JP2005038676A - Fuel cell cogeneration system - Google Patents

Fuel cell cogeneration system Download PDF

Info

Publication number
JP2005038676A
JP2005038676A JP2003199252A JP2003199252A JP2005038676A JP 2005038676 A JP2005038676 A JP 2005038676A JP 2003199252 A JP2003199252 A JP 2003199252A JP 2003199252 A JP2003199252 A JP 2003199252A JP 2005038676 A JP2005038676 A JP 2005038676A
Authority
JP
Japan
Prior art keywords
hot water
fuel cell
load
water storage
consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003199252A
Other languages
Japanese (ja)
Other versions
JP4810786B2 (en
Inventor
Junichi Ueda
順一 植田
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP2003199252A priority Critical patent/JP4810786B2/en
Publication of JP2005038676A publication Critical patent/JP2005038676A/en
Application granted granted Critical
Publication of JP4810786B2 publication Critical patent/JP4810786B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell cogeneration system which prevents the lack of hot water and improves the energy saving performance of the system by controlling the comfort of a demand for hot water supply firstly and by allowing for a demand for electric power secondly.
SOLUTION: The fuel cell cogeneration system comprises an electric power load detection means 5; a thermal load detection means 19; an electric power load prediction means 21 and a hot water consumption prediction means 20 which predict the electric power and hot water consumption; and a control means which stops the operation of a fuel cell 1 by referencing to the predicted electric power load and the hot water consumption, and controls a response to a thermal load with the highest priority when making a determination that the predicted hot water consumption is more than the storage amount of the hot water obtained from the fuel cell by waste heat recovery. Therefore, this makes the operation rate of the fuel cell large (power generation capability large) in a condition like winter when a load of the hot water supply is maximum, makes the system operate to prevent the lack of the hot water, and allows people to use the hot water supply comfortably.
COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、電気と熱とを発生させる燃料電池からの排熱により加熱された湯を貯湯タンクに蓄えるとともに、燃料電池の発電電力量を制御する制御手段とを備えて構成した家庭用燃料電池コージェネレーションシステムに関するものである。 The present invention, electricity and with storing the hot water storage tank the hot water heated by waste heat of the heat from the fuel cell to generate the control means and the domestic fuel cell configured with a for controlling the generated power of the fuel cell the present invention relates to a cogeneration system.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
従来のこの種の家庭用燃料電池コージェネレーションシステムでは、燃料電池の発電電力に応じて発生する熱を貯湯タンクに一旦蓄え、給湯需要に応じて供給するようにしている。 In this type of conventional household fuel cell cogeneration system, a heat generated in accordance with the generated power of the fuel cell is temporarily stored in the hot water storage tank, and to supply in response to the hot water demand. 給湯需要が多くて、貯湯タンク内の畜熱量が不足した場合、別途設置したボイラーなどの補助加熱装置によって温水を補充していた。 And many hot water demand, if the heat accumulation of the hot water storage tank is insufficient, was supplemented with hot water by auxiliary heating device, such as a boiler which is separately installed.
【0003】 [0003]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
しかしながら上記従来の家庭用燃料電池コージェネレーションシステムでは、補助加熱装置がない場合、貯湯タンク内の昇温された湯を使用者が消費してしまうと湯切れを起こし、使用勝手が悪いという欠点があった。 However, in the conventional household fuel cell cogeneration system, when there is no auxiliary heater, causing a water shortage when the hot water is heated in the hot water storage tank by the user consumes, the disadvantage uses without permission is poor there were.
【0004】 [0004]
また、従来一般に、使用電力に応じて発電電力量を制御する、いわゆる電主熱従運転が主体であり、給湯を主体に考える熱主電従運転ではないため、給湯需要に対しての快適性を優先するものではなかった。 In general conventional, to control the generated power according to the power used, the so-called electrostatic main heat slave operation mainly not a hot main Den従 operation considering the hot water mainly, comfort against hot water demand the was not the priority.
【0005】 [0005]
本発明は、前記従来の課題を解決するもので、給湯需要に対する快適性を第一に制御し電力需要は二次的に考慮することで、湯切れを防止し、かつシステムの省エネルギー性を向上させる燃料電池コージェネレーションシステムを提供することを目的とする。 The present invention is the one that solves the conventional problem, the control and power demand comfort to the first for hot water demand to consider secondarily, to prevent water shortage, and improve the energy saving of the system and an object thereof is to provide a fuel cell cogeneration system that.
【0006】 [0006]
【課題を解決するための手段】 In order to solve the problems]
本発明は上記課題を解決するため、電力負荷検出手段と、熱負荷検出手段と、検出された電力負荷及び熱負荷の情報に基づいて電力負荷及び温水消費量を予測する電力負荷予測手段と温水消費量予測手段とを備え、予測された電力負荷又は及び温水消費量を参照して燃料電池の運転停止を行うとともに、予測された温水消費量が燃料電池の排熱回収による温水貯湯量より多いと判断した場合は熱負荷への対応を最優先して制御する制御手段を備えたものである。 Since the present invention is to solve the above problems, a power load detecting means, heat and load detecting means, the detected load forecasting means and hot water for predicting a power load and hot water consumption based on the information of the electric power load and heat load and a consumption amount prediction means, with stopping the operation of the fuel cell with reference to expected power load or and hot water consumption, higher than the hot water hot water storage amount hot water consumption that is predicted by the exhaust heat recovery of the fuel cell If it is determined that that a control means for controlling the highest priority corresponding to the heat load.
【0007】 [0007]
上記発明によれば、冬季のような給湯負荷が最大となる条件において燃料電池の稼働率を大とし(発電能力大)、電力需要に関わらず運転することで、湯切れを防止し、給湯を快適に使用することができる。 According to the invention, large cities (generating capacity Univ.) The operating rate of the fuel cell in a condition for hot-water supply load such as in winter is maximized by operating regardless of power demand, to prevent the hot water out, the hot water supply it can be comfortable to use.
【0008】 [0008]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
本発明の請求項1記載の発明は、電力負荷検出手段と、熱負荷検出手段と、検出された電力負荷及び熱負荷の情報に基づいて電力負荷及び温水消費量を予測する電力負荷予測手段と温水消費量予測手段とを備え、予測された電力負荷又は及び温水消費量を参照して燃料電池の運転停止を行うとともに、予測された温水消費量が燃料電池の排熱回収による温水貯湯量より多いと判断した場合は熱負荷への対応を最優先して制御する制御手段を備えたものである。 The invention of claim 1, wherein the present invention, a power load detecting means, a heat load detecting means, a power load predicting means for predicting a power load and hot water consumption based on the information of the detected electric power load and heat load and a hot water consumption prediction means, with stopping the operation of the fuel cell with reference to expected power load or and hot water consumption, from the hot water hot water storage amount hot water consumption that is predicted by the exhaust heat recovery of the fuel cell If it is determined that more are those having a control unit for controlling the highest priority corresponding to the heat load.
【0009】 [0009]
そして、予測された温水消費量が燃料電池の排熱回収による温水貯湯量より多いと判断した場合は熱負荷への対応を最優先して制御するため、冬季のような給湯負荷が最大となる条件において燃料電池の稼働率を大とし(発電能力大)、電力需要に関わらず運転することで、湯切れを防止し、給湯を快適に使用することができる。 Since hot water consumption that is predicted if it is determined that more than the hot water hot water storage amount by the exhaust heat recovery of the fuel cell to control the highest priority corresponding to the heat load, the hot water supply load, such as in winter is maximum the operating rate of the fuel cell large cities (generating capacity size), by operating regardless of power demand, to prevent water shortage, can comfortably use the hot water supply in conditions.
【0010】 [0010]
本発明の請求項2記載の発明は、請求項1に記載の熱負荷検出手段を、燃料電池の排熱を回収する貯湯タンクを備え循環積層沸き上げ方式とし、貯湯タンク下部に市水入口と燃料電池往き循環路を上部に温水出口と燃料電池戻り循環路を設け、貯湯タンク内の温度検知手段として上部に貯湯タンク上部温度検出器を設け、温水供給量を検知する水量検知手段を市水入口又は温水出口に連通する水回路に設けた構成とし、熱負荷を貯湯タンク上部温度検出器と供給水量により検出するものである。 The invention according to claim 2 of the present invention, the thermal load detecting means according to claim 1, the exhaust heat of the fuel cell and circulated laminated boiling method includes a hot water storage tank for recovery, and city water inlet in the lower hot water storage tank fuel cell forward circulation path return hot water outlet and the fuel cell at the top is provided a circulating path, the upper part provided with the hot water storage tank upper temperature detector as a temperature detecting means in the hot water storage tank, a water amount detecting means for detecting the hot water supply amount city water a structure provided in the water circuit communicating with the inlet or hot water outlet, in which the thermal load detected by the supply amount of water storage tank upper temperature detector.
【0011】 [0011]
これによって、消費される温水の温度と瞬時流量が計測でき熱負荷を検出する事が出来るので、給湯回路に新たに熱負荷を検出する手段を設ける必要もない。 Thus, the temperature and the instantaneous flow of the hot water that is consumed can be detected a possible heat load measurement, there is no need to provide a means for detecting a new thermal load in the hot water supply circuit.
【0012】 [0012]
本発明の請求項3記載の発明は、請求項1又は2に記載の温水消費量予測手段において、複数日に渡る一定期間における時刻帯別温水消費量を記憶する記憶部を設け、一定期間における計測結果を平均化し1日の時刻帯別温水消費量モデルパターンを決定し記憶部に記憶するとともに記憶手段に記憶している内容を停電時の消失から防護するものである。 The invention of claim 3 of the present invention, in the hot water consumption prediction means according to claim 1 or 2, provided with a storage unit for storing the time zone by hot water consumption over a period of time over several days, over a period of time it is intended to protect the contents stored in the storage means and stores the measurement result averaging to determine the time zone by hot water consumption model pattern of 1 day in the storage unit from a loss of power failure.
【0013】 [0013]
そして、熱負荷検出手段の情報を時刻とともに記録し複数日に渡る一定期間における時刻帯別温水消費量を記憶部に記憶し一定期間における計測結果を時刻別に平均化し1日の時刻帯別温水消費量モデルパターンを算出し記憶部に記憶するので、使用者の家庭における1日の給湯の利用パターンがわかる。 Then, recording was averaged time slot specific hot water consumption daily measurement results by time over a period of time stored in the storage unit the time slot specific hot water consumption over a period of time over multiple days with the time information of the thermal load detecting means since stores the calculated in the storage unit the amount model pattern reveals hot water usage patterns day at home of the user. よって、これに対応した温水貯湯量を燃料電池で発生するように運転することで効率の良い運転ができる。 Therefore, the hot water hot water storage amount corresponding thereto can efficiently operated by the driver to occur in the fuel cell. また、停電時にも記憶部は時刻帯別温水消費量モデルパターン等を記憶しているので停電復帰後においても最初から温水消費量を予測する愚もなく最適な燃料電池の運転を再開できる。 Moreover, it can be resumed from the beginning of folly even without optimal fuel cell to predict hot water consumption operation even even after power recovery because the memory unit stores a specific time zone hot water consumption model pattern such as during a power outage.
【0014】 [0014]
本発明の請求項4記載の発明は、請求項1〜3に記載の燃料電池コージェネレーションシステムにおいて、熱負荷への対応を最優先して制御した場合に余剰電力を電熱変換手段で熱に変換するので、燃料電池を熱負荷に優先して稼働させた場合に生ずるかもしれない余剰電力を熱に変換して温水供給に利用出来、熱負荷への対応を最優先できるとともに、燃料の無駄を省き、省エネルギー化を図れる。 The invention of claim 4 wherein the present invention is converted in the fuel cell cogeneration system according to claim 1 to 3, corresponding to the heat load on the heat electrothermal converting means surplus power when the control priority to since, the surplus power that might occur when the fuel cell was operated in preference to the thermal load is converted into heat available in the hot water supply, it is possible priority corresponding to the heat load, the fuel waste omitted, thereby saving energy.
【0015】 [0015]
本発明の請求項5記載の発明は、請求項1〜4に記載の燃料電池コージェネレーションシステムにおいて、燃料電池の運転を1回/日を基本とし(以後オンオフ1回制御と呼ぶ)、時刻帯別温水消費量モデルパターンによる1日の温水消費量が、1日連続して稼働率一定値以上で燃料電池を運転した場合の排熱回収による温水貯湯量を上回る場合、或いは余剰電力を電熱変換手段で熱に変換し排熱回収に加算した温水貯湯量を上回る場合は、オンオフ1回制御を中止して1日連続して燃料電池を運転するものである。 The invention of claim 5, wherein the present invention is the fuel cell cogeneration system according to claim 1, once / day operation of the fuel cell (hereinafter referred to as on-off once the control) basis, and time zone If hot water consumption per day by another hot water consumption model pattern exceeds the hot water hot water storage amount by the exhaust heat recovery in the case of operating the fuel cell in a day continuously operating rate constant value or more, or the surplus power electrothermal conversion If greater than hot water hot water storage amount obtained by adding the converted exhaust heat recovery to the heat unit, it is to operate the fuel cell continuously day and discontinue control oFF once.
【0016】 [0016]
よって、通常は電力負荷予測手段によって予測された電力負荷に対応して1日当たり1回燃料電池を運転する電主熱従運転を行うが、1日の温水消費量が、1日連続して稼働率一定値以上で燃料電池を運転した場合の排熱回収による温水貯湯量を上回る場合、或いは余剰電力を電熱変換手段で熱に変換し排熱回収に加算した温水貯湯量を上回る場合は、温水が慢性的に不足し燃料電池の運転時間が長くなると予測されるので温水消費量と温水貯湯量が等しくなるような燃料電池の稼働率を設定し1日連続して燃料電池を運転する。 Therefore, usually perform driving for electric main heat slave operation per day once the fuel cell in response to the predicted power load by load forecasting means, but hot water consumption per day, sequentially one day running If greater than hot water hot water storage amount by the exhaust heat recovery in the case of operating the fuel cell at a rate constant value or more, or if the excess of hot water hot water storage amount obtained by adding the converted exhaust heat recovery to the heat in the electrothermal conversion means surplus power, hot water There operated chronically deficient expected since continuous fuel cell hot water consumption and setting the operating rate of the fuel cell, such as hot water hot water storage amount is equal daily and the longer the operating time of the fuel cell. これによって、湯切れが少なく給湯を快適に使用できる。 This allows comfortable use of the hot water shortage is less hot water supply.
【0017】 [0017]
また、通常はオンオフ1回制御を行うが冬季のような給湯負荷が大きくなる条件においてはオンオフ1回制御を中止して1日中連続運転を行うことによって燃料電池の起動回数を減らすことが出来、燃料電池の起動エネルギーロスを防止し、燃料電池の劣化に影響を及ぼす間欠運転をより少なくできることで燃料電池の耐久性を向上させることが出来る。 Also, typically can reduce the number of starts of the fuel cell by performing stop to continuous operation day control OFF once in condition performs the control OFF once made large hot water supply load, such as in winter to prevent the activation energy loss of the fuel cell, by the influence intermittent operation to the deterioration of the fuel cell can be further reduced fuel cell durability can be improved.
【0018】 [0018]
本発明の請求項6記載の発明は、請求項1〜5に記載の燃料電池コージェネレーションシステムにおいて、オンオフ1回制御を基本とし、時刻帯別温水消費量モデルパターンによる1日の温水消費量が、1日連続して稼働率一定値以上で燃料電池を運転した場合の排熱回収による温水貯湯量を下回る場合、運転開始時刻は時間帯別温水消費量モデルパターンの給湯使用前に燃料電池の起動時間・温水貯湯量から判断して決定し、運転停止時刻は最終給湯使用時刻と温水貯湯量から決定するようにしたものである。 6. The invention according to the present invention is the fuel cell cogeneration system according to claims 1-5, basic to the control OFF once, the hot water daily consumption by time slot specific hot water consumption model pattern If less than the hot water hot water storage amount by the exhaust heat recovery in the case where the fuel cell is operated continuously operating rate constant value or more a day, the operation start time of the fuel cell prior to hot water using the time zone hot water consumption model pattern start determined by determining from the time-heated hot water storage amount, the operation stop time is obtained by the so determined from the final hot water used time and hot water hot water storage amount.
【0019】 [0019]
よって、電力負荷予測手段によって予測された電力負荷に対応して1日当たり1回燃料電池を運転する電主熱従運転を行い、1日の温水消費量が、1日連続して稼働率一定値以上で燃料電池を運転した場合の排熱回収による温水貯湯量を下回る場合、運転開始時刻は時間帯別温水消費量モデルパターンの給湯使用前に燃料電池の起動時間・温水貯湯量から判断して決定し、運転停止時刻は最終給湯使用時刻と温水貯湯量から決定するので、家庭における給湯使用開始時刻から給湯使用終了時刻まて湯切れを起こすことなく給湯を快適に使用できる。 Therefore, performs operation for collecting main heat slave operation per day once the fuel cell in response to the predicted power load by load forecasting means, hot water consumption per day, operating rate constant value continuously for one day If less than the hot water hot water storage amount by the exhaust heat recovery in the case of operating the fuel cell, operation start time is determined from the start time and the hot water hot water storage amount of the fuel cell prior to hot water using the time zone hot water consumption model pattern or determined, shutdown time is because it determines from the final hot water supply time-of-use and hot water hot water storage amount, the hot water supply without causing the hot water use end time Wait hot water out from the hot water supply use start time in the home can be comfortable to use. また、余剰電力は給湯に利用されるので、エネルギーの無駄もない。 Further, since the surplus power is used for hot water supply, there is no waste of energy.
【0020】 [0020]
加えて、時刻帯別の給湯消費量で都度、燃料電池を運転するのではなく、1日当たりのトータルの給湯消費量を基に1日の運転方法を決めるので、オンオフ1回制御の設定が簡素化され、制御が簡単にできる。 In addition, rather than operating each time the fuel cell at the time of Day into hot water consumption, so decide the operation method of one day per day based on hot water consumption the total, control OFF once set simple ized, control can be simplified.
【0021】 [0021]
本発明の請求項7記載の発明は、請求項1〜6に記載の燃料電池コージェネレーションシステムにおいて、一定期間aの間、燃料電池が最大熱負荷出力(発電能力最大)で稼働してもその温水貯湯量が予測された温水消費量に満たない場合には、一定期間bで運転を停止又はリモコンで警告を発するようにしたものである。 The invention of claim 7, wherein the present invention is, in its fuel cell cogeneration system according to claims 1 to 6, for a period of time a, the fuel cell is also running at maximum heat load output (power generation capacity up) If less than the hot water consumption hot water hot water storage amount is predicted is obtained as an alarm at the stop or the remote controller operation in a period of time b.
【0022】 [0022]
そして、一定期間aの間、燃料電池が最大熱負荷出力(発電能力最大)で稼働してもその温水貯湯量が予測された温水消費量に満たない場合とは、設置された燃料電池コージェネレーションシステムの能力が使用者の家庭における使用条件(温水消費量)を満たしていない場合と、給湯栓が閉め忘れ等で湯が垂れ流し状態等になっている場合とが考えられるため、一定期間bで燃料電池の運転を停止又はリモコンで警告を発する。 Then, in the case of less than the hot water consumption during the fuel cell it is expected that hot water hot water storage amount running at maximum heat load output (power generation capacity up) for a period of time a is installed fuel cell cogeneration since the system's ability and if you do not meet the conditions of use in the home of the user (hot water consumption), and when the hot water is in the runaway state, and the like are contemplated, such as forgetting to close the hot-water tap, over a period of time b the operation of the fuel cell alert at the stop or the remote control. これにより、設置した燃料電池コージェネレーションシステムが能力不足であるとの情報や給湯の閉め忘れ等の異常を使用者に知らしめ、また運転を停止することができる。 This makes it possible to install the fuel cell cogeneration system occupies know anomaly such as forgetting to close information and hot water supply to be insufficient ability to the user, and also stops the operation.
【0023】 [0023]
【実施例】 【Example】
以下、本発明の実施例について図面を用いて説明する。 Hereinafter will be described with reference to the accompanying drawings embodiments of the present invention.
【0024】 [0024]
(実施例1) (Example 1)
図1は本発明の実施例1の燃料電池コージェネレーションシステムの構成図、図2は使用家庭における電力負荷・温水消費量パターンとそれに対応した燃料電池運転の稼働率・排熱回収量パターンを示す。 Figure 1 is block diagram of a fuel cell cogeneration system of the first embodiment of the present invention, Figure 2 shows the operating ratio, the heat recovery amount pattern of the fuel cell operation corresponding thereto and power load and hot water consumption pattern in the use household .
【0025】 [0025]
図1において、1は、燃料電池で水素生成器2と電池スタック3よりなる。 In Figure 1, 1 is consisting of hydrogen generator 2 and the battery stacks 3 in the fuel cell. 水素生成器2は都市ガスなどの燃料を水素に改質し電池スタック3に供給し、電池スタック3は水素と送風器等で供給される大気中の酸素で電気化学的に反応させ発電する。 Hydrogen generator 2 is supplied to the cell stack 3 by reforming fuel such as city gas to hydrogen, cell stack 3 generates electricity by electrochemically react with oxygen in the air supplied in the hydrogen and the blower or the like. 発電された電気はDC50V程度なのでインバータ4で昇圧交流化され、AC200Vとなり電力負荷検出手段5を経由して家庭内の電気器具等の電気負荷に供給される。 Generated electricity is boosted AC inverter 4 so about DC 50 V, is supplied to the electrical load of the appliance, such as in the home via the AC200V next power load detecting means 5. 6は、排熱回収経路で、燃料電池1と熱交換器7との間は冷却水循環ポンプ8を有する冷却水経路9で接続され、熱交換器7と貯湯タンク10との間は貯湯循環ポンプ11を有する貯湯経路12で接続されている。 6 is a heat recovery path, between the fuel cell 1 and the heat exchanger 7 is connected with the cooling water passage 9 having a cooling water circulating pump 8, between the heat exchanger 7 and the hot water storage tank 10 hot water storage circulation pump It is connected by the hot water storage path 12 having a 11. 貯湯タンク10の下部には給水路13が、貯湯タンク10の上部には給湯路14が接続され、給湯路14の途中には水量検知器15が、終端には給湯栓16(給湯負荷)が設けられている。 Water supply channel 13 in the lower part of the hot water storage tank 10 is, in the upper part of the hot water storage tank 10 is connected to the hot water supply passage 14, the amount of water detector 15 in the middle of the hot water supply passage 14, the hot-water tap 16 in the end (hot water supply load) It is provided. 貯湯タンク10の上部には貯湯タンク上部温度検知器17を、下部には貯湯タンク下部温度検知器18を設けてある。 The upper portion of the hot water storage tank 10 to the hot water storage tank upper temperature detector 17, the bottom is provided with a hot water storage tank lower temperature detector 18. 熱負荷検出手段19は給湯栓16で使用される熱負荷を検出するものであり、そのデータは温水消費量予測手段20に取り込まれ、電力負荷検出手段5は使用者の家庭における電力負荷を検出するものであり、電力負荷予測手段21に取り込まれ制御手段22に入力される。 Heat load detecting means 19 is used to detect the thermal load to be used in the hot-water tap 16, the data is taken into the hot water consumption prediction unit 20, the power load detecting means 5 detects a power load in the home of a user is intended to be incorporated into the power load prediction unit 21 is input to the control unit 22. 23はヒータである。 23 is a heater. 24はリモコンである。 24 is a remote control.
【0026】 [0026]
次に一般的な動作、作用について説明する。 Then general operation, the operation will be described. 燃料電池1で発電した電気は電力負荷検出手段5で検知された電力負荷に応じて発電量を制御し家庭内の電気機器に供給される。 Electricity generated by the fuel cell 1 is supplied to the electrical device to be controlled by the home power generation amount according to the power load detected by the power load detecting means 5. この時発生する熱は、冷却水循環ポンプ8による冷却水経路9内の水の循環で熱交換器7に伝えられ、さらに貯湯循環ポンプ11による貯湯経路12内の水の循環で貯湯タンク10へ伝えられる。 Heat generated at this time is transferred to the heat exchanger 7 in the circulation of water in the cooling water passage 9 by the cooling water circulating pump 8 conveys further the hot water storage tank 10 by the circulation of water in the hot water path 12 by the hot water storage circulation pump 11 It is. 貯湯タンク10内は常に水で満水になっており、貯湯タンク10下部から熱交換器7へ引き込まれた水が加熱され貯湯タンク10上部に戻されると、貯湯タンク10上部から順に熱い温水が層状に貯えられるいわゆる積層沸き上げが形成されるものである。 And the hot water storage tank 10 is always filled with water with water, the water drawn from the hot water storage tank 10 lower to the heat exchanger 7 is returned to the heated hot water storage tank 10 the top, turn hot hot water layered hot water storage tank 10 top so-called laminated boiling is stored in those that are formed. この貯湯タンク10内に貯えられた温水が給湯栓16で使用されると、給水路13から貯湯タンク10内に水が補給され温水層は上へ押し上げられるが、常に貯湯タンク10上部には熱い温水があるため、貯湯タンク10全体が沸き上がっていなくても高い給湯温度を確保することができるものである。 When this was stored in the hot water storage tank 10 hot water is used in the hot-water tap 16, the hot water layer water is replenished to the hot water storage tank 10 from the water supply path 13 is pushed upward, the hot always in the hot water storage tank 10 top because there is hot water, it is capable of ensuring a high hot water supply temperature be not the whole hot water storage tank 10 is a surge.
【0027】 [0027]
なお、熱負荷検出手段19は、貯湯タンク上部温度検知器17と水量検知器15により消費される温水の温度と瞬時流量が計測でき熱負荷を検出することが出来るので、新たに給湯回路に熱負荷を検出する手段を設ける必要もない。 The heat load detecting means 19, it is possible to temperature and instantaneous flow of hot water consumed by the hot water storage tank upper temperature detector 17 and the water amount detector 15 detects a possible heat load measurement, heat new water supply circuit there is no need to provide a means for detecting a load.
【0028】 [0028]
次に制御方法について説明する。 Next will be described control method. 図2(a)、(b)は使用者の家庭における電力負荷と熱負荷(温水消費量)を時刻帯別に検出して、例えば1週間連続で検出し電力負荷予測手段21と温水消費量予測手段20の記憶部に記憶し、平均化することで、1日の時刻帯別電力負荷モデルパターンと時刻帯別温水消費量モデルパターンを予測したものである。 Figure 2 (a), (b) power load and heat load in the home of a user detects the (hot water consumption) by time zone, for example the detected load forecasting means 21 and hot water consumption prediction 1 week in a row stored in the storage unit of the unit 20, by averaging, it is the time slot specific power load model pattern and time slot specific hot water consumption model pattern daily those predicted. この各モデルパターンも記憶部に記憶している。 Each model patterns stored in the storage unit. なお、停電時においても記憶部を不揮発性メモリで構成することで停電等によるデータの消失がないので停電復帰後においても最初から各モデルパターンを予測する愚もなく運転を再開できる。 Incidentally, it can resume operation without folly to predict the model pattern from scratch even after power recovery since there is no loss of data due to power failure or the like by a non-volatile memory storage unit even during a power failure. そしてこの各モデルパターンに対応して燃料電池を運転し、時刻帯別の稼働率を表したのが図2(c)で、運転による排熱回収した温水量を表したのが図2(d)である。 And this corresponds to the model pattern of the fuel cell was operated at the representation of the time slot specific rate of operation FIG. 2 (c), the Figure 2 (d of showing the amount of hot water that exhaust heat recovery by the driver ) it is. 実際の燃料電池の稼働率制御は電力負荷を優先して稼働率を制御し、夕方等の最大温水消費量の時刻帯には温水消費量を加味した稼働率に制御する。 The actual fuel cell operating rate control controls the operating ratio in favor of power load, the time zone of the maximum hot water consumption in the evening or the like for controlling the operation rate obtained by adding hot water consumption. 燃料電池の運転は1回/日を基本とし、図2(c)では5:00に起動し23:00に停止するもので、電気・温水を使用する6:00より燃料電池の起動時間(1時間)を加算して1時間早く起動を開始、停止は電気・温水を使用し終わる23:30より燃料電池の停止時間(0.5時間)を減算して23:00としたものである。 Operation of the fuel cell is basically once / day, intended to stop at 23:00 starts at 5:00 in FIG. 2 (c), the more 6:00 using electrical hot water fuel cell startup time ( 1 hour) initiate hour earlier start by adding, stopping is obtained by 23:00 by subtracting the stop time of the fuel cell from 23:30 done using an electric hot water (0.5 h) . 1回/日運転は、燃料電池の特性として連続運転よりもオンオフ運転の方が耐久性が悪くなるため、なるべく定格で連続運転するのが理想であり、使用者の生活パターンの最も基本的なサイクルとして1日という期間を選択したものである。 Operation once / day, in order to continuously towards the on-off operation than the operation as a characteristic of the fuel cell durability is poor, is as much as possible ideal to continuous operation at the rated, the most basic of life pattern of the user it is obtained by selecting a period of one day as a cycle. また、起動時には水素生成器や電池スタック等の予熱が必要でエネルギーのロスを生じるとともに稼働開始から発電動作を行うまで1時間程度要し、停止時には水素生成器や電池スタックや配管内の水素を完全に消費するまで発電が持続するので電気を使用し終わる時刻の0.5時間程度前に稼働を停止する。 Further, the take about 1 hour until the power generating operation from start of operations with resulting loss of energy requires preheating such as hydrogen generator and the battery stack during startup, the hydrogen in the hydrogen generator and the battery stack and the pipes at the time of stop since the lasting power until completely consumed to stop the operation before about 0.5 hours of time be done using electricity.
【0029】 [0029]
このように、燃料電池を稼働した場合に、24:00の時点で次の日の1日の予測された温水消費量A(斜線部)が燃料電池の排熱回収による温水貯湯量B(斜線部)より多いと判断した場合は電力負荷を優先した制御を中止し、熱負荷への対応を最優先して制御する。 Thus, when running the fuel cell, 24: 00 predicted hot hot water storage amount B (shaded by exhaust heat recovery of hot water consumption A (hatched portion) of the fuel cell 1, the next day at the time of If it is determined that more parts) to cancel the control giving priority to power load, and controls the highest priority corresponding to the heat load.
【0030】 [0030]
図3に、熱負荷への対応を最優先した運転モードの一例を示す。 3 shows an example of the operation mode with the highest priority corresponding to the heat load. 図3(a)は時刻帯別稼働率を示し、図3(b)に排熱回収による温水貯湯量C(斜線部)を示す。 3 (a) shows a time slot specific operating rate, shows a hot water hot water storage amount C (hatched portion) by exhaust heat recovery in Figure 3 (b). ここで、A<Cを満たす。 Here, satisfy A <C. この例は、燃料電池の稼働率を一定にした場合のもので、1日の熱負荷をトータルに考え、熱負荷に対応した時刻帯別に稼働率を設定するのではなく1日のトータルの熱負荷を起動時刻から停止時刻まで同じ稼働率で動かすようにしたものである。 This example is intended when the operating rate of the fuel cell at a constant, daily thermal load considered total, total heat of the day, rather than setting the operating rate to the time slot specific corresponding to the heat load the load from the start-up time is obtained by to move in the same capacity utilization to stop time. 一定の稼働率で運転するため、燃料電池の耐久性を向上させることもできる。 To operate at a constant rate of operation, it is possible to improve the durability of the fuel cell. なお、時刻帯によっては余剰電力が生ずるが蓄電池を備え充電しておいたり、電力会社に電力を売電したり、貯湯タンク10内に配置したヒータ23によって熱に変換して貯湯タンク10内の水に供給しても良い。 Note that the time zone or had been charged with the but surplus power occurs battery, or power sale power to the power company, the hot water storage tank 10 by the heater 23 disposed in the hot water storage tank 10 is converted into heat it may be supplied to the water. また、当然ながら、電力が不足した場合は商用電源より充足するものである。 Also, of course, if the power is insufficient it is to satisfy from a commercial power source.
【0031】 [0031]
このように、給湯需要に対する快適性を第一に制御し電力需要は二次的に考慮することで、湯切れを防止しでき、1日の使用者の家庭の温水消費量を準備することが出来なくなり給湯使用中に湯切れを起こしシャワーの途中に水を浴びてしまうなどという非常に使用勝手の悪い給湯システムになることを防止できる。 In this way, the control and power demand comfort to the first for hot water demand to consider secondarily, can prevent water shortage, be prepared hot water consumption of household users daily can no longer be prevented from being very used without permission of the bad hot water supply system that such as accidentally exposed to water in the middle of the shower caused the hot water out in the hot water use. 特に冬季のような給湯負荷が最大となる条件において効果を発揮できる制御方法である。 In particular the hot water supply load, such as in winter is a control method which can exhibit an effect in conditions of maximum. また、貯湯タンク内の畜熱量が不足した場合に別途設けなければならないボイラー等の補助加熱装置を設置する必要がなく、使用者の設備コストを削減できる。 Further, there is no need to install an auxiliary heating device boilers etc. must be provided separately if the heat storage amount of the hot water storage tank is insufficient, it is possible to reduce the equipment cost of the user. また、燃料電池の発生する電力を無駄なく使用することでシステムの省エネルギー性を向上させ、燃料電池の耐久性を向上させることができる。 Moreover, to improve the energy efficiency of the system by efficiently use the power generated by the fuel cell, it is possible to improve the durability of the fuel cell.
【0032】 [0032]
(実施例2) (Example 2)
図4、5に、熱負荷への対応を最優先した運転モードの他の実施例の運転条件と実際の運転モードを示す。 4 and 5, shows the actual operating mode and operating condition of another embodiment of the operation mode with the highest priority corresponding to the heat load. 図4は運転条件を表し、図4(a)は1日連続して稼働率80%で運転した場合を示し、図4(b)に稼働率80%運転における排熱回収による温水貯湯量D(斜線部)を示す。 Figure 4 represents the operating condition, Fig. 4 (a) shows the case of operating at operation rate of 80% consecutive day, the hot water hot water storage amount by the exhaust heat recovery in the operating rate of 80% operation in FIG. 4 (b) D It shows the (shaded area). 図5は実際の運転モードを示す。 Figure 5 shows the actual operating mode. 図5(a)は時刻帯別稼働率を示し、図5(b)に排熱回収による温水貯湯量E(斜線部)を示す。 5 (a) shows a time slot specific operating rate, shows a hot water hot water storage amount E (hatched portion) by exhaust heat recovery in Figure 5 (b).
【0033】 [0033]
本実施例2において、実施例1と異なる点は制御方法で、構成は同一であり説明は省略する。 In the second embodiment, in different from the control method in Example 1, the configuration is the same description is omitted. 図2(b)に示す温水消費量Aが燃料電池を1日連続して稼働率80%で運転した場合の排熱回収における温水貯湯量Dを上回る場合、或いは余剰電力をヒータ23で熱に変換し排熱回収に加算した温水貯湯量Dを上回る場合は、燃料電池による温水作成能力が上限(80〜100%)に近いと考えられるので、オンオフ1回制御を中止して1日連続運転とし、温水消費量Aに対応する稼働率を設定するものである。 If hot water consumption A shown in FIG. 2 (b) exceeds the hot water hot water storage amount D in the exhaust heat withdrawing the case of operating at continuously operating rate of 80% per day fuel cell, or the surplus power into heat by a heater 23 conversion If you exceed the hot water hot water storage amount D obtained by adding to the exhaust heat recovery, the hot water creates capability of the fuel cell is considered to be close to the upper limit (80% to 100%), 1 day continuous operation to stop the control oFF once and then, it is for setting the operating rate corresponding to the hot-water consumption a. オンオフ1回制御でも対応できるが、停止時間が短く、オンオフ運転の欠点である水素生成器や電池スタックの予熱エネルギーロス、水素生成器や電池スタックの劣化を防止できるので連続運転するものである。 Although it is possible to cope with off once the control, in which the stop time short, operated continuously since preheating energy loss of the hydrogen generator and the battery stack is a drawback of the off operation, the deterioration of the hydrogen generator and the battery stack can be prevented. また、余剰電力は給湯に利用されるので、エネルギーの無駄もない。 Further, since the surplus power is used for hot water supply, there is no waste of energy.
【0034】 [0034]
具体例で説明する。 Described embodiment. 標準的な家族構成(大人2人・子供2人)の1日の温水消費量(熱負荷)は冬季の場合、入水温度が5℃で沸き上げ温度70℃で貯湯タンク350lが必要である。 Hot water daily consumption of a standard family structure (2 people and children 2 adults) (heat load) in the case of winter, there is a need for hot water storage tank 350l incoming water temperature is at the boiling temperature of 70 ℃ at 5 ℃. 熱負荷は(70−5)×350=22750kcal(=26.5kw)である。 Heat load is (70-5) × 350 = 22750kcal (= 26.5kw). 一方、家庭用燃料電池の定格は発電能力1kw/h、排熱回収熱量は1.2kw/hが標準である。 On the other hand, the rating of household fuel cell power generation capacity 1 kw / h, exhaust heat recovery heat of 1.2 kW / h is standard. この条件に本実施例の制御方法を当てはめてみると1日当たりの燃料電池からの排熱回収量の80%は1.2×24×0.8=23kwであり、1日の熱負荷26.5kwより小さい。 80% of the heat recovery amount per day of fuel cell Looking fitting the control method of this embodiment in this condition is 1.2 × 24 × 0.8 = 23kw, thermal load 26 in one day. 5kw smaller. よってこの条件では、オンオフ1回制御を停止し、1日連続運転を行う。 Therefore, in this condition, it stops the control OFF once, performing daily continuous operation. 稼働率を26.5÷24÷1.2=0.92(92%)とすることにより1日連続運転する(A=E)。 Uptime continuous operation day With 26.5 ÷ 24 ÷ 1.2 = 0.92 (92%) (A = E).
【0035】 [0035]
なお、オンオフ1回制御する場合は稼働率100%で熱負荷26.5kwを用意できるようにするには26.5÷1.2=22hとなり、例えば、2:00に起動し24:00に停止することになる。 Incidentally, 26.5 ÷ 1.2 = 22h next to such a case to control OFF once can prepare heat load 26.5kw in operation rate of 100%, for example, 2: 00 fires 24:00 It will be stopped.
【0036】 [0036]
なお、本実施例では運転条件として稼働率を80%としたが、季節、その他の条件によって最適な値に設定するものである。 While this embodiment was 80 percent uptime as the operating conditions, and sets the optimal value season, other conditions.
【0037】 [0037]
よって本実施例の制御を行えば、燃料電池の運転において稼働率の高い80〜100%で1日連続運転を行うことが出来、オンオフ1回制御に比べて水素生成器や電池スタックの予熱ロスが生じることがなく省エネルギーにできるとともに、水素生成器や電池スタックのオンオフによる劣化を防止でき耐久性を高めることができる。 Thus by performing the control of this embodiment, it is possible to perform continuous operation day with 80% to 100% higher uptime in the operation of the fuel cell, preheating loss of hydrogen generator and the battery stack as compared to the control OFF once it is possible to save energy without occurs, thereby enhancing the durability can prevent deterioration due to off of the hydrogen generator and the cell stack. 加えて、時刻帯別の給湯消費量で都度、燃料電池を運転するのではなく、1日当たりのトータルの給湯消費量を基に1日の運転方法を決めるので、オンオフ1回制御の設定が簡素化され、制御が簡単にできる。 In addition, rather than operating each time the fuel cell at the time of Day into hot water consumption, so decide the operation method of one day per day based on hot water consumption the total, control OFF once set simple ized, control can be simplified. そして、冬季のような給湯負荷が最大となる条件おいても湯切れを起こすことなく、給湯を快適に使用することができ、給湯機等の補助熱源を設置する必要もなく経済的である。 Then, without hot water supply load, such as a winter causes the hot water out also keep conditions with the maximum, hot water supply and can be comfortable to use, it is economical without the need to install an auxiliary heat source of the water heater and the like.
【0038】 [0038]
なお、時刻帯によっては余剰電力が生ずるが蓄電池を備え充電しておいたり、電力会社に電力を売電したり、貯湯タンク10内に配置したヒータ23によって熱に変換して貯湯タンク10内の水に供給しても良い。 Note that the time zone or had been charged with the but surplus power occurs battery, or power sale power to the power company, the hot water storage tank 10 by the heater 23 disposed in the hot water storage tank 10 is converted into heat it may be supplied to the water. 余剰電力を貯湯タンク内の水に供給する場合はこの熱量を考慮して稼働率を引き下げるようにしても良い。 When supplying the surplus power in the water in the hot water storage tank may be lowered the operating rate in consideration of the amount of heat. また、当然ながら、電力が不足した場合は商用電源より充足するものである。 Also, of course, if the power is insufficient it is to satisfy from a commercial power source.
【0039】 [0039]
また、図2(b)に示す温水消費量Aが燃料電池を1日連続して稼働率80%で運転した場合の排熱回収における温水貯湯量Dを下回る場合、或いは余剰電力をヒータ23で熱に変換し排熱回収に加算した温水貯湯量Dを下回る場合は、実施例1と同様の制御を行う。 Also, if less than the hot water hot water storage amount D in the exhaust heat withdrawing when hot water consumption A shown in FIG. 2 (b) was operated at continuously operating rate of 80% per day fuel cell, or the surplus power in the heater 23 If less than the hot water hot water storage amount D obtained by adding the converted exhaust heat recovery in heat controls the same manner as in example 1.
【0040】 [0040]
(実施例3) (Example 3)
本実施例3において、実施例2と異なる点は制御方法で、構成は同一であり説明は省略する。 In the third embodiment, and a different point control method in Example 2, the configuration is the same description is omitted. 実施例2において、図2(b)に示す温水消費量Aが燃料電池を1日連続して稼働率80%で運転した場合の排熱回収における温水貯湯量Dを上回る場合、或いは余剰電力をヒータ23で熱に変換し排熱回収に加算した温水貯湯量Dを上回る場合は、燃料電池による温水作成能力が上限(80〜100%)に近いと考えられるので、オンオフ1回制御を中止して1日連続運転とし、温水消費量Aに対応する稼働率を設定するものであるが、その稼働率が100%で1日稼働してもその温水貯湯量が予測された温水消費量に満たない場合が3日続くと燃料電池の運転を停止又はリモコン24で警告を発する。 In Example 2, if above the hot water hot water storage amount D in the exhaust heat withdrawing when hot water consumption A shown in FIG. 2 (b) was operated at continuously operating rate of 80% per day fuel cell, or the surplus power If greater than hot water hot water storage amount D obtained by adding the converted exhaust heat recovery to the heat in the heater 23, since the hot water creates capability of the fuel cell is considered to be close to the upper limit (80% to 100%), it stops the control oFF once Te and continuous operation day, but is for setting the operating rate corresponding to the hot-water consumption a, less than the hot water consumption the operation rate is expected that hot water hot water storage amount running per day with 100% If there is no alert at the stop or the remote controller 24 operation of 3 days followed by the fuel cell. これは、設置された燃料電池コージェネレーションシステムの能力が使用者の家庭における使用条件(温水消費量)を満たしていない場合と、給湯栓が閉め忘れ等で湯が垂れ流し状態等になっている場合とが考えられるための対応であり、設置した燃料電池コージェネレーションシステムが能力不足であるとの情報を使用者に知らしめ、定格出力の大きいものに交換したり、給湯機等の補助熱源を設置して使用者の給湯の使い勝手を良くできる。 If this is, and if the capacity of the installed fuel cell cogeneration system does not meet the conditions used in the home of the user (hot water consumption), the hot water in, such as forgetting to close the hot-water tap has become runaway state, etc. installation DOO a corresponding to conceivable, tighten known information and installation fuel cell cogeneration system is insufficient ability to the user, or replaced with a rated output of large, an auxiliary heat source water heater, etc. and it can improve the usability of the hot water supply of the user. また、給湯栓の閉め忘れ等の異常を使用者に知らしめ、また運転を停止することで、無駄なエネルギーを消費することを防止できる。 In addition, tighten know the abnormality such as forgetting to close the hot water faucet to the user, also by stopping the operation, it is possible to prevent wasteful consumption of energy.
【0041】 [0041]
【発明の効果】 【Effect of the invention】
以上説明したように本発明によれば、予測された温水消費量が燃料電池の排熱回収による温水貯湯量より多いと判断した場合は熱負荷への対応を最優先して制御するため、冬季のような給湯負荷が最大となる条件において燃料電池の稼働率を大とし(発電能力大)、運転することで、湯切れを防止し、給湯を快適に使用することができる。 Above according to the present invention, as described, for hot water consumption that is predicted if it is determined that more than the hot water hot water storage amount by the exhaust heat recovery of the fuel cell to control the highest priority corresponding to the heat load, Winter the operating rate of the fuel cell large cities (power generation capacity Univ.) under the condition that the hot water supply load is maximum, such as, by operating, it is possible to prevent the hot water out, comfortably use hot water.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明の実施例1における燃料電池コージェネレーションシステムの構成図【図2】(a)同システムの使用家庭における電力負荷パターンを示す図(b)同システムの使用家庭における温水消費量パターンを示す図(c)同システムの燃料電池稼働率パターンを示す図(d)同システムの排熱回収による温水量パターンを示す図【図3】(a)同システムの熱負荷への対応を最優先した燃料電池稼働率パターンを示す図(b)同システムの熱負荷への対応を最優先した排熱回収による温水量パターンを示す図【図4】(a)本発明の実施例2における燃料電池コージェネレーションシステムの燃料電池稼働率パターンを示す図(b)同システムの排熱回収による温水量パターンを示す図【図5】(a)同システムの燃料電池稼働率 [1] hot water consumption in use household FIG (b) the same system showing the power load pattern in the use household fuel cell configuration diagram of a cogeneration system [2] (a) the system in the first embodiment of the present invention responding to FIG 3 (a) thermal load of the system showing the amount of hot water pattern by heat recovery in (d) of FIG same system of a fuel cell operating rate pattern of FIG. (c) the system according to the pattern in the embodiment 2 of FIG. 4 (a) the invention showing a hot water amount pattern by the corresponding exhaust heat recovery that top priority to FIG (b) the heat load of the system showing the highest priority to fuel cell operation rate pattern Figure 5 (a) fuel cell operation rate of the system showing the amount of hot water pattern by heat recovery in FIG (b) the system of a fuel cell operating rate pattern of the fuel cell cogeneration system ターンを示す図(b)同システムの排熱回収による温水量パターンを示す図【符号の説明】 Shows the amount of hot water pattern by heat recovery in FIG (b) the same system showing the turn EXPLANATION OF REFERENCE NUMERALS
1 燃料電池5 電力負荷検出手段10 貯湯タンク12 貯湯経路(燃料電池往き循環路、燃料電池戻り循環路) 1 the fuel cell 5 power load detecting means 10 hot water storage tank 12 hot water storage path (fuel cell forward circulation path, the fuel cell return circulation path)
15 水量検知器(水量検知手段) 15 water detector (water detecting means)
17 貯湯タンク上部温度検出器19 熱負荷検出手段20 温水消費量予測手段21 電力負荷予測手段22 制御手段23 ヒータ(電熱変換手段) 17 hot water storage tank upper temperature detector 19 heat load detecting means 20 hot water consumption prediction means 21 load forecasting means 22 control means 23 a heater (electrothermal converter)
24 リモコン 24 remote control

Claims (7)

  1. 電力負荷検出手段と、熱負荷検出手段と、検出された電力負荷及び熱負荷の情報に基づいて電力負荷及び温水消費量を予測する電力負荷予測手段と温水消費量予測手段とを備え、予測された電力負荷又は及び温水消費量を参照して燃料電池の運転停止を行うとともに、予測された温水消費量が前記燃料電池の排熱回収による温水貯湯量より多いと判断した場合は熱負荷への対応を最優先して制御する制御手段を含む燃料電池コージェネレーションシステム。 Comprising a power load detecting means, a heat load detecting means and a load forecasting means and hot water consumption prediction means for predicting a power load and hot water consumption based on the information of the detected power and thermal loads are expected with stopping the operation of the fuel cell with reference to power load or and hot water consumption was, if hot water consumption that is predicted is determined to greater than hot water hot water storage amount by the exhaust heat recovery of the fuel cell to the heat load fuel cell cogeneration system including control means for controlling the highest priority correspondence.
  2. 熱負荷検出手段は、燃料電池の排熱を回収する貯湯タンクを備え循環積層沸き上げ方式とし、前記貯湯タンク下部に市水入口と燃料電池往き循環路を上部に温水出口と燃料電池戻り循環路を設け、前記貯湯タンク内の温度検知手段として上部に貯湯タンク上部温度検出器を設け、温水供給量を検知する水量検知手段を市水入口又は温水出口に連通する水回路に設けた構成とし、熱負荷を前記貯湯タンク上部温度検出器と供給水量により検出する請求項1に記載の燃料電池コージェネレーションシステム。 Heat load detecting means, the exhaust heat of the fuel cell and circulated laminated boiling method includes a hot water storage tank for collecting said hot water storage tank lower the tap water inlet and the fuel cell forward circulation path return hot water outlet and the fuel cell to the upper circulation path the provided, said hot water storage upper part provided hot water storage tank upper temperature detector as a temperature sensing means in the tank, a configuration in which a water amount detecting means for detecting the hot water supply amount to the water circuit communicating with the tap water inlet or hot water outlet, fuel cell cogeneration system according to claim 1 for detecting a thermal load by the supply amount of water and the hot water storage tank upper temperature detector.
  3. 温水消費量予測手段は、複数日に渡る一定期間における時刻帯別温水消費量を記憶する記憶部を設け、一定期間における計測結果を平均化し1日の時刻帯別温水消費量モデルパターンを決定し記憶部に記憶するとともに前記記憶手段に記憶している内容を停電時の消失から防護する請求項1又は2記載の燃料電池コージェネレーションシステム。 Hot water consumption prediction means, a storage unit provided for storing the time zone by hot water consumption over a period of time over several days, to determine the averaged time of Day hot water consumption model pattern daily measurement results over a period of time fuel cell cogeneration system according to claim 1 or 2, wherein protecting the contents stored in the storage means from the power failure of loss with the storage unit.
  4. 熱負荷への対応を最優先して制御した場合に余剰電力を電熱変換手段で熱に変換する請求項1〜3のいずれか1項に記載の燃料電池コージェネレーションシステム。 Fuel cell cogeneration system according to claim 1 for converting the excess power into heat by an electrothermal converting means when controlling the highest priority corresponding to the heat load.
  5. 燃料電池の運転を1回/日を基本とし(以後オンオフ1回制御と呼ぶ)、時刻帯別温水消費量モデルパターンによる1日の温水消費量が、1日連続して稼働率一定値以上で燃料電池を運転した場合の排熱回収による温水貯湯量を上回る場合、或いは余剰電力を電熱変換手段で熱に変換し排熱回収に加算した温水貯湯量を上回る場合は、オンオフ1回制御を中止して1日連続して燃料電池を運転する請求項1〜4のいずれか1項に記載の燃料電池コージェネレーションシステム。 The operation of the fuel cell for a base of 1 / day (hereinafter referred to as on-off once the control), the hot water daily consumption by time slot specific hot water consumption model pattern, with continuously operating rate constant value or more a day If greater than hot water hot water storage amount by the exhaust heat recovery in the case of operating the fuel cell, or if the excess of hot water hot water storage amount obtained by adding the converted exhaust heat recovery to the heat in the electrothermal conversion means surplus power, stops the control oFF once fuel cell cogeneration system according to claim 1 for operating a fuel cell continuously day and.
  6. オンオフ1回制御を基本とし、時刻帯別温水消費量モデルパターンによる1日の温水消費量が、1日連続して稼働率一定値以上で燃料電池を運転した場合の排熱回収による温水貯湯量を下回る場合、運転開始時刻は時間帯別温水消費量モデルパターンの給湯使用前に燃料電池の起動時間・温水貯湯量から判断して決定し、運転停止時刻は最終給湯使用時刻と温水貯湯量から決定するようにした請求項1〜6のいずれか1項に記載の燃料電池コージェネレーションシステム。 Basic and on-off once the control, hot water daily consumption by time slot specific hot water consumption model pattern, heated hot water storage amount by the exhaust heat recovery in the case where the fuel cell is operated continuously operating rate constant value or more a day If below, the operation start time is determined by determining the start time and the hot water hot water storage amount of the fuel cell prior to hot water using the time zone hot water consumption model pattern, the operation stop time from the last hot water used time and hot water hot water storage amount fuel cell cogeneration system according to any one of claims 1 to 6 as determined.
  7. 一定期間aの間、燃料電池が最大熱負荷出力(発電能力最大)で稼働してもその温水貯湯量が予測された温水消費量に満たない場合には、一定期間bで運転を停止又はリモコンで警告を発するようにした請求項1〜6のいずれか1項に記載の燃料電池コージェネレーションシステム。 For a period of time a, if the hot water hot water storage amount running at maximum heat load output fuel cell (power generation capacity up) is less than the hot water consumption is predicted, it stops or remote control operation in a certain period b fuel cell cogeneration system according to any one of claims 1 to 6 adapted to emit a warning in.
JP2003199252A 2003-07-18 2003-07-18 Fuel cell cogeneration system Expired - Fee Related JP4810786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199252A JP4810786B2 (en) 2003-07-18 2003-07-18 Fuel cell cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199252A JP4810786B2 (en) 2003-07-18 2003-07-18 Fuel cell cogeneration system

Publications (2)

Publication Number Publication Date
JP2005038676A true JP2005038676A (en) 2005-02-10
JP4810786B2 JP4810786B2 (en) 2011-11-09

Family

ID=34208765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199252A Expired - Fee Related JP4810786B2 (en) 2003-07-18 2003-07-18 Fuel cell cogeneration system

Country Status (1)

Country Link
JP (1) JP4810786B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250471A (en) * 2005-03-11 2006-09-21 Osaka Gas Co Ltd Energy supply system
JP2007048654A (en) * 2005-08-11 2007-02-22 Kyocera Corp Power generator
JP2007247968A (en) * 2006-03-15 2007-09-27 Osaka Gas Co Ltd Cogeneration system
WO2007119332A1 (en) * 2006-03-15 2007-10-25 Nippon Oil Corporation Cogeneration system
JP2007309598A (en) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd Cogeneration system
WO2008146490A1 (en) * 2007-05-28 2008-12-04 Panasonic Corporation Cogeneration system
JP2009144934A (en) * 2007-12-11 2009-07-02 Sanden Corp Hot-water supply apparatus
JP2010032079A (en) * 2008-07-25 2010-02-12 Aisin Seiki Co Ltd Cogeneration system
WO2012023925A1 (en) * 2010-08-16 2012-02-23 Utc Power Corporation System and method for thermal priority operation of a fuel cell power plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101339672B1 (en) * 2012-01-20 2013-12-10 지에스파워 주식회사 Heating and cooling system using heat from fuel cell

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814103A (en) * 1994-06-27 1996-01-16 Tokyo Gas Co Ltd Cogeneration system
JP2000340244A (en) * 1999-05-25 2000-12-08 Matsushita Electric Ind Co Ltd Solid polymer fuel cell cogeneration system
JP2001102063A (en) * 1999-09-29 2001-04-13 Hiromitsu Shinjo Fuel cell co-generation system
JP2002048005A (en) * 2000-07-31 2002-02-15 Osaka Gas Co Ltd Cogeneration system
JP2002075391A (en) * 2000-09-05 2002-03-15 Toyota Industries Corp Fuel cell power generation system
JP2002093442A (en) * 2000-09-11 2002-03-29 Sanyo Electric Co Ltd Fuel cell power generation device
JP2002115911A (en) * 2000-10-11 2002-04-19 Nihon Yupro Corp Hot water storage heater
JP2002151121A (en) * 2000-11-09 2002-05-24 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2002298887A (en) * 2001-03-30 2002-10-11 Matsushita Electric Ind Co Ltd Power management device
JP2002352834A (en) * 2001-05-23 2002-12-06 Matsushita Electric Ind Co Ltd Power generation controlling system and program
JP2002373689A (en) * 2001-06-18 2002-12-26 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2003130459A (en) * 2001-10-24 2003-05-08 Noritz Corp Water heating method and system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814103A (en) * 1994-06-27 1996-01-16 Tokyo Gas Co Ltd Cogeneration system
JP2000340244A (en) * 1999-05-25 2000-12-08 Matsushita Electric Ind Co Ltd Solid polymer fuel cell cogeneration system
JP2001102063A (en) * 1999-09-29 2001-04-13 Hiromitsu Shinjo Fuel cell co-generation system
JP2002048005A (en) * 2000-07-31 2002-02-15 Osaka Gas Co Ltd Cogeneration system
JP2002075391A (en) * 2000-09-05 2002-03-15 Toyota Industries Corp Fuel cell power generation system
JP2002093442A (en) * 2000-09-11 2002-03-29 Sanyo Electric Co Ltd Fuel cell power generation device
JP2002115911A (en) * 2000-10-11 2002-04-19 Nihon Yupro Corp Hot water storage heater
JP2002151121A (en) * 2000-11-09 2002-05-24 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2002298887A (en) * 2001-03-30 2002-10-11 Matsushita Electric Ind Co Ltd Power management device
JP2002352834A (en) * 2001-05-23 2002-12-06 Matsushita Electric Ind Co Ltd Power generation controlling system and program
JP2002373689A (en) * 2001-06-18 2002-12-26 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2003130459A (en) * 2001-10-24 2003-05-08 Noritz Corp Water heating method and system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250471A (en) * 2005-03-11 2006-09-21 Osaka Gas Co Ltd Energy supply system
JP4516862B2 (en) * 2005-03-11 2010-08-04 大阪瓦斯株式会社 Energy supply system
JP2007048654A (en) * 2005-08-11 2007-02-22 Kyocera Corp Power generator
WO2007119332A1 (en) * 2006-03-15 2007-10-25 Nippon Oil Corporation Cogeneration system
JP2007247968A (en) * 2006-03-15 2007-09-27 Osaka Gas Co Ltd Cogeneration system
JP2007309598A (en) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd Cogeneration system
US8280237B2 (en) 2007-05-28 2012-10-02 Panasonic Corporation Cogeneration system using surplus electrical current
WO2008146490A1 (en) * 2007-05-28 2008-12-04 Panasonic Corporation Cogeneration system
JP5300717B2 (en) * 2007-05-28 2013-09-25 パナソニック株式会社 Cogeneration system
CN101680680B (en) 2007-05-28 2012-07-04 松下电器产业株式会社 Cogeneration system
JP2009144934A (en) * 2007-12-11 2009-07-02 Sanden Corp Hot-water supply apparatus
JP2010032079A (en) * 2008-07-25 2010-02-12 Aisin Seiki Co Ltd Cogeneration system
WO2012023925A1 (en) * 2010-08-16 2012-02-23 Utc Power Corporation System and method for thermal priority operation of a fuel cell power plant
US9685665B2 (en) 2010-08-16 2017-06-20 Doosan Fuel Cell America, Inc. System and method for thermal priority operation of a fuel cell power plant

Also Published As

Publication number Publication date
JP4810786B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
CN101005208B (en) Electrical power generation system and method for generating electrical power
CN1110629C (en) Heat and electric power co-generator
CN100454712C (en) System and method for power generation control, program, and medium
JP2011041380A (en) Power supply system
DE102007000546B4 (en) Fuel cell system and method for controlling a fuel cell system
CN102668302A (en) Operation planning method, operation planning device, heat pump hot water supply system operation method, and heat pump hot water supply and heating system operation method
JP3676660B2 (en) Engine generator
CN102460890A (en) Utility interconnection system
US7718290B2 (en) Cogeneration system
US7532987B2 (en) Fuel-cell power generation system and control method therefor
US9557068B2 (en) Heat pump hot-water supply system
US20090239108A1 (en) Fuel cell cogeneration system, method of operating
US20090188486A1 (en) PV water heater with adaptive control
JP2006158027A (en) Domestic power system
JP3759151B1 (en) Power storage system
DE602004003870T2 (en) Cogeneration system, control unit for a cogeneration plant, and operation program of the cogeneration plant
CN1941536A (en) Control system and control method for cogeneration system
CN100495791C (en) Control device of fuel cell power generation system and control method
JP3724634B2 (en) Engine generator and a cogeneration unit
CN102687364A (en) Operation planning method and method for operating heat-pump hot-water supply heating system
CN101300704B (en) The fuel cell system
JP3674790B2 (en) Cogeneration system
JP2004357377A (en) Distributed power generation system
JP2009284590A (en) Power generation system
JP2821760B2 (en) Optimal control method of the cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees