JP2005050930A - Pipe for cooling electronic component - Google Patents

Pipe for cooling electronic component Download PDF

Info

Publication number
JP2005050930A
JP2005050930A JP2003204172A JP2003204172A JP2005050930A JP 2005050930 A JP2005050930 A JP 2005050930A JP 2003204172 A JP2003204172 A JP 2003204172A JP 2003204172 A JP2003204172 A JP 2003204172A JP 2005050930 A JP2005050930 A JP 2005050930A
Authority
JP
Japan
Prior art keywords
pipe
cooling
coolant
hole
inner pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003204172A
Other languages
Japanese (ja)
Other versions
JP4167558B2 (en
Inventor
Michio Sawai
道男 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003204172A priority Critical patent/JP4167558B2/en
Publication of JP2005050930A publication Critical patent/JP2005050930A/en
Application granted granted Critical
Publication of JP4167558B2 publication Critical patent/JP4167558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling pipe for efficiently cooling electronic components such as a lamination piezoelectric actuator. <P>SOLUTION: The pipe for cooling the electronic components comprises an outer pipe 1 providing a cooling liquid drainage 1a on the side of an upper end, an inner pipe 2 for introducing a cooling liquid inserted from the upper end side into the inside of the outer pipe 1, a cylindrical support member 3 fitted and fixed to the upper end of the outer pipe 1 and supported and fixed in the state where the inner pipe 2 penetrates a through hole, and a cover member 4 fitted and fixed to the lower end of the outer pipe 1 and tightly closing the lower end. Concerning the inner pipe 2, the lower end face is joined on the upper face of the cover member 4, and the through hole 2a is provided on the side of the lower end. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は積層型圧電アクチュエータ等の電子部品を冷却するためのパイプに関するものである。
【0002】
【従来の技術】
従来、圧電効果を利用した機械的駆動素子として、数十枚の圧電板および電極板が交互に積層された積層型圧電アクチュエータが知られている。この積層型圧電アクチュエータは、電極板に電圧をかけるとこの電極板に挟まれた圧電板が伸縮することにより動作するが、圧電板が伸縮するときの内部摩擦熱や電気的発熱により発熱すること、および圧電板が熱伝導性の良くないセラミックスから成ることから、動作させると高温となることがあった。一方で、積層型圧電アクチュエータは、温度が上昇すると変位特性が変化したり、性能が劣化したり、圧電板の分極反転電圧の低下により積層型圧電アクチュエータとしての使用可能範囲が縮小したり、極端なときには壊れたりする場合があった。従って、積層型圧電アクチュエータにはこれら発熱による不都合を解消するために冷却構造が設けられることが多い。
【0003】
この積層型圧電アクチュエータの従来の冷却構造として、電子部品冷却用のパイプ(以下、冷却用パイプとも称する)の例を図2に示す。この図において、11は外パイプ、12は内パイプ、13は支持部材、14は蓋部材、15は排出用パイプである。
【0004】
外パイプ11は、銅(Cu)等の金属やテフロン(R)等の樹脂から成る円筒状の部材である。この上端部の側部には貫通した孔からなる冷却液排出部11aが設けられ、冷却液排出部11aには排出用パイプ15が接続されている。
【0005】
外パイプ11の内側には上端側から挿入されて外パイプ11と同軸状に配置された冷却液導入用の内パイプ12が外パイプ11の下端付近まで設けられている。内パイプ12はCu等の金属やテフロン(R)等の樹脂から成る円筒状の部材であり、その外径が外パイプ11の内径よりも小さくなっている。
【0006】
また、外パイプ11の上端には内パイプ12を外パイプ11と同軸状に支持固定するための支持部材13が嵌入固定され、外パイプ11の下端には下端を密閉する蓋部材14が嵌入固定されている(例えば、下記の特許文献1参照)。
【0007】
以上のようにして、電子部品冷却用のパイプが構成され、内パイプ12が外部冷却装置のポンプに接続され、排出用パイプ15が外部冷却装置の熱交換器に接続される。この構成においては、ポンプおよび熱交換器が全て上側に配設された構造となり、パイプの配管や積層型圧電アクチェータの全体構造が簡素化できる。
【0008】
この電子部品冷却用のパイプにおいてポンプが作動されると、ポンプから内パイプ12に冷却液が供給される。この冷却液は、冷却用のパイプの内パイプ12内を上端側から下端側まで通過し、内パイプ12の下端から外パイプ11の下端付近に送り出される。そして、この冷却液は、冷却用のパイプの外パイプ11内を下端側から上端側まで周囲の熱を奪いながら通過し、冷却液排出部11aから排出用パイプ15を通過して熱交換器に送られる。周囲の熱を奪って温度が上昇した冷却液は、熱交換器内で冷却された後ポンプに送られ、再び内パイプ12に供給される。
【0009】
この冷却用パイプを例えば円筒状の積層型圧電アクチュエータの中心部に設置することにより、積層型圧電アクチュエータ内に発生する熱を外部に放熱することができ、積層型圧電アクチュエータを効果的に冷却することができた。
【0010】
【特許文献1】
特開平7−131085号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上記従来の冷却用パイプにおいては、内パイプ2の下端が固定されていないため、冷却液を流すと冷却液の圧力によって内パイプ12が傾いたり、内パイプ12の下端が蓋部材14の上面へ落下してしまう場合があった。
【0012】
その結果、外パイプ11の内側と内パイプ12の外側との隙間が狭くなって冷却液が流れにくくなったり、内パイプ12の下端がふさがって冷却液が流れなくなったり、内パイプ12と支持部材13との間に隙間ができたり、または支持部材13が破損し冷却液が漏れる等の不具合が発生することによって、積層型圧電アクチュエータを効率よく冷却することができなくなるという問題点があった。
【0013】
従って、本発明は上記問題点に鑑み完成されたものであり、その目的は、積層型圧電アクチュエータ等の電子部品を効率よく冷却できる電子部品冷却用のパイプを提供することにある。
【0014】
【課題を解決するための手段】
本発明の電子部品冷却用のパイプは、上端部の側部に冷却液排出部が設けられた外パイプと、該外パイプの内側に上端側から挿入された冷却液導入用の内パイプと、前記外パイプの前記上端部に嵌入固定されて前記内パイプを貫通孔に通した状態で支持固定する筒状の支持部材と、前記外パイプの下端部に嵌入固定されて下端を密閉する蓋部材とを具備した電子部品冷却用のパイプにおいて、前記内パイプは、その下端面が前記蓋部材の上面に接合されるとともに下端部の側部に貫通穴が設けられていることを特徴とするものである。
【0015】
本発明の電子部品冷却用のパイプは、内パイプの下端部が蓋部材の上面に接合されるとともに下端部の側部に貫通穴が設けられていることより、内パイプを上側の支持部材と下側の蓋部材との上下両端で固定できるので、内部に冷却液を流しても冷却液の圧力で内パイプが傾いたり位置がずれたりすることがない。
【0016】
その結果、電子部品冷却用のパイプ内で内パイプが冷却液の流れを遮ることがなく、電子部品冷却用のパイプ内において冷却液をスムーズに流すことができ、積層型圧電アクチュエータ等の電子部品を極めて効率よく冷却することができる。
【0017】
また、本発明の電子部品冷却用のパイプは、上記構成において好ましくは、前記内パイプは、前記貫通穴が複数設けられており、前記冷却液排出部側の前記貫通穴の開口よりも前記冷却液排出部と反対側の前記貫通穴の開口が大きいことを特徴とするものである。
【0018】
本発明の電子部品冷却用のパイプは、貫通穴が複数設けられており、冷却液排出部側の貫通穴の開口よりも冷却液排出部と反対側の貫通穴の開口が大きいことより、冷却液が複数の貫通穴を通過することにより循環する冷却液の量を多くすることができ、効率よく大量の熱を外部に放熱することができる。
【0019】
また、冷却液排出部側の貫通穴の開口よりも冷却液排出部と反対側の貫通穴の開口が大きいことより、冷却液排出部と反対側の貫通穴を通過して外パイプを上昇するとともに内パイプの周りを回って冷却液排出部から排出される冷却液の流路が、冷却液排出部側の貫通穴を通過して外パイプをそのまま上昇し冷却液排出部から排出される冷却液の流路より内パイプの周りを回る分長くなり、そのために冷却液排出部と反対側の貫通穴を通過する冷却液の流路抵抗が、冷却液排出部側の貫通穴を通過する冷却液の流路抵抗より大きくなるのを、貫通穴の開口を大きくすることにより貫通穴の開口部分での流路抵抗を低くしてバランスを取ることができるので、冷却液をスムーズに流すことができ、積層型アクチュエータ等の電子部品を極めて効率よく冷却することができる。
【0020】
【発明の実施の形態】
本発明の電子部品冷却用のパイプ(以下、冷却用パイプとも称する)について以下に詳細に説明する。図1は本発明の電子部品冷却用のパイプの実施の形態の一例を示す断面図である。この図において、1は外パイプ、2は内パイプ、3は支持部材、4は蓋部材である。
【0021】
本発明の電子部品冷却用のパイプは、上端部の側部に冷却液排出部1aが設けられた外パイプ1と、この外パイプ1の内側に上端側から挿入された冷却液導入用の内パイプ2と、外パイプ1の上端部に嵌入固定されて内パイプ2を貫通孔に通した状態で支持固定する筒状の支持部材3と、外パイプ1の下端部に嵌入固定されて下端を密閉する蓋部材4とを具備し、内パイプ2は、その下端面が蓋部材4の上面に接合されるとともに下端部の側部に貫通穴2aが設けられている。
【0022】
本発明における外パイプ1は、Cuやステンレス鋼(SUS)等の金属から成る円筒状の部材である。この上端部の側部には貫通した孔からなる冷却液排出部1aが設けられている。外パイプ1は、金属のインゴットに圧延加工や絞り加工、押出し加工等の従来周知の金属加工法を施すことによって所定形状に製作される。なお、本実施の形態の例における積層型圧電アクチュエータの冷却用パイプの例においては、外パイプ1は例えば2乃至15mmの外径および50乃至400mmの長さに形成されている。
【0023】
冷却液排出部1aにはCuやSUS等の金属から成る円筒状の排出用パイプ5が銀(Ag)ロウやAg−Cuロウ等のロウ材によって気密に接合されているのがよく、これにより、冷却液排出部1aを外部冷却装置の熱交換器等に接続させるのが容易となる。
【0024】
外パイプ1の内側には上端側から挿入された、下端部の側部に貫通穴2aが設けられている冷却液導入用の内パイプ2が下端の蓋部材4の上面まで設けられ、その下端面は蓋部材4の上面にAgロウやAg−Cuロウ等のロウ材によって接合されている。内パイプ2はCuやSUS等の金属から成る円筒状の部材であり、その外径が外パイプ1の内径よりも小さくなっている。内パイプ2は外パイプ1と同軸に配置されているのが好ましいが、必ずしも同軸でなくてもよい。なお、本実施の形態の例における積層型圧電アクチュエータの冷却用パイプの例においては、内パイプ2は例えば1乃至10mmの外径および40乃至395mmの長さに形成されている。
【0025】
貫通穴2aは1個だけ設けられても複数個設けられてもよく、また形状は円形や四角形等の種々の形状とし得る。貫通穴2aを複数個設けることにより、冷却液が複数の貫通穴2aを通過でき、循環する冷却液の量を多くすることができるので、効率よく大量の熱を外部に放熱することができる冷却用パイプとできる。
【0026】
また、冷却液排出部1a側の貫通穴2aの開口よりも冷却液排出部1aと反対側の貫通穴2aの開口を大きくしてもよい。これにより、冷却液排出部1aと反対側の貫通穴2aを通過して外パイプ1を上昇するとともに内パイプ2の周りを回って冷却液排出部1aから排出される冷却液の流路が、冷却液排出部1a側の貫通穴2aを通過して外パイプ1をそのまま上昇し冷却液排出部1aから排出される冷却液の流路より内パイプ2の周りを回る分長くなり、そのために冷却液排出部1aと反対側の貫通穴2aを通過する冷却液の流路抵抗が、冷却液排出部1a側の貫通穴2aを通過する冷却液の流路抵抗より大きくなるのを、貫通穴2aの開口を大きくすることにより貫通穴2aの開口部分での流路抵抗を低くしてバランスを取ることができるので、冷却液をスムーズに流すことができ、積層型アクチュエータ等の電子部品を極めて効率よく冷却することができる。
【0027】
冷却液排出部1aと反対側の貫通穴2aの開口は、冷却液排出部1a側の貫通穴2aの開口よりも1.5倍以下の大きさとすればよい。1.5倍を超える大きさにすると、冷却液排出部1a側と冷却液排出部1aと反対側の貫通穴2aでの冷却液の流量のバランスが崩れてしまうので、冷却液排出部1a側と冷却液排出部1aと反対側の貫通穴2aを流れる冷却液の圧力のバランスが崩れ、内パイプ2の下端に加わる圧力が偏る傾向がある。
【0028】
また、冷却液排出部1a側の貫通穴2aの開口よりも冷却液排出部1aと反対側の貫通穴2aの開口を大きくする代わりに、内パイプ2の中心軸を外パイプ1の中心軸より冷却液排出部1a側に偏心させて設けても同様の効果を得ることができる。内パイプ2の中心軸を偏心させる場合、外パイプ1の内径側の半径に対し外パイプ1の中心軸より冷却液排出部1a側に0.5倍だけ偏心させるとよい。0.5倍を超えて偏心させると内パイプ2周りの冷却液の流量のバランスが崩れてしまうので、冷却液排出部1a側と冷却液排出部1aと反対側の貫通穴2aを流れる冷却液の圧力のバランスが崩れ、内パイプ2の下端に加わる圧力が偏る傾向がある。
【0029】
貫通穴2aの開口の下端は冷却液を冷却用パイプの下側まで流すために、可能な限り内パイプ2の下端に設けるとよく、これにより冷却液を冷却用パイプの下端まで流して、冷却用パイプの外側の上端と下端間の全ての部位において冷却機能を十分に発揮させることができる。好ましくは、貫通穴2aの開口の下端が内パイプ2の下端から0.3〜3mmに位置するようにするのがよく、この構成により、冷却用パイプの外側の上端と下端との間の全ての部位において冷却機能を十分に発揮させることができるとともに、貫通穴2aの加工を容易として量産性に優れたものとすることができる。0.3mm未満であると、貫通穴2aの開口の下端から内パイプ2の下端までの長さが短くなり、貫通穴2aを設けるために加工するときに、内パイプ2の下端が変形する場合があり、内パイプ2の変形によって冷却用パイプ内部において冷却液をスムーズに流せなくなる点で不都合であり、3mmを超えて大きくなると、冷却液を冷却用パイプの下側まで完全に流すことが困難となり、冷却用パイプの外側の上端と下端との間の全ての部位において冷却機能を十分に発揮させることが困難となる。
【0030】
また好ましくは、図1に示すように、内パイプ2の内側の下端、すなわち蓋部材4の上面と貫通穴2aの開口の下端との間には、底部材6を設けるとよく、これにより、内パイプ2を流れる冷却液をよりスムーズに流すことができる。
【0031】
貫通穴2aの大きさについては、好ましくは、貫通穴2aが占める内パイプ2の周方向の長さ(貫通穴2aが複数ある場合、全ての貫通穴としての長さ)を内パイプ2の周方向の長さの半分以上0.8倍以下とするのがよい。これにより、冷却用パイプ内部に冷却液を流しても、内パイプ2の貫通穴2aの部位の強度が低下して内パイプ2が傾いたり位置がずれたりすることがなく冷却液を冷却用パイプ内にスムーズに流すことができる。貫通穴2aの開口が占める内パイプ2の周方向の長さが内パイプ2の周長さの半分未満であると、貫通穴2aの大きさが小さくなりすぎてしまい、冷却液を内パイプ2内でスムーズに流すことができなくなる場合がある。貫通穴2aが占める内パイプ2の周方向の長さが内パイプ2の周長さの0.8倍を超えると、貫通穴2a部において内パイプ2を支える幅が狭くなりすぎてしまい、冷却用パイプ内に冷却液を流すと貫通穴2a部において内パイプ2を支持固定するのが困難となって、内パイプ2が傾いたり位置ずれしたりする場合がある。その結果、冷却液を冷却用パイプ内にスムーズに流すことができなくなる場合がある。
【0032】
そして、外パイプ1の上端部に嵌入固定されて内パイプ2を貫通孔に通した状態で支持固定する筒状の支持部材3が設けられ、外パイプ1の下端部には下端部に嵌入固定されて下端を密閉する蓋部材4が設けられて閉口端となっており、蓋部材4の上面に内パイプ2の下端面が接合されている。支持部材3と蓋部材4はCuやSUS等の金属から成り、例えばそれぞれAgロウやAg−Cuロウ等のロウ材を介して外パイプ1および内パイプ2に気密に接合されているが、支持部材3および蓋部材4は液漏れしないようにしっかり嵌合されておればよく、必ずしもロウ材や樹脂接着剤などで接合固定しなくてもよい。
【0033】
好ましくは、外パイプ1,内パイプ2,支持部材3,蓋部材4および排出用パイプ5は、CuまたはSUSから成るのがよく、Cuは加工性に優れる点,熱伝導性が良く放熱性に優れる点,および耐蝕性に優れている点で好ましく、SUSは熱による焼鈍が無く,溶接付けが容易であり冷却対象となる積層型圧電アクチュエータ等への取り付けが容易な点,および耐蝕性に優れている点で好ましい。
【0034】
以上のようにして、冷却用パイプが構成され、内パイプ2が外部冷却装置のポンプに接続され、排出用パイプ5が外部冷却装置の熱交換器に接続される。この冷却構造においてポンプが作動されると、ポンプから内パイプ2に冷却液が供給される。この冷却液は、冷却用パイプの内パイプ2内を上端側から下端側まで通過し、内パイプ2の貫通穴2aから外パイプ1の下端付近に送り出される。そして、この冷却液は、冷却用パイプの外パイプ1内を下端側から上端側まで周囲の熱を奪いながら通過し、冷却液排出部1aから排出用パイプ5を通過して熱交換器に送られる。周囲の熱を奪って温度が上昇した冷却液は、熱交換器内で冷却された後ポンプに送られ、再び内パイプ2に供給される。
【0035】
ここで、内パイプ2は冷却用パイプの上側の支持部材3と下側の蓋部材4との上下両端で固定されるので、内部に冷却液を流しても冷却液の圧力で内パイプ2が傾いたり位置がずれたりすることがない。その結果、冷却用パイプ内で内パイプ2が冷却液の流れを遮ることがなく、冷却用パイプ内において冷却液をスムーズ流すことができ、積層型圧電アクチュエータ等の電子部品を極めて効率よく冷却することができる。
【0036】
なお、本発明は以上の実施の形態の例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何ら差し支えない。例えば、冷却液排出部1aは複数個設けてもよく、これにより、冷却液をスムーズに流すことができる。
【0037】
【発明の効果】
本発明の冷却用パイプは、上端部の側部に冷却液排出部が設けられた外パイプと、この外パイプの内側に上端側から挿入された冷却液導入用の内パイプと、外パイプの上端部に嵌入固定されて内パイプを貫通孔に通した状態で支持固定する筒状の支持部材と、外パイプの下端部に嵌入固定されて下端を密閉する蓋部材とを具備した電子部品冷却用のパイプにおいて、内パイプは、その下端面が蓋部材の上面に接合されるとともに下端部の側部に貫通穴が設けられていることから、内パイプを上側の支持部材と下側の蓋部材との上下両端で固定できるので、内部に冷却液を流しても冷却液の圧力で内パイプが傾いたり位置がずれたりすることがない。
【0038】
その結果、電子部品冷却用のパイプ内で内パイプが冷却液の流れを遮ることがなく、電子部品冷却用のパイプ内において冷却液をスムーズに流すことができ、積層型圧電アクチュエータ等の電子部品を極めて効率よく冷却することができる。
【0039】
また、本発明の電子部品冷却用のパイプは、上記構成において好ましくは、内パイプは、貫通穴が複数設けられており、冷却液排出部側の貫通穴の開口よりも冷却液排出部と反対側の貫通穴の開口が大きいことから、冷却液が複数の貫通穴を通過することにより循環する冷却液の量を多くすることができ、効率よく大量の熱を外部に放熱することができる。
【0040】
また、冷却液排出部側の貫通穴の開口よりも冷却液排出部と反対側の貫通穴の開口が大きいことより、冷却液排出部と反対側の貫通穴を通過して外パイプを上昇するとともに内パイプの周りを回って冷却液排出部から排出される冷却液の流路が、冷却液排出部側の貫通穴を通過して外パイプをそのまま上昇し冷却液排出部から排出される冷却液の流路より内パイプの周りを回る分長くなり、そのために冷却液排出部と反対側の貫通穴を通過する冷却液の流路抵抗が、冷却液排出部側の貫通穴を通過する冷却液の流路抵抗より大きくなるのを、貫通穴の開口を大きくすることにより貫通穴の開口部分での流路抵抗を低くしてバランスを取ることができるので、冷却液をスムーズに流すことができ、積層型アクチュエータ等の電子部品を極めて効率よく冷却することができる。
【図面の簡単な説明】
【図1】本発明の電子部品冷却用のパイプの実施の形態の一例を示す断面図である。
【図2】従来の電子部品冷却用のパイプの例を示す断面図である。
【符号の説明】
1:外パイプ
1a:冷却液排出部
2:内パイプ
2a:貫通穴
3:支持部材
4:蓋部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pipe for cooling an electronic component such as a laminated piezoelectric actuator.
[0002]
[Prior art]
Conventionally, as a mechanical drive element using the piezoelectric effect, a multilayer piezoelectric actuator in which several tens of piezoelectric plates and electrode plates are alternately stacked is known. This multilayer piezoelectric actuator operates when the voltage applied to the electrode plate expands and contracts, but it generates heat due to internal frictional heat and electrical heat generated when the piezoelectric plate expands and contracts. In addition, since the piezoelectric plate is made of ceramics having poor thermal conductivity, it may become hot when operated. On the other hand, the multilayer piezoelectric actuator changes its displacement characteristics when the temperature rises, its performance deteriorates, the usable range of the multilayer piezoelectric actuator decreases as the polarization inversion voltage of the piezoelectric plate decreases, Sometimes it was broken. Therefore, the multilayer piezoelectric actuator is often provided with a cooling structure in order to eliminate the disadvantages caused by the heat generation.
[0003]
FIG. 2 shows an example of a pipe for cooling an electronic component (hereinafter also referred to as a cooling pipe) as a conventional cooling structure of this multilayer piezoelectric actuator. In this figure, 11 is an outer pipe, 12 is an inner pipe, 13 is a support member, 14 is a lid member, and 15 is a discharge pipe.
[0004]
The outer pipe 11 is a cylindrical member made of a metal such as copper (Cu) or a resin such as Teflon (R). A cooling liquid discharge part 11a composed of a through hole is provided on the side of the upper end part, and a discharge pipe 15 is connected to the cooling liquid discharge part 11a.
[0005]
Inside the outer pipe 11, an inner pipe 12 for introducing a coolant inserted from the upper end side and arranged coaxially with the outer pipe 11 is provided to the vicinity of the lower end of the outer pipe 11. The inner pipe 12 is a cylindrical member made of a metal such as Cu or a resin such as Teflon (R), and the outer diameter thereof is smaller than the inner diameter of the outer pipe 11.
[0006]
A support member 13 for fixing and fixing the inner pipe 12 coaxially with the outer pipe 11 is fitted and fixed to the upper end of the outer pipe 11, and a lid member 14 for sealing the lower end is fitted and fixed to the lower end of the outer pipe 11. (For example, refer to Patent Document 1 below).
[0007]
As described above, the electronic component cooling pipe is configured, the inner pipe 12 is connected to the pump of the external cooling device, and the discharge pipe 15 is connected to the heat exchanger of the external cooling device. In this configuration, the pump and the heat exchanger are all disposed on the upper side, and the pipe structure and the overall structure of the laminated piezoelectric actuator can be simplified.
[0008]
When the pump is operated in the electronic component cooling pipe, the coolant is supplied from the pump to the inner pipe 12. The coolant passes through the inner pipe 12 of the cooling pipe from the upper end side to the lower end side, and is sent from the lower end of the inner pipe 12 to the vicinity of the lower end of the outer pipe 11. Then, the coolant passes through the outer pipe 11 of the cooling pipe from the lower end side to the upper end side while taking away the surrounding heat, and passes through the discharge pipe 15 from the coolant discharge portion 11a to the heat exchanger. Sent. The coolant whose temperature has risen due to the removal of ambient heat is cooled in the heat exchanger, then sent to the pump, and supplied to the inner pipe 12 again.
[0009]
By installing this cooling pipe in the center of a cylindrical laminated piezoelectric actuator, for example, heat generated in the laminated piezoelectric actuator can be radiated to the outside, and the laminated piezoelectric actuator is effectively cooled. I was able to.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-131085
[Problems to be solved by the invention]
However, since the lower end of the inner pipe 2 is not fixed in the conventional cooling pipe, the inner pipe 12 is inclined due to the pressure of the cooling liquid when the cooling liquid is flowed, or the lower end of the inner pipe 12 is connected to the lid member 14. There was a case where it falls to the upper surface.
[0012]
As a result, the gap between the inner side of the outer pipe 11 and the outer side of the inner pipe 12 becomes narrow, making it difficult for the coolant to flow, or the lower end of the inner pipe 12 is blocked and the coolant does not flow, or the inner pipe 12 and the support member There is a problem in that the laminated piezoelectric actuator cannot be efficiently cooled due to the occurrence of a defect such as a gap between the piezoelectric element 13 and the support member 13 or the leakage of the coolant.
[0013]
Accordingly, the present invention has been completed in view of the above problems, and an object of the present invention is to provide a pipe for cooling an electronic component that can efficiently cool an electronic component such as a laminated piezoelectric actuator.
[0014]
[Means for Solving the Problems]
The pipe for cooling an electronic component of the present invention includes an outer pipe provided with a coolant discharge part on the side of the upper end, an inner pipe for introducing a coolant inserted from the upper end inside the outer pipe, A cylindrical support member that is fitted and fixed to the upper end portion of the outer pipe and supports and fixes the inner pipe through the through hole, and a lid member that is fitted and fixed to the lower end portion of the outer pipe and seals the lower end. In the pipe for cooling electronic parts, the inner pipe has a lower end surface joined to the upper surface of the lid member and a through hole provided in a side portion of the lower end portion. It is.
[0015]
In the electronic component cooling pipe of the present invention, the lower end portion of the inner pipe is joined to the upper surface of the lid member and the through hole is provided in the side portion of the lower end portion. Since it can be fixed at both upper and lower ends with the lower lid member, the inner pipe does not tilt or shift due to the pressure of the cooling liquid even if the cooling liquid flows inside.
[0016]
As a result, the inner pipe does not block the flow of the coolant in the electronic component cooling pipe, and the coolant can flow smoothly in the electronic component cooling pipe. Can be cooled extremely efficiently.
[0017]
In the electronic component cooling pipe of the present invention, preferably, the inner pipe is provided with a plurality of the through holes, and the cooling of the inner pipe is more than the opening of the through hole on the coolant discharge part side. The opening of the through hole on the side opposite to the liquid discharge part is large.
[0018]
The pipe for cooling an electronic component of the present invention is provided with a plurality of through holes, and the opening of the through hole on the side opposite to the coolant discharge part is larger than the opening of the through hole on the coolant discharge part side. When the liquid passes through the plurality of through holes, the amount of the circulating coolant can be increased, and a large amount of heat can be efficiently radiated to the outside.
[0019]
Further, since the opening of the through hole on the opposite side to the coolant discharging part is larger than the opening of the through hole on the cooling liquid discharging part side, the outer pipe is raised through the through hole on the opposite side of the cooling liquid discharging part. In addition, the coolant flow path that goes around the inner pipe and is discharged from the coolant discharge section passes through the through hole on the coolant discharge section side, rises as it is to the outer pipe, and is discharged from the coolant discharge section. The flow path of the coolant passing through the through hole on the side opposite to the coolant discharge section is longer than the flow path of the liquid around the inner pipe. Since the flow resistance of the liquid becomes larger than the flow resistance of the liquid, the flow resistance at the opening of the through hole can be lowered and balanced by increasing the opening of the through hole, so that the coolant can flow smoothly. Electronic components such as stacked actuators are extremely effective. It can be good for cooling.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The electronic component cooling pipe (hereinafter also referred to as a cooling pipe) of the present invention will be described in detail below. FIG. 1 is a sectional view showing an example of an embodiment of a pipe for cooling an electronic component according to the present invention. In this figure, 1 is an outer pipe, 2 is an inner pipe, 3 is a support member, and 4 is a lid member.
[0021]
The pipe for cooling an electronic component according to the present invention includes an outer pipe 1 provided with a coolant discharge part 1a on the side of the upper end, and an inner part for introducing a coolant inserted into the outer pipe 1 from the upper end side. A pipe 2, a cylindrical support member 3 that is fitted and fixed to the upper end portion of the outer pipe 1 and is supported and fixed in a state where the inner pipe 2 is passed through the through hole, and a lower end portion that is fitted and fixed to the lower end portion of the outer pipe 1. The inner pipe 2 has a lower end surface joined to the upper surface of the lid member 4 and a through hole 2a on the side of the lower end.
[0022]
The outer pipe 1 in the present invention is a cylindrical member made of a metal such as Cu or stainless steel (SUS). On the side of the upper end portion, there is provided a coolant discharge part 1a composed of a through hole. The outer pipe 1 is manufactured in a predetermined shape by subjecting a metal ingot to conventionally known metal processing methods such as rolling, drawing, and extrusion. In the example of the cooling pipe of the laminated piezoelectric actuator in the example of the present embodiment, the outer pipe 1 is formed with an outer diameter of 2 to 15 mm and a length of 50 to 400 mm, for example.
[0023]
A cylindrical discharge pipe 5 made of a metal such as Cu or SUS is preferably airtightly joined to the coolant discharge portion 1a by a brazing material such as silver (Ag) brazing or Ag-Cu brazing. It becomes easy to connect the coolant discharge part 1a to a heat exchanger or the like of the external cooling device.
[0024]
Inside the outer pipe 1, an inner pipe 2 for introducing a coolant, which is inserted from the upper end side and has a through hole 2 a on the side of the lower end, is provided up to the upper surface of the lid member 4 at the lower end. The end surface is joined to the upper surface of the lid member 4 by a brazing material such as Ag brazing or Ag-Cu brazing. The inner pipe 2 is a cylindrical member made of a metal such as Cu or SUS, and the outer diameter thereof is smaller than the inner diameter of the outer pipe 1. The inner pipe 2 is preferably arranged coaxially with the outer pipe 1, but is not necessarily coaxial. In the example of the cooling pipe of the laminated piezoelectric actuator in the example of the present embodiment, the inner pipe 2 is formed with an outer diameter of 1 to 10 mm and a length of 40 to 395 mm, for example.
[0025]
Only one through hole 2a or a plurality of through holes 2a may be provided, and the shape may be various shapes such as a circle and a quadrangle. By providing a plurality of through holes 2a, the coolant can pass through the plurality of through holes 2a, and the amount of circulating coolant can be increased, so that a large amount of heat can be efficiently radiated to the outside. Can be used as a pipe.
[0026]
Further, the opening of the through hole 2a on the opposite side to the coolant discharging part 1a may be made larger than the opening of the through hole 2a on the cooling liquid discharging part 1a side. Thereby, the flow path of the coolant that passes through the through hole 2a opposite to the coolant discharge part 1a and rises up the outer pipe 1 and goes around the inner pipe 2 and is discharged from the coolant discharge part 1a, Passing through the through hole 2a on the coolant discharge part 1a side, the outer pipe 1 is lifted as it is, and it becomes longer than the flow path of the coolant discharged from the coolant discharge part 1a as much as it goes around the inner pipe 2, and cooling is therefore performed. The through hole 2a is such that the flow resistance of the coolant passing through the through hole 2a on the side opposite to the liquid discharge portion 1a is larger than the flow resistance of the coolant passing through the through hole 2a on the coolant discharge portion 1a side. By enlarging the opening of the through hole 2a, the flow resistance at the opening of the through hole 2a can be lowered and balanced, so that the coolant can flow smoothly and the electronic parts such as the multilayer actuator are extremely efficient. Can cool well .
[0027]
The opening of the through hole 2a on the side opposite to the coolant discharge part 1a may be 1.5 times or less than the opening of the through hole 2a on the coolant discharge part 1a side. If the size exceeds 1.5 times, the balance of the flow rate of the coolant in the through hole 2a on the opposite side of the coolant discharge part 1a and the coolant discharge part 1a is lost, so the coolant discharge part 1a side And the balance of the pressure of the coolant flowing through the through hole 2a opposite to the coolant discharge part 1a is lost, and the pressure applied to the lower end of the inner pipe 2 tends to be biased.
[0028]
Further, instead of making the opening of the through hole 2a opposite to the coolant discharge part 1a larger than the opening of the through hole 2a on the coolant discharge part 1a side, the central axis of the inner pipe 2 is set to be larger than the center axis of the outer pipe 1 The same effect can be obtained even if it is provided eccentric to the coolant discharge part 1a side. When the central axis of the inner pipe 2 is decentered, the inner pipe 2 is preferably decentered by 0.5 times from the central axis of the outer pipe 1 toward the coolant discharge part 1a. If the eccentricity exceeds 0.5 times, the balance of the flow rate of the coolant around the inner pipe 2 is lost, so the coolant flowing in the through hole 2a on the opposite side of the coolant discharge part 1a and the coolant discharge part 1a. There is a tendency that the pressure applied to the lower end of the inner pipe 2 is biased.
[0029]
The lower end of the opening of the through hole 2a is preferably provided at the lower end of the inner pipe 2 as much as possible in order to allow the coolant to flow to the lower side of the cooling pipe. The cooling function can be sufficiently exerted at all portions between the upper end and the lower end outside the pipe. Preferably, the lower end of the opening of the through-hole 2a is located at 0.3 to 3 mm from the lower end of the inner pipe 2, and this configuration allows all between the outer upper end and the lower end of the cooling pipe. As a result, the cooling function can be sufficiently exerted in this part, and the through hole 2a can be easily processed to be excellent in mass productivity. When the length is less than 0.3 mm, the length from the lower end of the opening of the through hole 2a to the lower end of the inner pipe 2 is shortened, and the lower end of the inner pipe 2 is deformed when processing to provide the through hole 2a. And it is inconvenient in that the coolant cannot flow smoothly inside the cooling pipe due to deformation of the inner pipe 2, and if it exceeds 3 mm, it is difficult to completely flow the coolant to the lower side of the cooling pipe. Thus, it is difficult to sufficiently exert the cooling function at all the portions between the upper end and the lower end outside the cooling pipe.
[0030]
Preferably, as shown in FIG. 1, a bottom member 6 is provided between the lower end inside the inner pipe 2, that is, between the upper surface of the lid member 4 and the lower end of the opening of the through hole 2a. The coolant flowing through the inner pipe 2 can flow more smoothly.
[0031]
Regarding the size of the through hole 2a, preferably, the circumferential length of the inner pipe 2 occupied by the through hole 2a (the length of all through holes when there are a plurality of through holes 2a) is the circumference of the inner pipe 2. It is good to set it to half or more and 0.8 times or less of the length of a direction. As a result, even if the cooling liquid flows through the cooling pipe, the strength of the portion of the through hole 2a of the inner pipe 2 is reduced, and the cooling pipe is supplied without the inner pipe 2 being tilted or displaced. It can flow smoothly inside. When the circumferential length of the inner pipe 2 occupied by the opening of the through hole 2a is less than half the circumferential length of the inner pipe 2, the size of the through hole 2a becomes too small, and the coolant is supplied to the inner pipe 2. May not be able to flow smoothly. When the circumferential length of the inner pipe 2 occupied by the through-hole 2a exceeds 0.8 times the circumferential length of the inner pipe 2, the width for supporting the inner pipe 2 at the through-hole 2a becomes too narrow, and cooling is performed. When the coolant is allowed to flow through the pipe, it becomes difficult to support and fix the inner pipe 2 in the through hole 2a, and the inner pipe 2 may be inclined or displaced. As a result, the coolant may not flow smoothly through the cooling pipe.
[0032]
A cylindrical support member 3 is provided that is fitted and fixed to the upper end portion of the outer pipe 1 and that supports and fixes the inner pipe 2 through the through hole. The lower end portion of the outer pipe 1 is fitted and fixed to the lower end portion. Thus, the lid member 4 that seals the lower end is provided to form a closed end, and the lower end surface of the inner pipe 2 is joined to the upper surface of the lid member 4. The support member 3 and the lid member 4 are made of a metal such as Cu or SUS, and are hermetically joined to the outer pipe 1 and the inner pipe 2 via a brazing material such as Ag brazing or Ag-Cu brazing, respectively. The member 3 and the lid member 4 only need to be firmly fitted so as not to leak and may not necessarily be joined and fixed with a brazing material or a resin adhesive.
[0033]
Preferably, the outer pipe 1, the inner pipe 2, the support member 3, the lid member 4 and the discharge pipe 5 are made of Cu or SUS, and Cu is excellent in workability, heat conductivity and heat dissipation. SUS is preferable because of its excellent point and excellent corrosion resistance. SUS has no thermal annealing, can be easily welded, can be easily mounted on a multilayer piezoelectric actuator that is subject to cooling, and has excellent corrosion resistance. This is preferable.
[0034]
As described above, the cooling pipe is configured, the inner pipe 2 is connected to the pump of the external cooling device, and the discharge pipe 5 is connected to the heat exchanger of the external cooling device. When the pump is operated in this cooling structure, the coolant is supplied from the pump to the inner pipe 2. The coolant passes through the inner pipe 2 of the cooling pipe from the upper end side to the lower end side, and is sent out from the through hole 2a of the inner pipe 2 to the vicinity of the lower end of the outer pipe 1. Then, the coolant passes through the outer pipe 1 of the cooling pipe from the lower end side to the upper end side while taking away the surrounding heat, and passes from the coolant discharge portion 1a through the discharge pipe 5 to the heat exchanger. It is done. The coolant whose temperature has risen due to the removal of ambient heat is cooled in the heat exchanger, then sent to the pump, and supplied to the inner pipe 2 again.
[0035]
Here, since the inner pipe 2 is fixed at both the upper and lower ends of the upper support member 3 and the lower lid member 4 of the cooling pipe, the inner pipe 2 is held by the pressure of the cooling liquid even if the cooling liquid flows inside. There is no tilt or misalignment. As a result, the inner pipe 2 does not block the flow of the cooling liquid in the cooling pipe, the cooling liquid can flow smoothly in the cooling pipe, and the electronic components such as the laminated piezoelectric actuator are cooled extremely efficiently. be able to.
[0036]
In addition, this invention is not limited to the example of the above embodiment, A various change may be performed in the range which does not deviate from the summary of this invention. For example, a plurality of cooling liquid discharge portions 1a may be provided, thereby allowing the cooling liquid to flow smoothly.
[0037]
【The invention's effect】
The cooling pipe of the present invention includes an outer pipe provided with a coolant discharge part on the side of the upper end, an inner pipe for introducing a coolant inserted from the upper end inside the outer pipe, and an outer pipe Electronic component cooling comprising a cylindrical support member that is fitted and fixed to the upper end portion and is supported and fixed while the inner pipe is passed through the through-hole, and a lid member that is fitted and fixed to the lower end portion of the outer pipe to seal the lower end. Since the inner pipe has a lower end surface joined to the upper surface of the lid member and a through hole is provided in the side portion of the lower end portion, the inner pipe is connected to the upper support member and the lower lid. Since it can be fixed at both the upper and lower ends of the member, the inner pipe will not be tilted or displaced due to the pressure of the coolant even if the coolant flows inside.
[0038]
As a result, the inner pipe does not block the flow of the coolant in the electronic component cooling pipe, and the coolant can flow smoothly in the electronic component cooling pipe. Can be cooled extremely efficiently.
[0039]
In the electronic component cooling pipe according to the present invention, preferably, the inner pipe has a plurality of through holes, and is more opposite to the coolant discharge part than the opening of the through hole on the coolant discharge part side. Since the opening of the through hole on the side is large, it is possible to increase the amount of the coolant circulating when the coolant passes through the plurality of through holes, and to efficiently dissipate a large amount of heat to the outside.
[0040]
Further, since the opening of the through hole on the opposite side to the coolant discharging part is larger than the opening of the through hole on the cooling liquid discharging part side, the outer pipe is raised through the through hole on the opposite side of the cooling liquid discharging part. In addition, the coolant flow path that goes around the inner pipe and is discharged from the coolant discharge section passes through the through hole on the coolant discharge section side, rises as it is to the outer pipe, and is discharged from the coolant discharge section. The flow path of the coolant passing through the through hole on the side opposite to the coolant discharge section is longer than the flow path of the liquid around the inner pipe. Since the flow resistance of the liquid becomes larger than the flow resistance of the liquid, the flow resistance at the opening of the through hole can be lowered and balanced by increasing the opening of the through hole, so that the coolant can flow smoothly. Electronic components such as stacked actuators are extremely effective. It can be good for cooling.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a pipe for cooling an electronic component according to the present invention.
FIG. 2 is a cross-sectional view showing an example of a conventional pipe for cooling an electronic component.
[Explanation of symbols]
1: Outer pipe 1a: Coolant discharge part 2: Inner pipe 2a: Through hole 3: Support member 4: Lid member

Claims (2)

上端部の側部に冷却液排出部が設けられた外パイプと、該外パイプの内側に上端側から挿入された冷却液導入用の内パイプと、前記外パイプの前記上端部に嵌入固定されて前記内パイプを貫通孔に通した状態で支持固定する筒状の支持部材と、前記外パイプの下端部に嵌入固定されて下端を密閉する蓋部材とを具備した電子部品冷却用のパイプにおいて、前記内パイプは、その下端面が前記蓋部材の上面に接合されるとともに下端部の側部に貫通穴が設けられていることを特徴とする電子部品冷却用のパイプ。An outer pipe provided with a coolant discharge part on the side of the upper end, an inner pipe for introducing a coolant inserted from the upper end inside the outer pipe, and the upper end of the outer pipe. A pipe for cooling an electronic component comprising: a cylindrical support member that supports and fixes the inner pipe in a state of passing through the through-hole; and a lid member that is fitted and fixed to the lower end portion of the outer pipe and seals the lower end. The inner pipe has a lower end surface joined to an upper surface of the lid member, and a through hole is provided in a side portion of the lower end portion. 前記内パイプは、前記貫通穴が複数設けられており、前記冷却液排出部側の前記貫通穴の開口よりも前記冷却液排出部と反対側の前記貫通穴の開口が大きいことを特徴とする請求項1記載の電子部品冷却用のパイプ。The inner pipe is provided with a plurality of the through holes, and the opening of the through hole on the side opposite to the coolant discharging part is larger than the opening of the through hole on the cooling liquid discharging part side. The pipe for cooling an electronic component according to claim 1.
JP2003204172A 2003-07-30 2003-07-30 Pipe for cooling electronic components Expired - Fee Related JP4167558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204172A JP4167558B2 (en) 2003-07-30 2003-07-30 Pipe for cooling electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204172A JP4167558B2 (en) 2003-07-30 2003-07-30 Pipe for cooling electronic components

Publications (2)

Publication Number Publication Date
JP2005050930A true JP2005050930A (en) 2005-02-24
JP4167558B2 JP4167558B2 (en) 2008-10-15

Family

ID=34263248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204172A Expired - Fee Related JP4167558B2 (en) 2003-07-30 2003-07-30 Pipe for cooling electronic components

Country Status (1)

Country Link
JP (1) JP4167558B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006750A (en) * 2016-07-05 2018-01-11 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Contact device for transmitting high current
WO2018135277A1 (en) * 2017-01-22 2018-07-26 ダイキン工業株式会社 Air conditioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578847B (en) * 2016-03-07 2018-09-28 苏州硅果电子有限公司 A kind of tubing type liquid radiator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006750A (en) * 2016-07-05 2018-01-11 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Contact device for transmitting high current
JP7042042B2 (en) 2016-07-05 2022-03-25 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンク Contact device for high current transmission
WO2018135277A1 (en) * 2017-01-22 2018-07-26 ダイキン工業株式会社 Air conditioning system
CN108344080A (en) * 2017-01-22 2018-07-31 大金工业株式会社 Air-conditioning system

Also Published As

Publication number Publication date
JP4167558B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US8397796B2 (en) Porous media cold plate
JP4234722B2 (en) Cooling device and electronic equipment
JP2006245479A (en) Device for cooling electronic component
WO2018198354A1 (en) Vapor chamber
JP2005327273A (en) Easy-to-handle liquid loop cooling apparatus using flexible bellows
JP2006234362A (en) Heat exchanger and method of manufacturing the same
JP2006516831A (en) Method and apparatus for manufacturing low cost electrokinetic pumps
JP2005317890A (en) Aluminum jointing member and its manufacturing method
JP2016035348A (en) Flat heat pipe
TWM616320U (en) Reinforced structure of water-cooling block
JP4167558B2 (en) Pipe for cooling electronic components
JP2007100992A (en) Flexible heat pipe and method of manufacturing it
JP4285612B2 (en) Susceptor
JP2009099995A (en) Refrigerator and electronic apparatus
JP4819485B2 (en) Manufacturing method of flow path forming body
EP3163988B1 (en) Cooling device
JP2005129599A (en) Liquid cooling board of electronic apparatus component, and method for manufacturing liquid cooling board
JPWO2018235726A1 (en) Cooling structure, method for manufacturing cooling structure, power amplifier, and transmitter
JP2006080211A (en) Semiconductor device
JP7064989B2 (en) Semiconductor cooling device
JP2003314979A (en) Plate heat pipe, its mounting structure and plate heat pipe manufacturing method
JP5380734B2 (en) Aluminum joint member
JP4919170B2 (en) Heat sink, manufacturing method thereof, motor and inverter device using the same
US20050194098A1 (en) Cast design for plasma chamber cooling
JP2022124278A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees