と、前記ガラス容器の中に収容され、シリコン基板と、シリコンを構成元素のひとつとする絶縁層と、金属薄膜電極と、を有し、前記シリコン基板と前記金属薄膜電極との間に電界を印加することにより電子を放出するシリコン電子源と、前記シリコン基板と前記金属薄膜電極にそれぞれ接続され、前記ガラス容器の外側に引き出された一対の引き出し電極と、前記ガラス容器の前記開口を封止し、少なくも一部がベリリウム板からなるコレクタ電極と、前記ベリリウム板の前記シリコン電子源に対向する側に被着され前記シリコン電子源から放出された電子が衝突することによりX線を発生させるターゲットと、を備えたことを特徴とする。
【0016】
上記構成によっても、半導体からの電子放出を利用し、しかも半導体素子に損傷を与えずに安定的に構築できるX線管を提供することができる。
【0017】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
【0018】
図1は、本発明の実施の形態にかかるX線管の要部構成を例示する模式図である。すなわち、同図(a)は、その一部断面平面図、同図(b)は、同図(a)のA−A線断面図、同図(c)は、同図(b)の一部拡大図である。
【0019】
本実施形態のX線管は、中空の略円筒状のセラミック胴体部17、18と、その上部開口を封止するコレクタ電極15と、その下部開口を封止する下蓋部21と、を有する。セラミック製の胴体部17及び18は、第1の金属電極19を挟持して銀ロー接合されている。すなわち、セラミック製の胴体の側壁を金属電極が貫通して設けられている。
【0020】
下蓋部21には、排気管22が接続され、排気ポンプなどの図示しない排気手段により、X線管の内部封止空間が排気可能とされている。また、下蓋部21の上面には、下部基台20、セラミック板26を介してシリコン電子源14が設けられている。シリコン電子源14は、一対の電極を有し、その一方は、ボンディング・ワイヤ34、33により、金属電極19に接続されている。
【0021】
一方、胴体部17の上部開口は、接着用金属部16を介して、ステンレス(SUS)などからなるコレクタ電極15により封止されている。接着用金属部16とコレクタ電極15との接合部は、例えばシーム溶接により形成することができる。コレクタ電極15は、その中央部に、封止空間の側に突出した凸部を有し、この凸部に開口15Hが設けられている。この開口15Hは、ベリリウム(Be)板24により封止されている。そして、ベリリウム板24の内側にターゲット23が接着されている。その接続関係は、図1(c)に表した如くである。
【0022】
図2(a)は、下蓋部の積層構造を表す組み立て図である。すなわち、本具体例においては、下蓋部21は金属板により形成され、シリコン電子源14の裏面と電気的に接続された電極とされている。
【0023】
前述したように、一般に、半導体チップは真空中では動作させない。電子管の中に半導体チップを取り付けて正常に動作させるには、第1に真空管の封止工程における高温に耐えるように取り付けねばならない。また、真空中でガスがでるような接着材料(たとえばエポキシ)を使うことはできない。また一般に、半導体チップは電子管を構成する材料や構造との整合性がよくない。
【0024】
これらの問題を克服するために、本具体例においては、図2(a)に表したように、(シリコン電子源14)/(メタライズつきセラミック板26)/(金属製の下部基台20)、という3層構造を形成する。このような3層構造とすることにより、熱膨張率の違いによる半導体チップ破壊を防止し、半導体の動作領域の温度低減を図った。まずシリコン電子源14の裏面には、モリブデン(Mo)/金(Au)(それぞれの厚みは、例えば、0.2/0.5マイクロメータである)という2層構造のオーミック電極8を形成する。
【0025】
またセラミック板26の上面と下面には、例えば、モリブデン(Mo)/マンガン(Mn)からなる2層構造の厚膜を形成し、さらにその上に金(Au)を0.5マイクロメータ前後メッキする。そして、シリコン電子源14が搭載される上面において、これら金属膜をパターニングして、シリコン電子源14の裏面のオーミック電極8と接続するためのメタライズパターン27を形成する。シリコン電子源14のオーミック電極8は、電子管のひとつの電極として外部に引き出す必要がある。従って、セラミック板26の上面のメタライズパターン27をセラミック板26の側面メタライズパターン29を介してその下面のメタライズパターン30に接続すると好都合である。シリコン電子源14とメタライズ27とは、金属共晶半田31によって接合する。セラミック板26の材料としては、例えば、Al、AlN、BeOなどを用いることができ、熱伝導性と安全性の観点からは、AlNを用いることが望ましい。
【0026】
セラミック板26の下面メタライズ30は、金属共晶半田32によって下部基台20に接続される。下部基台20は、金属製の下蓋部21に接合される。下部基台20は、例えばコバール(KOVAR:鉄、ニッケル、コバルトを主成分とする合金)や銅タングステン(CuW)などの、セラミックと近い熱膨張率を有する材料からなる。また、下部基台20の表面にニッケルメッキなどを施して、高融点金属半田と接着しやすくするとよい。
【0027】
半導体素子(シリコン電子源)14は、図2(b)に表したように、その表面に金属薄膜電極12が設けられ、さらにその一部に金(Au)などが積層されたオーバーコート25が設けられ、電位の均一化が計られている。オーバーコート25の一部は、ワイヤボンディングのためのコンタクト電極を構成している。そして、ボンディング・ワイヤ34によってセラミック板26のメタライズパターン28に接続されている。
【0028】
次に、この下蓋部の組み立て工程について説明する。
まず、シリコン電子源14のオーミック電極8とセラミック板26の上面のメタライズパターン27とをAuGe共晶半田31(融点約350℃)で接着する。そして、シリコン電子源14のチップ上面のオーバーコート25からセラミック板26の上面のもうひとつのメタライズパターン28に、ワイヤ34をボンディングして接続する。その後、セラミック板26の下面のメタライズ30と金属製の下部基台20(下部基台20を設けない場合は、下蓋部21)とをAuGe共晶半田32により接着する。なお、共晶半田は、AuGeに限らずAuSi(融点約380℃)、AuSn(融点280℃)などを用いてもよい。
【0029】
次に、ワイヤボンディングにより接続されたメタライズパターン28と胴体部17、18の間から管内に突出して設けられた金属電極19とをワイヤ33をボンディングして接続する。あるいは、予め金属電極19と金属板(たとえばSUSまたはKOVAR製)とを溶接などで接続しておき、その一方をセラミック板26のメタライズ28と接続してもよい。
【0030】
下蓋部21は金属製であり、排気管22が銀ロー付けされている。X線管を加熱しながら、この排気管22を介してX線管の内部を十分に排気した後、排気管22は圧着封止される。また、金属製の下部基台20は、下蓋部21に銀ローつけして固定することができる。なお、下部基台20は、排気管22の位置やセラミック板26の厚みなどに応じて、省略することもできる。
【0031】
図2(c)は、シリコン電子源14の断面構造を表す模式図である。すなわち、シリコン基板9の上には、多孔質状のシリコンナノ粒子層10が設けられ、その上に金属薄膜電極12が形成されている。また、シリコン基板9の裏面には、オーミック電極8が形成されている。オーバーコート25は、金属薄膜電極12に電界が均一に印加されるように、所定のパターンで形成されている。オーバーコート25の厚みは、0.5マイクロメータ程度とすることができる。
【0032】
図3は、シリコン電子源14の要部拡大断面図である。
【0033】
また、図4(a)は、シリコン電子源14のバンド構造を表す模式図であり、図4(b)は、その動作を説明するための概念図である。
【0034】
すなわち、多孔質状のナノ粒子層10は、おおよその大きさがナノメートルのオーダの半導体微結晶のコア10Aとそれを被覆する絶縁層10Bとからなるナノ粒子の集合体である。粒子のサイズをナノメートルのオーダーとすることにより、電子の振る舞いがバルク的ではなく量子的となる。絶縁層10Bの厚さは、微結晶コア10Aの結晶粒径より小さいことが望ましい。絶縁層10Bを薄くすることにより、トンネル効果により電子を放出させることができる。
たとえば微結晶コア10Aの粒径は1〜20ナノメータ、絶縁層10Bの厚みは1〜10ナノメータ程度とするとよい。絶縁層10Bの材料としては、シリコン酸化膜やシリコン窒化膜などを用いることができる。
【0035】
ナノ結晶層10の上面には、金属薄膜電極12が設けられている。金属薄膜電極12の材料としては、金(Au)、モリブデン(Mo)、アルミニウム(Al)、白金(Pt)、チタン(Ti)またはこれら金属の組合せなどが仕事関数の観点から適している。また、電子のトンネル効果を生じさせるために、その膜厚は5〜50ナノメータとすることが望ましい。また、これら金属薄膜の積層構造とする場合には、例えば、下から順に、チタン(Ti)/白金(Pt)/金(Au)なる積層構造や、チタン(Ti)/金(Au)なる積層構造などを用いることができる。
【0036】
このシリコン電子源14をX線管の中に装着し、真空中で金属薄膜電極12にプラス電圧を印加して、電圧を上げていくとトンネル効果により金属薄膜電極12を突き抜けて電子が放出される。コレクタ電極15を電子管の中でシリコン電子源14と対向するように設け、金属薄膜電極12に対してプラスの電位を印加する。
【0037】
図5は、この時の電流・電圧特性を表すグラフ図である。ここで、「素子電流(Ips)」とは、金属薄膜電極12とSi基板9との間で流れる電流であり、「放出電流(Ie)」とは、電子源14からコレクタ電極15まで到達する電流である。ここで、コレクタ電圧Vcは、300ボルトとした。
【0038】
印加電圧を増加していくと、印加電圧(Vps)が3ボルトで約10−6アンペア程度の素子電流(Ips)が流れ、電圧を増加させると素子電流も増加する。そして、10ボルト付近で約10−6アンペア程度の放出電流(Ie)が得られることが分かる。印加電圧(Vps)を25ボルトとした時に、素子電流(Ips)は約60ミリアンペアであり、放出電流(Ie)は約100マイクロアンペア得られる。
【0039】
図6は、このシリコン電子源14を真空中で連続動作させた時の素子電流(Ips)と放出電流(Ie)の経時変化を表すグラフ図である。同図から、素子電流と放出電流のいずれも、1000時間の間にわたって極めて安定しており、シリコン電子源14が長期間の使用に際して安定した電子源として動作可能であることが分かる。
【0040】
次に、本実施形態のX線管の動作について説明する。
図1に表したように、シリコン電子源14は、コレクタ電極に接続されたターゲット23と対向して配置されている。コレクタすなわちターゲット23に約10KeVを印加すると、シリコン電子源14から放出された電子が加速され、高エネルギを持ちターゲット23に衝突する。すると、ターゲット23の材料に応じた特性X線および制動輻射による連続X線が発生する。このようなX線管は、静電電荷を中和する静電除去装置や、殺菌などの医療用装置に使用することができる。
【0041】
ターゲット23の厚みは、その原子量、原子番号、あるいは密度などを勘案して適宜決定することができる。例えば、ターゲットの材料としてタングステン(W)を用いた場合には、10KeVで加速する場合0.063マイクロメータ以上の厚みが必要であり、通常はこの2倍程度の厚みとすることが望ましい。ターゲットの材料は、タングステン以外にも、例えば、銅(Cu)やモリブデン(Mo)など、必要とされるX線の波長に応じて適宜選択することができる。
【0042】
なお、図1に表した具体例の場合、排気管22が下蓋部21と一体に設けられているが、セラミック胴体部17、18にとりつけると、管を短くできて、装置の小型化に有利である。
【0043】
図7は、排気管22をセラミック胴体部17にとりつけたX線管の具体例を表す模式図である。すなわち、同図は、図1(b)に対応する断面図である。
【0044】
本具体例においては、排気管22は、セラミック胴体部17の周側壁に、例えばロー付けなどの手段によって取り付けられている。両者の材質に応じて、例えば接合部にコバールなどを適宜用いてもよい。
【0045】
このX線管の組み立て工程においても、管を加熱しながら、排気管22を介してX線管の内部を十分に排気した後、排気管22を圧着封止することにより、真空封止されたX線管を製造できる。そして、排気管22をセラミック胴体部17に取り付けることにより、管の高さH(管の軸長)を大幅に短くすることができる。その結果として、静電除去装置や各種の医療用装置などに対する取り付け自由度を拡大させ、これら応用装置をコンパクトにすることができる。
【0046】
なお、排気管22を取り付ける位置は、図7に表した具体例には限定されず、その他にも、例えば、セラミック胴体部18に取り付けてもよく、または、これら胴体部17、18の接合部に取り付けてもよい。排気管22を胴体部17、18の接合部に取り付ける場合には、電極19と接続して引き出し電極を兼ねるようにすることもできる。
【0047】
図8は、本実施形態のX線管の変形例を表す模式断面図である。同図については、図1乃至図6に関して前述したものと同様の要素には同一の符号を付して詳細な説明は省略する。
【0048】
本変型例においては、胴体部17の内壁に沿って、略円筒状の集束電極49が設けられている。集束電極49は、シリコン電子源14から放出される電子をターゲット23に集束させる役割を有する。このために、集束電極49には、シリコン電子源14の一対の電極のいずれかと同電位を印加すればよい。または、これらとは異なる電位を独立に印加可能としてもよい。
【0049】
このような集束電極49を設けることにより、電子源14から放出された電子を効率よくターゲット23に衝突させ、X線の発生効率を上げることができる。また、X線のフォーカスサイズを調節することも可能となる。
【0050】
図9は、胴体部17の上部開口を封止する上蓋部の変型例を表す模式断面図である。すなわち、本変型例においても、コレクタ電極を兼ねた上蓋部71の中央付近に開口が設けられ、ベリリウム板(X線透過窓)72により封止されている。ベリリウム板72の内側には、ターゲット74が接着されている。
【0051】
そしてさらに、上蓋部71の封止空間側には、凹部75が設けられ、そこに金属製ゲッタ材76(77)が抵抗溶接などにより接着固定されている。
【0052】
一般の電子管は、真空封止後に高真空を維持するため、通常は500℃以上でベーキングをしながら真空排気を行う。このベーキングによって、電子管内部に設けられた金属製ゲッタ材は活性化され、真空封止された後の放出ガス(たとえば酸素や炭素を含有したガス)に対してもゲッタ(吸着)効果を有して高真空度を維持する。これに対して、本実施形態のX線管の場合には、シリコン電子源14の金属薄膜電極12が変質したり、半田材が溶融するため、500℃以上に加熱することができない。したがって通常のベーキング/排気工程を採用できない。
【0053】
そこで、本変型例においては、上蓋部71の内壁面にゲッタ材76(77)を埋め込む。ゲッタ材は、ワイヤ状のゲッタ材76でもチップ状のゲッタ材77でもよい。X線管の内部を真空排気しながら、上蓋部71を除く電子管の部分は500℃以下、望ましくは300〜400℃の範囲においてベーキングし、上蓋部71は例えばキセノンランプなどで外部から部分的に加熱する。ゲッタ材76、77を400℃以上、望ましくは450℃以上に加熱することによってゲッタの活性化を行う。こうすることにより、シリコン電子源14の温度上昇を抑えつつ、ゲッタ材76、77を活性化させて、封止後にも高真空状態を維持することが可能となる。また、上蓋部71の凹部75の中にゲッタ材76、77を収容することによって、シリコン電子源14からの電子ビームがゲッタ材に直接あたることを抑制できる。なお、図9ではゲッタ材76と77とが同一の上蓋部に接着固定されているが、いずれか一方のみを設けてもよい。
【0054】
なお、図8に表した具体例の場合、排気管22が設けられているが、ゲッタ材76(77)を設け、且つ真空容器中でX線管の組み立てを行えば、通常のベーキング排気工程を省略できる。つまり、排気管22は不要となり、さらに短いX線管が実現できる。
【0055】
図10は、下蓋部の変型例を表す模式断面図である。
すなわち、本変型例においては、下蓋部82はセラミックにより形成されている。この場合、セラミック製の下蓋部82の表面にメタライズ89を施し、この上にシリコン電子源14を高融点金属共晶半田で接着する。このメタライズ89はセラミックの胴体部18との境界にものびているので、電極取り出しリード(たとえばKOV製)90と接続することができる。
【0056】
図11は、胴体部18に2個の金属電極を設けた変型例を表す模式断面図である。
金属電極19とは別に、胴体部18を貫通する金属電極84が設けられている。セラミック製の下蓋部82の表面にはメタライズ88が施され、シリコン電子源14は、この上に半田付けされている。そして、このメタライズ88と金属電極84とがワイヤ86により接続されている。すなわち、本変型例においては、金属電極19はシリコン電子源14の金属薄膜電極12と接続され、金属電極84はシリコン電子源14のオーミック電極8と接続されている。
【0057】
図12は、ガラスを主体として形成されたX線管の具体例を表す模式断面図である。
すなわち、本発明におけるX線管の真空容器としては、セラミックと金属を主体としたものの代わりに、ガラスを主体としたものを用いることもできる。
【0058】
ガラス製の真空容器56を貫通する金属製のリード50、55が設けられ、リード50に金属製の基台51が接続されている。基台51の上にはセラミック板52が実装され、その上に、シリコン電子源53が図2に関して前述したものと同様の方法により固定されている。
【0059】
一方、シリコン電子源53と対向してベリリウム製のX線透過窓59が設けられ、この内側にターゲット58が接着されている。また、シリコン電子源53とターゲット58との間には、真空容器56の周壁に沿って集束電極54が設けられている。集束電極54は、シリコン電子源53のいずれかの電極と同電位とされ、電子源54から放出された電子ビームをターゲット58に集束させる役割を有する。
【0060】
このように、ガラス封止技術を用いて形成したガラス容器のX線管は、軽量コンパクトに形成することができ、一方で比較的大型のX線管を低コストに実現することも容易である。
【0061】
以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。
例えば、電子源を構成するシリコン電子源の具体的な構造や材質などについては、当業者が公知の範囲から適宜選択し、または設計変更を加えたものも、本発明の要旨を含む限り、本発明範囲に包含される。
【0062】
また、セラミックあるいはガラス容器、電極、ターゲット、ワイヤなどの具体的な形状や材質、サイズなどについても、当業者が各種の変形加えたものも、本発明の要旨を含む限り本発明の範囲に包含される。
【0063】
【発明の効果】
本発明によれば、電子源として半導体素子を用いることにより、従来の電子管カソードに比べて寿命を大幅に改善できる。また、陰極ヒータ用の電力も不要となり、消費電力を低減できる。半導体チップは小さく、X線管の小型化が図れる。
【0064】
また、本発明によれば、シリコン電子源を固定するために高融点金属共晶半田を用いることにより、エポキシ系接着剤とは異なり真空中でのガス放出を防止できる。また、セラミック板を介してシリコン電子源を金属製の下部基台に接着することにより、組み立て工程における熱膨張率差によるシリコンチップの「割れ」などを防止することができる。この時、セラミック板に窒化アルミニウム(AlN)を用いれば放熱が改善できて高信頼性が保てる。
【0065】
また、金属半田として、AuSi,AuGe,AuSnなどの融点が280から380℃程度のものを用いることにより、真空容器の封止前に行うアニール及び排気時の高温に耐えることができる。
また、ターゲットとしてタングステンなどを用いることにより、効率よくX線を放射できる。また、セラミック胴体部とコレクタ電極との間に接着用金属部を設けることにより、シーム溶接による封止が可能となり、温度上昇を抑えて気密構造が実現できる。
【0066】
また、集束電極を設けることにより、コレクタ電極への電子到達率を高めることができる。一方、セラミック胴体部の代わりに、ガラス容器を用いれば、シンプルで形状やサイズを柔軟に変えることができるX線管が得られる。
【0067】
また、コレクタ電極の真空側に凹部を設けてゲッタ材を埋設すれば、500℃以上ではアニール・真空排気困難なシリコン電子源であっても真空を維持するためのゲッタ材の活性化が可能となり、電子源などからの放出ガスを吸着して高真空度を維持できる。
【0068】
またさらに、ベーキングや真空排気工程を不要にできるため、排気管が省略できる。この結果として、短い(低い)X線管を実現でき、各種のX線応用装置の大幅な小型化が達成できる。
【0069】
以上説明したように、本発明によれば、長寿命で小型のX線管が実現でき、産業上のメリットは多大である。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかるX線管の要部構成を例示する模式図である。
【図2】(a)は、下蓋部の積層構造を表す組み立て図であり、(b)はシリコン電子源の斜視図であり、(c)は、シリコン電子源14の断面構造を表す模式図である。
【図3】シリコン電子源14の要部拡大断面図である。
【図4】(a)は、シリコン電子源14のバンド構造を表す模式図であり、(b)は、その動作を説明するための概念図である。
【図5】シリコン電子源の電流・電圧特性を表すグラフ図である。
【図6】シリコン電子源14を真空中で連続動作させた時の素子電流(Ips)と放出電流(Ie)の経時変化を表すグラフ図である。
【図7】排気管22をセラミック胴体部17にとりつけた具体例を表す模式図である。
【図8】本発明の実施形態のX線管の変形例を表す模式断面図である。
【図9】胴体部17の上部開口を封止する上蓋部の変型例を表す模式断面図である。
【図10】下蓋部の変型例を表す模式断面図である。
【図11】胴体部18に2個の金属電極を設けた変型例を表す模式断面図である。
【図12】ガラスを主体として形成されたX線管の具体例を表す模式断面図である。
【符号の説明】
9 シリコン基板
10 シリコンナノ粒子層
10A コア
10B 絶縁層
12 金属薄膜電極
14 シリコン電子源
15 コレクタ電極
15H 開口
16 接着用金属部
17、18 セラミック胴体部
19 金属電極
20 下部基台
21 下蓋部
22 排気管
23 ターゲット
24 ベリリウム板
25 オーバーコート
26 セラミック板
27、28、29、30 メタライズ
31、32 共晶半田
33、34 ワイヤ
50、55 リード
51 基台
52 セラミックス板
53 シリコン電子源
54 集束電極
56 ガラス真空容器
58 ターゲット
59 X線透過窓
71 上蓋部
72 ベリリウム板
74 ターゲット
75 凹部
76 ゲッタ材
77 ゲッタ材
80 セラミック胴体部
82 下蓋部
84 金属電極
86 ワイヤ
88、89 メタライズ

Claims (13)

  1. 上部開口及び下部開口を有し、側壁を貫通する金属電極を有するセラミック胴体部と、
    前記セラミック胴体部の前記下部開口を封止する下蓋部と、
    前記下蓋部の上に設けられ、シリコン基板と、シリコンを構成元素のひとつとする絶縁層と、金属薄膜電極と、を有し、前記シリコン基板と前記金属薄膜電極との間に電界を印加することにより電子を放出するシリコン電子源と、
    前記セラミック胴体部の前記上部開口を封止し、開口を有するコレクタ電極と、
    前記コレクタ電極の前記開口を封止するベリリウム板と、
    前記ベリリウム板の前記シリコン電子源に対向する側に被着され前記シリコン電子源から放出された電子が衝突することによりX線を発生させるターゲットと、
    を備えたことを特徴とするX線管。
  2. 金属製の下部基台と、
    上面に互いに絶縁された第1及び第2のメタライズ部を有し、側面に前記第1のメタライズ部と接続された第3のメタライズ部を有し、裏面に前記第3のメタライズ部と接続された第4のメタライズ部を有するセラミック板と、
    をさらに備え、
    前記下蓋部は、金属からなり、
    前記シリコン基板の裏面にはオーミック電極が形成され、
    前記下蓋部の上に前記下部基台が接合され、
    前記下部基台の上に、金属共晶半田により前記セラミック板の前記第4のメタライズ部が接合され、
    前記セラミック板の前記第1のメタライズ部の上に金属共晶半田により前記シリコン電子源の前記オーミック電極が接合され、
    前記シリコン電子源の前記金属薄膜電極は、前記第2のメタライズ部と接続され、
    前記第2のメタライズ部は、前記セラミック胴体部を貫通する前記金属電極と接続されたことを特徴とする請求項1記載のX線管
  3. 前記下蓋部は、メタライズが施されたセラミックからなり、
    前記シリコン基板の裏面にはオーミック電極が形成され、
    前記メタライズの上に金属共晶半田により前記シリコン電子源の前記オーミック電極が接合され、
    前記シリコン電子源の前記金属薄膜電極は、記セラミック胴体部を貫通する前記金属電極と接続されたことを特徴とする請求項1記載のX線管
  4. 前記金属共晶半田は、AuSi、AuGe、AuSn及びAgSnよりなる群から選択されたいずれかであることを特徴とする請求項2または3に記載のX線管。
  5. 前記セラミック胴体部と前記コレクタ電極との間に、接着用金属部が設けられたことを特徴とする請求項1〜4のいずれか1つに記載のX線管。
  6. 前記コレクタ電極の前記シリコン電子源に対向する側には凹部が設けられ、
    前記凹部に金属ゲッタ材が埋設されてなることを特徴とする請求項1〜5のいずれか1つに記載のX線管。
  7. 前記ゲッタ材は、500℃以下で活性化が可能であることを特徴とする請求項6記載のX線管。
  8. 前記セラミック胴体部の前記側壁に接続され、前記封止されたセラミック胴体部の内部空間を排気する排気管をさらに備えたことを特徴とする請求項1〜7のいずか1つに記載のX線管。
  9. 開口を有するガラス容器と、
    前記ガラス容器の中に収容され、シリコン基板と、シリコンを構成元素のひとつとする絶縁層と、金属薄膜電極と、を有し、前記シリコン基板と前記金属薄膜電極との間に電界を印加することにより電子を放出するシリコン電子源と、
    前記シリコン基板と前記金属薄膜電極にそれぞれ接続され、前記ガラス容器の外側に引き出された一対の引き出し電極と、
    前記ガラス容器の前記開口を封止し、少なくも一部がベリリウム板からなるコレクタ電極と、
    前記ベリリウム板の前記シリコン電子源に対向する側に被着され前記シリコン電子源から放出された電子が衝突することによりX線を発生させるターゲットと、
    を備えたことを特徴とするX線管。
  10. 前記シリコン基板と前記金属薄膜電極との間に多孔質状のシリコン層が形成され、前記多孔質状のシリコン層の一部が酸化されていることを特徴とする請求項1〜9のいずれか1つに記載のX線管。
  11. 前記シリコン基板と前記金属薄膜電極との間に多孔質状のシリコン層が形成され、前記多孔質状のシリコン層の一部が窒化されていることを特徴とする請求項1〜9のいずれか1つに記載のX線管。
  12. 前記シリコン電子源と前記コレクタ電極との間に、前記シリコン電子源から放出された電子を集束する集束電極が設けられたことを特徴とする請求項1〜11のいずれか1つに記載のX線管。
  13. 前記ターゲットは、タングステンからなることを特徴とする請求項1〜12のいずれか1つに記載のX線管。
JP2003205664A 2003-08-04 2003-08-04 X線管 Pending JP2005056592A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205664A JP2005056592A (ja) 2003-08-04 2003-08-04 X線管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205664A JP2005056592A (ja) 2003-08-04 2003-08-04 X線管

Publications (1)

Publication Number Publication Date
JP2005056592A true JP2005056592A (ja) 2005-03-03

Family

ID=34362821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205664A Pending JP2005056592A (ja) 2003-08-04 2003-08-04 X線管

Country Status (1)

Country Link
JP (1) JP2005056592A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964147A2 (en) * 2005-12-23 2008-09-03 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Device for generating x-rays and use of such a device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964147A2 (en) * 2005-12-23 2008-09-03 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Device for generating x-rays and use of such a device
US7839978B2 (en) 2005-12-23 2010-11-23 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Device for generating X-rays and use of such a device

Similar Documents

Publication Publication Date Title
US6487272B1 (en) Penetrating type X-ray tube and manufacturing method thereof
JP5896649B2 (ja) ターゲット構造体及びx線発生装置
KR101100553B1 (ko) 투과형 x선관 및 그 제조 방법
JP5800578B2 (ja) X線管
JP6039282B2 (ja) 放射線発生装置及び放射線撮影装置
US6044130A (en) Transmission type X-ray tube
US7526069B2 (en) X-ray tube
US9029795B2 (en) Radiation generating tube, and radiation generating device and apparatus including the tube
JP5322888B2 (ja) X線管
KR20160102743A (ko) 전계 방출 엑스선 소스 장치
KR20090112759A (ko) 공기중 안정한 알칼리 금속 또는 알칼리 토금속 디스펜서
JP2016143602A (ja) 陽極及びこれを用いたx線発生管、x線発生装置、x線撮影システム
KR20160102741A (ko) 전계 방출 엑스선 소스 장치
JP4287416B2 (ja) 電子放出装置
JP6429602B2 (ja) 陽極及びこれを用いたx線発生管、x線発生装置、x線撮影システム
JP2002298772A (ja) 透過放射型x線管およびその製造方法
JP2005056592A (ja) X線管
JPH09509501A (ja) ベリリウム窓の金属基材への真空密シール方法
JP4781156B2 (ja) 透過型x線管
JP2000082430A (ja) X線発生用ターゲット及びこれを用いたx線管
JP4516565B2 (ja) X線管陰極アセンブリ及び界面反応接合プロセス
US6809259B2 (en) Through terminal and X-ray tube
JP2013109937A (ja) X線管及びその製造方法
JP2015005337A (ja) 放射線発生ターゲット及びこれを用いた放射線発生管、放射線発生装置、放射線撮影システム
JP2005150230A (ja) 電子ヒートポンプ装置、電子機器および電子ヒートポンプ装置の製造方法