JP2005043143A - 電気光学素子の内部温度測定方法、温度測定装置、および当該内部温度測定方法を使用した表示装置 - Google Patents

電気光学素子の内部温度測定方法、温度測定装置、および当該内部温度測定方法を使用した表示装置 Download PDF

Info

Publication number
JP2005043143A
JP2005043143A JP2003201545A JP2003201545A JP2005043143A JP 2005043143 A JP2005043143 A JP 2005043143A JP 2003201545 A JP2003201545 A JP 2003201545A JP 2003201545 A JP2003201545 A JP 2003201545A JP 2005043143 A JP2005043143 A JP 2005043143A
Authority
JP
Japan
Prior art keywords
temperature
voltage
electro
current
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003201545A
Other languages
English (en)
Inventor
Shoji Okazaki
庄治 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003201545A priority Critical patent/JP2005043143A/ja
Publication of JP2005043143A publication Critical patent/JP2005043143A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of El Displays (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

【課題】発熱による影響を抑えて温度を測定する有機EL素子のような電気光学素子の内部温度測定方法、内部温度測定装置、および当該方法を用いた表示装置を提供する。
【解決手段】本温度測定装置は、装置を制御するシーケンス制御器21と、測定対象となる有機EL素子25と、この素子25の温度を所定値に保つ恒温器24と、この素子25に流れる電流を測定する電源測定器22と、恒温器24の温度を制御する温度制御器23とを備える。電源測定器22は、所定の電圧を有しパルスの出力間隔が十分空けられたパルス信号を生成して有機EL素子25に印加し流れる電流を測定する。このことにより、温度上昇が伴わない短い時間内で測定が完結され、放熱のための時間があけられる。そのため、発熱の影響を受けない正確な有機EL素子の温度−電圧−電流特性を得ることができ、素子の内部温度を直接測定することなく上記特性に基づき内部温度を算出できる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、有機EL素子のような電気光学素子の内部温度測定方法、温度測定装置、および当該内部温度測定方法を使用した表示装置に関する。
【0002】
【従来の技術】
有機物質を使用した有機EL(Electro Luminescence)素子は、電気信号に対する高速応答性を有し、自ら光を放つため視認性が高く、また有機材料を主たる原料とするため分子設計が幅広く行えるとともに多色化が容易である、という利点を有する。また、完全固体素子であるため耐衝撃性に優れるとともに取り扱いが容易であるといった優れた特性を有している。そのため、近年、面光源やディスプレイ、プリンターの光源への応用研究が進められている。
【0003】
このような有機EL素子を用いた従来の表示装置は、環境温度により電圧−電流特性が変化する。このことは、温度が一定であれば電圧−電流特性が一意に定まるが、当該一定温度から温度が変化すると所望の輝度を得るために必要な印加電圧または駆動電流が変化することを意味する。ディスプレイなどへの応用を考えるとき、表示品位の点からも有機EL素子が上記のような温度特性を持つことは好ましくない。
【0004】
この点、有機EL素子を用いた従来の表示装置には、装置の表示パネル内に温度を検出する機構を備えており、表示パネルに含まれる有機EL素子の電圧値および検出された温度に基づいて必要な発光駆動エネルギーである駆動電流を制御するものがある(例えば、特許文献1参照)。このことにより、温度に影響されることなく表示品位を向上させることができる。
【0005】
【特許文献1】
特開2002−229513号公報
【0006】
【発明が解決しようとする課題】
ここで、上記従来の表示装置では、電流と電圧と温度との関係(以下「電流−電圧−温度特性」という)を示す情報を取得するための測定が予め必要となる。
しかし、上記特許文献1では、その測定に関する具体的な方法は明示されていない。また、有機EL素子に与えられる電力が100%すべて光として外部に取り出されない限り、与えられる電力の一部は必ず熱に変換され、有機EL素子および当該素子が取り付けられる基板の温度上昇を引き起こす。すなわち、測定過程において時間とともに有機EL素子の温度が上昇するため、有機EL素子の電圧−電流特性が測定中に変化することになる。したがって、例えば駆動電流値を連続的に変化させて電圧値を測定する通常の測定方法では、正しい電圧−電流特性を取得することができない。
【0007】
また、複数の有機EL素子が表示パネルに用いられる場合、当該表示パネルに表示されるパターンによって各素子の温度が異なることがあるため、各素子の電気特性が異なる状態になることがある。その結果、有機EL素子が所望の輝度で発光せず、表示品位が損なわれる。
【0008】
そこで本発明の目的は、発熱による影響を抑えて温度を測定する有機EL素子の内部温度測定方法、内部温度測定装置、および当該内部温度測定方法を使用した表示装置を提供することである。
【0009】
【課題を解決するための手段および発明の効果】
第1の発明は、電気光学素子の内部温度測定方法であって、
異なる複数の周囲環境温度において、前記電気光学素子にパルス波形の所定の電圧信号または所定の電流信号を与えることによって所定の間隔をあけて電圧−電流特性を測定することにより、前記電気光学素子の電流−電圧−温度特性を測定する第1のステップと、
前記電気光学素子に所定の電圧信号を与えて電流を測定しまたは所定の電流信号を与えて電圧を測定し、当該測定結果と前記第1のステップにおいて測定される前記電気光学素子の電流−電圧−温度特性とに基づき前記電気光学素子の内部温度を算出する第2のステップとを含み、
前記第1のステップでは、前記所定の間隔に略一致するパルス間隔を有するパルス信号を前記電気光学素子に与えることを特徴とする。
【0010】
このような第1の発明によれば、第1のステップにおいて、パルス信号により温度上昇を伴わない短い時間内で測定が完結され、さらに測定のための信号のパルス間隔が十分にあけられることにより有機EL素子のような電気光学素子が十分に放熱するための時間があけられるため、発熱の影響を受けない正確な温度−電圧−電流特性を得ることができる。また、この第1のステップにおいて得られる電流−電圧−温度特性に基づき、第2のステップにおいて、電気光学素子の内部温度を直接測定することなくその内部温度を見積もることができる。
【0011】
第2の発明は、第1の発明において、
前記電気光学素子は、有機EL素子であることを特徴とする。
【0012】
第3の発明は、電気光学素子の内部温度測定装置であって、
前記電気光学素子の周囲環境温度を複数の異なる温度に順次設定する温度設定手段と、
前記電気光学素子にパルス波形の所定の電圧信号または所定の電流信号を与えることにより所定の間隔をあけて電圧−電流特性を測定する電源測定手段と、
前記温度設定手段による前記温度の設定および前記電源測定手段による前記電圧−電流特性の測定を制御するとともに、前記温度設定手段により設定された前記温度と、前記電源測定手段により測定された前記電圧−電流特性とに基づき、前記電気光学素子の電流−電圧−温度特性を算出し記憶する制御手段とを備え、
前記電源測定手段は、前記所定の間隔に略一致するパルス間隔を有するパルス信号を前記電気光学素子に与え、
前記制御手段は、前記電気光学素子に所定の電圧信号を与えて電流を測定しまたは所定の電流信号を与えて電圧を測定するよう前記電源測定手段を制御し、当該測定結果と前記電気光学素子の前記電流−電圧−温度特性とに基づき前記電気光学素子の内部温度を算出することを特徴とする。
【0013】
このような第3の発明によれば、電源測定手段から電気光学素子に与えられる測定のためのパルス信号により温度上昇を伴わない短い時間内で測定が完結され、さらにパルス間隔が十分にあけられることにより電気光学素子が十分に放熱するための時間があけられるため、発熱の影響を受けない正確な温度−電圧−電流特性を得ることができる。また、この電流−電圧−温度特性に基づく制御手段の計算により、電気光学素子の内部温度を直接測定することなくその内部温度を見積もることができる。
【0014】
第4の発明は、第3の発明において、
前記電気光学素子は、有機EL素子であることを特徴とする。
【0015】
第5の発明は、第1の発明に記載の内部温度測定方法により得られる前記電流−電圧−温度特性を予め記憶する記憶手段と、
画素を形成する電気光学素子を含む電気光学素子部を複数配列してなる表示手段と、
前記表示手段に含まれる電気光学素子部に所定の電圧信号または所定の電流信号を与えることにより電圧−電流特性を測定する電源測定手段と、
前記表示手段に含まれる電気光学素子部の温度を測定する温度測定手段と、
前記電源測定手段により測定される前記電圧−電流特性と、前記記憶手段に予め記憶される前記電流−電圧−温度特性と、前記温度測定手段により測定される前記温度とに基づき、装置外部から与えられる表示データを補正し、補正された表示データを前記表示手段に含まれる電気光学素子部に与える信号処理制御手段とを備えることを特徴とする。
【0016】
このような第5の発明によれば、第1の発明により得られる発熱の影響を受けない正確な上記温度−電圧−電流特性に基づき、装置外部から与えられる表示データが信号処理制御手段により補正される。この補正処理では、例えば上記表示データに示される輝度を得るために必要な駆動エネルギー(電流値または電圧値)が算出され、当該エネルギーを有する駆動信号(データ信号)が生成されて電気光学素子に与えられる。このような補正処理により、環境温度の影響を受けない安定した表示を行うことが可能となるため、表示装置の表示品位が向上する。
【0017】
第6の発明は、第5の発明において、
前記電源測定手段は、前記電圧−電流特性を測定する間隔に略一致するパルス間隔を有するパルス信号を前記電気光学素子部に与えることを特徴とする。
【0018】
このような第6の発明によれば、電源測定手段が測定間隔に略一致するパルス間隔を有するパルス信号を電気光学素子に与えることにより、パルス信号により温度上昇を伴わない短い時間内で測定が完結され、さらに電気光学素子が十分に放熱するための時間があけられるため、発熱の影響を受けない正確な電圧−電流特性を測定することができる。
【0019】
第7の発明は、装置外部から与えられる表示データに応じて表示を行う表示装置であって、
画素を形成する電気光学素子を含む電気光学素子部を複数配列してなる表示手段と、
前記表示手段に含まれる電気光学素子部の温度を測定する温度測定手段と、
前記表示手段に含まれる電気光学素子にパルス波形の所定の電圧信号または所定の電流信号を与えることにより所定の間隔をあけて電圧−電流特性を測定する電源測定手段と、
前記温度測定手段により測定された前記温度と、前記電源測定手段により測定された前記電圧−電流特性とに基づき、前記表示手段に含まれる電気光学素子部の電流−電圧−温度特性を算出し、当該算出された電流−電圧−温度特性に基づき装置外部から与えられる表示データを補正し、補正された表示データを前記表示手段に含まれる電気光学素子部に与える信号処理制御手段とを備え、
前記電源測定手段は、前記所定の間隔に略一致するパルス間隔を有するパルス信号を前記電気光学素子部に与えることを特徴とする。
【0020】
このような第7の発明によれば、電源測定手段から電気光学素子に与えられる測定のためのパルス信号により温度上昇を伴わない短い時間内で測定が完結され、さらにパルス間隔が十分にあけられることにより電気光学素子が十分に放熱するための時間があけられるため、発熱の影響を受けない正確な温度−電圧−電流特性を得ることができる。また、この電流−電圧−温度特性に基づき、装置外部から与えられる表示データが信号処理制御手段により補正される。このような補正処理により、環境温度の影響を受けない安定した表示を行うことが可能となるため、表示装置の表示品位が向上する。
【0021】
第8の発明は、第7の発明において、
前記表示手段に含まれる電気光学素子部の周囲環境温度を複数の異なる温度に順次設定する温度設定手段をさらに備え、
前記信号処理制御手段は、前記温度設定手段により設定された前記温度と、前記電源測定手段により測定された前記電圧−電流特性とに基づき、前記表示手段に含まれる電気光学素子部の電流−電圧−温度特性を算出することを特徴とする。
【0022】
このような第8の発明によれば、例えば装置の使用などによる温度上昇を待つことなく、温度設定手段により温度を設定することができるため、所望の範囲の温度−電圧−電流特性を得ることができる。
【0023】
第9の発明は、第5から第8までのいずれか1つの発明において、
前記温度測定手段は、電気光学素子を含み、当該電気光学素子に所定の電圧信号または所定の電流信号を与えることにより得られる電流値または電圧値と前記電流−電圧−温度特性とに基づき前記温度を算出することを特徴とする。
【0024】
このような第9の発明によれば、温度測定手段として電気光学素子が使用されるため、表示手段に含まれる電気光学素子が使用されるときには新たに電気光学素子を設ける必要が無く、表示手段に含まれる電気光学素子が使用されないときにも表示手段に含まれる電気光学素子が形成される基板上に容易に形成することができる。
【0025】
第10の発明は、第5から第8までのいずれか1つの発明において、
前記電気光学素子は、有機EL素子であることを特徴とする。
【0026】
【発明の実施の形態】
以下、本発明の一実施形態につき添付図面を参照して説明する。
【0027】
<1.有機EL素子の構造>
図1は、有機EL素子の基本的な構造を示す側面図である。この有機EL素子は、素子全体を支持する支持基板1と、発光材料を含む有機層3と、この有機層3に電流を与えるための第1の電極2および第2の電極4と、封止材5とを備える。これら第1の電極2、有機層3、および第2の電極4は、支持基板1上に順に積層されており、さらにこれらの全面は封止材5により覆われている。
【0028】
支持基板1上には、少なくとも片方の電極が配され、ここでは第1の電極2が配されている。この支持基板1の材料は、従来の有機EL素子に使用されるものであれば特に限定されるものではなく、例えば、石英、ソーダガラス、セラミック材料などの無機材料や、ポリイミド、ポリエステルなどの有機材料が使用できる。
【0029】
第1の電極2および第2の電極4の材料は、特に限定されるものではないが、これらの電極の一方は透明性材料である。この透明性材料としては、従来の有機EL素子に使用されているものであれば特に限定されるものではなく、例えば、インジウム−錫酸化物(ITO)、SnO 、Au薄膜などの無機材料や、ポリアニリン、ポリチオフェン薄膜などの有機材料が使用できる。また、他方の電極の材料としては、従来の有機EL素子に使用されているものであれば特に限定されるものではなく、例えば金属の単体または合金もしくはそれらの積層体などが使用できる。この金属は、例えば、マグネシウム、リチウム、カルシウム、銀、アルミニウム、インジウム、セシウム、銅、ニッケル、LiFなどが使用できる。
【0030】
有機層3は、発光層のみからなる単層構造であってもよいし、発光層を含む積層構造であってもよい。この積層構造の例としては、ホール注入輸送層と発光層とを順に積層した構造、発光層と電子注入輸送層とを順に積層した構造、ホール注入輸送層と発光層と電子注入輸送層とを順に積層した構造などが挙げられる。
なお、発光層は、電荷(電子またはホール)輸送材料、電荷(電子またはホール)注入材料、電荷(電子またはホール)制限材料を含んでいてもよく、例としては、電子輸送材料を含む電子輸送性発光層が挙げられる。また、ホール注入輸送層は、ホール注入層とホール輸送層とに分割され、電子注入輸送層は、電子注入層と電子輸送層とに分割されていてもよい。
【0031】
有機層3に含まれる上記発光層は、発光アシスト剤、電荷輸送材料、添加剤(ドナーやアクセプターなど)、発光性のドーパントなどを含む発光材料を使用して、蒸着法などの公知のドライプロセスにより形成(成膜)することができる。
また、上記発光層は、発光層形成用塗液を使用し、スピンコート法、スパッタ法、EB法、凸版印刷法、グラビア印刷法、インクジェット法、またはディップコート法などの公知のウエットプロセスにより形成(成膜)することもできる。この発光層の発光材料には、有機EL素子に用いられる公知の発光材料を使用することができる。このような発光材料は、低分子発光材料、高分子発光材料、および高分子発光材料の前駆体などの種類に分類することできるが、発光材料にはこれらのうちの2種類以上の材料が組み合わされて使用されてもよい。
【0032】
また、上記電荷注入輸送材料としては、有機EL素子用または有機光導電体用の公知の電荷注入輸送材料を使用することができる。この電荷注入輸送材料は、ホール輸送材料、ホール注入材料、電子輸送材料および電子注入材料のうちの2種類以上が組み合わされて使用されてもよい。
【0033】
封止材5は、水分や酸素が有機層3にできるだけ触れないように設けられるものである。この封止材5による封止方法は、特に限定されるものではなく、例えば、防水性および防湿性に優れた有機材料または無機材料の成膜による封止方法や、ガラスキャップまたはメタルキャップの貼付による封止方法などが使用できる。
【0034】
<2.有機EL素子の温度測定装置>
図2は、上記有機EL素子の温度を測定する装置の構成を示すブロック図である。この温度測定装置は、装置全体を制御し測定結果を受け取るシーケンス制御器21と、測定対象となる有機EL素子25と、この有機EL素子25を格納してその温度を所定値に保つ恒温器24と、有機EL素子25に印加すべき信号を生成するとともに素子に流れる電流を測定する電源測定器22と、恒温器24の温度を制御する温度制御器23とを備える。
【0035】
有機EL素子25は、恒温器24内に格納されているため、温度制御器23により所定の温度となるように制御される。なお、この有機EL素子25は、ここではパッシブマトリックス用の素子を使用するが、アクティブマトリックス用の素子を使用してもよい。
【0036】
電源測定器22は、所定の電圧を有するパルス信号であって典型的には矩形波形のパルス信号を生成し、有機EL素子25に印加することができ、かつ印加されたパルス信号により有機EL素子25に流れる電流を測定することができる。
図3は、この電源測定器22により生成されるパルス信号の波形例を示す図である。
【0037】
シーケンス制御器21は、この電源測定器22が生成すべきパルス信号の波形を設定し、かつ当該パルスを何秒ごとに出力するかを定めるパルスの出力間隔を制御する。また、シーケンス制御器21は、温度制御器23による温度制御のための目標温度を設定する。以下、このシーケンス制御器21の温度測定動作について説明する。
【0038】
図4は、シーケンス制御器21の温度測定のための処理手順を示すフローチャートである。まず、シーケンス制御器21は、図示されないキーボードなどの入力装置を介して操作者により与えられる温度測定のために必要な各種測定条件を受け付け、受け付けられた測定条件に基づき所定の初期設定動作を行う(ステップS110)。この測定条件には、複数の目標温度、有機EL素子25に与えられるべきパルス信号に設定される複数の電圧値、および当該パルスの出力間隔などが含まれる。
【0039】
次に、シーケンス制御器21は、入力された複数の目標温度のうちの所定の1つを温度制御器23の目標温度として設定し、温度制御器23の温度制御動作により恒温器24(に格納される有機EL素子25)の温度が目標温度になるまで待機する処理(温度調節処理)を行う(ステップS120)。
【0040】
恒温器24の温度が目標温度になると、シーケンス制御器21は、入力された複数の電圧値のうちの所定の1つとパルスの出力間隔とを電源測定器22に設定し所定のパルス信号を出力させるとともに、当該パルス信号を受け取る有機EL素子25に流れる電流値を電源測定器22に測定させ、当該測定値を受け取る処理(電気的特性測定処理)を行う(ステップS130)。
【0041】
ここでパルスの出力間隔とは、パルスが出力されない期間である。この出力間隔は、温度上昇の影響を受けることなく安定した電流値が測定できる期間内であれば特に限定はないが、通常、有機EL素子25の面積、材料、熱容量、放熱性等の物性値に依存する。本実施形態では、このパルスの出力間隔は2000msであるものとする。このようにパルスの出力間隔を十分に空けるときには、有機EL素子25の温度が上昇しないので流れる電流値も上昇することがなく、安定して測定することができる。すなわち、パルスの出力間隔が十分に空けられていれば、有機EL素子25から生じる熱が十分に放熱されるため、測定のため印加されるパルス信号の電力投入によって、測定毎に素子内部の温度が上昇し続けることがない。その結果、流れる電流値も上昇することがない。なお、パルスの出力間隔を0msとする場合、すなわち直流信号を印加する場合、電流値は時間とともに上昇することになる。
【0042】
また、パルス信号印加時における電流値の測定は、容量性負荷としての性質を有する有機EL素子25の充電に要する時間を十分に経過した後に行われる必要がある。本実施形態では、パルス立ち上がり時から4ms後に行われるものとする。この電流値の測定は1つの電圧値に対して1回行われるだけでもよいが、平均値を取得するため複数回行われるのが好ましい。図5は、電圧値を所定値に固定して14回測定された電流値と測定回数(測定時間)との関係を示す図である。図中、電流値は電流密度により示されており、以下でも同様であるものとする。
【0043】
さらに、上記パルス信号のパルス幅は、測定までの4msと測定に必要な時間とを加えた時間以上の幅であれば特に限定はないが、本実施形態では25msであるものとする。このパルスが長いと有機EL素子25が発熱するため、可能な限り短い長さであることが好ましい。したがって、このパルス幅はパルスの出力間隔に比べて十分に短いことが好ましい。すなわち、パルス幅が比較的短いために結果としてパルスの出力間隔が測定間隔に略一致することが好ましい。もっとも、このパルス幅は、有機EL素子25の充電に要する時間以上の長さが少なくとも必要である。
【0044】
次に、シーケンス制御器21は、入力された複数の電圧値に対応する電流値が全て測定されたか否かを判断する(ステップS140)。全て測定された場合、ステップS150の処理に進む。全てが測定されていない場合、全てが測定されるまで、入力された複数の電圧値が順にステップS130において設定され電気的特性測定処理が繰り返される(S130→S140→S130)。この繰り返し処理は、例えば、パルス信号の電圧値を3Vから4Vまで0.1Vずつ変化させてそれぞれ電流値の測定が行われる。このようにパルス信号の電圧値を種々変更することにより、上記目標温度における有機EL素子25の電圧−電流特性が得られる。
【0045】
次に、シーケンス制御器21は、入力された複数の目標温度に対応する電流値が全て測定されたか否かを判断する(ステップS150)。全て測定された場合、ステップS160の処理に進む。全てが測定されていない場合、全てが測定されるまで、入力された複数の目標温度が順にステップS120において設定され電気的特性測定処理を行う(S120→S130→S140→S150→S120)。この繰り返し処理は、例えば、目標温度を27℃と、30℃から60℃まで5℃ずつ変化させて行われる。このように有機EL素子25の電圧−電流特性の測定が種々の目標温度に対して行われることにより、有機EL素子25の電流−電圧−温度特性が得られる。この電流−電圧−温度特性を参照すれば、電流、電圧、温度という3つのパラメータは、これらのうちの2つが決定されるときに残りのパラメータを所定の計算(例えば補間計算)により一意に決定することができる。すなわち、所定の電圧値Vaを印加される有機EL素子に所定の電流値Iaが流れるとき、上記所定の計算により有機EL素子の温度Taが一意に決定される。図6は、以上の測定により得られた電流値と電圧値との関係を示す図であり、図7は、以上の測定により得られた電流値と温度との関係を示す図である。
【0046】
なお、以上のステップS110〜S150の処理による測定(以下「電流−電圧−温度特性測定」という)において、有機EL素子25に印加される信号波形は矩形であるが、パルス信号であれば矩形に限られるものではなく、例えば立ち上がりが緩やかなランプ形などであってもよい。また、上記電流−電圧−温度特性測定では、電圧値を変化させて対応する電流値を測定したが、電流値を変化させて対応する電圧値を測定してもよい。さらに、上記電流−電圧−温度特性測定では、有機EL素子25の陽極−陰極間に順バイアスとなるように信号が印加されるが、陽極が負極となり、陰極が正極となるような逆バイアスとなるように信号が印加されて測定されてもよい。この場合には有機EL素子25を発光させることなく測定することが可能である。
【0047】
以上の電流−電圧−温度特性測定が終了すると、次に、シーケンス制御器21は、一般的な使用時の環境温度(典型的には室温)を温度制御器23の目標温度として設定し、温度制御器23の温度制御により恒温器24(に格納される有機EL素子25)の温度が上記環境温度になるまで待機する(ステップS160)。なおここでは、温度制御器23の温度制御を停止することにより、恒温器24内の温度が室温になるまで待機してもよい。
【0048】
恒温器24の温度が環境温度になると、シーケンス制御器21は、例えば表示装置に用いられる一般的な駆動電圧を電源測定器22に設定して所定の駆動信号を出力させるとともに、当該駆動信号を受け取る有機EL素子25に流れる電流値を電源測定器22に測定させ、当該測定値を受け取る処理(駆動電圧印加測定処理)を所定の時間行う(ステップS170)。この駆動信号は、ここでは所定の電圧値の直流信号であるものとする。
【0049】
図8は、上記直流信号を与えるときに有機EL素子25に流れる電流値の時間経過を示す図である。この図を参照すると、直流信号が印加されることにより生じる有機EL素子25の発熱のため素子温度が上昇し、最終的には発熱量と放熱量との均衡がとれた時刻(例えば30分後)以降では電流値の変化が飽和していることがわかる。
【0050】
次に、シーケンス制御器21は、電流−電圧−温度特性測定により得られた結果に基づき、ステップS170の処理により得られた電流値から有機EL素子25の内部温度を算出する処理(内部温度算出処理)を行う(ステップS180)。このように有機EL素子25の電圧−電流−温度特性が判明していれば、電圧値と電流値が既知である以上、素子内部の見積もり温度を計算により求めることができる。図9は、上記直流信号を与えるときに有機EL素子25に流れる電流値に基づき算出された素子内部の見積もり温度の時間経過を示す図である。以上でシーケンス制御器21の温度測定動作は終了する。
【0051】
なお、以上のステップS160〜S180の処理(以下「内部温度推定処理」という)では、有機EL素子25に所定電圧の直流信号が印加されるときの素子内部の見積もり温度の経時変化を知ることができるが、これは一例であって、上記電流−電圧−温度特性測定により得られた結果に基づき、所定の電流値および電圧値から素子の内部温度を計算するものであれば特に限定はない。また、上記内部温度推定処理における測定では、上記電流−電圧−温度特性測定の場合と同様に、有機EL素子25に印加される信号波形は矩形に限られるものではなく、電流値を変化させて対応する電圧値が測定されてもよく、逆バイアスとなるように信号が印加され測定されてもよい。
【0052】
以上のように、上記電流−電圧−温度特性測定によれば、温度上昇が伴わない短い時間内で測定が完結され、さらにパルスの出力間隔が十分にあけられることにより十分な放熱のための時間があけられる。そのため、発熱の影響を受けない正確な温度−電圧−電流特性を得ることができる。また、上記内部温度推定処理では、上記電流−電圧−温度特性測定により得られた結果に基づき、電流値または電圧値を測定することにより、素子の内部温度を直接測定することなくその内部温度を見積もることができる。
【0053】
<3.有機EL素子を含む表示装置の一例>
次に、上記温度測定装置の電流−電圧−温度特性測定により得られた結果を予め記憶し、記憶された結果に基づき有機EL素子の温度に応じて適宜与えるべき電流値を補正する表示装置について説明する。
【0054】
図10は、上記表示装置の構成を示す模式図である。この表示装置は、本表示装置の外部から所定の映像信号を受け取る図示されない入力信号処理部および電源部と、表示基板6とを備える。この表示基板6は、複数の有機EL素子がマトリクス状に配置された表示部14を含む。この表示部14には、複数の走査信号配線と複数のデータ信号配線とが互いに交差するように配置され、その交点近傍には画素を形成する発光素子である有機EL素子が配置される。また、この表示基板6には、走査信号配線を駆動するための走査信号線駆動回路7と、データ信号配線を駆動するためのデータ信号線駆動回路8とが配置されている。さらに、この表示基板6は、当該表示基板6の温度を測定するための温度測定部10と、表示部14内に配置される各有機EL素子の電圧−電流特性を測定する電流測定回路9と、この電流測定回路9により得られる各有機EL素子の電圧−電流特性を記憶する第1の記憶回路11と、上記温度測定装置の温度測定動作である電流−電圧−温度特性測定により得られた所定の有機EL素子の電圧−電流−温度特性(以下「基本素子特性ともいう」)を予め記憶する第2の記憶回路12と、各部を制御する信号処理制御回路13とを含む。
【0055】
なお、本表示装置では、各画素を形成する有機EL素子の電圧−電流特性が測定されるものとしたが、より正確には画素を形成する有機EL素子を含む(公知の)画素回路の電圧−電流特性が測定される。しかし、この画素回路の電圧−電流特性を決定する主要な要因は、当該画素回路に含まれる有機EL素子の電圧−電流特性である。そのため、以下ではこの画素回路の電圧−電流特性または電圧−電流−温度特性を、画素回路に含まれる有機EL素子の電圧−電流特性または電圧−電流−温度特性であるものとして説明する。また、本表示装置は、表示部14内の各有機EL素子を含む画素回路に所定の電圧信号(データ信号)が印加されることにより所定の輝度で表示が行われる電圧制御の構成であるものとする。
【0056】
温度測定部10は、典型的には表示に利用されない有機EL素子であり、長方形状である表示部14の4つの角部の外側近傍に配置される。信号処理制御回路13は、この温度測定部10である有機EL素子に所定の電圧信号(ここでは図3に示すパルス信号)を与えることにより素子に流れる電流値を測定し、測定により得られる電流値に対応する温度を第2の記憶回路12に予め記憶される電圧−電流−温度特性を参照して算出することにより、温度測定部10の温度が測定される。そして、これらの温度測定部10の温度の例えば平均値が算出されることにより表示基板6の温度が測定される。なお、温度測定部10は、上記4つの角部の外側近傍のうちの一部のみに配置されてもよいし、表示部14の近傍に適宜配置されてもよい。また、温度測定部10として、表示部14内の4つの角部に配置される表示用の有機EL素子の全てまたは一部が使用されてもよい。このように表示部14内の有機EL素子を使用すれば温度測定部10として使用される有機EL素子を新たに設ける必要が無く、また表示部14内の有機EL素子を使用しても、その配置位置が角部であればそれほど目立たないため通常では差し支えない。さらに、温度測定部10は、発光色に応じた数(例えばRGB色に応じた3つ)の有機EL素子をそれぞれ含んでもよい。このように発光色に応じた数の有機EL素子が用意されていれば、発光色ごとに異なる電圧−電流特性の補正を行うことができるため、補正による色ずれがおこりにくくなる。以上のように、温度測定部10として有機EL素子を使用することにより、表示基板6上に容易に形成することができる。もっとも、温度測定部10は、サーミスタなどの温度センサであってもよい。
【0057】
電流測定回路9は、表示部14に配置される各有機EL素子(を含む画素回路)に所定の電圧信号を与えて素子に流れる電流を測定することにより、各有機EL素子の電圧−電流特性を測定する。この表示部14に配置される各有機EL素子の電圧−電流特性には素子毎のばらつきがあるため、表示部14に配置される全ての有機EL素子の特性を測定することにより、ばらつきに応じた補正を行うことができる。また、上記電圧信号の波形は特に限定はないが、ここでは図3に示すようなパルス信号であるものとする。このパルス信号を与える構成により、温度上昇が伴わない短い時間内で測定が完結され、さらにパルスの出力間隔が十分にあけられることにより十分な放熱のための時間があけられる。そのため、素子の発熱の影響を受けない正確な温度−電圧−電流特性を得ることができる。この電流測定回路9は、図2に示す温度測定装置に備えられる電源測定器22に相当する。
【0058】
信号処理制御回路13は、この電流測定回路9により得られた各有機EL素子の電圧−電流特性を第1の記憶回路11に記憶させ、図示されない入力信号処理部から入力された(映像信号に含まれる)表示データの補正のために参照する。ここで、この表示データは、第2の記憶回路12に記憶された有機EL素子の電圧−電流−温度特性(基本素子特性)と、第1の記憶回路11に記憶された各画素を形成する有機EL素子の電圧−電流特性と、温度測定部10により測定された測定温度とに基づき補正され、データ信号線駆動回路8に与えられる。信号処理制御回路13の上記補正処理では、温度測定部10の測定結果から第2の記憶回路12に予め記憶される基本素子特性を参照することにより得られる温度に応じて、入力された表示データ(映像信号)に示される輝度を得るために必要な駆動エネルギーを与える表示データ(表示信号)が生成される。例えば、或る有機EL素子に所定の電流を流すために必要な印加電圧を予め定める所定の対応関係(例えばテーブルなど)は、所定の温度のときにのみ成り立つため、この所定の温度とは異なる温度であるときには上記補正処理により、入力された表示データに示される輝度を得るために必要な印加電圧を算出し、当該電圧値を有する表示信号が生成される。データ信号線駆動回路8は、この表示信号に基づきデータ信号を生成し、有機EL素子に与えることにより上記輝度で表示させる。
【0059】
さらに、信号処理制御回路13の上記補正動作につき具体例を用いて説明する。信号処理制御回路13は、例えば装置の起動時などにおいて、電流測定回路9により表示部14に配置された各有機EL素子の電圧−電流特性を測定させ、現時点での温度測定部10により測定された表示基板6の温度(例えば20℃)とともに第1の記憶回路11に記憶させる。次に、信号処理制御回路13は、第2の記憶回路12に記憶された基本素子特性(電圧−電流−温度特性)のうちの上記温度(例えば20℃)に対応する電圧−電流特性と、第1の記憶回路11に記憶された各画素を形成する有機EL素子の電圧−電流特性とを比較することにより、基本素子特性からのずれ量(ずれを示す関数)を算出し、各画素を形成する有機EL素子に関連づけて第1の記憶回路11に記憶させる。このずれ量は各画素を形成する有機EL素子の特性ばらつきに対応しており、温度変化による影響をほとんど受けない。その後、所定の閾値を超える温度変化があったとき(または所定の時間が経過したとき)、信号処理制御回路13は、第2の記憶回路12に記憶された基本素子特性のうち現時点での温度測定部10により測定された表示基板6の温度(例えば25℃)に対応する電圧−電流特性から、第1の記憶回路11に記憶された各画素を形成する有機EL素子に関連するずれ量に基づき、上記温度(例えば25℃)に対応する電圧−電流特性を推定することができる。
この推定された電圧−電流特性に基づき、入力された表示データに示される輝度を得るために必要な印加電圧が算出され、当該電圧値を有する表示信号が生成される。このような補正処理により、環境温度の影響を受けない表示を行うことが可能となるため、表示装置の表示品位が向上する。
【0060】
なお、上記のような温度に応じた(必要な駆動エネルギーを与えるための)補正処理は、上記のように所定の温度範囲を超える毎に、例えば5℃刻みに行われてもよいし、リアルタイムに連続して行われてもよいし、適宜の時間間隔をあけて行われてもよい。
【0061】
ここで、表示部14の角部外側近傍に配置された温度測定部10である有機EL素子の電圧−電流特性は、表示基板6の温度と一意に対応する。また、表示部14に含まれる各画素を形成する有機EL素子の電圧−電流特性も、表示基板6の温度と一意に対応する。そこで、表示基板6の温度を求めることなく、温度測定部10である有機EL素子の電圧−電流特性と、表示部14に含まれる各有機EL素子の電圧−電流特性を比較対照することにより、直接上記補正処理を行うことが可能である。例えば、有機EL素子(を含む画素回路)を電圧で制御または電流で制御する場合、温度を直接求めることなく電圧制御の場合には電流値を、電流制御の場合には電圧値を測定することにより、上記補正処理を行うことができる。
【0062】
なお、この表示装置のさらなる一例としては、電流測定回路9および第1の記憶回路11が省略され、信号処理制御回路13によって第2の記憶回路12に記憶された基本素子特性のみが参照されることにより、温度測定部10により測定された表示基板6の温度に応じて表示データが補正される。この構成では、各画素を形成する有機EL素子の特性ばらつきが測定されることはないが、装置を簡易に構成することができる。
【0063】
<4.有機EL素子を含む表示装置の別例>
次に、上記温度測定装置の電流−電圧−温度特性測定を当該表示装置により行って得られる測定結果を記憶し、記憶された結果に基づき有機EL素子の温度に応じて適宜与えるべき電流値を補正する表示装置について説明する。
【0064】
この表示装置は、図10に示す表示装置とほぼ同一の構成であるため、同一の構成要素には同一の符号を付して説明を省略し、異なる点についてのみ説明する。この表示装置は、図10に示す表示装置とは異なり、第1の記憶回路11が省略されており、また図2に示す温度測定装置に備えられる恒温器24に相当する温度設定部を新たに備える。この温度設定部は、例えば装置の使用などによる温度上昇を待つことなく、信号処理制御回路13の制御に基づき、表示基板6の温度を予め定められた複数の目標温度のいずれかに設定することができる。この温度設定部により目標温度が設定される毎に、電流測定回路9により図3に示すパルス信号が与えられ、表示部14内の各有機EL素子の電圧−電流特性の測定が行われ、このことにより、上記電流−電圧−温度特性測定に相当する測定が行われる。この測定は、温度上昇が伴わない短い時間内で測定が完結され、さらにパルスの出力間隔が十分にあけられることにより十分な放熱のための時間があけられる。そのため、素子の発熱の影響を受けない正確な温度−電圧−電流特性を得ることができる。この測定の結果は、第2の記憶回路12に記憶される。このような電流−電圧−温度特性測定は、表示装置の最初のまたは毎回の起動時などに行われる。なお、本表示装置に備えられる温度測定部10は、第2の記憶回路12に記憶される温度−電圧−電流特性に基づくことなく温度測定が可能な例えばサーミスタなどの温度センサであるものとする。
【0065】
その後、所定の閾値を超える温度変化があったとき(または所定の時間が経過したとき)、信号処理制御回路13は、第2の記憶回路12に記憶された各画素を形成する有機EL素子の正確な温度−電圧−電流特性を参照することにより、現時点での温度測定部10により測定された表示基板6の温度に対応する電圧−電流特性に基づき、入力された表示データに示される輝度を得るために必要な印加電圧を算出し、当該電圧値を有する表示信号が生成される。
【0066】
なお、上記のような温度に応じた(必要な駆動エネルギーを与えるための)補正処理は、上記のように所定の温度範囲を超える毎に、例えば5℃刻みに行われてもよいし、リアルタイムに連続して行われてもよいし、適宜の時間間隔をあけて行われてもよい。
【0067】
この表示装置では、温度測定装置により予め電流−電圧−温度特性を測定することなく、当該表示装置により上記電流−電圧−温度特性測定に相当する測定が行われるため、表示装置毎に生じる有機EL素子の特性ばらつきや経時変化などの個別の状態変化を反映させた測定を行うことができる。また、図10に示す表示装置と同様の補正処理により、環境温度の影響を受けない表示を行うことが可能となるため、表示装置の表示品位が向上する。
【0068】
なお、この表示装置のさらなる別例としては、上記温度設定部を省略し、この温度設定部の機能を表示部14に行わせてもよい。例えば、表示部14に含まれる全てまたは一部の有機EL素子(を含む画素回路)に直流信号等を与えて発熱させることにより、上記電流−電圧−温度特性測定に相当する測定が行われてもよい。
【0069】
また、この表示装置のさらなる別例として、表示装置の通常の使用による温度上昇を利用し、サーミスタなどの温度測定部10により測定される表示基板6の温度が予め定められた温度に達する毎に、電流測定回路9による各有機EL素子の電圧−電流特性の測定が行われ、このことにより上記電流−電圧−温度特性測定に相当する測定が行われてもよい。なお、この構成では、通常の使用時における画素表示を妨げないように、所定期間使用が停止しているときなどに上記測定を行う必要がある。
【0070】
<5.変形例>
上記一実施形態では、有機EL素子の内部温度測定方法、温度測定装置、および当該内部温度測定方法を使用した表示装置について説明したが、この有機EL素子に代えて、LED、電荷駆動素子、Eインク(Electronic Ink)など、電気を与えることにより光学的な特性が変化する素子である電気光学素子のうち、発熱する電気光学素子が使用されてもよい。このような電気光学素子に図3に示すようなパルスを与えて測定すれば、温度上昇が伴わない短い時間内で測定が完結され、さらにパルスの出力間隔が十分にあけられることにより十分な放熱のための時間があけられるため、素子の発熱の影響を受けない正確な温度−電圧−電流特性を得ることができる。
【0071】
【発明の効果】
本発明に係る温度測定方法および温度測定装置によれば、温度上昇を伴わない短い時間内で測定が完結され、さらに測定のための信号のパルス間隔が十分にあけられることにより有機EL素子のような電気光学素子が十分に放熱するための時間があけられるため、発熱の影響を受けない正確な温度−電圧−電流特性を得ることができる。また、この電流−電圧−温度特性に基づき、電気光学素子に電圧信号を与えることにより流れる電流値または電流信号を与えることにより生じる電圧値を測定することにより、素子の内部温度を直接測定することなくその内部温度を見積もることができる。
【0072】
また、本発明に係る表示装置によれば、上記温度−電圧−電流特性に基づき装置外部から与えられる表示データに示される輝度を得るために必要な駆動エネルギー(電流値または電圧値)が算出され、当該エネルギーを有する駆動信号(データ信号)が生成されて電気光学素子に与えられる。このような補正処理により、環境温度の影響を受けない安定した表示を行うことが可能となるため、表示装置の表示品位が向上する。
【図面の簡単な説明】
【図1】本発明の一実施形態における有機EL素子の基本的な構造を示す側面図である。
【図2】上記一実施形態における有機EL素子の温度を測定する装置の構成を示すブロック図である。
【図3】上記一実施形態に係る温度測定装置に備えられる電源測定器により生成されるパルス信号の波形例を示す図である。
【図4】上記一実施形態に係る温度測定装置に備えられるシーケンス制御器の温度測定のための処理手順を示すフローチャートである。
【図5】上記一実施形態において電圧値を所定値に固定して14回測定された電流値と測定回数(測定時間)との関係を示す図である。
【図6】上記一実施形態において電流−電圧−温度特性測定により得られる電流値と電圧値との関係を示す図である。
【図7】上記一実施形態において電流−電圧−温度特性測定により得られる電流値と温度との関係を示す図である。
【図8】上記一実施形態において直流電圧を印加するときに得られる電流値の時間経過を示す図である。
【図9】上記一実施形態において直流電圧を印加するときに得られる電流値に基づき算出された素子内部の見積もり温度の時間経過を示す図である。
【図10】上記一実施形態に係る表示装置の構成を示す模式図である。
【符号の説明】
1 …支持基板
2 …第1の電極
3 …有機層
4 …第2の電極
5 …封止材
6 …表示基板
7 …走査信号線駆動回路
8 …データ信号線駆動回路
9 …電流測定回路
10 …温度測定部
11 …第1の記憶回路
12 …第2の記憶回路
13 …信号処理制御回路
14 …表示部
21 …シーケンス制御器
22 …電源測定器
23 …温度制御器
24 …恒温器
25 …有機EL素子

Claims (10)

  1. 電気光学素子の内部温度測定方法であって、
    異なる複数の周囲環境温度において、前記電気光学素子にパルス波形の所定の電圧信号または所定の電流信号を与えることによって所定の間隔をあけて電圧−電流特性を測定することにより、前記電気光学素子の電流−電圧−温度特性を測定する第1のステップと、
    前記電気光学素子に所定の電圧信号を与えて電流を測定しまたは所定の電流信号を与えて電圧を測定し、当該測定結果と前記第1のステップにおいて測定される前記電気光学素子の電流−電圧−温度特性とに基づき前記電気光学素子の内部温度を算出する第2のステップとを含み、
    前記第1のステップでは、前記所定の間隔に略一致するパルス間隔を有するパルス信号を前記電気光学素子に与えることを特徴とする内部温度測定方法。
  2. 前記電気光学素子は、有機EL素子であることを特徴とする、請求項1に記載の内部温度測定方法。
  3. 電気光学素子の内部温度測定装置であって、
    前記電気光学素子の周囲環境温度を複数の異なる温度に順次設定する温度設定手段と、
    前記電気光学素子にパルス波形の所定の電圧信号または所定の電流信号を与えることにより所定の間隔をあけて電圧−電流特性を測定する電源測定手段と、
    前記温度設定手段による前記温度の設定および前記電源測定手段による前記電圧−電流特性の測定を制御するとともに、前記温度設定手段により設定された前記温度と、前記電源測定手段により測定された前記電圧−電流特性とに基づき、前記電気光学素子の電流−電圧−温度特性を算出し記憶する制御手段とを備え、
    前記電源測定手段は、前記所定の間隔に略一致するパルス間隔を有するパルス信号を前記電気光学素子に与え、
    前記制御手段は、前記電気光学素子に所定の電圧信号を与えて電流を測定しまたは所定の電流信号を与えて電圧を測定するよう前記電源測定手段を制御し、当該測定結果と前記電気光学素子の前記電流−電圧−温度特性とに基づき前記電気光学素子の内部温度を算出することを特徴とする内部温度測定装置。
  4. 前記電気光学素子は、有機EL素子であることを特徴とする、請求項3に記載の内部温度測定装置。
  5. 請求項1に記載の内部温度測定方法により得られる前記電流−電圧−温度特性を予め記憶する記憶手段と、
    画素を形成する電気光学素子を含む電気光学素子部を複数配列してなる表示手段と、
    前記表示手段に含まれる電気光学素子部に所定の電圧信号または所定の電流信号を与えることにより電圧−電流特性を測定する電源測定手段と、
    前記表示手段に含まれる電気光学素子部の温度を測定する温度測定手段と、
    前記電源測定手段により測定される前記電圧−電流特性と、前記記憶手段に予め記憶される前記電流−電圧−温度特性と、前記温度測定手段により測定される前記温度とに基づき、装置外部から与えられる表示データを補正し、補正された表示データを前記表示手段に含まれる電気光学素子部に与える信号処理制御手段とを備えることを特徴とする表示装置。
  6. 前記電源測定手段は、前記電圧−電流特性を測定する間隔に略一致するパルス間隔を有するパルス信号を前記電気光学素子部に与えることを特徴とする、請求項5に記載の表示装置。
  7. 装置外部から与えられる表示データに応じて表示を行う表示装置であって、
    画素を形成する電気光学素子を含む電気光学素子部を複数配列してなる表示手段と、
    前記表示手段に含まれる電気光学素子部の温度を測定する温度測定手段と、
    前記表示手段に含まれる電気光学素子にパルス波形の所定の電圧信号または所定の電流信号を与えることにより所定の間隔をあけて電圧−電流特性を測定する電源測定手段と、
    前記温度測定手段により測定された前記温度と、前記電源測定手段により測定された前記電圧−電流特性とに基づき、前記表示手段に含まれる電気光学素子部の電流−電圧−温度特性を算出し、当該算出された電流−電圧−温度特性に基づき装置外部から与えられる表示データを補正し、補正された表示データを前記表示手段に含まれる電気光学素子部に与える信号処理制御手段とを備え、
    前記電源測定手段は、前記所定の間隔に略一致するパルス間隔を有するパルス信号を前記電気光学素子部に与えることを特徴とする表示装置。
  8. 前記表示手段に含まれる電気光学素子部の周囲環境温度を複数の異なる温度に順次設定する温度設定手段をさらに備え、
    前記信号処理制御手段は、前記温度設定手段により設定された前記温度と、前記電源測定手段により測定された前記電圧−電流特性とに基づき、前記表示手段に含まれる電気光学素子部の電流−電圧−温度特性を算出することを特徴とする、請求項7に記載の表示装置。
  9. 前記温度測定手段は、電気光学素子を含み、当該電気光学素子に所定の電圧信号または所定の電流信号を与えることにより得られる電流値または電圧値と前記電流−電圧−温度特性とに基づき前記温度を算出することを特徴とする、請求項5から請求項8までのいずれか1項に記載の表示装置。
  10. 前記電気光学素子は、有機EL素子であることを特徴とする、請求項5から請求項9までのいずれか1項に記載の表示装置。
JP2003201545A 2003-07-25 2003-07-25 電気光学素子の内部温度測定方法、温度測定装置、および当該内部温度測定方法を使用した表示装置 Pending JP2005043143A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003201545A JP2005043143A (ja) 2003-07-25 2003-07-25 電気光学素子の内部温度測定方法、温度測定装置、および当該内部温度測定方法を使用した表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003201545A JP2005043143A (ja) 2003-07-25 2003-07-25 電気光学素子の内部温度測定方法、温度測定装置、および当該内部温度測定方法を使用した表示装置

Publications (1)

Publication Number Publication Date
JP2005043143A true JP2005043143A (ja) 2005-02-17

Family

ID=34261575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003201545A Pending JP2005043143A (ja) 2003-07-25 2003-07-25 電気光学素子の内部温度測定方法、温度測定装置、および当該内部温度測定方法を使用した表示装置

Country Status (1)

Country Link
JP (1) JP2005043143A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284399A (ja) * 2005-04-01 2006-10-19 Sony Corp 温度分布検出方法、表示装置、温度分布検出装置及びプログラム
JP2009053629A (ja) * 2007-08-29 2009-03-12 Kyocera Corp 画像表示装置、および画像表示装置の駆動方法
JP2010217860A (ja) * 2009-02-17 2010-09-30 Seiko Epson Corp 電気泳動表示部の駆動装置、電気泳動装置、電子機器、及び電気泳動表示部の駆動方法
US20110241807A1 (en) * 2010-03-31 2011-10-06 Fujitsu Limited Control apparatus and method, and signal processing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284399A (ja) * 2005-04-01 2006-10-19 Sony Corp 温度分布検出方法、表示装置、温度分布検出装置及びプログラム
JP2009053629A (ja) * 2007-08-29 2009-03-12 Kyocera Corp 画像表示装置、および画像表示装置の駆動方法
JP2010217860A (ja) * 2009-02-17 2010-09-30 Seiko Epson Corp 電気泳動表示部の駆動装置、電気泳動装置、電子機器、及び電気泳動表示部の駆動方法
US20110241807A1 (en) * 2010-03-31 2011-10-06 Fujitsu Limited Control apparatus and method, and signal processing apparatus
US8589719B2 (en) * 2010-03-31 2013-11-19 Fujitsu Limited Control apparatus and method, and signal processing apparatus

Similar Documents

Publication Publication Date Title
US8427512B2 (en) Display drive systems
CN101300618B (zh) 具有老化补偿的oled显示器件
JP2001223074A (ja) 有機エレクトロルミネッセンス素子及びその駆動方法
US20140368416A1 (en) Oled display device
JP2005539252A (ja) 表示装置
KR20100038394A (ko) 디스플레이 장치
TW200907896A (en) Cathode potential control device, self-luminous display device, electronic equipment and cathode potential control method
JP2008523624A (ja) 劣化補償がなされたoledディスプレイ
KR20150062613A (ko) 유기 발광 디스플레이 패널 및 이의 휘도 보상 방법
JP5124939B2 (ja) 自発光表示装置、変換テーブル更新装置及びプログラム
JP2007520730A (ja) 発光表示装置
JP2005501273A (ja) 有機電界発光素子における色補正のための方法および駆動手段
KR100680913B1 (ko) 유기전계발광소자의 전원전압 제어장치
JP2006047984A (ja) 表示装置及びそれを用いた電子機器
US7638949B2 (en) Organic electroluminescence device, method for driving thereof, and electronic appliance
JP2011082213A (ja) 表示パネルおよびモジュールならびに電子機器
KR20070035388A (ko) 전계발광소자의 전원전압 공급장치
JP2008058446A (ja) アクティブマトリクス型表示装置
JP2005043143A (ja) 電気光学素子の内部温度測定方法、温度測定装置、および当該内部温度測定方法を使用した表示装置
JP2009133943A (ja) 画像表示装置
JP2009098433A (ja) 表示装置及びその駆動方法
JP2010224262A (ja) 発光装置
TWI828188B (zh) 具有像素補償之基於oled的顯示器及方法
JP2004198503A (ja) 有機薄膜発光ディスプレイおよびその制御方法
CN115662347A (zh) Oled显示装置及其温度保护装置和方法