JP2005026010A - Fuel cell power generating equipment - Google Patents

Fuel cell power generating equipment Download PDF

Info

Publication number
JP2005026010A
JP2005026010A JP2003188449A JP2003188449A JP2005026010A JP 2005026010 A JP2005026010 A JP 2005026010A JP 2003188449 A JP2003188449 A JP 2003188449A JP 2003188449 A JP2003188449 A JP 2003188449A JP 2005026010 A JP2005026010 A JP 2005026010A
Authority
JP
Japan
Prior art keywords
fuel cell
cell power
power generation
hot water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003188449A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kusama
伸行 草間
Tetsuo Ohashi
哲雄 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba International Fuel Cells Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba International Fuel Cells Corp filed Critical Toshiba International Fuel Cells Corp
Priority to JP2003188449A priority Critical patent/JP2005026010A/en
Publication of JP2005026010A publication Critical patent/JP2005026010A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently control and operate a fuel cell power generating device in response to a demand for heat and a demand for power by monitoring the whole of equipment with a control device of the fuel cell power generating device. <P>SOLUTION: This fuel cell power generating equipment is provided with the fuel cell power generating device 1, the control device 11 for controlling the fuel cell power generating device 1, a hot water reservoir 3 for storing hot water by using the heat generated in the fuel cell power generating device 1, water mixing valves 4 provided in a water feeding system of the hot water reservoir to mix water in the hot water, and a water heater 5 for supplying hot water, which is supplied through the water mixing valves, to users. In this fuel cell power generating equipment wherein the fuel cell power generating device 1 and the water heater 2 are connected to a power system to receive the power, the control device 11 of the fuel cell power generating device 1 has a function for operating/controlling the fuel cell power generating device 1 by taking a demand for power and heat demand data of the users and various process values inside the fuel cell power generating device and the water heater to obtain the optimal generation output value on the basis of the data and the process values. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電装置で発生した熱を貯める貯湯槽およびこの貯湯槽に貯留された温水を上水と混合可能な混合栓および給湯器からなる給湯装置をもつ燃料電池発電設備に係わり、特に、燃料電池発電装置の制御部で、設備全体の運転・制御を行う機能をもつ燃料電池発電設備に関するものである。
【0002】
【従来の技術】
従来の燃料電池発電装置の排熱を利用した給湯暖房システムとしては、そのほとんどが、エンジン類の排熱を利用した給湯暖房システムにおいて、エンジン類を燃料電池発電装置に置き換えたものである。
【0003】
しかし、燃料電池発電装置とエンジン類とは、その運用方法や制御方法が異なるため、単にエンジン類を燃料電池発電装置に置き換えるだけの給湯暖房システムでは、最適な燃料電池発電装置の排熱を利用した給湯暖房システムが得られていないのが現状である。
【0004】
さらに、本システムの運用方法についても、需要家の熱需要及び電気需要データから予測機能を使った自動運転を行うものが主であり、需要家が利用するマンマシンインターフェイス(リモコン)による運転制御については全く行われていない。
【0005】
ここで、かかる燃料電池発電装置の排熱を利用した給湯暖房システムについて述べると、以下のようなものである。
【0006】
(1)燃料電池発電装置の排熱を利用した給湯暖房装置内のデータ収集・制御装置にて、需要家の電気及び熱需要を収集し、熱電供給装置の最適運転を制御するようにしたもの(例えば、特許文献1〜特許文献5)。
【0007】
しかし、このような給湯暖房システムでは、熱電供給装置の運転パターンはON/OFFしか想定しておらず、需要家の電力需要が熱電供給装置の定格発電量よりも小さい時には、給湯暖房装置内のヒータで熱に変換するようにしていることから、あくまでエンジン類を熱電供給装置と想定したものである。
【0008】
(2)また、燃料電池発電装置の排熱を利用した給湯暖房システムにおいて、熱電供給装置が発電した電力のうち、余剰電力の貯蔵方法(例えば、特許文献6)や、系統連系時の電流計測方法(例えば、特許文献7)が知られているが、いずれも、熱電供給装置からの発生電力で給湯暖房装置内の電気を賄うようにはなっていない。つまり、停電発生時には、熱電供給装置を含めて本給湯暖房装置全体が停止する構成となっている。
【0009】
(3)さらに、燃料電池発電装置の排熱を利用した給湯暖房システムにおいて、熱需要予測に基づき、貯湯槽に必要な蓄熱が行われるまでは熱電供給装置を定格運転し、蓄熱が終了した時点で熱電供給装置の運転を停止するようにしたものもある(例えば、特許文献8)。
【0010】
【特許文献1】
特開2002−138902号公報
【0011】
【特許文献2】
特開2002−213303号公報
【0012】
【特許文献3】
特開2001−248910号公報
【0013】
【特許文献4】
特開2001−248909号公報
【0014】
【特許文献5】
特開2001−248907号公報
【0015】
【特許文献6】
特開2003−106217号公報
【0016】
【特許文献7】
特開2001−202973号公報
【0017】
【特許文献8】
特開2003−87970号公報
【0018】
【発明が解決しようとする課題】
しかし、上述したいずれの燃料電池発電装置の排熱を利用した給湯暖房システムにおいても、以下のような問題点がある。
【0019】
即ち、上記(1)で述べた燃料電池発電装置の排熱を利用した給湯暖房システムにおいて、系統への「逆潮流なし」運転契約の場合は、熱電供給装置からの発生電力が需要家の電力需要を下回るように、熱電供給装置からの発生電力を調整する必要がある。エンジン類は、部分負荷運転では効率が低下し、排ガス特性も悪くなるため、定格運転しか行われない。そのため、発生電力の一部を給湯暖房装置内のヒータで熱に変換し、系統への供給電力を調整している。
【0020】
この制御は、給湯暖房装置内の制御装置が行っているが、燃料電池発電装置は、燃料電池自身の発電出力を変化させ、部分負荷運転することが可能なため、系統への供給電力の調整は燃料電池発電装置の制御装置が直接行うことが可能である。従って、上記(1)で述べた給湯暖房システムのようにわざわざ給湯暖房装置側の制御装置で発生電力の調整を行う必要はない。つまり、同一の機能をもった制御装置を2重に設置することとなり、システムのコストアップになる。
【0021】
また、燃料電池発電装置は、低圧系統(電力会社との契約電力が50kW以下の電力系統)に接続する場合でも系統への逆潮流が許可されているが、エンジン類の場合には逆潮流が許可されていない。そのため、系統への「逆潮流あり」運転契約の場合は、発生電力の調整機能そのものが不要となる。
【0022】
さらに、前述したように燃料電池発電装置の排熱を利用した給湯暖房システムでは、給湯暖房装置内のヒータは不要である。
【0023】
上記(2)で述べた燃料電池発電装置の排熱を利用した給湯暖房システムでは、停電発生時にエンジン類を停止させる必要があるため、本給湯暖房システムも停電時には停止する運用となっている。しかし、燃料電池発電装置は、停電時に待機状態(装置がもつ補機分のみを賄う電力を発電し、系統への電力供給を行わない状態)にある。従って、現行のシステム運用では、停電発生時に燃料電池発電装置からの排熱回収量を把握することができない。
【0024】
上記(3)で述べた給湯暖房システムの運用方法は、需要家の熱需要/電気需要データから予測機能を使った自動運転を行うことが主であり、需要家の要望を取り入れた運転を行うことはできない。
【0025】
また、エンジン類は、燃料電池発電装置に比べて熱電比が高く、起動停止が容易なことから、熱需要予測に基づいた貯湯槽での蓄熱が終了した時点で熱電供給装置の運転を停止しているが、燃料電池発電装置の場合には、連続運転であるため、上記の運用では対応できない。
【0026】
従って、低負荷での発電運転で徐々に蓄熱するように運転することが考えられるが、特に夏場には、燃料電池発電装置からの排熱回収量が熱需要を上回ることは十部にあり得る。そのため、一般的には、余剰の熱は、排熱放散装置を燃料電池発電装置に追加し、燃料電池発電装置で発電した電気を使って前記排熱放散装置を運転し、大気に熱を放散していることが知られている。
【0027】
本発明は上記のような事情に鑑みてなされたもので、燃料電池発電装置の制御装置により設備全体を監視し、且つ熱需要及び電力需要に応じた制御及び運転を効率的に行うことができるとともに、システムの簡素化及びコストダウンを図ることができる燃料電池発電設備を提供することを目的とする。
【0028】
【課題を解決するための手段】
本発明は上記の目的を達成するため、次のような手段により燃料電池発電設備を構成する。
【0029】
請求項1に対応する発明は、燃料電池発電装置と、この燃料電池発電装置を制御する制御装置と、前記燃料電池発電装置で発生した熱を利用して温水として貯める貯湯槽、この貯湯槽の送水系に設けられ温水に上水を混合するための混合栓及びこの混合栓を介して供給される温水を需要家へ供給する給湯器からなる給湯装置とを備え、且つこれら燃料電池発電装置及び給湯装置が受電可能に電力系統に接続された燃料電池発電設備において、前記燃料電池発電装置の制御装置は、需要家の電力需要及び熱需要データおよび燃料電池発電装置と給湯装置内の各種プロセス値を取り込み、これらのデータ及びプロセス値に基づいて最適な発電出力値を求めて前記燃料電池発電装置を運転・制御する機能を有する。
【0030】
請求項2に対応する発明は、請求項1に対応する発明の燃料電池発電設備において、前記電力系統の停電時に前記燃料電池発電装置を前記給湯装置に連系して、前記燃料電池発電装置の出力電力により前記給湯装置の運転を継続可能にする。
【0031】
請求項3に対応する発明は、請求項1または請求項2に対応する発明の燃料電池発電設備において、前記燃料電池発電装置の制御装置は、需要家の電力需要及び熱需要データ並びに前記燃料電池発電装置と給湯装置内の各種プロセス値を蓄積するメモリと、このメモリの蓄積データから今後の運転に最適な燃料電池発電装置の発電出力量を予測する予測演算手段と、この予測演算手段で予測された発電出力量に基づいて前記燃料電池発電装置の発電出力を制御する制御手段とを備える。
【0032】
請求項4に対応する発明は、請求項1乃至請求項3のいずれかに記載の燃料電池発電設備において、前記燃料電池発電装置の制御装置に、需要家が利用するマンマシンインターフェイス(リモコン)と通信する機能と、このリモコンの操作により前記燃料電池発電装置の運転制御を決定する機能とを持たせる。
【0033】
請求項5に対応する発明は、請求項4に対応する発明の燃料電池発電設備において、前記リモコンに前記需要家が任意に設備全体の運転パターンを指定する機能を持たせる。
【0034】
請求項6に対応する発明は、請求項1乃至請求項5のいずれかに記載の燃料電池発電設備において、前記需要家での電力需要が、燃料電池発電装置が許容する負荷以下となる場合には、余剰となる電力を前記燃料電池発電装置内または前記給湯装置内の補機電力で消費させる。
【0035】
請求項7に対応する発明は、請求項1乃至請求項6のいずれかに対応する発明の燃料電池発電設備において、前記需要家での熱需要が少なく、前記燃料電池発電装置からの熱回収が必要なくなった場合には、前記貯湯槽から強制的に温水を排出する排出系を設ける。
【0036】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
【0037】
図1は本発明による燃料電池発電設備の実施形態を示す構成図である。
【0038】
図1において、1は燃料電池発電装置、2は給湯装置である。
【0039】
給湯装置2は、燃料電池発電装置1側の熱交換器1aに水循環系を介して接続され、燃料電池発電装置1で発生した熱を温水として蓄熱する貯湯槽3と、この貯湯槽3の送水管に設けられ、貯湯槽3に蓄熱された温水に上水を混合するための三方弁からなる混合栓4及びこの混合栓4を介して温水が送水され、需要家に温水を供給する給湯器5とを備えている。
【0040】
また、混合栓4の下流側の送水管には温水放出配管6が接続され、この温水放出配管6に温水放出弁7が設けられている。
【0041】
上記燃料電池発電装置1の電気系は、しゃ断器BCを介して電力系統ACに連系され、また給湯装置2は電力系統ACに切換スイッチ8を介して接続されるとともに、電力系統ACが停電したとき切換スイッチ8の切換えにより燃料電池発電装置1から受電できるようになっている。
【0042】
一方、11は燃料電池発電装置1の制御装置で、この制御装置11は、図2に示すように熱需要家9の熱需要データa、電気需要家10の電気需要データb、燃料電池発電装置1内の各機器12の各プロセス値c、給湯装置2内の各機器13の各プロセス値fを取り込み、燃料電池発電装置1内の各機器12および給湯装置2内の各機器13を監視し、これらのデータ及びプロセス値に基づいて最適な発電出力値を求めて制御指令d,eを与え、燃料電池発電装置1を運転・制御する機能を有している。
【0043】
また、燃料電池発電装置の制御装置11は、図示していないが、上記の各種データ及びプロセス値を蓄積するメモリと、このメモリの蓄積データから今後の運転に最適な燃料電池発電装置1の発電出力量を予測する予測演算手段と、この予測演算手段で予測された発電出力量に基づいて燃料電池発電装置1の出力を制御する制御手段を備え、蓄積データから今後の最適な燃料電池発電装置の発電出力量を予測し、予測された発電出力量にて燃料電池発電装置内の各機器12のプロセス量を変化させて、燃料電池発電装置1の出力制御を行う機能を有している。
【0044】
さらに、燃料電池発電装置1の制御装置11は、需要家が利用するマンマシンインターフェイス(リモコン)14と通信する機能と、このリモコン14より燃料電池発電装置1の運転・停止・出力変更指令や運転パターン又は予測運転計画の変更指令hを受けると制御を決定する機能とを有し、且つリモコン14に対して発電設備全体の運転状態、運転パターン、予測運転計画、各運転パターンのメリット、デメリットの表示情報gを送信する。
【0045】
次に上記のように構成された燃料電池発電設備の作用を述べる。
【0046】
燃料電池発電装置1で発生した熱は、給湯装置2内の貯湯槽3に温水として蓄熱され、この温水は混合栓4を通して給湯器5に送水された後、需要家に熱供給される。
【0047】
また、燃料電池発電装置1で発生した電力の一部は、図示しない燃料電池発電装置1内の補機に供給され、残りの電力は系統に連系される。この場合、需要家での電力需要が、燃料電池発電装置1が許容する負荷以下となる場合には、余剰となる電力を燃料電池発電装置1内または給湯装置2内の補機電力で消費させる。具体的には、燃料電池発電装置内の停止しているヒータを運転し消費したり、スイッチ8を動作させ、燃料電池発電装置1からの電力で、給湯装置2の電力を賄う。
【0048】
さらに、給湯装置2の電源は、通常スイッチ8を介して電力系統ACより受電しているが、電力系統ACが停電した場合には、スイッチ8が自動的に燃料電池発電装置1側に切換わることにより、燃料電池発電装置1の発電出力を自動的に受電する。
【0049】
一方、燃料電池発電装置1の制御装置11では、需要家9の熱需要データa、電気需要家10の電気需要データb、燃料電池発電装置1内の各機器12の各プロセス値c、給湯装置2内の各機器13の各プロセス値fを取り込み、燃料電池発電装置1内の各機器12および給湯装置2内の各機器13の監視を監視し、これらのデータ及びプロセス値に基づいて最適な発電出力値を求めて制御指令d,eを与え、燃料電池発電装置1を制御及び運転を行う。
【0050】
この場合、燃料電池発電装置1の制御装置11は、上記の各種運転データを蓄積し、これらの蓄積データから今後の最適な燃料電池発電装置の発電出力量を予測し、予測された発電出力量にて燃料電池発電装置1の出力制御を行う。
【0051】
また、燃料電池発電装置1の制御装置11が熱需要データaから、需要家での熱需要が少なく、燃料電池発電装置1からの熱回収が必要なくなったと判断した場合には、温水放散弁7を「開」として、余剰の温水を強制的に温水放散配管6を通して給湯装置2外に放出する。
【0052】
次にリモコン14の操作による燃料電池発電装置1の制御装置11の作用を述べる。
【0053】
リモコン14には、燃料電池発電装置1、給湯装置2の運転状態を表示することに加えて、燃料電池発電装置1の運転・停止や発電出力変更、過去の収集したデータから算定された今後の予測運転計画、「省エネルギー性を重視した」運転パターンや「経済性を重視した」運転パターン、「平日」及び「休日」の運転パターン等の予め設定されている運転パターンを表示可能になっている。
【0054】
また、リモコン14には、需要家が契約している電気料金、ガス料金等のユーザ情報も入力を可能になっている。
【0055】
需要家は、このリモコン14から、上記のユーザ情報の入力に加えて、燃料電池発電装置1の運転及び停止や発電出力変更、過去の収集したデータから算定された今後の予測運転計画の変更、「省エネルギー性を重視した」運転パターンや「経済性を重視した」運転パターンや「平日」及び「休日」運転パターン等の予め設定されている運転パターンの切り替えが可能である。
【0056】
上記の各表示情報は、燃料電池発電装置1の制御装置11にて演算され、需要家からの指令は、リモコン14を通して燃料電池発電装置1の制御装置11にて新たな指令として受け取られ、本発電設備の運転を変更する。
【0057】
また、燃料電池発電装置1の制御装置11では、ユーザ情報を含めて各運転パターンの需要家のメリット・デメリットも演算し、リモコン14上に表示する。
【0058】
ここで、表示および変更できる運転パターンの一例を示すと以下のとおりである。
【0059】
(ア)「昨日と同じ」運転:燃料電池発電装置1の制御装置11での予測運転計画に従うのではなく、昨日と全く同じ運転パターンで運転を行う場合に使うパターンである。このパターンを用いれば、毎日の需要がほぼ一定の場合には、より単純に精度の高い予測運転を達成できる。
【0060】
(イ)「平日」又は「休日」運転:熱需要及び電気需要が、平日と休日で異なる場合に使うパターンである。このパターンは平日と休日の格差が大きい場合に有効である。
【0061】
(ウ)「留守番」又は「精一杯」運転:急な外出等で熱需要及び電気需要が減る場合、あるいは急な来客等で熱需要及び電気需要が増加する場合に使うパターンである。このパターンは余剰な運転の防止および湯切れ防止に有効である。
【0062】
(エ)「省エネルギー性重視」又は「経済性重視」運転:CO2発生量を削減するような運転行うか、ランニングメリットが出るような運転を行うかを選択する場合に使うパターンである。このパターンを用いれば、需要家の選択の自由度を持たせることができる。
【0063】
(オ)「自己選択」運転:過去の収集したデータから算定された今後の予測運転計画を自由に変更したい場合に使うパターンである。
【0064】
このように本実施形態では、燃料電池発電装置1の制御装置11に、需要家の電力需要及び熱需要データおよび燃料電池発電装置1と給湯装置2内の各種プロセス値を取り込み、これらのデータ及びプロセス値に基づいて最適な発電出力値を求めて燃料電池発電装置1を運転・制御するようにしたので、設備全体を監視しながら熱需要及び電力需要に応じた制御及び運転を効率的に行うことができるとともに、システムの簡素化及びコストダウンを図ることができる。
【0065】
また、電力系統の停電時にはスイッチ8自身が自動的に切換わることで、燃料電池発電装置1を給湯装置2に連系し、燃料電池発電装置1の発電出力を受電するようにしているので、給湯装置2の運転が継続可能となり、需要家への熱供給を実現できる。
【0066】
さらに、燃料電池発電装置1の制御装置11は、各種運転データを蓄積し、これらの蓄積データから今後の最適な燃料電池発電装置の発電出力量を予測し、予測された発電出力量にて燃料電池発電装置1の出力制御を行うようにしているので、最適な燃料電池発電設備の運転を行うことができる。
【0067】
また、燃料電池発電装置1の制御装置11に、需要家が利用するマンマシンインターフェイス(リモコン)14と通信する機能と、このリモコン14の操作により燃料電池発電装置1の運転制御を決定する機能とを持たせるようにしたので、需要家の要求に応じた運転を実現できる。特に、需要家の電気需要や熱需要が急変することが明確な場合にはその対応を事前にとることが可能となる。
【0068】
また、リモコンに14に需要家が任意に設備全体の運転パターンを指定する機能を持たせて、需要家自身が本発電設備の運転に積極的に関与できるようにしたので、需要家のオリジナリティーに基づく運用も図り得る。即ち、過去の収集したデータから算定された今後の予測運転計画を変更でき、需要家が自由に運転計画を設定することも可能とする。
【0069】
さらに、需要家での熱需要が少なく、燃料電池発電装置1の発電出力を低下させても、熱出力が過剰な場合には、貯湯槽から強制的に温水を排出するようにしているので、燃料電池発電装置1の連続運転を継続できる。
【0070】
【発明の効果】
以上述べたように本発明によれば、燃料電池発電装置の制御装置により設備全体を監視し、且つ熱需要及び電力需要に応じた制御及び運転を効率的に行うことができるとともに、システムの簡素化及びコストダウンを図ることができる燃料電池発電設備を提供できる。
【図面の簡単な説明】
【図1】本発明による燃料電池発電設備の実施形態を示す構成図。
【図2】同実施形態における燃料電池発電装置の制御装置の機能を説明するための図。
【符号の説明】
1…燃料電池発電装置
2…給湯装置
3…貯湯槽
4…混合栓
5…給湯器
6…温水放散配管
7…温水放散弁
8…スイッチ
9…熱需要家
10…電気需要家
11…燃料電池発電装置の制御装置
12…燃料電池発電装置内の各機器
13…給湯装置内の各機器
14…リモコン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell power generation facility having a hot water storage tank for storing heat generated in the fuel cell power generation apparatus, and a hot water storage device comprising a mixing tap and a water heater capable of mixing hot water stored in the hot water storage tank with clean water, In particular, the present invention relates to a fuel cell power generation facility having a function of operating and controlling the entire facility at a control unit of the fuel cell power generation device.
[0002]
[Prior art]
Most of the hot water supply / heating systems using the exhaust heat of the conventional fuel cell power generation apparatus are those in which the engines are replaced with the fuel cell power generation apparatus in the hot water supply / heating system using the exhaust heat of the engines.
[0003]
However, since the operation method and control method of the fuel cell power generation device and the engines are different, the hot water supply and heating system that simply replaces the engines with the fuel cell power generation device uses the optimum exhaust heat of the fuel cell power generation device. The current situation is that no hot water supply / heating system is available.
[0004]
In addition, the operation method of this system is mainly to perform automatic operation using a prediction function based on the heat demand and electricity demand data of the customer, and the operation control by the man-machine interface (remote control) used by the customer. Is not done at all.
[0005]
Here, it is as follows when the hot water supply heating system using the exhaust heat of this fuel cell power generation device is described.
[0006]
(1) The data collection and control device in the hot water heater using the exhaust heat of the fuel cell power generator collects the electricity and heat demand of the consumer and controls the optimum operation of the thermoelectric supply device (For example, Patent Literature 1 to Patent Literature 5).
[0007]
However, in such a hot water supply and heating system, the operation pattern of the thermoelectric supply device assumes only ON / OFF, and when the power demand of the consumer is smaller than the rated power generation amount of the thermoelectric supply device, Since the heat is converted into heat by the heater, the engines are assumed to be thermoelectric supply devices.
[0008]
(2) Moreover, in the hot water supply and heating system using the exhaust heat of the fuel cell power generation device, among the power generated by the thermoelectric supply device, a method for storing surplus power (for example, Patent Document 6) or current during grid connection A measurement method (for example, Patent Document 7) is known, but none of the methods supplies electricity in the hot water supply and heating device with the generated power from the thermoelectric supply device. That is, when a power failure occurs, the entire hot water supply and heating device including the thermoelectric supply device is stopped.
[0009]
(3) Furthermore, in the hot water supply and heating system using the exhaust heat of the fuel cell power generation device, when the thermoelectric supply device is rated and operated until the required heat storage is performed in the hot water storage tank based on the prediction of heat demand, In some cases, the operation of the thermoelectric supply device is stopped (for example, Patent Document 8).
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-138902
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-213303
[Patent Document 3]
Japanese Patent Laid-Open No. 2001-248910
[Patent Document 4]
Japanese Patent Laid-Open No. 2001-248909
[Patent Document 5]
Japanese Patent Laid-Open No. 2001-248907
[Patent Document 6]
Japanese Patent Laid-Open No. 2003-106217 [0016]
[Patent Document 7]
Japanese Patent Laid-Open No. 2001-202973
[Patent Document 8]
Japanese Patent Laid-Open No. 2003-87970
[Problems to be solved by the invention]
However, the hot water supply / heating system using the exhaust heat of any of the fuel cell power generators described above has the following problems.
[0019]
That is, in the hot water supply and heating system using the exhaust heat of the fuel cell power generator described in (1) above, in the case of an “no reverse power flow” operation contract to the grid, the generated power from the thermoelectric supply device is the power of the customer. It is necessary to adjust the electric power generated from the thermoelectric supply device so as to be less than the demand. Engines only perform rated operation because the efficiency is reduced and the exhaust gas characteristics are deteriorated in partial load operation. Therefore, part of the generated power is converted into heat by the heater in the hot water heater, and the power supplied to the system is adjusted.
[0020]
This control is performed by the control device in the hot water supply and heating system, but the fuel cell power generator can change the power generation output of the fuel cell itself and perform partial load operation. Can be directly performed by the control device of the fuel cell power generator. Therefore, it is not necessary to adjust the generated power by the control device on the side of the hot water supply / heating device like the hot water supply / heating system described in (1) above. That is, control devices having the same function are installed twice, which increases the cost of the system.
[0021]
In addition, the fuel cell power generator is allowed to reverse flow to the grid even when connected to a low voltage grid (power grid with a contract power with the power company of 50 kW or less). Unauthorized. Therefore, in the case of an operation contract with “reverse power flow” to the system, the function of adjusting the generated power itself is not necessary.
[0022]
Further, as described above, in the hot water supply and heating system using the exhaust heat of the fuel cell power generation device, the heater in the hot water supply and heating device is unnecessary.
[0023]
In the hot water supply and heating system using the exhaust heat of the fuel cell power generation apparatus described in (2) above, it is necessary to stop the engines when a power failure occurs. Therefore, the hot water supply and heating system is also stopped during a power failure. However, the fuel cell power generator is in a standby state at the time of a power failure (a state in which electric power that covers only the auxiliary equipment of the apparatus is generated and power is not supplied to the system). Therefore, in the current system operation, it is not possible to grasp the amount of exhaust heat recovered from the fuel cell power generator when a power failure occurs.
[0024]
The operation method of the hot water supply and heating system described in (3) above is mainly to perform automatic operation using a prediction function based on the heat demand / electricity demand data of the consumer, and to perform operation that incorporates the demands of the consumer. It is not possible.
[0025]
Engines have a higher thermoelectric ratio than fuel cell power generators and are easy to start and stop, so when the heat storage in the hot water storage tank based on the heat demand prediction is completed, the operation of the thermoelectric supply device is stopped. However, in the case of a fuel cell power generation device, since it is a continuous operation, it cannot be handled by the above operation.
[0026]
Therefore, it is conceivable to operate so as to gradually accumulate heat during power generation operation at a low load. However, particularly in summer, the amount of exhaust heat recovered from the fuel cell power generation device may exceed the heat demand. . Therefore, in general, surplus heat is dissipated to the atmosphere by adding an exhaust heat dissipating device to the fuel cell power generating device and operating the exhaust heat dissipating device using electricity generated by the fuel cell power generating device. It is known that
[0027]
The present invention has been made in view of the circumstances as described above, and can monitor the entire facility by the control device of the fuel cell power generation device, and can efficiently perform control and operation according to heat demand and power demand. In addition, an object is to provide a fuel cell power generation facility capable of simplifying the system and reducing the cost.
[0028]
[Means for Solving the Problems]
In order to achieve the above object, the present invention constitutes a fuel cell power generation facility by the following means.
[0029]
The invention corresponding to claim 1 is a fuel cell power generation device, a control device for controlling the fuel cell power generation device, a hot water storage tank for storing hot water using heat generated in the fuel cell power generation device, And a hot water supply device comprising a mixing tap for mixing hot water with hot water provided in a water supply system and a hot water supply device for supplying hot water supplied through the mixing tap to a consumer. In the fuel cell power generation facility connected to the power system so that the hot water supply device can receive power, the control device of the fuel cell power generation device includes power demand and heat demand data of consumers, and various process values in the fuel cell power generation device and the hot water supply device. , And obtains an optimal power generation output value based on these data and process values to operate and control the fuel cell power generation device.
[0030]
According to a second aspect of the present invention, there is provided a fuel cell power generation facility according to the first aspect of the present invention, wherein the fuel cell power generation device is linked to the hot water supply device during a power failure of the power system, The operation of the hot water supply device can be continued by the output power.
[0031]
According to a third aspect of the present invention, there is provided a fuel cell power generation facility according to the first or second aspect of the present invention, wherein the control device for the fuel cell power generation device includes power demand and heat demand data of a consumer and the fuel cell. A memory for storing various process values in the power generation device and the hot water supply device, a prediction calculation means for predicting a power generation output amount of the fuel cell power generation apparatus optimal for future operation from the stored data in the memory, and a prediction calculation means for prediction Control means for controlling the power generation output of the fuel cell power generation device based on the generated power output amount.
[0032]
According to a fourth aspect of the present invention, there is provided a fuel cell power generation facility according to any one of the first to third aspects, wherein a man-machine interface (remote control) used by a consumer is used as a control device for the fuel cell power generation device. A function of communicating and a function of determining operation control of the fuel cell power generator by operating the remote controller are provided.
[0033]
According to a fifth aspect of the present invention, in the fuel cell power generation facility according to the fourth aspect of the present invention, the remote controller has a function for the customer to arbitrarily specify an operation pattern of the entire facility.
[0034]
The invention corresponding to claim 6 is the fuel cell power generation facility according to any one of claims 1 to 5, wherein the power demand at the consumer is equal to or less than a load allowed by the fuel cell power generator. Causes the surplus power to be consumed by auxiliary power in the fuel cell power generator or in the hot water supply apparatus.
[0035]
The invention corresponding to claim 7 is the fuel cell power generation facility according to any one of claims 1 to 6, wherein there is little heat demand at the consumer, and heat recovery from the fuel cell power generator is When it becomes unnecessary, a discharge system for forcibly discharging hot water from the hot water storage tank is provided.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0037]
FIG. 1 is a configuration diagram showing an embodiment of a fuel cell power generation facility according to the present invention.
[0038]
In FIG. 1, 1 is a fuel cell power generation device, and 2 is a hot water supply device.
[0039]
The hot water supply device 2 is connected to the heat exchanger 1a on the fuel cell power generation device 1 side through a water circulation system, and stores a hot water storage tank 3 that stores heat generated by the fuel cell power generation device 1 as hot water, A hot water supply unit that is provided in a water pipe and has a three-way valve for mixing clean water with hot water stored in the hot water tank 3 and hot water is supplied through the mixing tap 4 to supply hot water to consumers. And 5.
[0040]
Further, a hot water discharge pipe 6 is connected to the water supply pipe on the downstream side of the mixing plug 4, and a hot water discharge valve 7 is provided in the hot water discharge pipe 6.
[0041]
The electric system of the fuel cell power generator 1 is connected to the electric power system AC through the circuit breaker BC, and the hot water supply device 2 is connected to the electric power system AC through the change-over switch 8 and the electric power system AC is cut off. When the changeover switch 8 is switched, power can be received from the fuel cell power generator 1.
[0042]
On the other hand, 11 is a control device of the fuel cell power generator 1, and this control device 11 includes the heat demand data a of the heat consumer 9, the electricity demand data b of the electricity customer 10, and the fuel cell power generator as shown in FIG. Each process value c of each device 12 in 1 and each process value f of each device 13 in the hot water supply device 2 are taken in, and each device 12 in the fuel cell power generation device 1 and each device 13 in the hot water supply device 2 are monitored. Based on these data and process values, an optimal power generation output value is obtained, control commands d and e are given, and the fuel cell power generation device 1 is operated and controlled.
[0043]
Further, although not shown, the control device 11 of the fuel cell power generator is a memory that stores the various data and process values described above, and the power generation of the fuel cell power generator 1 that is optimal for future operation from the stored data in the memory. Predictive calculation means for predicting the output amount, and control means for controlling the output of the fuel cell power generation device 1 based on the power generation output amount predicted by the prediction calculation means, and an optimal future fuel cell power generation device from the accumulated data And the output control of the fuel cell power generation device 1 is controlled by changing the process amount of each device 12 in the fuel cell power generation device with the predicted power generation output amount.
[0044]
Further, the control device 11 of the fuel cell power generation device 1 has a function of communicating with a man-machine interface (remote control) 14 used by a consumer, and an operation / stop / output change command or operation of the fuel cell power generation device 1 from the remote control 14. It has a function of determining control upon receiving a pattern or predicted operation plan change command h, and the operation state, operation pattern, predicted operation plan, merits and demerits of each operation pattern with respect to the remote controller 14 Display information g is transmitted.
[0045]
Next, the operation of the fuel cell power generation facility configured as described above will be described.
[0046]
The heat generated in the fuel cell power generation device 1 is stored as hot water in the hot water storage tank 3 in the hot water supply device 2, and the hot water is supplied to the hot water heater 5 through the mixing plug 4 and then supplied to the consumer.
[0047]
Further, a part of the electric power generated in the fuel cell power generator 1 is supplied to an auxiliary machine in the fuel cell power generator 1 (not shown), and the remaining electric power is connected to the grid. In this case, if the power demand at the customer is less than or equal to the load allowed by the fuel cell power generation device 1, surplus power is consumed by auxiliary power in the fuel cell power generation device 1 or the hot water supply device 2. . Specifically, the stopped heater in the fuel cell power generator is operated and consumed, or the switch 8 is operated to cover the power of the hot water supply device 2 with the power from the fuel cell power generator 1.
[0048]
Furthermore, the power source of the hot water supply device 2 is normally receiving power from the power system AC via the switch 8, but when the power system AC fails, the switch 8 is automatically switched to the fuel cell power generator 1 side. Thus, the power generation output of the fuel cell power generation device 1 is automatically received.
[0049]
On the other hand, in the control device 11 of the fuel cell power generation device 1, the heat demand data a of the consumer 9, the electricity demand data b of the electricity customer 10, each process value c of each device 12 in the fuel cell power generation device 1, and a hot water supply device 2, each process value f of each device 13 in 2 is taken in, and monitoring of each device 12 in the fuel cell power generation apparatus 1 and each device 13 in the hot water supply apparatus 2 is monitored, and an optimum is based on these data and process values. The power generation output value is obtained and control commands d and e are given, and the fuel cell power generator 1 is controlled and operated.
[0050]
In this case, the control device 11 of the fuel cell power generation device 1 accumulates the various operation data described above, predicts the optimum power generation output amount of the future fuel cell power generation device from these accumulated data, and predicts the predicted power generation output amount. The output control of the fuel cell power generator 1 is performed at.
[0051]
Further, when the control device 11 of the fuel cell power generation device 1 determines from the heat demand data a that there is little heat demand at the consumer and heat recovery from the fuel cell power generation device 1 is no longer necessary, the hot water diffusion valve 7 Is opened, the excess hot water is forcibly discharged out of the hot water supply apparatus 2 through the hot water diffusion pipe 6.
[0052]
Next, the operation of the control device 11 of the fuel cell power generator 1 by the operation of the remote controller 14 will be described.
[0053]
In addition to displaying the operating state of the fuel cell power generation device 1 and the hot water supply device 2 on the remote controller 14, operation / stop of the fuel cell power generation device 1, changes in power generation output, and future data calculated from past collected data Pre-set operation patterns such as predicted operation plans, operation patterns with emphasis on energy saving, operation patterns with emphasis on economic efficiency, operation patterns of “weekdays” and “holidays” can be displayed. .
[0054]
The remote controller 14 can also input user information such as electricity charges and gas charges with which the customer has contracted.
[0055]
In addition to the input of the user information from the remote controller 14, the consumer operates and stops the fuel cell power generation device 1, changes the power generation output, changes the future predicted operation plan calculated from the data collected in the past, It is possible to switch operation patterns set in advance such as an operation pattern “emphasizing energy saving”, an operation pattern “emphasizing economy”, an operation pattern “weekdays”, and “holiday”.
[0056]
Each display information described above is calculated by the control device 11 of the fuel cell power generation device 1, and a command from the consumer is received as a new command by the control device 11 of the fuel cell power generation device 1 through the remote controller 14. Change the operation of the power generation equipment.
[0057]
In addition, the control device 11 of the fuel cell power generation device 1 calculates the merits and demerits of consumers of each operation pattern including the user information and displays them on the remote controller 14.
[0058]
Here, an example of an operation pattern that can be displayed and changed is as follows.
[0059]
(A) “Same as yesterday” operation: This pattern is used when the operation is performed in exactly the same operation pattern as yesterday instead of following the predicted operation plan in the control device 11 of the fuel cell power generation device 1. If this pattern is used, when the daily demand is almost constant, it is possible to simply achieve a highly accurate prediction operation.
[0060]
(A) “Weekday” or “Holiday” operation: This is a pattern used when heat demand and electricity demand are different between weekdays and holidays. This pattern is effective when the difference between weekdays and holidays is large.
[0061]
(C) “Voice mail” or “full-fledged” operation: This pattern is used when heat demand and electricity demand decrease due to a sudden outing or the like, or when heat demand and electricity demand increase due to a sudden visitor etc. This pattern is effective in preventing excessive operation and hot water.
[0062]
(D) “Energy saving emphasis” or “Economic emphasis” operation: This pattern is used to select whether to perform an operation that reduces the amount of generated CO 2 or an operation that produces a running merit. If this pattern is used, the degree of freedom of selection by the consumer can be given.
[0063]
(E) “Self-selection” operation: This pattern is used when it is desired to freely change the future predicted operation plan calculated from the data collected in the past.
[0064]
As described above, in the present embodiment, the control device 11 of the fuel cell power generation device 1 captures the power demand and heat demand data of the consumer and various process values in the fuel cell power generation device 1 and the hot water supply device 2, and these data and Since the fuel cell power generation apparatus 1 is operated and controlled by obtaining an optimal power generation output value based on the process value, the control and operation according to heat demand and power demand are efficiently performed while monitoring the entire facility. In addition, the system can be simplified and the cost can be reduced.
[0065]
In addition, since the switch 8 itself is automatically switched during a power failure in the power system, the fuel cell power generation device 1 is connected to the hot water supply device 2, and the power generation output of the fuel cell power generation device 1 is received. The operation of the hot water supply device 2 can be continued, and heat supply to consumers can be realized.
[0066]
Further, the control device 11 of the fuel cell power generation device 1 accumulates various operation data, predicts an optimum power generation output amount of the fuel cell power generation device from the accumulated data, and uses the predicted power generation output amount as a fuel. Since the output control of the battery power generation device 1 is performed, the optimum operation of the fuel cell power generation facility can be performed.
[0067]
Further, the control device 11 of the fuel cell power generation device 1 has a function of communicating with a man-machine interface (remote control) 14 used by a consumer, and a function of determining operation control of the fuel cell power generation device 1 by operating the remote control 14. Therefore, the operation according to the demand of the customer can be realized. In particular, when it is clear that the electricity demand and heat demand of the customer are suddenly changed, it is possible to take measures in advance.
[0068]
In addition, the remote control 14 has a function that allows the customer to arbitrarily specify the operation pattern of the entire facility so that the consumer can be actively involved in the operation of the power generation facility. Operation based on it can also be planned. In other words, it is possible to change a future predicted operation plan calculated from data collected in the past, and it is also possible for a consumer to freely set an operation plan.
[0069]
Furthermore, even if the heat demand at the customer is small and the power output of the fuel cell power generator 1 is reduced, if the heat output is excessive, the hot water is forcibly discharged from the hot water tank. The continuous operation of the fuel cell power generator 1 can be continued.
[0070]
【The invention's effect】
As described above, according to the present invention, it is possible to monitor the entire facility by the control device of the fuel cell power generation device and to efficiently perform control and operation according to the heat demand and the power demand, and to simplify the system. It is possible to provide a fuel cell power generation facility that can achieve cost reduction and cost reduction.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a fuel cell power generation facility according to the present invention.
FIG. 2 is a diagram for explaining functions of a control device of the fuel cell power generator according to the embodiment;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fuel cell power generation device 2 ... Hot water supply device 3 ... Hot water tank 4 ... Mixing tap 5 ... Hot water heater 6 ... Hot water diffusion piping 7 ... Hot water diffusion valve 8 ... Switch 9 ... Heat consumer 10 ... Electricity consumer 11 ... Fuel cell power generation Control device 12 of apparatus ... Each device 13 in fuel cell power generator ... Each device 14 in hot water supply device ... Remote control

Claims (7)

燃料電池発電装置と、この燃料電池発電装置を制御する制御装置と、前記燃料電池発電装置で発生した熱を利用して温水として貯める貯湯槽、この貯湯槽の送水系に設けられ温水に上水を混合するための混合栓及びこの混合栓を介して供給される温水を需要家へ供給する給湯器からなる給湯装置とを備え、且つこれら燃料電池発電装置及び給湯装置が受電可能に電力系統に接続された燃料電池発電設備において、前記燃料電池発電装置の制御装置は、需要家の電力需要及び熱需要データおよび燃料電池発電装置と給湯装置内の各種プロセス値を取り込み、これらのデータ及びプロセス値に基づいて最適な発電出力値を求めて前記燃料電池発電装置を運転・制御する機能を有することを特徴とする燃料電池発電設備。A fuel cell power generation device, a control device for controlling the fuel cell power generation device, a hot water storage tank for storing hot water using heat generated by the fuel cell power generation device, and a water supply system provided in a water supply system of the hot water storage tank. And a hot water supply device comprising a hot water supply device that supplies hot water supplied through the mixing plug to the consumer, and the fuel cell power generation device and the hot water supply device can receive power in the power system. In the connected fuel cell power generation facility, the control device for the fuel cell power generation device takes in the power demand and heat demand data of the consumer and various process values in the fuel cell power generation device and the hot water supply device, and these data and process values. A fuel cell power generation facility having a function of operating and controlling the fuel cell power generation device by obtaining an optimal power generation output value based on 請求項1記載の燃料電池発電設備において、前記電力系統の停電時に前記燃料電池発電装置を前記給湯装置に連系して、前記燃料電池発電装置の出力電力により前記給湯装置の運転を継続可能にしたことを特徴とする燃料電池発電設備。2. The fuel cell power generation facility according to claim 1, wherein the fuel cell power generation device is linked to the hot water supply device at the time of a power failure of the power system, and the operation of the hot water supply device can be continued by the output power of the fuel cell power generation device. A fuel cell power generation facility characterized by that. 請求項1または2記載の燃料電池発電設備において、前記燃料電池発電装置の制御装置は、需要家の電力需要及び熱需要データ並びに前記燃料電池発電装置と給湯装置内の各種プロセス値を蓄積するメモリと、このメモリの蓄積データから今後の運転に最適な燃料電池発電装置の発電出力量を予測する予測演算手段と、この予測演算手段で予測された発電出力量に基づいて前記燃料電池発電装置の出力を制御する制御手段とを備えたことを特徴とする燃料電池発電設備。3. The fuel cell power generation facility according to claim 1 or 2, wherein the control device for the fuel cell power generator stores power demand and heat demand data of a consumer and various process values in the fuel cell power generator and the hot water supply device. Predicting calculation means for predicting the power generation output amount of the fuel cell power generation apparatus optimal for future operation from the stored data in the memory, and the fuel cell power generation apparatus based on the power generation output amount predicted by the prediction calculation means. A fuel cell power generation facility comprising a control means for controlling an output. 請求項1乃至請求項3のいずれかに記載の燃料電池発電設備において、前記燃料電池発電装置の制御装置に、需要家が利用するマンマシンインターフェイス(リモコン)と通信する機能と、このリモコンの操作により前記燃料電池発電装置の運転制御を決定する機能とを持たせたことを特徴とする燃料電池発電設備。The fuel cell power generation facility according to any one of claims 1 to 3, wherein the control device of the fuel cell power generation device communicates with a man-machine interface (remote control) used by a consumer, and operation of the remote control A fuel cell power generation facility characterized by having a function of determining operation control of the fuel cell power generation device. 請求項4記載の燃料電池発電設備において、前記リモコンに前記需要家が任意に設備全体の運転パターンを指定する機能を持たせたことを特徴とする燃料電池発電設備。5. The fuel cell power generation facility according to claim 4, wherein the remote controller has a function for the customer to arbitrarily specify an operation pattern of the entire facility. 請求項1乃至請求項5のいずれかに記載の燃料電池発電設備において、前記需要家での電力需要が、燃料電池発電装置が許容する負荷以下となる場合には、余剰となる電力を前記燃料電池発電装置内または前記給湯装置内の補機電力で消費するようにしたことを特徴とする燃料電池発電設備。6. The fuel cell power generation facility according to claim 1, wherein when the demand for electric power at the consumer is equal to or less than a load allowed by the fuel cell power generation device, surplus power is supplied to the fuel. A fuel cell power generation facility characterized in that it is consumed by auxiliary power in the battery power generation device or in the hot water supply device. 請求項1乃至請求項6のいずれかに記載の燃料電池発電設備において、前記需要家での熱需要が少なく、前記燃料電池発電装置からの熱回収が必要なくなった場合には、前記貯湯槽から強制的に温水を排出する排出系を設けたことを特徴とする燃料電池発電設備。In the fuel cell power generation facility according to any one of claims 1 to 6, when there is little heat demand at the consumer and heat recovery from the fuel cell power generation device is no longer necessary, from the hot water storage tank A fuel cell power generation facility provided with a discharge system for forcibly discharging hot water.
JP2003188449A 2003-06-30 2003-06-30 Fuel cell power generating equipment Pending JP2005026010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188449A JP2005026010A (en) 2003-06-30 2003-06-30 Fuel cell power generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188449A JP2005026010A (en) 2003-06-30 2003-06-30 Fuel cell power generating equipment

Publications (1)

Publication Number Publication Date
JP2005026010A true JP2005026010A (en) 2005-01-27

Family

ID=34186997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188449A Pending JP2005026010A (en) 2003-06-30 2003-06-30 Fuel cell power generating equipment

Country Status (1)

Country Link
JP (1) JP2005026010A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006445A1 (en) * 2004-07-13 2006-01-19 Matsushita Electric Industrial Co., Ltd. Control device of fuel cell power generation system, control method, control program and computer-readable recording medium recording control program
JP2006210268A (en) * 2005-01-31 2006-08-10 Sanyo Electric Co Ltd Hot-water supply system and fuel cell system
JP2007220665A (en) * 2006-01-23 2007-08-30 Matsushita Electric Ind Co Ltd Operation planning device and operation planning method for cogeneration system
EP1770810A3 (en) * 2005-09-28 2008-12-10 LG Electronics Inc. Apparatus for controlling operation of fuel cell system and method thereof
JP2012234708A (en) * 2011-04-29 2012-11-29 Noritz Corp Waste-heat recovery apparatus
US8343673B2 (en) 2006-10-24 2013-01-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2013058338A (en) * 2011-09-07 2013-03-28 Honda Motor Co Ltd Fuel cell system
JP2013058340A (en) * 2011-09-07 2013-03-28 Honda Motor Co Ltd Fuel cell system
JP2014032939A (en) * 2012-08-06 2014-02-20 Kyocera Corp Management system, management method, controller and fuel cell device
JP2014032941A (en) * 2012-08-06 2014-02-20 Kyocera Corp Management system, management method, controller and fuel cell device
JP2014192006A (en) * 2013-03-27 2014-10-06 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and fuel cell power generation method
JP2016225309A (en) * 2016-08-09 2016-12-28 京セラ株式会社 Power management system, power management method, power control device, and fuel cell device
JP2017011994A (en) * 2016-08-09 2017-01-12 京セラ株式会社 Power management system, power management method, power control device, and fuel cell device
JP2017085891A (en) * 2017-02-03 2017-05-18 京セラ株式会社 Power management system, power management method, power management device, and fuel cell device
JP2018130022A (en) * 2018-03-26 2018-08-16 京セラ株式会社 Electric power management system, electric power management method, electric power control device and fuel cell device
US10236525B2 (en) 2012-06-27 2019-03-19 Kyocera Corporation Control apparatus, fuel cell unit and control method
CN114251871A (en) * 2021-11-08 2022-03-29 北京市燃气集团有限责任公司 Combined energy supply system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006445A1 (en) * 2004-07-13 2006-01-19 Matsushita Electric Industrial Co., Ltd. Control device of fuel cell power generation system, control method, control program and computer-readable recording medium recording control program
US8735009B2 (en) 2004-07-13 2014-05-27 Panasonic Corporation Control unit for fuel-cell power generation apparatus, and control method, control program and computer-readable record medium with control program for the same
JP2006210268A (en) * 2005-01-31 2006-08-10 Sanyo Electric Co Ltd Hot-water supply system and fuel cell system
EP1770810A3 (en) * 2005-09-28 2008-12-10 LG Electronics Inc. Apparatus for controlling operation of fuel cell system and method thereof
JP2007220665A (en) * 2006-01-23 2007-08-30 Matsushita Electric Ind Co Ltd Operation planning device and operation planning method for cogeneration system
US8343673B2 (en) 2006-10-24 2013-01-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2012234708A (en) * 2011-04-29 2012-11-29 Noritz Corp Waste-heat recovery apparatus
JP2013058340A (en) * 2011-09-07 2013-03-28 Honda Motor Co Ltd Fuel cell system
JP2013058338A (en) * 2011-09-07 2013-03-28 Honda Motor Co Ltd Fuel cell system
US10236525B2 (en) 2012-06-27 2019-03-19 Kyocera Corporation Control apparatus, fuel cell unit and control method
US9847650B2 (en) 2012-08-06 2017-12-19 Kyocera Corporation Management system, management method, control apparatus, and power generation apparatus
JP2014032941A (en) * 2012-08-06 2014-02-20 Kyocera Corp Management system, management method, controller and fuel cell device
JP2014032939A (en) * 2012-08-06 2014-02-20 Kyocera Corp Management system, management method, controller and fuel cell device
US10608268B2 (en) 2012-08-06 2020-03-31 Kyocera Corporation Management system, management method, control apparatus, and power generation apparatus
US11165081B2 (en) 2012-08-06 2021-11-02 Kyocera Corporation Management system, management method, control apparatus, and power generation apparatus
JP2014192006A (en) * 2013-03-27 2014-10-06 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and fuel cell power generation method
JP2016225309A (en) * 2016-08-09 2016-12-28 京セラ株式会社 Power management system, power management method, power control device, and fuel cell device
JP2017011994A (en) * 2016-08-09 2017-01-12 京セラ株式会社 Power management system, power management method, power control device, and fuel cell device
JP2017085891A (en) * 2017-02-03 2017-05-18 京セラ株式会社 Power management system, power management method, power management device, and fuel cell device
JP2018130022A (en) * 2018-03-26 2018-08-16 京セラ株式会社 Electric power management system, electric power management method, electric power control device and fuel cell device
CN114251871A (en) * 2021-11-08 2022-03-29 北京市燃气集团有限责任公司 Combined energy supply system

Similar Documents

Publication Publication Date Title
JP2005026010A (en) Fuel cell power generating equipment
US20070068162A1 (en) Control system and control method for cogeneration system
JP3759151B1 (en) Power storage system
JP2011250673A (en) Energy controller and control method
EP1511108B1 (en) Cogeneration system, operation controller for cogeneration facility, and operation program for cogeneration facility
JP2015065009A (en) Cogeneration apparatus
JP5032857B2 (en) Cogeneration system
JP2003153448A (en) Power generation system
JP2005287132A (en) Cogeneration system
JP3827676B2 (en) Power storage system
JP4628074B2 (en) Electricity consumption equipment and cogeneration system
JP2002298887A (en) Power management device
JP4913095B2 (en) Combined heat and power system
JP2002151121A (en) Fuel cell power generating system
JPH1080061A (en) Generated output controller for nonutility power generation facility
JP5064856B2 (en) Cogeneration system
JP4163977B2 (en) Heat source system
JP3890765B2 (en) Cogeneration equipment
JP4912837B2 (en) Cogeneration system
JP2007247967A (en) Cogeneration system
JP2004263620A (en) Cogeneration system
JP2004278510A (en) Cogeneration system
JP3786922B2 (en) Power storage system
JP2004264012A (en) Energy saving degree operation method of cogeneration system
JP2017175768A (en) Thermoelectric cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126