JP2005034270A - Photocatalysis apparatus and discharge electrode - Google Patents

Photocatalysis apparatus and discharge electrode Download PDF

Info

Publication number
JP2005034270A
JP2005034270A JP2003198608A JP2003198608A JP2005034270A JP 2005034270 A JP2005034270 A JP 2005034270A JP 2003198608 A JP2003198608 A JP 2003198608A JP 2003198608 A JP2003198608 A JP 2003198608A JP 2005034270 A JP2005034270 A JP 2005034270A
Authority
JP
Japan
Prior art keywords
electrode
discharge
honeycomb
gas
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003198608A
Other languages
Japanese (ja)
Other versions
JP4387711B2 (en
Inventor
Yutaka Uchida
裕 内田
Noboru Segawa
昇 瀬川
Kuniyuki Araki
邦行 荒木
Naohiko Shimura
尚彦 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003198608A priority Critical patent/JP4387711B2/en
Publication of JP2005034270A publication Critical patent/JP2005034270A/en
Application granted granted Critical
Publication of JP4387711B2 publication Critical patent/JP4387711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalysis apparatus and a discharge electrode with which electric discharge with high energy and low voltage can be generated to make a gas body react efficiently without decreasing intensity and reliability of an electrode. <P>SOLUTION: The photocatalysis apparatus 10 includes a photocatalyst module 16 which is disposed on a flow passage 14 of the gas Y having a substrate with a three-dimensional structure which allows the gas Y to pass and supports a photocatalyst, discharge electrodes 15 and 15 which are disposed at the upstream side and the downstream side of the photocatalyst module 16 on the flow passage 14 of the gas Y and have solid shapes to allow the gas Y to pass through, and an electric power source 13 which applies voltage to the discharge electrodes 15 and 15 to discharge. A sharp shape section to form electrostatic focusing is disposed on at least one discharge side of the discharge electrodes 15 and 15 so that the photocatalyst is irradiated with the discharge light generated between the discharge electrodes 15 and 15 and activated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光触媒と放電により生じたオゾンの作用により空気等の気体を浄化する光触媒反応装置および放電電極に関する。
【0002】
【従来の技術】
従来、光触媒と放電により生じたオゾンの作用により空気等の気体の脱臭、脱色、殺菌、減菌を行う装置として図13に示す光触媒反応装置が提案される(例えば特許文献1参照)。
【0003】
従来の光触媒反応装置1は、空気等の気体Xが通過できるように筒状に形成された筐体2に単位構造体3を収納した構成である。単位構造体3は、一対のハニカム電極4,4と、これら2つのハニカム電極4,4間に設けられた3次元網目構造の光触媒モジュール5とを有する。さらに、各ハニカム電極4、4は、図示しない高圧電源部と接続され、ハニカム電極4、4間に放電を行うことができるように構成される。
【0004】
ハニカム電極4は図14に示すように例えば断面が6角形の複数の筒状部を整列配置した形状となるように薄板を成型して構成される。このため、ハニカム電極4の内部を、気体Xが通過することができるとともに、所要の強度を備えることができる。
【0005】
そして、従来の光触媒反応装置1では、筐体2の一端側から筐体2内部に流入した気体Xが、気体Xの上流側のハニカム電極4内を通過した後、光触媒モジュール5に導かれる。さらに、2つのハニカム電極4、4間には、高圧電源部から電圧が印加されて放電が生じ、放電とともに紫外線を含む放電光が発生して光触媒モジュール5を照射する。
【0006】
このため、光触媒モジュール5は、放電光により活性化状態となる一方、ハニカム電極4、4間には、紫外線と気体Xに含まれる酸素とが反応してオゾンが生成される。
【0007】
この結果、ハニカム電極4、4間において、気体Xに含まれる有害物質は、活性化された光触媒およびオゾンの作用により分解されて浄化される。浄化された気体Xは、下流側のハニカム電極4内を通過して筐体2の流出側から外部に排出される。
【0008】
尚、従来の光触媒反応装置1において、ハニカム電極4、4間において生じたオゾンは有害であるため、単位構造体3よりも下流側にオゾン分解触媒を設ける構成や、気体Xの浄化容量を向上させるために単位構造体3を複数個積層した構成が提案される。
【0009】
【特許文献1】
特開2002−336654号公報(第1頁−第4頁、図1参照)
【0010】
【発明が解決しようとする課題】
従来の光触媒反応装置1は、ハニカム電極4、4間に生じた放電光により光触媒モジュール5を活性化させる構成であるため、光触媒モジュール5の活性化あるいは気体Xの浄化に十分なオゾンの生成に必要な量の放電をハニカム電極4、4間に発生させることが重要となる。
【0011】
このため、放電は、ハニカム電極4において筒状部の端部から生じるが、ハニカム電極4、4間の放電のエネルギを増加させるために、印加すべき動作電圧を増大させることが必要となる。
【0012】
一方、電界集中を形成してより低電圧でエネルギの高い放電を発生させるために、ハニカム電極4の代わりに細線や薄板をメッシュ状に成形して電極を用いる方法も考えられるが、電極の強度の低下に伴って、電極の寿命や信頼性の低下といった問題が生じる。
【0013】
すなわち、放電集中によりスパーク状放電が発生した場合には、電極に損傷や溶断が生じる恐れがあるのみならず、気体X中に腐食性物質を含むような場合には、比較的短時間に電極の材料となる金属の腐食が進行して断線に到る恐れもある。
【0014】
また、細線やメッシュ状に形成された薄板を電極として用いた場合には、電極の損傷を抑制するために、電極に入力する電圧が一定の値を超えないように制限する必要が生じる。
【0015】
本発明はかかる従来の事情に対処するためになされたものであり、電極の強度や信頼性を低下させることなく、より低い電圧でエネルギの高い放電を発生させて効率的に気体を反応させることが可能な光触媒反応装置および放電電極を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明に係る光触媒反応装置は、上述の目的を達成するために、請求項1に記載したように、気体の流路上に設けられ、前記気体が通過可能な3次元構造の基体に光触媒を担持させた光触媒モジュールと、この光触媒モジュールの上流側と下流側の前記気体の流路上に設けられ、前記気体が通過可能な立体形状の放電電極と、これら放電電極間に電圧を印加して放電させる電源とを備え、前記放電電極の少なくとも一方の放電側には、電界集中を形成させるための鋭利形状部が設けられ、前記放電電極間に生じた放電光を前記光触媒に照射することにより前記光触媒を活性化するように構成したことを特徴とするものである。
【0017】
また、本発明に係る光触媒反応装置は、上述の目的を達成するために、請求項5に記載したように、気体の流路上に設けられ、前記気体が通過可能な3次元構造の基体に光触媒を担持させた光触媒モジュールと、この光触媒モジュールの上流側と下流側の前記気体の流路上に設けられた放電電極と、これら放電電極間に電圧を印加して放電させる電源とを備え、前記放電電極は、前記気体が通過可能な孔を有するシート状の導体にシート厚さ方向の高さを有する突起部位を設けた構造であり、前記放電電極間に生じた放電光を前記光触媒に照射することにより前記光触媒を活性化するように構成したことを特徴とするものである。
【0018】
また、本発明に係る放電電極は、上述の目的を達成するために、請求項7に記載したように、気体が通過可能な立体形状の電極本体と、電界集中を形成させるための鋭利形状部とを備えたことを特徴とするものである。
【0019】
また、本発明に係る放電電極は、上述の目的を達成するために、請求項8に記載したように、気体が通過可能な孔を有するシート状の導体と、このシート状の導体のシート厚さ方向の高さを有する突起部位とを備えたことを特徴とするものである。
【0020】
【発明の実施の形態】
本発明に係る光触媒反応装置および放電電極の実施の形態について添付図面を参照して説明する。
【0021】
図1は本発明に係る光触媒反応装置の第1の実施形態を示す構成図である。
【0022】
光触媒反応装置10は、単位構造体11、筐体12および電源の一例である高圧電源部13を備える。
【0023】
筐体12は、筒状構造であり、筐体12の内部には臭気物質や有害物質等の分解対象体を含む空気等の気体Yの流路14が形成される。筐体12の内部に形成された気体Yの流路14には、単位構造体11が設けられる。
【0024】
単位構造体11は、放電電極の一例である一対の切欠ハニカム電極15、15と光触媒モジュール16とを有する。そして、筐体12内の気体Yの流路14の上流側から単位構造体11の一方の極側の切欠ハニカム電極15、光触媒モジュール16および他方の極側の切欠ハニカム電極15が順に設けられる。
【0025】
単位構造体11の各切欠ハニカム電極15、15は高圧電源部13と接続され、切欠ハニカム電極15、15間に電圧を印加して放電を行なうことができるように構成される。
【0026】
また、単位構造体11の切欠ハニカム電極15は、電極本体17と導電性外枠18とを有する。切欠ハニカム電極15の導電性外枠18は筒状に形成され、電極本体17が収納されて保護される。
【0027】
切欠ハニカム電極15の電極本体17は、導電性の薄板あるいは箔でハニカム状に形成される。すなわち、切欠ハニカム電極15は、気体Yが通過可能な立体形状であり気体Yの流路14方向に対する厚さを有する。このため、電極本体17および導電性外枠18は、放電に対する十分な強度を備えている。
【0028】
切欠ハニカム電極15の電極本体17および導電性外枠18には、必要に応じて硫化水素等の腐食性ガスに対して耐食性を有する金属や、金属に耐食性を有するコーティング処理を施したものが用いられる。
【0029】
電極本体17および導電性外枠18の例としては、ステンレス、アルミニウム、銅等の金属にコーティング処理を施したものや、ハステロイ、白金、金等の耐食性の良好な金属あるいは合金が挙げられる。
【0030】
切欠ハニカム電極15の電極本体17は、例えば、気体Yの流れ方向からの矢視形状が六角形の筒状体20を整列配置した形状である。このため、切欠ハニカム電極15の電極本体17の内部を気体Yが通過可能に構成される。
【0031】
また、切欠ハニカム電極15の電極本体17端部には、鋭利形状部の一例として切欠が設けられる。
【0032】
図2は、図1に示す切欠ハニカム電極15に設けられた切欠の形状の一例を示す斜視図である。
【0033】
切欠ハニカム電極15の電極本体17は、例えば気体Yの流れ方向からの矢視形状が六角形の筒状体20を整列配置したハニカム形状である。切欠ハニカム電極15の電極本体17の端部のうち、他方の極の切欠ハニカム電極15側には、例えば、図2に示すように溝状の切欠21が整列配置される。
【0034】
このため、対となる切欠ハニカム電極15、15間に電圧を印加すると、切欠ハニカム電極15の切欠21近傍には、集中電界が形成される。すなわち、切欠ハニカム電極15の端部には、より低電圧で切欠ハニカム電極15、15間に放電が生じるような形状に切欠21が形成される。
【0035】
従って、切欠ハニカム電極15に設けられる切欠21の形状は任意であり、例えばV字状あるいはU字状であってもよい。さらに、切欠21の位置や数も切欠ハニカム電極15、15間に所要の集中電界が形成されるような位置や数であれば任意である。
【0036】
このため、切欠ハニカム電極15端部の切欠21の位置や数を任意に設定することにより、切欠ハニカム電極15、15間に形成する集中電界、換言すれば切欠ハニカム電極15、15間に放電を発生させるために必要な電力を調節することができる。さらに、切欠ハニカム電極15に設けられる切欠21の位置や数を調節することにより、より空間的に均一で良好な放電を得ることもできる。
【0037】
また、切欠ハニカム電極15に設ける切欠21は、気体Yの上流側および下流側の各切欠ハニカム電極15、15のうち互いに向き合う一方の端部に設けられればよい。さらに、上流側および下流側の電極の一方のみを切欠ハニカム電極15として、他方を切欠21のないハニカム電極としてもよい。
【0038】
尚、切欠21を規則的に設けることにより、切欠ハニカム電極15の製造コストを低減させることができる。すなわち、一般にハニカム形状は、帯状あるいは板状の金属を成形することにより製造されるため、予め帯状あるいは板状の金属の縁に規則的に凹みを設けるのみで、通常のハニカム製造工程で容易に切欠ハニカム電極15を製造することができる。
【0039】
ただし、ハニカム製造工程でハニカム形状に形成した後に切欠21を設ける方法で切欠ハニカム電極15を製造してもよい。
【0040】
一方、単位構造体11の光触媒モジュール16は、気体Yが通過可能な3次元構造の基体に光触媒を担持して構成される。光触媒モジュール16は、例えば3次元網目構造のセラミック基体の表面に光触媒作用を有する半導体微粒子を担持させた構成である。ただし、光触媒モジュール16の基体は、気体Yが通過可能でかつ光触媒を担持できれば、格子状、ハニカム状、多孔構造等の3次元構造であってもよい。
【0041】
光触媒作用を有する半導体微粒子の例としては、酸化チタンTiO2(anatase型、rutile型、brookite型)、SrTiO3,ZnO,BaTiO3,V2O5,SnO2等の金属酸化物半導体、Si、GaAs、CdS、ZnS等の単体半導体や化合物半導体が挙げられる。
【0042】
また、高圧電源部13としては、例えば直流電源、Duty比0.5以下の短パルスを出力するパルス電源、周波数10kHz以上の交流電源等の電源が挙げられる。さらに、各種高圧電源に波高値の50%から90%に相当する直流バイアスを重畳する構成や、間欠動作する機能を備える構成としてもよい。
【0043】
高圧電源部13として直流電源を用いると電源構成が簡易となり装置コストを低減できるとともに、動作音を比較的小さく抑えることができる。
【0044】
また、高圧電源部13としてパルス電源を用いると直流電源に比べて大きな電力投入を容易に行うことができるため、装置の小型化を図ることができるとともに、電源構成が簡易となり装置コストを低減できる。さらに、直流電源に比べて投入電力を大きくすることが容易できるため、低価格かつ中規模の光触媒反応装置10を構成する場合に有効である。
【0045】
また、高圧電源部13として周波数10kHz以上の交流電源を用いた場合には、動作周波数の増加に伴って、投入電力を大きくすることができる。このため、大容量の気体Yを対象とする光触媒反応装置10に有効である。
【0046】
さらに、高圧電源部13に直流バイアスを重畳すると、パルス電源を単独で用いた場合に、パルス電圧を低減できるため、光触媒反応装置10を小型化できる。さらに、放電発生の元となる偶存電子の個数が安定するため、スパーク移行電圧のばらつきを抑えて安定した電源動作を確保することができる。
【0047】
次に光触媒反応装置10の作用について説明する。
【0048】
まず、筐体12の一端の入口から筐体12内に形成された気体Yの流路14に浄化しようとする空気等の気体Yが流入される。筐体12内に流入された気体Yは、単位構造体11の上流側の切欠ハニカム電極15に導かれる。切欠ハニカム電極15に導かれた気体Yは、切欠ハニカム電極15のハニカム形状により形成された気体Yの流路14を通って、切欠ハニカム電極15内部を通過する。
【0049】
一方、上流側と下流側の切欠ハニカム電極15、15間に、高圧電源部13から電圧が印加される。このため、上流側と下流側の切欠ハニカム電極15、15間には、電界が形成される。
【0050】
ここで、上流側の切欠ハニカム電極15の電極本体17の下流側端部あるいは下流側の切欠ハニカム電極15の電極本体17の上流側端部には切欠21が設けられているため、切欠21近傍の電界は密となり、電界集中が生じる。
【0051】
この結果、高圧電源部13からより低い電圧を上流側と下流側の切欠ハニカム電極15、15間に印加するのみで、容易に放電を行うことができる。さらに、切欠ハニカム電極15に適切な位置に設けられた切欠21の作用により、より空間的に均一で良好な放電が得られる。上流側と下流側の切欠ハニカム電極15、15間には、放電に伴って紫外線を含む放電光が生じる。
【0052】
上流側と下流側の切欠ハニカム電極15、15間に生じた放電光は、上流側と下流側の切欠ハニカム電極15、15間の光触媒モジュール16に照射される。この結果、光触媒モジュール16の基体表面に担持された光触媒は活性化せしめられる。
【0053】
また、上流側と下流側の切欠ハニカム電極15、15間に生じた紫外線と空気等の気体Yに含まれる酸素とが反応して上流側の切欠ハニカム電極15よりも下流にはオゾンが生成される。
【0054】
ここで、オゾンは強い酸化作用を有するが、切欠ハニカム電極15には、耐食性が付加されているため、酸化が抑制される。さらに、気体Yに腐食性ガス、例えば硫化水素、亜硫酸、亜硝酸、塩素、アンモニア等の物質が含まれている場合であっても、切欠ハニカム電極15の腐食が抑制される。
【0055】
一方、上流側の切欠ハニカム電極15内部を通過した気体Yは、放電光により活性化された光触媒モジュール16に導かれ、光触媒モジュール16内部に流入する。そして、光触媒モジュール16内部に流入した気体Yに含まれる酸素と水が活性化された光触媒に作用により反応し、過酸化水素と水酸基ラジカルとが生成される。
【0056】
光触媒モジュール16近傍に生成されたオゾン、過酸化水素および水酸基ラジカルは酸化力が強く、物質の分子結合を分断する機能、すなわち脱臭、脱色、殺菌、減菌作用等の機能を有する。
【0057】
このため、光触媒モジュール16内部に流入した気体Yに含まれる臭気物質や有害物質等の分解対象体は、活性化状態となった光触媒の作用で生じた過酸化水素および水酸基ラジカル並びにオゾンの作用により分解される。
【0058】
尚、分解対象体の例としては、例えば、臭いの発生要因であるホルムアルデヒド等の臭い発生物質、浮遊菌等の菌類および細菌類、汚れの成分を構成する物質、有害物質、トリハロメタン等の有機塩素化合物、内分泌撹乱化学物質やその他オゾンおよび水酸基ラジカルの酸化力の作用で分解可能な物質、化合物、混合物、生物が挙げられる。
【0059】
また、上流側と下流側の切欠ハニカム電極15、15間に生じた放電も、臭いの発生要因であるホルムアルデヒド等の物質あるいは有害物質の分解、浮遊菌の除菌および不活性化に作用し、浄化および脱臭に寄与する。
【0060】
そして、光触媒モジュール16内部を通過し、浄化された気体Yは、下流側の切欠ハニカム電極15内を通過して筐体12の流出側から外部に排出される。
【0061】
すなわち光触媒反応装置10は、光触媒モジュール16に放電光を照射して光触媒を活性化させるための電極を、ハニカム形状に切欠21を設けた構造の切欠ハニカム電極15とすることで、電極の強度や信頼性を維持しつつ、かつより低電圧でエネルギの高い放電を発生させて効率的に気体Yを反応させて浄化させる装置である。
【0062】
光触媒反応装置10によれば、高圧電源部13から切欠ハニカム電極15、15間に印加する放電開始に必要な電圧を従来の装置よりも低く設定することができる。このため、エネルギ効率を向上させることができるのみならず、高圧電源部13の構成をより安価かつ簡易にできる。さらに、光触媒反応装置10全体の小型化、簡素化に繋げて、より安価に構成することが可能となる。
【0063】
また、光触媒反応装置10では、切欠ハニカム電極15に設けられる切欠21の位置を調節することにより、より空間的に均一で良好な放電を得ることができる。
【0064】
一方、光触媒反応装置10では、従来求められた電極の放電に対する強度や信頼性も維持することができる。このため、光触媒反応装置10の寿命を従来通り維持することができる。
【0065】
尚、単位構造体11を複数個直列に積層する構成や、並列に設ける構成としてもよい。単位構造体11を直列に複数個設ける場合には、放電される側の電極本体17端部に切欠21が設けられればよい。
【0066】
図3は本発明に係る光触媒反応装置の第2の実施形態を示す斜視図であり、図4は、図3に示す断続ハニカム電極30の気体Yの流れ方向からの矢視図である。
【0067】
図3に示された、光触媒反応装置10Aでは、切欠ハニカム電極15を放電電極の一例である断続ハニカム電極30に置換した点が図1に示す光触媒反応装置10と相違する。他の構成および作用については図1に示す光触媒反応装置10と実質的に異ならないため断続ハニカム電極30の形状のみを図示して説明する。
【0068】
光触媒反応装置10Aの断続ハニカム電極30の電極本体17は、例えば気体Yの流れ方向からの矢視形状が六角形の筒状体20を整列配置したハニカム形状である。ただし、断続ハニカム電極30の電極本体17の一部には、ハニカム形状の板状あるいは箔状部分が取り除かれる。すなわち、一様なパターンを繰り返す立体形状の一例であるハニカム形状の一部が除去されて断続的となった断続部位31が鋭利形状部の一例として設けられる。
【0069】
このため、断続ハニカム電極30の断続部位31には、他の部位よいも鋭利な部分が形成され、断続ハニカム電極30、30間に電圧を印加すると、断続ハニカム電極30の断続部位31近傍には、集中電界が形成される。すなわち、断続ハニカム電極30には、より低電圧で断続ハニカム電極30、30間にエネルギの大きい放電が生じるような形状となるように、一部が取り除かれて断続部位31が形成される。
【0070】
従って、断続ハニカム電極30に設けられる断続部位31の形状は任意であり、例えば六角形のセル全体を取り除いた形状でもよい。さらに、断続部位31を設ける位置や数も断続ハニカム電極30、30間に所要の集中電界が形成されるような位置や数であれば任意である。
【0071】
このため、断続ハニカム電極30に設ける断続部位31の位置や数を任意に設定することにより、断続ハニカム電極30、30間に形成する集中電界、換言すれば断続ハニカム電極30、30間に発生させる放電のエネルギを調節することができる。さらに、断続ハニカム電極30に設けられる断続部位31の位置や数を調節することにより、より空間的に均一で良好な放電を得ることもできる。
【0072】
また、上流側および下流側の電極の一方のみを断続ハニカム電極30として、他方を断続部位31のないハニカム電極としてもよい。
【0073】
すなわち、光触媒反応装置10Aは、電極本体17端部に切欠21を設ける代わりに一部を取り除いてハニカム形状が断続的になるように形成した構成である。
【0074】
このため、光触媒反応装置10Aでは、光触媒反応装置10と同等の効果を得ることができる。
【0075】
尚、単位構造体11を複数個直列に積層する構成や、並列に設ける構成としてもよい。単位構造体11を直列に複数個設ける場合には、電極本体17の両端に電界集中が形成できるため、気体Yの流れ方向の厚さが比較的短ければ両端にハニカムの両端に切欠21を設けて切欠ハニカム電極15を製造するよりも断続ハニカム電極30を製造するほうが容易となる場合がある。
【0076】
図5は本発明に係る光触媒反応装置の第3の実施形態を示す構造図であり、図6は図5に示す端部加工ハニカム電極40のA−A断面図である。
【0077】
図5に示された、光触媒反応装置10Bでは、切欠ハニカム電極15を放電電極の一例である端部加工ハニカム電極40に置換した点が図1に示す光触媒反応装置10と相違する。他の構成および作用については図1に示す光触媒反応装置10と実質的に異ならないため端部加工ハニカム電極40の形状のみを図示して説明する。
【0078】
光触媒反応装置10Bの端部加工ハニカム電極40の電極本体17は、例えば気体Yの流れ方向からの矢視形状が六角形の筒状体20を整列配置したハニカム形状である。ただし、端部加工ハニカム電極40の電極本体17の放電が行われる側には、鋸状の凹凸部位41が任意方向に鋭利形状部の一例として設けられる。
【0079】
このため、端部加工ハニカム電極40、40間に電圧を印加すると、端部加工ハニカム電極40の凹凸部位41近傍には集中電界が形成される。すなわち、端部加工ハニカム電極40には、より低電圧で端部加工ハニカム電極40、40間にエネルギの大きい放電が生じるような形状となるように、放電が行われる側の端部に凹凸部位41が形成される。
【0080】
従って、端部加工ハニカム電極40、40間に所要の集中電界が形成されれば、端部加工ハニカム電極40に設けられる凹凸部位41の形状は任意であり、幅や凹凸部位41の深さ、数、向きは限定されない。すなわち凹凸部位41の形状の向きは、端部加工ハニカム電極40の気体Yの流れ方向に対して垂直方向からの矢視が一様となる向きであってもよく、またはハニカムを構成する板状あるいは箔の厚さ方向に対して一様であってもよい。
【0081】
また、対をなす電極のうち一方のみを端部加工ハニカム電極40として他方は、凹凸部位41のないハニカム電極としてもよい。
【0082】
このため、端部加工ハニカム電極40端部の凹凸部位41の形状を任意に設定することにより、端部加工ハニカム電極40、40間に形成する集中電界、換言すれば端部加工ハニカム電極40、40間に発生させる放電のエネルギを調節することができる。さらに、端部加工ハニカム電極40に設けられる凹凸部位41の形状を調節することにより、より空間的に均一で良好な放電を得ることもできる。
【0083】
すなわち、光触媒反応装置10Bは、電極本体17端部に切欠21を設ける代わりに凹凸部位41を設けた構成である。
【0084】
このため、光触媒反応装置10Bでは、光触媒反応装置10と同等の効果を得ることができる。さらに、端部加工ハニカム電極40においても、予め帯状あるいは板状の金属の縁に規則的に凹凸部位41を設けて、通常のハニカム製造工程で成形することにより容易に板状あるいは箔の厚さ方向に対して一様な凹凸部位41を有する端部加工ハニカム電極40を製造することができる。
【0085】
一方、光触媒反応装置10Bでは、既に製造されて入手が容易なハニカム状の金属端部に簡易に凹凸部位41を付加するのみで気体Yの流れ方向に対して垂直方向からの矢視が一様となる凹凸部位41を有する端部加工ハニカム電極40を製造することもできる。
【0086】
尚、単位構造体11を複数個直列に積層する構成や、並列に設ける構成としてもよい。単位構造体11を直列に複数個設ける場合には、電極本体17の両端に凹凸部位41を設けてもよい。
【0087】
図7は図5に示す光触媒反応装置10Bの第1の変形例を示す図であり、図8は図5に示す光触媒反応装置10Bの第2の変形例を示す図である。
【0088】
図5に示す光触媒反応装置10Bにおいて、端部加工ハニカム電極40端部の凹凸部位41の形状は鋸状に限らず、図7に示すように矩形の凹凸を繰り返す構造や図8に示すように凸部のみを設ける構造としてもよい。
【0089】
すなわち、端部加工ハニカム電極40の端部に鋭利な部分が形成されれば、電界集中が引き起こされて、端部加工ハニカム電極40からより低電圧でエネルギの大きい放電を行うことができる。
【0090】
端部加工ハニカム電極40端部の形状は、必要とされる放電のエネルギや製造の容易さに応じて、より適切な形状を選択することにより、高効率化あるいは低コスト化を図ることができる。
【0091】
端部加工ハニカム電極40端部を図8に示すように凸部を設ける構造とすれば、例えば帯状の金属薄板の片側を一定間隔で突起が出来るように切断しその後ハニカム状に成形する製法、突起付きの金属薄板をハニカム状に成形する製法、ハニカム状に予め成形された金属の端部に、凸状の部材を溶射、はんだ付け、ろう付け、溶接等の接着手段により設ける製法等の製法で製造することができる。
【0092】
図9は本発明に係る光触媒反応装置の第4の実施形態を示す斜視図であり、図10は図9に示すシート電極50の気体Yの流れ方向からの矢視図、図11は、図10に示すシート電極50のB−B方向からの矢視図である。
【0093】
図5に示された、光触媒反応装置10Cでは、切欠ハニカム電極15を放電電極の一例でわるシート電極50に置換した点が図1に示す光触媒反応装置10と相違する。他の構成および作用については図1に示す光触媒反応装置10と実質的に異ならないためシート電極50の形状のみを図示して説明する。
【0094】
光触媒反応装置10Cのシート電極50は、例えばシート状の導体51に任意形状に切込を入れて、対をなすシート電極50側に曲げ加工して製造される。シート電極50は、例えば図5に示すように、シート状の導体51から複数の四辺形状部分を一様に折り曲げて整列配置した形状である。
【0095】
すなわち、シート電極50は気体Yが通過可能な孔を有するシート状の導体51にシート厚さ方向の高さを有する突起部位52を設けた構造となる。そして、シート電極50の曲げられた四辺形状部分の縁は、放電が行われる側に位置し、鋭利な形状となる。このため、シート電極50、50間に電圧を印加すると、シート電極50の四辺形状部分近傍には集中電界が形成される。
【0096】
すなわち、シート電極50は、より低電圧でシート電極50、50間にエネルギの大きい放電が生じるような形状となるように、シート状の導体51から放電が行われる側に四辺形状部分等の突起部位52が曲げられて形成される。この際、四辺形状部分等の突起部位52が曲げられることにより、シート電極50の強度が向上し、シート電極50の放電に対する信頼性を確保することができる。
【0097】
従って、シート電極50、50間に所要の集中電界が形成され、かつシート電極50に所要の強度および信頼性が得られれば、シート電極50の突起部位52の形状および数、位置、向きは任意である。
【0098】
このため、シート電極50の突起部位52の形状や数を任意に設定することにより、シート電極50、50間に形成する集中電界、換言すればシート電極50、50間に発生させる放電のエネルギとシート電極50の強度とを調節することができる。
【0099】
また、対をなす電極の一方のみをシート電極50として、他方を気体Yが通過可能な電極、例えばハニカム電極としてもよい。
【0100】
すなわち、光触媒反応装置10Cは、従来強度並びに信頼性の観点から利用が困難であった、二次元的なシート状の導体51に切込を入れて折り曲げることにより、強度並びに信頼性を向上させ、併せて電界集中をも形成させるようにしたものである。
【0101】
このため、光触媒反応装置10Cでは、光触媒反応装置10と同等の効果を得ることができるのみならず、シート状の導体51から切断、曲げ加工のみで容易にシート電極50を製造できるため製造コストを低減させることができる。さらに、光触媒反応装置10Cの用途や浄化対象となる気体Yの種類に応じて、安価かつ簡易に多彩な形状にシート電極50を形成させることが可能となる。
【0102】
尚、シート電極50をシート状の導体51から切断、曲げ加工により製造するものとしたが、シート状の導体51から任意形状の部分を打ち抜き加工や切削加工等の加工により取り除いた後、別途、鋭利な形状の補強材を接合させる方法でシート電極50の突起部位52を製造してもよい。
【0103】
尚、単位構造体11を複数個直列に積層する構成や、並列に設ける構成としてもよい。単位構造体11を直列に複数個設ける場合には、シート電極50の両側に突起部位52を曲げて設けてもよい。例えば、隣接する突起部位52を交互に曲げ方向を変えて曲げることにより、両側に突起部位52を有するシート電極50を製造してもよい。
【0104】
図12は、図9に示すシート電極50の変形例を示す気体Yの流れ方向からの矢視図である。
【0105】
例えば図12の一点鎖線に示すように、シート状の導体51にクロスした複数の切込を入れて、切込の端部を結んだ線に沿って曲げ加工を行うと、突起部位52の先端を鋭利な形状とできるのみならず、シート状の導体51に形成された縁の全周に渡って強度を向上させることができる。
【0106】
尚、光触媒反応装置10、10A、10B、10Cを複合的に組み合わせて構成してもよい。例えば、シート電極50の突起部位52の縁先端に凹凸部位41を設ける構成、ハニカム電極に切欠21、断続部位31および凹凸部位41を設けた構成、一方の電極をシート電極50、他方の電極を切欠ハニカム電極15としてもよい。
【0107】
また、光触媒反応装置10、10A、10B、10Cを、単位構造体11において生じたオゾンを分解するためにオゾン分解触媒を設ける構成、あるいは気体Yの流れを加速するための送風機、予め大きな塵や埃を除去するためのフィルタ手段等の機器を気体Yの流路14上に設ける構成としてもよい。
【0108】
また、光触媒反応装置10、10A、10Bにおいて、切欠ハニカム電極15、断続ハニカム電極30、あるいは端部加工ハニカム電極40の気体Yの流れ方向からの矢視形状は、六角形を整列配置した形状に限らず、気体Yが切欠ハニカム電極15の内部を流れることが可能であれば、断面が任意形状の複数の筒状体20を整列配置した形状であってもよい。さらに、気体Yが電極内部を流れることが可能で、かつ気体Yの流れ方向に厚みを有する立体的な形状あれば、ハニカム形状に限らず、例えば柱状体、厚みを有する板状体あるいはブロック体に複数の貫通孔を設けた形状、同軸上に複数の筒状体20を配置した形状、螺旋状形状、格子状形状、三次元網目状形状等の形状であってもよい。
【0109】
また、電極本体17を、断面が六角形のハニカム形状とした場合には、セルサイズが5mm以上で箔厚が1mm以下、望ましくは0.1mmから0.2mmのハニカム形状とすると、より発行強度が強い放電光を発生させることができるということが実験的に確認されている。
【0110】
また、光触媒モジュール16の気体Yの流れ方向の厚さを、15mm以下とすると光触媒の活性化に必要な放電光が十分に光触媒モジュール16の内部に到達することが実験的に確認されている。
【0111】
また、放電電極は、光触媒反応装置10、10A、10B、10Cに使用する場合のみならず、放電電極内部に気体Yや液体等の流体を通過させる必要がある装置やシステムに使用すれば、より低電圧でかつ空間的に適切な放電を行うことができる。
【0112】
【発明の効果】
本発明に係る光触媒反応装置および放電電極においては、電極の強度や信頼性を低下させることなく、より低い電圧でエネルギの高い放電を発生させて効率的に気体を反応させることができる。
【図面の簡単な説明】
【図1】本発明に係る光触媒反応装置の第1の実施形態を示す構成図。
【図2】図1に示す切欠ハニカム電極に設けられた切欠の形状の一例を示す斜視図。
【図3】本発明に係る光触媒反応装置の第2の実施形態を示す斜視図。
【図4】図3に示す断続ハニカム電極の気体の流れ方向からの矢視図。
【図5】本発明に係る光触媒反応装置の第3の実施形態を示す構造図。
【図6】図5に示す端部加工ハニカム電極のA−A断面図。
【図7】図5に示す光触媒反応装置の第1の変形例を示す図。
【図8】図5に示す光触媒反応装置の第2の変形例を示す図。
【図9】本発明に係る光触媒反応装置の第4の実施形態を示す斜視図。
【図10】図9に示すシート電極の気体の流れ方向からの矢視図。
【図11】図10に示すシート電極のB−B方向からの矢視図。
【図12】図9に示すシート電極の変形例を示す気体の流れ方向からの矢視図。
【図13】従来の光触媒反応装置の構成図。
【図14】図13に示すハニカム電極の斜視図。
【符号の説明】
10、10A、10B、10C 光触媒反応装置
11 単位構造体
12 筐体
13 高圧電源部
14 流路
15 切欠ハニカム電極
16 光触媒モジュール
17 電極本体
18 導電性外枠
20 筒状体
21 切欠
30 断続ハニカム電極
31 断続部位
40 端部加工ハニカム電極
41 凹凸部位
50 シート電極
51 シート状の導体
52 突起部位
Y 気体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalytic reaction device and a discharge electrode that purify a gas such as air by the action of ozone generated by the photocatalyst and discharge.
[0002]
[Prior art]
Conventionally, a photocatalytic reaction apparatus shown in FIG. 13 is proposed as an apparatus for deodorizing, decolorizing, sterilizing, and sterilizing a gas such as air by the action of ozone generated by the photocatalyst and discharge (see, for example, Patent Document 1).
[0003]
A conventional photocatalytic reaction device 1 has a configuration in which a unit structure 3 is housed in a casing 2 formed in a cylindrical shape so that a gas X such as air can pass through. The unit structure 3 includes a pair of honeycomb electrodes 4 and 4 and a photocatalyst module 5 having a three-dimensional network structure provided between the two honeycomb electrodes 4 and 4. Further, each of the honeycomb electrodes 4 and 4 is connected to a high voltage power supply unit (not shown) and configured to be able to discharge between the honeycomb electrodes 4 and 4.
[0004]
As shown in FIG. 14, the honeycomb electrode 4 is formed by molding a thin plate so as to have a shape in which a plurality of cylindrical portions having a hexagonal cross section are arranged and arranged, for example. For this reason, the gas X can pass through the inside of the honeycomb electrode 4 and can have a required strength.
[0005]
In the conventional photocatalytic reaction device 1, the gas X flowing into the housing 2 from one end side of the housing 2 passes through the honeycomb electrode 4 on the upstream side of the gas X, and is then guided to the photocatalyst module 5. Furthermore, a voltage is applied between the two honeycomb electrodes 4 and 4 from a high voltage power supply unit to generate a discharge, and discharge light including ultraviolet rays is generated along with the discharge to irradiate the photocatalyst module 5.
[0006]
For this reason, the photocatalyst module 5 is activated by the discharge light, while ozone is generated between the honeycomb electrodes 4 and 4 by the reaction between the ultraviolet rays and oxygen contained in the gas X.
[0007]
As a result, between the honeycomb electrodes 4 and 4, harmful substances contained in the gas X are decomposed and purified by the action of the activated photocatalyst and ozone. The purified gas X passes through the downstream honeycomb electrode 4 and is discharged from the outflow side of the housing 2 to the outside.
[0008]
In the conventional photocatalytic reaction device 1, ozone generated between the honeycomb electrodes 4 and 4 is harmful. Therefore, a configuration in which an ozone decomposition catalyst is provided on the downstream side of the unit structure 3 and a gas X purification capacity are improved. Therefore, a configuration in which a plurality of unit structures 3 are stacked is proposed.
[0009]
[Patent Document 1]
JP 2002-336654 A (refer to page 1 to page 4, FIG. 1)
[0010]
[Problems to be solved by the invention]
Since the conventional photocatalytic reaction device 1 is configured to activate the photocatalyst module 5 by the discharge light generated between the honeycomb electrodes 4 and 4, it generates ozone sufficient to activate the photocatalyst module 5 or purify the gas X. It is important to generate a necessary amount of discharge between the honeycomb electrodes 4 and 4.
[0011]
For this reason, the discharge is generated from the end of the cylindrical portion in the honeycomb electrode 4, but in order to increase the energy of the discharge between the honeycomb electrodes 4, 4, it is necessary to increase the operating voltage to be applied.
[0012]
On the other hand, in order to generate an electric field concentration and generate a high-energy discharge at a lower voltage, a method of using an electrode by forming a fine wire or a thin plate into a mesh instead of the honeycomb electrode 4 is also considered. With such a decrease, problems such as a decrease in electrode life and reliability occur.
[0013]
That is, when a spark-like discharge occurs due to the concentration of discharge, not only the electrode may be damaged or blown, but also when the gas X contains a corrosive substance, the electrode is relatively short. There is also a risk that the corrosion of the metal used as the material will progress and lead to disconnection.
[0014]
Further, when a thin plate formed in a thin line or mesh is used as an electrode, it is necessary to limit the voltage input to the electrode so as not to exceed a certain value in order to suppress damage to the electrode.
[0015]
The present invention has been made in order to cope with such a conventional situation, and allows gas to react efficiently by generating a high-energy discharge at a lower voltage without lowering the strength and reliability of the electrode. It is an object of the present invention to provide a photocatalytic reaction device and a discharge electrode capable of performing
[0016]
[Means for Solving the Problems]
In order to achieve the above object, a photocatalytic reaction apparatus according to the present invention is provided on a gas flow path and carries a photocatalyst on a substrate having a three-dimensional structure through which the gas can pass. A photocatalyst module, a three-dimensional discharge electrode provided on the gas flow path upstream and downstream of the photocatalyst module, through which the gas can pass, and a voltage applied between the discharge electrodes for discharge. A sharp shape portion for forming an electric field concentration is provided on at least one discharge side of the discharge electrode, and the photocatalyst is irradiated with discharge light generated between the discharge electrodes. It is characterized by being configured to activate.
[0017]
In order to achieve the above-mentioned object, the photocatalytic reaction device according to the present invention is provided on a gas flow path, and the photocatalyst is provided on a three-dimensional structure through which the gas can pass. A discharge electrode provided on the gas flow path on the upstream side and the downstream side of the photocatalyst module, and a power source for applying a voltage between the discharge electrodes to cause discharge. The electrode has a structure in which a protruding portion having a height in the sheet thickness direction is provided on a sheet-like conductor having a hole through which the gas can pass, and the photocatalyst is irradiated with discharge light generated between the discharge electrodes. Thus, the photocatalyst is configured to be activated.
[0018]
Moreover, in order to achieve the above-mentioned object, the discharge electrode according to the present invention includes a three-dimensional electrode body through which gas can pass and a sharp-shaped portion for forming an electric field concentration, as described in claim 7. It is characterized by comprising.
[0019]
Further, in order to achieve the above-mentioned object, the discharge electrode according to the present invention includes a sheet-like conductor having a hole through which gas can pass and a sheet thickness of the sheet-like conductor. And a protruding portion having a height in the vertical direction.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a photocatalytic reaction device and a discharge electrode according to the present invention will be described with reference to the accompanying drawings.
[0021]
FIG. 1 is a configuration diagram showing a first embodiment of a photocatalytic reaction device according to the present invention.
[0022]
The photocatalytic reaction device 10 includes a unit structure 11, a housing 12, and a high-voltage power supply unit 13 that is an example of a power supply.
[0023]
The housing 12 has a cylindrical structure, and a flow path 14 for a gas Y such as air containing a decomposition target object such as an odorous substance or a harmful substance is formed inside the housing 12. A unit structure 11 is provided in the flow path 14 of the gas Y formed inside the housing 12.
[0024]
The unit structure 11 includes a pair of notched honeycomb electrodes 15 and 15 and a photocatalyst module 16 which are examples of discharge electrodes. Then, a cutout honeycomb electrode 15 on one pole side of the unit structure 11, a photocatalyst module 16, and a cutout honeycomb electrode 15 on the other pole side are sequentially provided from the upstream side of the flow path 14 of the gas Y in the housing 12.
[0025]
The notched honeycomb electrodes 15 and 15 of the unit structure 11 are connected to the high-voltage power supply unit 13 and configured to be able to discharge by applying a voltage between the notched honeycomb electrodes 15 and 15.
[0026]
Further, the notched honeycomb electrode 15 of the unit structure 11 includes an electrode body 17 and a conductive outer frame 18. The conductive outer frame 18 of the notched honeycomb electrode 15 is formed in a cylindrical shape, and the electrode body 17 is housed and protected.
[0027]
The electrode body 17 of the notched honeycomb electrode 15 is formed in a honeycomb shape with a conductive thin plate or foil. That is, the notched honeycomb electrode 15 has a three-dimensional shape through which the gas Y can pass and has a thickness with respect to the direction of the flow path 14 of the gas Y. For this reason, the electrode body 17 and the conductive outer frame 18 have sufficient strength against discharge.
[0028]
As the electrode body 17 and the conductive outer frame 18 of the notched honeycomb electrode 15, a metal having corrosion resistance against a corrosive gas such as hydrogen sulfide or a metal having a coating process having corrosion resistance is used as necessary. It is done.
[0029]
Examples of the electrode body 17 and the conductive outer frame 18 include those obtained by coating a metal such as stainless steel, aluminum, and copper, and metals or alloys having good corrosion resistance such as hastelloy, platinum, and gold.
[0030]
The electrode main body 17 of the notched honeycomb electrode 15 has, for example, a shape in which hexagonal cylindrical bodies 20 having an arrow shape from the flow direction of the gas Y are arranged and arranged. Therefore, the gas Y can pass through the inside of the electrode body 17 of the notched honeycomb electrode 15.
[0031]
Moreover, a notch is provided at the end of the electrode body 17 of the notched honeycomb electrode 15 as an example of a sharp-shaped portion.
[0032]
FIG. 2 is a perspective view showing an example of the shape of the notch provided in the notched honeycomb electrode 15 shown in FIG.
[0033]
The electrode body 17 of the notched honeycomb electrode 15 has, for example, a honeycomb shape in which hexagonal cylindrical bodies 20 having an arrow shape from the flow direction of the gas Y are arranged and arranged. Of the ends of the electrode main body 17 of the notched honeycomb electrode 15, for example, groove-shaped notches 21 are aligned and arranged on the other electrode on the notched honeycomb electrode 15 side as shown in FIG. 2.
[0034]
For this reason, when a voltage is applied between the pair of cutout honeycomb electrodes 15 and 15, a concentrated electric field is formed in the vicinity of the cutout 21 of the cutout honeycomb electrode 15. That is, the notch 21 is formed at the end of the notched honeycomb electrode 15 in such a shape that discharge occurs between the notched honeycomb electrodes 15 and 15 at a lower voltage.
[0035]
Therefore, the shape of the notch 21 provided in the notched honeycomb electrode 15 is arbitrary, and may be V-shaped or U-shaped, for example. Further, the position and the number of the notches 21 are arbitrary as long as the required concentrated electric field is formed between the notched honeycomb electrodes 15 and 15.
[0036]
For this reason, by setting the position and number of the notches 21 at the end of the notched honeycomb electrode 15 arbitrarily, a concentrated electric field formed between the notched honeycomb electrodes 15, 15, in other words, discharge between the notched honeycomb electrodes 15, 15. The power required to generate can be adjusted. Furthermore, by adjusting the position and number of the notches 21 provided in the notched honeycomb electrode 15, a more uniform and favorable discharge can be obtained.
[0037]
Further, the cutout 21 provided in the cutout honeycomb electrode 15 may be provided at one end of the cutout honeycomb electrodes 15 and 15 on the upstream side and the downstream side of the gas Y facing each other. Furthermore, only one of the upstream and downstream electrodes may be the notched honeycomb electrode 15 and the other may be the honeycomb electrode without the notch 21.
[0038]
In addition, the manufacturing cost of the notch honeycomb electrode 15 can be reduced by providing the notch 21 regularly. That is, since the honeycomb shape is generally manufactured by molding a band-shaped or plate-shaped metal, it is easy to perform a normal honeycomb manufacturing process simply by providing a regular depression on the edge of the band-shaped or plate-shaped metal in advance. The notched honeycomb electrode 15 can be manufactured.
[0039]
However, the notched honeycomb electrode 15 may be manufactured by a method of providing the notch 21 after forming the honeycomb shape in the honeycomb manufacturing process.
[0040]
On the other hand, the photocatalyst module 16 of the unit structure 11 is configured by supporting a photocatalyst on a three-dimensional structure base through which the gas Y can pass. The photocatalyst module 16 has a configuration in which, for example, semiconductor fine particles having a photocatalytic action are supported on the surface of a ceramic substrate having a three-dimensional network structure. However, the base of the photocatalyst module 16 may have a three-dimensional structure such as a lattice shape, a honeycomb shape, or a porous structure as long as the gas Y can pass through and can carry the photocatalyst.
[0041]
Examples of the semiconductor fine particles having a photocatalytic action include metal oxide semiconductors such as titanium oxide TiO2 (anatase type, rutile type, brookite type), SrTiO3, ZnO, BaTiO3, V2O5, SnO2, Si, GaAs, CdS, ZnS, etc. A single semiconductor and a compound semiconductor are mentioned.
[0042]
Examples of the high-voltage power supply unit 13 include a DC power supply, a pulse power supply that outputs a short pulse with a duty ratio of 0.5 or less, and an AC power supply with a frequency of 10 kHz or more. Furthermore, it is good also as a structure provided with the structure which superimposes the direct current bias equivalent to 50% to 90% of a peak value on various high voltage power supplies, or the function of intermittent operation.
[0043]
When a DC power supply is used as the high-voltage power supply unit 13, the power supply configuration can be simplified, the apparatus cost can be reduced, and the operation sound can be kept relatively small.
[0044]
In addition, when a pulse power supply is used as the high-voltage power supply unit 13, a large amount of power can be easily applied compared to a DC power supply, so that the apparatus can be reduced in size and the power supply configuration can be simplified and the apparatus cost can be reduced. . Furthermore, since it is possible to easily increase the input power as compared with the DC power supply, it is effective when the low-cost and medium-scale photocatalytic reaction device 10 is configured.
[0045]
Further, when an AC power supply having a frequency of 10 kHz or more is used as the high-voltage power supply unit 13, the input power can be increased as the operating frequency is increased. For this reason, it is effective for the photocatalytic reaction device 10 for a large volume of gas Y.
[0046]
Furthermore, when a direct current bias is superimposed on the high-voltage power supply unit 13, when the pulse power supply is used alone, the pulse voltage can be reduced, so that the photocatalytic reaction device 10 can be downsized. Furthermore, since the number of the surviving electrons that are the source of the discharge is stabilized, variations in the spark transition voltage can be suppressed and a stable power supply operation can be ensured.
[0047]
Next, the operation of the photocatalytic reaction device 10 will be described.
[0048]
First, a gas Y such as air to be purified flows into the flow path 14 of the gas Y formed in the housing 12 from the entrance of one end of the housing 12. The gas Y that has flowed into the housing 12 is guided to the notched honeycomb electrode 15 on the upstream side of the unit structure 11. The gas Y guided to the notched honeycomb electrode 15 passes through the inside of the notched honeycomb electrode 15 through the flow path 14 of the gas Y formed by the honeycomb shape of the notched honeycomb electrode 15.
[0049]
On the other hand, a voltage is applied from the high-voltage power supply unit 13 between the upstream and downstream cutout honeycomb electrodes 15 and 15. For this reason, an electric field is formed between the cutout honeycomb electrodes 15 on the upstream side and the downstream side.
[0050]
Here, since the notch 21 is provided at the downstream end of the electrode body 17 of the upstream notch honeycomb electrode 15 or the upstream end of the electrode body 17 of the downstream notch honeycomb electrode 15, the vicinity of the notch 21 is provided. The electric field becomes dense and electric field concentration occurs.
[0051]
As a result, the discharge can be easily performed only by applying a lower voltage from the high voltage power supply unit 13 between the upstream and downstream cutout honeycomb electrodes 15 and 15. Furthermore, the spatially uniform and good discharge can be obtained by the action of the notch 21 provided at an appropriate position in the notched honeycomb electrode 15. Discharge light including ultraviolet rays is generated between the upstream and downstream cutout honeycomb electrodes 15 and 15 along with the discharge.
[0052]
The discharge light generated between the upstream and downstream cutout honeycomb electrodes 15 and 15 is applied to the photocatalyst module 16 between the upstream and downstream cutout honeycomb electrodes 15 and 15. As a result, the photocatalyst carried on the substrate surface of the photocatalyst module 16 is activated.
[0053]
In addition, ultraviolet rays generated between the upstream and downstream cutout honeycomb electrodes 15 and 15 react with oxygen contained in the gas Y such as air to generate ozone downstream of the cutout honeycomb electrode 15 on the upstream side. The
[0054]
Here, ozone has a strong oxidizing action, but since the corrosion resistance is added to the notched honeycomb electrode 15, the oxidation is suppressed. Furthermore, even when the gas Y contains a corrosive gas such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, or ammonia, corrosion of the notched honeycomb electrode 15 is suppressed.
[0055]
On the other hand, the gas Y that has passed through the inside of the cutout honeycomb electrode 15 on the upstream side is guided to the photocatalyst module 16 activated by the discharge light, and flows into the photocatalyst module 16. Then, oxygen and water contained in the gas Y flowing into the photocatalyst module 16 react with the activated photocatalyst to generate hydrogen peroxide and hydroxyl radicals.
[0056]
Ozone, hydrogen peroxide, and hydroxyl radicals generated in the vicinity of the photocatalyst module 16 have a strong oxidizing power, and have functions such as deodorizing, decoloring, sterilizing, and sterilizing action to break molecular bonds of substances.
[0057]
For this reason, odorous substances and harmful substances contained in the gas Y flowing into the photocatalyst module 16 are decomposed by the action of hydrogen peroxide, hydroxyl radicals and ozone generated by the action of the activated photocatalyst. Disassembled.
[0058]
Examples of decomposition targets include, for example, odor-generating substances such as formaldehyde that are the cause of odor generation, fungi and bacteria such as airborne bacteria, substances constituting dirt components, harmful substances, and organic chlorine such as trihalomethanes. Examples include compounds, endocrine disrupting chemicals and other substances, compounds, mixtures, and organisms that can be decomposed by the action of the oxidizing power of ozone and hydroxyl radicals.
[0059]
Moreover, the discharge generated between the cutout honeycomb electrodes 15 on the upstream side and the downstream side also acts on decomposition of substances such as formaldehyde or harmful substances that cause odors, sterilization and inactivation of floating bacteria, Contributes to purification and deodorization.
[0060]
The purified gas Y that has passed through the inside of the photocatalyst module 16 passes through the notched honeycomb electrode 15 on the downstream side and is discharged to the outside from the outflow side of the housing 12.
[0061]
That is, the photocatalytic reaction device 10 uses the electrode for irradiating the photocatalyst module 16 with the discharge light to activate the photocatalyst as the notched honeycomb electrode 15 having the structure in which the notch 21 is provided in the honeycomb shape, It is a device that efficiently purifies the gas Y by reacting efficiently by generating a high-energy discharge at a lower voltage while maintaining reliability.
[0062]
According to the photocatalytic reaction device 10, the voltage required to start discharge applied between the high-voltage power supply unit 13 and the notched honeycomb electrodes 15 can be set lower than that of the conventional device. For this reason, not only can energy efficiency be improved, but the configuration of the high-voltage power supply unit 13 can be made cheaper and simpler. Further, the photocatalytic reaction device 10 as a whole can be made smaller and simplified, and can be configured at a lower cost.
[0063]
Further, in the photocatalytic reaction device 10, by adjusting the position of the notch 21 provided in the notched honeycomb electrode 15, a more uniform and favorable discharge can be obtained spatially.
[0064]
On the other hand, the photocatalytic reaction device 10 can maintain the conventionally required strength and reliability of the electrode discharge. For this reason, the lifetime of the photocatalytic reaction device 10 can be maintained as before.
[0065]
In addition, it is good also as a structure which laminates | stacks the unit structure 11 in series, or provides in parallel. When a plurality of unit structures 11 are provided in series, the cutout 21 may be provided at the end of the electrode body 17 on the discharge side.
[0066]
FIG. 3 is a perspective view showing a second embodiment of the photocatalytic reaction device according to the present invention, and FIG. 4 is an arrow view from the flow direction of the gas Y of the intermittent honeycomb electrode 30 shown in FIG.
[0067]
The photocatalytic reactor 10A shown in FIG. 3 is different from the photocatalytic reactor 10 shown in FIG. 1 in that the notched honeycomb electrode 15 is replaced with an intermittent honeycomb electrode 30 which is an example of a discharge electrode. Since other configurations and operations are not substantially different from those of the photocatalytic reaction device 10 shown in FIG. 1, only the shape of the intermittent honeycomb electrode 30 will be illustrated and described.
[0068]
The electrode body 17 of the intermittent honeycomb electrode 30 of the photocatalytic reaction device 10A has, for example, a honeycomb shape in which hexagonal cylindrical bodies 20 in an arrow shape from the flow direction of the gas Y are arranged and arranged. However, a part of the electrode body 17 of the intermittent honeycomb electrode 30 is removed from the honeycomb-shaped plate or foil portion. That is, the intermittent part 31 which became intermittent by removing a part of honeycomb shape which is an example of the solid shape which repeats a uniform pattern is provided as an example of a sharp shape part.
[0069]
For this reason, sharp portions other than the other portions are formed in the intermittent portion 31 of the intermittent honeycomb electrode 30, and when a voltage is applied between the intermittent honeycomb electrodes 30, 30, A concentrated electric field is formed. That is, the intermittent honeycomb electrode 30 is partially removed to form the intermittent portion 31 so that a discharge with a large energy is generated between the intermittent honeycomb electrodes 30 and 30 at a lower voltage.
[0070]
Therefore, the shape of the intermittent part 31 provided in the intermittent honeycomb electrode 30 is arbitrary, for example, the shape which removed the hexagonal cell whole may be sufficient. Further, the position and number of the intermittent portions 31 are arbitrary as long as a required concentrated electric field is formed between the intermittent honeycomb electrodes 30 and 30.
[0071]
For this reason, by setting the position and number of the intermittent parts 31 provided in the intermittent honeycomb electrode 30 arbitrarily, a concentrated electric field formed between the intermittent honeycomb electrodes 30, 30, in other words, generated between the intermittent honeycomb electrodes 30, 30. The energy of the discharge can be adjusted. Furthermore, by adjusting the position and number of the intermittent portions 31 provided in the intermittent honeycomb electrode 30, a more uniform and favorable discharge can be obtained.
[0072]
Alternatively, only one of the upstream and downstream electrodes may be the intermittent honeycomb electrode 30 and the other may be the honeycomb electrode without the intermittent portion 31.
[0073]
That is, the photocatalytic reaction device 10A has a configuration in which a honeycomb shape is intermittently formed by removing a part instead of providing the notch 21 at the end of the electrode body 17.
[0074]
For this reason, in the photocatalytic reaction device 10A, an effect equivalent to that of the photocatalytic reaction device 10 can be obtained.
[0075]
In addition, it is good also as a structure which laminates | stacks the unit structure 11 in series, or provides in parallel. When a plurality of unit structures 11 are provided in series, an electric field concentration can be formed at both ends of the electrode body 17, so that the notches 21 are provided at both ends of the honeycomb at both ends if the thickness of the gas Y in the flow direction is relatively short. In some cases, it is easier to manufacture the intermittent honeycomb electrode 30 than to manufacture the notched honeycomb electrode 15.
[0076]
FIG. 5 is a structural view showing a third embodiment of the photocatalytic reaction device according to the present invention, and FIG. 6 is a cross-sectional view of the end-processed honeycomb electrode 40 shown in FIG.
[0077]
The photocatalytic reactor 10B shown in FIG. 5 is different from the photocatalytic reactor 10 shown in FIG. 1 in that the notched honeycomb electrode 15 is replaced with an end-processed honeycomb electrode 40 which is an example of a discharge electrode. Since other configurations and operations are not substantially different from those of the photocatalytic reaction device 10 shown in FIG. 1, only the shape of the end-processed honeycomb electrode 40 is illustrated and described.
[0078]
The electrode body 17 of the end-processed honeycomb electrode 40 of the photocatalytic reaction device 10B has, for example, a honeycomb shape in which cylindrical bodies 20 having hexagonal shapes as viewed from the flow direction of the gas Y are arranged. However, a saw-like uneven portion 41 is provided as an example of a sharp-shaped portion in an arbitrary direction on the side where the discharge of the electrode body 17 of the end-processed honeycomb electrode 40 is performed.
[0079]
For this reason, when a voltage is applied between the end processed honeycomb electrodes 40, a concentrated electric field is formed in the vicinity of the uneven portion 41 of the end processed honeycomb electrode 40. That is, the end-processed honeycomb electrode 40 has an uneven portion at the end on the side where the discharge is performed so that a discharge having a large energy is generated between the end-process honeycomb electrodes 40, 40 at a lower voltage. 41 is formed.
[0080]
Therefore, if a required concentrated electric field is formed between the end-processed honeycomb electrodes 40, 40, the shape of the uneven portion 41 provided in the end-processed honeycomb electrode 40 is arbitrary, and the width, the depth of the uneven portion 41, The number and direction are not limited. That is, the direction of the shape of the concavo-convex portion 41 may be a direction in which the arrow view from the direction perpendicular to the flow direction of the gas Y of the end-processed honeycomb electrode 40 is uniform, or a plate shape constituting the honeycomb Alternatively, it may be uniform with respect to the thickness direction of the foil.
[0081]
Further, only one of the paired electrodes may be the end-processed honeycomb electrode 40, and the other may be a honeycomb electrode without the uneven portion 41.
[0082]
Therefore, by arbitrarily setting the shape of the uneven portion 41 at the end of the end processed honeycomb electrode 40, a concentrated electric field formed between the end processed honeycomb electrodes 40, 40, in other words, the end processed honeycomb electrode 40, The energy of the discharge generated between 40 can be adjusted. Furthermore, by adjusting the shape of the uneven portion 41 provided on the end-processed honeycomb electrode 40, a more uniform and favorable discharge can be obtained.
[0083]
That is, the photocatalytic reaction device 10B has a configuration in which an uneven portion 41 is provided instead of providing the notch 21 at the end of the electrode body 17.
[0084]
For this reason, in the photocatalytic reaction device 10B, an effect equivalent to that of the photocatalytic reaction device 10 can be obtained. Further, in the end-processed honeycomb electrode 40, the thickness of the plate or foil can be easily obtained by providing irregularities 41 regularly on the edge of the band-like or plate-like metal in advance and forming in the normal honeycomb manufacturing process. The end-processed honeycomb electrode 40 having the uneven portion 41 that is uniform with respect to the direction can be manufactured.
[0085]
On the other hand, in the photocatalytic reaction device 10B, the arrow view from the direction perpendicular to the flow direction of the gas Y is uniform only by simply adding the uneven portion 41 to the honeycomb-shaped metal end that is already manufactured and easily available. It is also possible to manufacture the end-processed honeycomb electrode 40 having the uneven portion 41 that becomes the following.
[0086]
In addition, it is good also as a structure which laminates | stacks the unit structure 11 in series, or provides in parallel. When a plurality of unit structures 11 are provided in series, uneven portions 41 may be provided at both ends of the electrode body 17.
[0087]
FIG. 7 is a diagram showing a first modification of the photocatalytic reaction device 10B shown in FIG. 5, and FIG. 8 is a diagram showing a second modification of the photocatalytic reaction device 10B shown in FIG.
[0088]
In the photocatalytic reaction device 10B shown in FIG. 5, the shape of the uneven portion 41 at the end of the end-processed honeycomb electrode 40 is not limited to a saw shape, but a structure in which rectangular unevenness is repeated as shown in FIG. It is good also as a structure which provides only a convex part.
[0089]
That is, if a sharp portion is formed at the end portion of the end-processed honeycomb electrode 40, electric field concentration is caused, and a discharge with high energy can be performed from the end-processed honeycomb electrode 40 at a lower voltage.
[0090]
As for the shape of the end portion of the end-processed honeycomb electrode 40, it is possible to achieve higher efficiency or lower cost by selecting a more appropriate shape according to the required discharge energy and ease of manufacture. .
[0091]
If the end processed honeycomb electrode 40 has a structure in which a projecting portion is provided as shown in FIG. 8, for example, a manufacturing method in which one side of a strip-shaped metal thin plate is cut so that protrusions are formed at regular intervals, and then formed into a honeycomb shape, Manufacturing methods such as forming a thin metal plate with protrusions into a honeycomb shape, and forming a convex member on the end of a metal preformed in a honeycomb shape by adhesion means such as spraying, soldering, brazing, welding, etc. Can be manufactured.
[0092]
FIG. 9 is a perspective view showing a fourth embodiment of the photocatalytic reaction device according to the present invention, FIG. 10 is a view as viewed from the direction of the flow of the gas Y in the sheet electrode 50 shown in FIG. 9, and FIG. FIG. 10 is an arrow view of the sheet electrode 50 shown in FIG.
[0093]
The photocatalytic reactor 10C shown in FIG. 5 is different from the photocatalytic reactor 10 shown in FIG. 1 in that the notched honeycomb electrode 15 is replaced with a sheet electrode 50 as an example of a discharge electrode. Since other configurations and operations are not substantially different from those of the photocatalytic reaction device 10 shown in FIG. 1, only the shape of the sheet electrode 50 will be illustrated and described.
[0094]
The sheet electrode 50 of the photocatalytic reaction device 10C is manufactured, for example, by cutting a sheet-like conductor 51 into an arbitrary shape and bending the sheet-shaped conductor 51 to the paired sheet electrode 50 side. For example, as shown in FIG. 5, the sheet electrode 50 has a shape in which a plurality of quadrilateral portions are uniformly bent from a sheet-like conductor 51 and aligned.
[0095]
That is, the sheet electrode 50 has a structure in which a protruding portion 52 having a height in the sheet thickness direction is provided on a sheet-like conductor 51 having a hole through which the gas Y can pass. The edge of the bent quadrilateral portion of the sheet electrode 50 is located on the side where the discharge is performed and has a sharp shape. For this reason, when a voltage is applied between the sheet electrodes 50, a concentrated electric field is formed in the vicinity of the quadrilateral portion of the sheet electrode 50.
[0096]
That is, the sheet electrode 50 has a shape such as a quadrilateral portion on the side where the discharge is performed from the sheet-like conductor 51 so that a discharge with a large energy is generated between the sheet electrodes 50 and 50 at a lower voltage. The part 52 is formed by being bent. At this time, by bending the protruding portion 52 such as a quadrilateral portion, the strength of the sheet electrode 50 is improved, and the reliability of the sheet electrode 50 with respect to the discharge can be ensured.
[0097]
Therefore, if the required concentrated electric field is formed between the sheet electrodes 50 and 50 and the required strength and reliability are obtained in the sheet electrode 50, the shape, number, position, and orientation of the protruding portions 52 of the sheet electrode 50 are arbitrary. It is.
[0098]
For this reason, by arbitrarily setting the shape and number of the protruding portions 52 of the sheet electrode 50, the concentrated electric field formed between the sheet electrodes 50 and 50, in other words, the energy of the discharge generated between the sheet electrodes 50 and 50, The strength of the sheet electrode 50 can be adjusted.
[0099]
Alternatively, only one of the paired electrodes may be the sheet electrode 50 and the other may be an electrode through which the gas Y can pass, for example, a honeycomb electrode.
[0100]
That is, the photocatalytic reaction apparatus 10C improves strength and reliability by cutting and bending the two-dimensional sheet-like conductor 51, which has been difficult to use from the viewpoint of conventional strength and reliability. In addition, an electric field concentration is also formed.
[0101]
For this reason, in the photocatalytic reaction device 10C, not only the effect equivalent to that of the photocatalytic reaction device 10 can be obtained, but also the sheet electrode 50 can be easily manufactured only by cutting and bending from the sheet-like conductor 51, thereby reducing the manufacturing cost. Can be reduced. Furthermore, it becomes possible to form the sheet electrode 50 in various shapes easily and inexpensively according to the use of the photocatalytic reaction device 10C and the type of gas Y to be purified.
[0102]
The sheet electrode 50 is manufactured by cutting and bending the sheet-like conductor 51, but after removing a portion of an arbitrary shape from the sheet-like conductor 51 by a process such as punching or cutting, separately, The protruding portion 52 of the sheet electrode 50 may be manufactured by a method of joining a sharp reinforcing material.
[0103]
In addition, it is good also as a structure which laminates | stacks the unit structure 11 in series, or provides in parallel. When a plurality of unit structures 11 are provided in series, the protruding portions 52 may be provided on both sides of the sheet electrode 50 by bending them. For example, the sheet electrode 50 having the protruding portions 52 on both sides may be manufactured by bending adjacent protruding portions 52 by alternately changing the bending direction.
[0104]
FIG. 12 is an arrow view from the flow direction of the gas Y showing a modification of the sheet electrode 50 shown in FIG.
[0105]
For example, as shown by the one-dot chain line in FIG. 12, when a plurality of crossed cuts are made in the sheet-like conductor 51 and bent along a line connecting the ends of the cuts, Can be made sharp, and the strength can be improved over the entire circumference of the edge formed in the sheet-like conductor 51.
[0106]
The photocatalytic reaction apparatuses 10, 10A, 10B, and 10C may be combined and combined. For example, a configuration in which the uneven portion 41 is provided at the edge tip of the protruding portion 52 of the sheet electrode 50, a configuration in which the notch 21, the intermittent portion 31 and the uneven portion 41 are provided in the honeycomb electrode, one electrode as the sheet electrode 50, and the other electrode as the other electrode. The notched honeycomb electrode 15 may be used.
[0107]
Further, the photocatalytic reaction devices 10, 10A, 10B, and 10C are provided with an ozone decomposition catalyst for decomposing ozone generated in the unit structure 11, or a blower for accelerating the flow of the gas Y, It is good also as a structure which provides apparatuses, such as a filter means for removing dust, on the flow path 14 of the gas Y. FIG.
[0108]
Further, in the photocatalytic reaction devices 10, 10 </ b> A, and 10 </ b> B, the shape of the notched honeycomb electrode 15, the intermittent honeycomb electrode 30, or the end-processed honeycomb electrode 40 as viewed from the flow direction of the gas Y is a shape in which hexagons are aligned. Not limited to this, as long as the gas Y can flow inside the notched honeycomb electrode 15, a shape in which a plurality of cylindrical bodies 20 having an arbitrary cross-section are aligned and arranged may be used. Furthermore, as long as the gas Y can flow inside the electrode and has a three-dimensional shape having a thickness in the flow direction of the gas Y, it is not limited to the honeycomb shape, for example, a columnar body, a plate-like body having a thickness, or a block body. A shape in which a plurality of through holes are provided, a shape in which a plurality of cylindrical bodies 20 are arranged on the same axis, a spiral shape, a lattice shape, a three-dimensional mesh shape, or the like may be used.
[0109]
Further, when the electrode body 17 is formed in a honeycomb shape having a hexagonal cross section, if the cell size is 5 mm or more and the foil thickness is 1 mm or less, preferably 0.1 mm to 0.2 mm, the issue strength is further increased. It has been experimentally confirmed that strong discharge light can be generated.
[0110]
Further, it has been experimentally confirmed that the discharge light necessary for activation of the photocatalyst reaches the inside of the photocatalyst module 16 sufficiently when the thickness of the photocatalyst module 16 in the flow direction of the gas Y is 15 mm or less.
[0111]
Moreover, if the discharge electrode is used not only when used in the photocatalytic reaction apparatus 10, 10A, 10B, 10C, but also when used in an apparatus or system that requires a fluid such as gas Y or liquid to pass inside the discharge electrode, A low voltage and spatially appropriate discharge can be performed.
[0112]
【The invention's effect】
In the photocatalytic reaction device and the discharge electrode according to the present invention, gas can be efficiently reacted by generating a high-energy discharge at a lower voltage without reducing the strength and reliability of the electrode.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of a photocatalytic reaction device according to the present invention.
FIG. 2 is a perspective view showing an example of the shape of a notch provided in the notched honeycomb electrode shown in FIG.
FIG. 3 is a perspective view showing a second embodiment of the photocatalytic reaction device according to the present invention.
4 is an arrow view from the gas flow direction of the intermittent honeycomb electrode shown in FIG. 3. FIG.
FIG. 5 is a structural view showing a third embodiment of the photocatalytic reaction device according to the present invention.
6 is a cross-sectional view taken along line AA of the end-processed honeycomb electrode shown in FIG.
7 is a view showing a first modification of the photocatalytic reaction device shown in FIG. 5. FIG.
FIG. 8 is a diagram showing a second modification of the photocatalytic reaction device shown in FIG.
FIG. 9 is a perspective view showing a fourth embodiment of the photocatalytic reaction device according to the present invention.
10 is an arrow view from the gas flow direction of the sheet electrode shown in FIG. 9;
11 is an arrow view from the BB direction of the sheet electrode shown in FIG.
12 is a view as seen from the direction of gas flow, showing a modification of the sheet electrode shown in FIG. 9;
FIG. 13 is a configuration diagram of a conventional photocatalytic reaction device.
14 is a perspective view of the honeycomb electrode shown in FIG.
[Explanation of symbols]
10, 10A, 10B, 10C Photocatalytic reactor
11 Unit structure
12 Case
13 High voltage power supply
14 Channel
15 Notched honeycomb electrode
16 Photocatalyst module
17 Electrode body
18 Conductive outer frame
20 Tubular body
21 Notch
30 Intermittent honeycomb electrode
31 Intermittent sites
40 End-processed honeycomb electrode
41 Concavity and convexity
50 Sheet electrode
51 Sheet-shaped conductor
52 Projection site
Y gas

Claims (9)

気体の流路上に設けられ、前記気体が通過可能な3次元構造の基体に光触媒を担持させた光触媒モジュールと、この光触媒モジュールの上流側と下流側の前記気体の流路上に設けられ、前記気体が通過可能な立体形状の放電電極と、これら放電電極間に電圧を印加して放電させる電源とを備え、前記放電電極の少なくとも一方の放電側には、電界集中を形成させるための鋭利形状部が設けられ、前記放電電極間に生じた放電光を前記光触媒に照射することにより前記光触媒を活性化するように構成したことを特徴とする光触媒反応装置。A photocatalyst module provided on a gas flow path and having a photocatalyst supported on a three-dimensional structure base through which the gas can pass, and provided on the gas flow path upstream and downstream of the photocatalyst module, A sharply shaped portion for forming an electric field concentration on at least one discharge side of the discharge electrode. The photocatalytic reaction apparatus is configured to activate the photocatalyst by irradiating the photocatalyst with discharge light generated between the discharge electrodes. 前記鋭利形状部は、切欠であることを特徴とする請求項1記載の光触媒反応装置。The photocatalytic reaction device according to claim 1, wherein the sharp-shaped portion is a notch. 前記鋭利形状部は、一様なパターンを繰り返す立体形状の放電電極の一部を除去して形成された断続部位であることを特徴とする請求項1記載の光触媒反応装置。The photocatalytic reaction device according to claim 1, wherein the sharp-shaped portion is an intermittent portion formed by removing a part of a three-dimensional discharge electrode that repeats a uniform pattern. 前記鋭利形状部は、凹凸部位であることを特徴とする請求項1記載の光触媒反応装置。The photocatalytic reaction device according to claim 1, wherein the sharp-shaped portion is an uneven portion. 気体の流路上に設けられ、前記気体が通過可能な3次元構造の基体に光触媒を担持させた光触媒モジュールと、この光触媒モジュールの上流側と下流側の前記気体の流路上に設けられた放電電極と、これら放電電極間に電圧を印加して放電させる電源とを備え、前記放電電極は、前記気体が通過可能な孔を有するシート状の導体にシート厚さ方向の高さを有する突起部位を設けた構造であり、前記放電電極間に生じた放電光を前記光触媒に照射することにより前記光触媒を活性化するように構成したことを特徴とする光触媒反応装置。A photocatalyst module provided on a gas flow path and having a photocatalyst supported on a three-dimensional structure base through which the gas can pass, and discharge electrodes provided on the gas flow path upstream and downstream of the photocatalyst module And a power source that discharges by applying a voltage between the discharge electrodes, and the discharge electrode has a protruding portion having a height in the sheet thickness direction on a sheet-like conductor having a hole through which the gas can pass. A photocatalytic reaction device having a provided structure and configured to activate the photocatalyst by irradiating the photocatalyst with discharge light generated between the discharge electrodes. 前記突起部位を、前記シート状の導体に切込を入れて曲げ成形することにより形成したことを特徴とする請求項5記載の光触媒反応装置。6. The photocatalytic reaction device according to claim 5, wherein the protruding portion is formed by cutting and bending the sheet-like conductor. 気体が通過可能な立体形状の電極本体と、電界集中を形成させるための鋭利形状部とを備えたことを特徴とする放電電極。A discharge electrode comprising a three-dimensionally shaped electrode main body through which gas can pass and a sharp-shaped part for forming an electric field concentration. 気体が通過可能な孔を有するシート状の導体と、このシート状の導体のシート厚さ方向の高さを有する突起部位とを備えたことを特徴とする放電電極。A discharge electrode comprising: a sheet-like conductor having holes through which gas can pass; and a protruding portion having a height in the sheet thickness direction of the sheet-like conductor. 前記突起部位を、前記シート状の導体に切込を入れて曲げ成形することにより形成したことを特徴とする請求項8記載の放電電極。The discharge electrode according to claim 8, wherein the protruding portion is formed by cutting and bending the sheet-like conductor.
JP2003198608A 2003-07-17 2003-07-17 Photocatalytic reactor Active JP4387711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198608A JP4387711B2 (en) 2003-07-17 2003-07-17 Photocatalytic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198608A JP4387711B2 (en) 2003-07-17 2003-07-17 Photocatalytic reactor

Publications (2)

Publication Number Publication Date
JP2005034270A true JP2005034270A (en) 2005-02-10
JP4387711B2 JP4387711B2 (en) 2009-12-24

Family

ID=34208346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198608A Active JP4387711B2 (en) 2003-07-17 2003-07-17 Photocatalytic reactor

Country Status (1)

Country Link
JP (1) JP4387711B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007645A (en) * 2005-06-28 2007-01-18 Bluecher Gmbh Catalyst activation unit, and protective material, or filter or filter material using it
JP2010214001A (en) * 2009-03-18 2010-09-30 Toshiba Corp Discharged type photocatalytic deodorizing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007645A (en) * 2005-06-28 2007-01-18 Bluecher Gmbh Catalyst activation unit, and protective material, or filter or filter material using it
JP2010214001A (en) * 2009-03-18 2010-09-30 Toshiba Corp Discharged type photocatalytic deodorizing device

Also Published As

Publication number Publication date
JP4387711B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
KR100522515B1 (en) Discharge electrode and photonic catalyst reactor
JP5697075B2 (en) Air cleaner
KR100535123B1 (en) Hybrid type air cleaner for automobile
JP4718344B2 (en) Air purification apparatus and air purification method using the same
JP2009202137A (en) Air treatment apparatus
AU2004244900A1 (en) Discharge apparatus and air purifying apparatus
CA2806576C (en) Encapsulated metal microtip microplasma devices, arrays and fabrication methods
KR100623995B1 (en) Hybrid voc purification apparatus using non-thermal plasma photo-catalyst and thermal catalytic converter
US10792611B2 (en) Air purification device and process
RU2480244C2 (en) Air cleaner
WO2007102701A1 (en) Photolysis and photocatalaysis air pollution treatment system using electrodeless uv lamp
JP4387711B2 (en) Photocatalytic reactor
JP3504165B2 (en) Photocatalytic reaction device and photocatalytic reaction method
JP2006167190A (en) Air purifier
JP2006043550A (en) Air cleaner
JP4253480B2 (en) Photocatalytic reactor
JP2005040655A (en) Photocatalytic reaction apparatus and functional electrode
JP2000140562A (en) Gas treatment apparatus
KR100503921B1 (en) Pollution gas disposer using low temp plasma and optic fiber catalyst filter
JP2010069346A (en) Photocatalytic reactor
CN216799377U (en) Plasma air cleaner for sterilization
JP2007105118A (en) Air purifying apparatus
JP2005304762A (en) Air purification apparatus
JP2004105812A (en) Photocatalytic reaction apparatus and photocatalytic reaction method
JP2006263729A (en) Photocatalytic reaction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R151 Written notification of patent or utility model registration

Ref document number: 4387711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350