JP2005016460A - Control method and device for electric liquid pump - Google Patents

Control method and device for electric liquid pump Download PDF

Info

Publication number
JP2005016460A
JP2005016460A JP2003184324A JP2003184324A JP2005016460A JP 2005016460 A JP2005016460 A JP 2005016460A JP 2003184324 A JP2003184324 A JP 2003184324A JP 2003184324 A JP2003184324 A JP 2003184324A JP 2005016460 A JP2005016460 A JP 2005016460A
Authority
JP
Japan
Prior art keywords
motor
current
electric
liquid
liquid pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003184324A
Other languages
Japanese (ja)
Inventor
Teruo Tatsumi
輝雄 辰巳
Hiroyuki Amano
弘幸 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2003184324A priority Critical patent/JP2005016460A/en
Publication of JP2005016460A publication Critical patent/JP2005016460A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To control the rotation of an electric motor to supply a fluid of a required pressure from an electric liquid pump even if liquid temperature fluctuates. <P>SOLUTION: The electric motor is driven by regulating a motor current to a specified value, and while the motor is being driven, the rotational speed of the motor is detected and the discharge flow rate of the liquid pump is derived. The liquid temperature is estimated by using the relationship between the discharge flow rate Q and the discharge hydraulic pressure P of the liquid pump at each motor current and each liquid temperature. A target value of the motor current for assuring the required liquid pressure at the estimated liquid temperature is calculated, and the electric motor is driven by regulating the motor current to the target value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電動モータによって駆動される液体ポンプから必要液圧の液体を液圧回路に供給する電動液体ポンプの制御に関するものである。
【0002】
【従来の技術】
従来、油圧ポンプを電動モータによって駆動するようにした小形でコンパクトな電動油圧ポンプは、例えば自動車の停車中にエンジンをアイドリングストップする場合に、自動変速機のクラッチに必要油圧の作動油を供給し、或いはハイブリッド車の電気モータの冷却ジャケットに必要油圧の冷却油を供給するために使用されている。
【0003】
所定流路抵抗を有する油圧回路に必要油圧Prの油を供給するために、油圧回路に接続された電動油圧ポンプの吐出油圧Pが、電動モータのモータ電流と比例する出力トルクに比例すること(特許文献1参照)を利用し、電動モータを印加電圧Vcで駆動したときのモータ電流Icを検出し、印加電圧Vcにおける油圧ポンプの吐出油圧Pとモータ電流Iとの関係(図4)から吐出油圧Pcを求め、各油温、各印加電圧における吐出流量Qとポンプ吐出圧Pとの関係(図5)から印加電圧Vcで吐出油圧Pcが発生する油温Trを求めて油温を推定し、油温Trで必要油圧Prを発生する印加電圧Vrを求めることが考えられる。
【0004】
【特許文献1】
特開平11−198837号公報(段落〔0012〕、図2)
【0005】
【発明が解決しようとする課題】
しかしながら、油温が上昇すると油圧回路の流路抵抗が温度膨張によって減少し、必要油圧Prを得るために電圧を高くしてモータ回転数を上昇し流量を増大するので、負荷が増大しモータ電流と油圧との関係は一定でなくなり、図6に示すように、モータ電流Iを一定値Icに制御すると油温の上昇につれて油圧は低下する。図7のようにポンプ吐出油圧Pとモータ電流Iとの関係が油温すなわち負荷曲線によって変わり、ポンプ吐出油圧Pに対するモータ電流Iは油温が高くなるにつれて高くなり、油温が低い場合の高ポンプ吐出油圧Pに対するモータ電流Iと、油温が高い場合の低ポンプ吐出圧Pに対するモータ電流Iとの差が少なくなり、或いは逆転する。このため、モータ電流値Iのみからポンプ吐出油圧、油温を導き出すことは困難であり、ポンプ吐出油圧Pが必要油圧Prになるように電動モータを油温に応じて回転制御することができない。
【0006】
本発明は係る従来の問題を解決するためのもので、液体温度が変化しても電動液体ポンプから必要液圧の液体を供給するように電動モータを回転制御することを目的とする。
【0007】
【課題を解決するための手段、その作用および効果】
上記の課題を解決するため、請求項1に記載の発明の構成上の特徴は、電動モータによって駆動される液体ポンプから必要液圧の液体を液圧回路に供給する電動液体ポンプの制御方法において、モータ電流が所定値になるように制御して電動モータを駆動し、モータ電流が所定値のときのモータ回転数を検出し、前記モータ電流の所定値と前記検出されたモータ回転数とに基づいて前記液体温度を推定することである。
【0008】
本発明によれば、電動モータがモータ電流を所定値に維持して駆動されているときの液体ポンプの吐出流量を示すモータ回転数を検出し、図1に示す各モータ電流、各液体温度における液体ポンプの吐出流量Qと吐出圧Pとの関係から液体温度を推定するので、液体温度による液体回路の流路抵抗変化を加味した上で、液体温度を正確に推定することができる。
【0009】
請求項2に係る発明の構成上の特徴は、電動モータによって駆動される液体ポンプから必要液圧の液体を液圧回路に供給する電動液体ポンプの制御装置において、モータ電流を検出する電流検出手段と、モータ回転数を検出する回転数検出手段と、前記電流検出手段によって検出されたモータ電流が所定値になるように前記電動モータを電流制御して駆動する手段と、前記モータ電流の所定値と前記回転検出手段によって検出されたモータ回転数とに基づいて液体温度を推定する手段を備えたことである。
【0010】
本発明によれば、モータ電流を所定値に電流制御して電動モータを駆動し、その間のモータ回転数を検出して液体ポンプの吐出流量を求める。各モータ電流、各液体温度における液体ポンプの吐出流量Qと吐出圧Pとの関係から液体温度を推定する。これにより、液体温度による液体回路の流路抵抗変化を加味した液体温度の推定が可能な電動液体ポンプの制御装置を提供することができる。
【0011】
請求項3に係る発明の構成上の特徴は、請求項2において、前記推定された液体温度において前記必要液圧の液体を前記液圧回路に供給するためのモータ電流の目標値を演算する手段と、前記電流検出手段によって検出されたモータ電流が目標値になるように前記電動モータを電流制御して駆動する手段とを備えたことである。
【0012】
本発明によれば、正確に推定した液体温度において必要液圧を確保するためのモータ電流の目標値を演算し、電動モータをモータ電流が目標値になるように電流制御して駆動するので、幅広い液体温度に対して、液体ポンプから必要液圧の液体を液体回路に最小レベルの消費電力で供給することができる。また、液体温度を測定する温度測定装置を備える必要がないので、装置が簡素化されコスト低減することができる。
【0013】
請求項4に係る発明の構成上の特徴は、請求項2または3において、前記電動モータをセンサレスブラシレスDCモータとし、前記電流検出手段はモータ駆動回路に接続されたシャント抵抗の両端子間の電圧とデューティからの演算に基づいてモータ電流を検出し、前記回転数検出手段は前記センサレスブラシレスDCモータに3相電圧を印加する3線の電圧変化に基づいて検出すること請求項2において、前記推定された液体温度において前記必要液圧を前記液圧回路に供給するために必要なモータ電流を演算する手段と、該演算されたモータ電流を目標電流として前記電動モータを電流制御して駆動する駆動手段とを備えたことである。
【0014】
本発明によれば、モータ電流検出手段およびモータの回転数検出手段は、センサレスブラシレスDCモータの制御回路に備えられているものを使用し別途設ける必要がないので、構成が簡単で低コストの電動液体ポンプの制御装置を提供することができる。
【0015】
【発明の実施の形態】
以下に、図面に基づいて本発明に係る電動液体ポンプの制御方法および装置の実施の形態について説明する。図2において、1は例えばトロコイドポンプ等の定吐出油圧ポンプ(液圧ポンプ)で、所定の流路抵抗Rを有する油圧回路2(液圧回路)に必要油圧(必要液圧)を供給する。油圧回路2は、例えば自動車の停車中にエンジンをアイドリングストップする場合に、自動変速機のクラッチに必要油圧の作動油を供給する回路、或いはハイブリッド車の電気モータの冷却ジャケットに必要油圧の冷却油を供給する回路である。油圧ポンプ1は電動モータ、好ましくはセンサレス三相ブラシレスDCモータ3(以下、電動モータ3という。)によって回転駆動される。電動モータ3の3線にはバッテリ4の電圧がFET回路5を介して印加され、FET回路5はモータ駆動IC6からの信号に基づいて電動モータ3の3線の中の2線間に順次電圧を印加して電動モータ3を単位回転角度ずつ回転駆動する。このとき、FET回路5はモータ駆動IC6からの信号に応じて各2線間に印加する電圧をオン、オフしてデューティ制御し、電動モータ3に印加される平均電圧を指令電圧に制御している。FET回路5およびモータ駆動IC6によってモータ駆動回路7が構成されている。電動モータ3の3線には単位角度回転検出回路8が接続され、単位角度回転検出回路8は、電動モータ3の回転につれて循環する3線の中の低電圧線を順次検出して電動モータ3の単位角度回転を検出し、単位角度回転信号をモータ駆動IC6に送出する。この単位角度回転信号はモータ駆動IC6でモータの駆動制御に使用されるとともに、モータ駆動IC6を経由してマイコン12に送出される。マイコン12はモータ回転数演算プログラム17を実行して一定時間内に送出された単位角度回転検出信号を計数して電動モータ3の回転数を演算する。単位角度回転検出回路8およびモータ回転数演算プログラム17等によって回転検出手段9が構成されている。FET回路5に接続されたシャント抵抗10には、シャント抵抗10の両端子間の電圧を測定して電動モータ3に供給される電流を検出してモータ電流信号をマイコン12に送出する電流検出手段11が接続されている。
【0016】
マイコン12は、各種演算処理を行うCPU13と、CPU13が実行する各種プログラムを予め格納したROM14と、CPU13が演算処理中に必要なデータを読み書きするRAM15と、単位角度回転信号およびモータ電流信号を入力し、電動モータ3を駆動する指令電圧をモータ駆動IC6に出力する入出力回路16などから構成されている。ROM14には、モータ回転数演算プログラム17、モータ電流値とモータ回転数とに基づいて油温を正確に推定し、油圧ポンプ1から必要油圧の油を油圧回路2に供給するモータ制御プログラム18、および電流検出手段11によって検出されたモータ電流と目標値との差を演算し、比例制御および積分制御を用いて電動モータ3に印加する指令電圧を演算しモータ駆動IC6に出力する電流制御プログラム19等が登録されている。
【0017】
次に、上記実施の形態の作動について説明する。まず、低温の所定温度T、例えば20℃において油圧ポンプ1から必要油圧を吐出して油圧回路に供給するためにモータ電流を所定値I、例えば2.0Aで電動モータ3を電流制御プログラム19により電流制御して駆動する(ステップS1、以下、プログラムのステップはSの次にステップ番号を付して表す。)。回転検出手段9によって検出された電動モータ3の回転数Nを検出して回転数Nにおける油圧ポンプ3の吐出流量Qを油圧ポンプ1回転当たりの吐出量に回転数Nを乗算して求め(S2)、各モータ電流、各油温別の負荷曲線における油圧ポンプ3の吐出流量Qと吐出油圧Pとの関係を示す図1のマップ21から、モータ電流Iを2.0Aに電流制御した場合の吐出流量Qにおける吐出油圧Pを、吐出流量Qおよび吐出油圧Pを通る負荷曲線から油温Tr、例えば80℃を推定する(S3)。ステップ1乃至3によって、モータ電流値Iとモータ回転数Nとに基づいて油温Tを推定する手段19が構成されている。マップ21において油温Trの負荷曲線から必要油圧Prを吐出するモータ電流Irを求めることにより、推定された油温Trにおいて必要油圧Prの圧油を油圧ポンプ3から吐出して油圧回路2に供給するために必要な目標モータ電流Irを算出する(S4)。モータ電流Iが目標値Irになるように電動モータ3を電流制御プログラム19により電流制御して駆動し(S5)、油温Trにおいて油圧ポンプ1から必要油圧Prを油圧回路2に供給する。
【0018】
上記実施の形態においては、各温度における油圧ポンプ3の吐出流量Qと吐出油圧Pとの関係を示す負荷曲線をマップ21にして記憶しているが、計算式で表現して記憶しておいてもよい。また、電流を一定にして油温を変化した場合の吐出流量Qと吐出油圧Pとの関係をマップ21で記憶しているが、計算式で表現して記憶しておいてもよい。
【0019】
また、上記実施形態においては、電動モータとしてセンサレス三相ブラシレスDCモータを使用しているが、これに限られるものではなく、二相ブラシレスDCモータ、直流モータ等でもよく、必要に応じて回転数を検出する回転数検出装置およびモータ電流を検出する電流検出装置を付加するとよい。
【図面の簡単な説明】
【図1】各モータ電流、各油温における油圧ポンプの吐出流量と吐出油圧との関係を示す図。
【図2】本実施の形態に係る電動油圧ポンプの制御装置を示すブロック図。
【図3】電動モータの制御に係るプログラムを示すフロー図。
【図4】所定電圧における油圧ポンプの吐出流量と吐出油圧との関係を示す図。
【図5】各モータ印加電圧、各油温における油圧ポンプの吐出流量と吐出油圧との関係を示す図。
【図6】モータ電流を一定に変化した場合、油温の上昇につれて油圧が低下することを示す図。
【図7】各油温における油圧ポンプの吐出流量とモータ電流との関係を示す図。
【符号の説明】
11…油圧ポンプ、2…油圧回路、3…電動モータ、4…バッテリ、5…FET回路、6…モータ駆動IC、7…モータ駆動回路、8…単位回転角度検出回路、9…回転数検出手段、10…シャント抵抗、11…電流検出手段、12…マイコン、13…CPU、14…ROM、15…RAM、16…入出力回路、17…モータ回転数演算プログラム、18…モータ制御プログラム、19…電流制御プログラム。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to control of an electric liquid pump that supplies liquid of a necessary hydraulic pressure to a hydraulic circuit from a liquid pump driven by an electric motor.
[0002]
[Prior art]
Conventionally, a small and compact electric hydraulic pump in which a hydraulic pump is driven by an electric motor supplies hydraulic oil of a necessary hydraulic pressure to an automatic transmission clutch when, for example, the engine is idling stopped while the automobile is stopped. Alternatively, it is used to supply a cooling oil having a required hydraulic pressure to a cooling jacket of an electric motor of a hybrid vehicle.
[0003]
In order to supply the required hydraulic pressure Pr to the hydraulic circuit having a predetermined flow path resistance, the discharge hydraulic pressure P of the electric hydraulic pump connected to the hydraulic circuit is proportional to the output torque proportional to the motor current of the electric motor ( The motor current Ic when the electric motor is driven with the applied voltage Vc is detected by using the technique (see Patent Literature 1), and the discharge is performed from the relationship between the discharge hydraulic pressure P of the hydraulic pump and the motor current I at the applied voltage Vc (FIG. 4). The oil pressure Pc is obtained, and the oil temperature Tr is estimated by obtaining the oil temperature Tr at which the discharge oil pressure Pc is generated at the applied voltage Vc from the relationship between the discharge flow rate Q and the pump discharge pressure P at each oil temperature and each applied voltage (FIG. 5). It is conceivable to obtain the applied voltage Vr that generates the required oil pressure Pr at the oil temperature Tr.
[0004]
[Patent Document 1]
JP-A-11-198837 (paragraph [0012], FIG. 2)
[0005]
[Problems to be solved by the invention]
However, as the oil temperature rises, the flow path resistance of the hydraulic circuit decreases due to temperature expansion, and the voltage is increased to increase the motor rotation speed and flow rate to obtain the required oil pressure Pr. As shown in FIG. 6, when the motor current I is controlled to a constant value Ic, the hydraulic pressure decreases as the oil temperature increases. As shown in FIG. 7, the relationship between the pump discharge hydraulic pressure P and the motor current I varies depending on the oil temperature, that is, the load curve, and the motor current I with respect to the pump discharge hydraulic pressure P increases as the oil temperature increases and increases when the oil temperature is low. The difference between the motor current I L with respect to the pump discharge hydraulic pressure P L and the motor current I H with respect to the low pump discharge pressure P H when the oil temperature is high is reduced or reversed. For this reason, it is difficult to derive the pump discharge hydraulic pressure and the oil temperature from only the motor current value I, and the electric motor cannot be rotationally controlled according to the oil temperature so that the pump discharge hydraulic pressure P becomes the required hydraulic pressure Pr.
[0006]
An object of the present invention is to solve the conventional problem, and to control the rotation of an electric motor so that a liquid having a required hydraulic pressure is supplied from an electric liquid pump even when the liquid temperature changes.
[0007]
[Means for solving the problems, actions and effects thereof]
In order to solve the above-mentioned problem, the structural feature of the invention described in claim 1 is a control method of an electric liquid pump that supplies liquid of a necessary hydraulic pressure to a hydraulic circuit from a liquid pump driven by an electric motor. The motor current is controlled so that the motor current becomes a predetermined value, the motor is driven, the motor rotation speed when the motor current is the predetermined value is detected, and the predetermined value of the motor current and the detected motor rotation speed are detected. To estimate the liquid temperature based on this.
[0008]
According to the present invention, the motor rotation number indicating the discharge flow rate of the liquid pump when the electric motor is driven while maintaining the motor current at a predetermined value is detected, and the motor current and liquid temperature shown in FIG. 1 are detected. Since the liquid temperature is estimated from the relationship between the discharge flow rate Q and the discharge pressure P of the liquid pump, the liquid temperature can be accurately estimated in consideration of the change in the flow path resistance of the liquid circuit due to the liquid temperature.
[0009]
According to a second aspect of the present invention, there is provided a current detecting means for detecting a motor current in a control device for an electric liquid pump that supplies a liquid of a necessary hydraulic pressure to a hydraulic circuit from a liquid pump driven by an electric motor. Rotation number detecting means for detecting the motor rotation number, means for driving the electric motor by current control so that the motor current detected by the current detection means becomes a predetermined value, and a predetermined value of the motor current And means for estimating the liquid temperature on the basis of the number of rotations of the motor detected by the rotation detecting means.
[0010]
According to the present invention, the motor current is controlled to a predetermined value to drive the electric motor, and the number of rotations of the motor during that time is detected to determine the discharge flow rate of the liquid pump. The liquid temperature is estimated from the relationship between the discharge flow rate Q and the discharge pressure P of the liquid pump at each motor current and each liquid temperature. As a result, it is possible to provide a control device for an electric liquid pump capable of estimating a liquid temperature in consideration of a change in flow path resistance of the liquid circuit due to the liquid temperature.
[0011]
According to a third aspect of the present invention, in the second aspect, the means for calculating a target value of a motor current for supplying the liquid of the necessary hydraulic pressure to the hydraulic circuit at the estimated liquid temperature is provided. And a means for driving the electric motor by controlling the current so that the motor current detected by the current detecting means becomes a target value.
[0012]
According to the present invention, the target value of the motor current for ensuring the necessary fluid pressure at the accurately estimated liquid temperature is calculated, and the electric motor is driven with current control so that the motor current becomes the target value. For a wide range of liquid temperatures, a liquid having a required hydraulic pressure can be supplied from a liquid pump to a liquid circuit with a minimum level of power consumption. Further, since there is no need to provide a temperature measuring device for measuring the liquid temperature, the device can be simplified and the cost can be reduced.
[0013]
The structural feature of the invention according to claim 4 is that, in claim 2 or 3, the electric motor is a sensorless brushless DC motor, and the current detecting means is a voltage across both terminals of a shunt resistor connected to the motor drive circuit. 3. The estimation according to claim 2, wherein the motor current is detected based on a calculation from the duty and the rotation number detecting means detects based on a change in voltage of three lines for applying a three-phase voltage to the sensorless brushless DC motor. Means for calculating a motor current necessary for supplying the required hydraulic pressure to the hydraulic pressure circuit at the calculated liquid temperature, and driving for driving the electric motor by controlling the electric current using the calculated motor current as a target current Means.
[0014]
According to the present invention, since the motor current detection means and the motor rotation speed detection means are provided in the control circuit of the sensorless brushless DC motor and do not need to be provided separately, the configuration is simple and low-cost electric A control device for a liquid pump can be provided.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an electric liquid pump control method and apparatus according to the present invention will be described below with reference to the drawings. In FIG. 2, reference numeral 1 denotes a constant discharge hydraulic pump (hydraulic pump) such as a trochoid pump, for example, which supplies necessary hydraulic pressure (necessary hydraulic pressure) to a hydraulic circuit 2 (hydraulic pressure circuit) having a predetermined flow path resistance R. The hydraulic circuit 2 is, for example, a circuit that supplies hydraulic oil for the required hydraulic pressure to the clutch of the automatic transmission when the engine is idling stopped while the automobile is stopped, or a cooling oil for the required hydraulic pressure for the cooling jacket of the electric motor of the hybrid vehicle. Is a circuit for supplying The hydraulic pump 1 is rotationally driven by an electric motor, preferably a sensorless three-phase brushless DC motor 3 (hereinafter referred to as an electric motor 3). The voltage of the battery 4 is applied to the three lines of the electric motor 3 via the FET circuit 5, and the FET circuit 5 sequentially applies a voltage between the two lines of the three lines of the electric motor 3 based on a signal from the motor drive IC 6. Is applied to rotate the electric motor 3 by a unit rotation angle. At this time, the FET circuit 5 turns on and off the voltage applied between the two wires in accordance with a signal from the motor driving IC 6 to control the duty, and controls the average voltage applied to the electric motor 3 to the command voltage. Yes. The FET circuit 5 and the motor drive IC 6 constitute a motor drive circuit 7. A unit angle rotation detection circuit 8 is connected to the three lines of the electric motor 3, and the unit angle rotation detection circuit 8 sequentially detects low voltage lines among the three lines that circulate as the electric motor 3 rotates, and thereby the electric motor 3. The unit angle rotation is detected and a unit angle rotation signal is sent to the motor drive IC 6. The unit angle rotation signal is used for motor drive control by the motor drive IC 6 and is sent to the microcomputer 12 via the motor drive IC 6. The microcomputer 12 executes the motor rotation number calculation program 17 and calculates the rotation number of the electric motor 3 by counting the unit angle rotation detection signals sent within a predetermined time. A rotation detection means 9 is constituted by the unit angle rotation detection circuit 8, the motor rotation number calculation program 17, and the like. The shunt resistor 10 connected to the FET circuit 5 has a current detecting means for measuring a voltage between both terminals of the shunt resistor 10 to detect a current supplied to the electric motor 3 and sending a motor current signal to the microcomputer 12. 11 is connected.
[0016]
The microcomputer 12 receives a CPU 13 that performs various arithmetic processes, a ROM 14 that stores various programs executed by the CPU 13 in advance, a RAM 15 that reads and writes data necessary for the CPU 13 during the arithmetic processes, and a unit angle rotation signal and a motor current signal. The input / output circuit 16 outputs a command voltage for driving the electric motor 3 to the motor driving IC 6. The ROM 14 has a motor speed calculation program 17, a motor control program 18 that accurately estimates the oil temperature based on the motor current value and the motor speed, and supplies the required hydraulic oil from the hydraulic pump 1 to the hydraulic circuit 2; The current control program 19 calculates the difference between the motor current detected by the current detection means 11 and the target value, calculates the command voltage applied to the electric motor 3 using proportional control and integral control, and outputs the command voltage to the motor drive IC 6. Etc. are registered.
[0017]
Next, the operation of the above embodiment will be described. First, in order to discharge the required hydraulic pressure from the hydraulic pump 1 at a low predetermined temperature T 0 , for example, 20 ° C., and supply it to the hydraulic circuit, the motor current is set to a predetermined value I 0 , for example, 2.0 A, and the current control program 19 is driven under current control (step S1, hereinafter, the steps of the program are indicated by adding step numbers after S). Multiplied by the rotational speed N 0 in the discharge amount of discharge flow rate Q 0 per the hydraulic pump 1 rotation of the hydraulic pump 3 in the rotational speed N 0 rpm N 0 by detecting the electric motor 3 detected by the rotation detecting means 9 (S2), the motor current I 0 is set to 2.0 A from the map 21 in FIG. 1 showing the relationship between the discharge flow rate Q and the discharge hydraulic pressure P of the hydraulic pump 3 in each motor current and load curve for each oil temperature. the discharge pressure P 0 in the discharge flow rate Q 0 in the case of current control, the discharge flow rate Q 0 and the discharge pressure P 0 oil temperature from the load curve passing through Tr, for example, to estimate the 80 ℃ (S3). Steps 1 to 3 constitute means 19 for estimating the oil temperature T based on the motor current value I and the motor rotation speed N. By obtaining the motor current Ir that discharges the required oil pressure Pr from the load curve of the oil temperature Tr in the map 21, the pressure oil of the required oil pressure Pr is discharged from the hydraulic pump 3 and supplied to the hydraulic circuit 2 at the estimated oil temperature Tr. The target motor current Ir necessary for the calculation is calculated (S4). The electric motor 3 is driven by current control by the current control program 19 so that the motor current I becomes the target value Ir (S5), and the required hydraulic pressure Pr is supplied from the hydraulic pump 1 to the hydraulic circuit 2 at the oil temperature Tr.
[0018]
In the above embodiment, the load curve indicating the relationship between the discharge flow rate Q and the discharge hydraulic pressure P of the hydraulic pump 3 at each temperature is stored as the map 21, but is expressed and stored by a calculation formula. Also good. Further, the relationship between the discharge flow rate Q and the discharge hydraulic pressure P when the oil temperature is changed while keeping the current constant is stored in the map 21, but may be expressed by a calculation formula and stored.
[0019]
In the above embodiment, a sensorless three-phase brushless DC motor is used as the electric motor. However, the present invention is not limited to this, and a two-phase brushless DC motor, a direct current motor, or the like may be used. It is preferable to add a rotation speed detection device that detects the motor current and a current detection device that detects the motor current.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a discharge flow rate and a discharge hydraulic pressure of a hydraulic pump at each motor current and each oil temperature.
FIG. 2 is a block diagram showing a control device for the electric hydraulic pump according to the present embodiment.
FIG. 3 is a flowchart showing a program related to the control of the electric motor.
FIG. 4 is a diagram showing a relationship between a discharge flow rate of a hydraulic pump and a discharge hydraulic pressure at a predetermined voltage.
FIG. 5 is a diagram showing a relationship between a discharge flow rate of a hydraulic pump and a discharge oil pressure at each motor applied voltage and each oil temperature.
FIG. 6 is a diagram showing that the oil pressure decreases as the oil temperature rises when the motor current is constantly changed.
FIG. 7 is a diagram showing the relationship between the discharge flow rate of the hydraulic pump and the motor current at each oil temperature.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Hydraulic pump, 2 ... Hydraulic circuit, 3 ... Electric motor, 4 ... Battery, 5 ... FET circuit, 6 ... Motor drive IC, 7 ... Motor drive circuit, 8 ... Unit rotation angle detection circuit, 9 ... Revolution detection means DESCRIPTION OF SYMBOLS 10 ... Shunt resistance, 11 ... Current detection means, 12 ... Microcomputer, 13 ... CPU, 14 ... ROM, 15 ... RAM, 16 ... Input / output circuit, 17 ... Motor rotational speed calculation program, 18 ... Motor control program, 19 ... Current control program.

Claims (4)

電動モータによって駆動される液体ポンプから必要液圧の液体を液圧回路に供給する電動液体ポンプの制御方法において、モータ電流が所定値になるように制御して電動モータを駆動し、モータ電流が所定値のときのモータ回転数を検出し、前記モータ電流の所定値と前記検出されたモータ回転数とに基づいて前記液体温度を推定することを特徴とする電動液体ポンプの制御方法。In a control method of an electric liquid pump that supplies liquid of a necessary hydraulic pressure from a liquid pump driven by an electric motor to a hydraulic circuit, the electric motor is driven by controlling the motor current to be a predetermined value. A method for controlling an electric liquid pump, comprising: detecting a motor rotation speed at a predetermined value; and estimating the liquid temperature based on the predetermined value of the motor current and the detected motor rotation speed. 電動モータによって駆動される液体ポンプから必要液圧の液体を液圧回路に供給する電動液体ポンプの制御装置において、モータ電流を検出する電流検出手段と、モータ回転数を検出する回転数検出手段と、前記電流検出手段によって検出されたモータ電流が所定値になるように前記電動モータを電流制御して駆動する手段と、前記モータ電流の所定値と前記回転検出手段によって検出されたモータ回転数とに基づいて液体温度を推定する手段を備えたことを特徴とする電動液体ポンプの制御装置。In a control apparatus for an electric liquid pump that supplies liquid of a required hydraulic pressure from a liquid pump driven by an electric motor to a hydraulic circuit, current detection means for detecting motor current, and rotation speed detection means for detecting motor rotation speed; A means for driving the electric motor by controlling the electric current so that the motor current detected by the current detecting means becomes a predetermined value; a predetermined value of the motor current; and a motor rotational speed detected by the rotation detecting means. A control device for an electric liquid pump comprising means for estimating a liquid temperature based on the above. 請求項2において、前記推定された液体温度において前記必要液圧の液体を前記液圧回路に供給するためのモータ電流の目標値を演算する手段と、前記電流検出手段によって検出されたモータ電流が目標値になるように前記電動モータを電流制御して駆動する手段とを備えたことを特徴とする電動液体ポンプの制御装置。The means for calculating a target value of a motor current for supplying the liquid having the required hydraulic pressure to the hydraulic circuit at the estimated liquid temperature, and the motor current detected by the current detection unit according to claim 2. A control device for an electric liquid pump, comprising: means for driving the electric motor by current control so as to obtain a target value. 請求項2または3において、前記電動モータをセンサレスブラシレスDCモータとし、前記電流検出手段はモータ駆動回路に接続されたシャント抵抗の両端子間の電圧とデューティからの演算に基づいてモータ電流を検出し、前記回転数検出手段は前記センサレスブラシレスDCモータに3相電圧を印加する3線の電圧変化に基づいて検出することを特徴とする電動液体ポンプの制御装置。4. The electric motor according to claim 2, wherein the electric motor is a sensorless brushless DC motor, and the current detecting means detects a motor current based on a calculation between a voltage and a duty between both terminals of a shunt resistor connected to the motor driving circuit. The rotational speed detecting means detects the change based on a voltage change in three lines for applying a three-phase voltage to the sensorless brushless DC motor.
JP2003184324A 2003-06-27 2003-06-27 Control method and device for electric liquid pump Withdrawn JP2005016460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184324A JP2005016460A (en) 2003-06-27 2003-06-27 Control method and device for electric liquid pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184324A JP2005016460A (en) 2003-06-27 2003-06-27 Control method and device for electric liquid pump

Publications (1)

Publication Number Publication Date
JP2005016460A true JP2005016460A (en) 2005-01-20

Family

ID=34184128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184324A Withdrawn JP2005016460A (en) 2003-06-27 2003-06-27 Control method and device for electric liquid pump

Country Status (1)

Country Link
JP (1) JP2005016460A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010036274A1 (en) 2010-04-01 2011-10-06 Mitsubishi Electric Corp. Control method for motor to drive electrical oil pump in car, involves controlling motor independent of fluctuations of input voltage such that amount of oil inside gear unit provided by electrical oil pump is maintained to be constant
JP2012031832A (en) * 2010-08-03 2012-02-16 Jtekt Corp Electric pump unit
JP2012202317A (en) * 2011-03-25 2012-10-22 Panasonic Corp Pump device and liquid circulation device equipped therewith
JP2013136970A (en) * 2011-12-28 2013-07-11 Jtekt Corp Motor controller and electric pump unit
JP2013194654A (en) * 2012-03-21 2013-09-30 Hitachi Automotive Systems Ltd Control device for electric pump
JP2014031724A (en) * 2012-08-01 2014-02-20 Jtekt Corp Motor control device and electric pump unit
JP2014034932A (en) * 2012-08-09 2014-02-24 Jtekt Corp Motor control device and electric pump unit
JP2014034911A (en) * 2012-08-08 2014-02-24 Jtekt Corp Motor control device and electric pump unit
JP2016032414A (en) * 2014-07-30 2016-03-07 アイシン精機株式会社 Pump controller, on-vehicle pump unit, and pump controller
WO2018016276A1 (en) * 2016-07-22 2018-01-25 アイシン精機株式会社 Electric oil pump device
WO2018198805A1 (en) * 2017-04-25 2018-11-01 パナソニックIpマネジメント株式会社 Fluid control device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010036274B4 (en) * 2010-04-01 2020-11-05 Mitsubishi Electric Corp. Control method and control system for an electric oil pump
DE102010036274A1 (en) 2010-04-01 2011-10-06 Mitsubishi Electric Corp. Control method for motor to drive electrical oil pump in car, involves controlling motor independent of fluctuations of input voltage such that amount of oil inside gear unit provided by electrical oil pump is maintained to be constant
JP2012031832A (en) * 2010-08-03 2012-02-16 Jtekt Corp Electric pump unit
JP2012202317A (en) * 2011-03-25 2012-10-22 Panasonic Corp Pump device and liquid circulation device equipped therewith
JP2013136970A (en) * 2011-12-28 2013-07-11 Jtekt Corp Motor controller and electric pump unit
JP2013194654A (en) * 2012-03-21 2013-09-30 Hitachi Automotive Systems Ltd Control device for electric pump
DE102013004971B4 (en) * 2012-03-21 2021-01-14 Hitachi Automotive Systems, Ltd. Device and method for controlling / regulating an electric pump
JP2014031724A (en) * 2012-08-01 2014-02-20 Jtekt Corp Motor control device and electric pump unit
JP2014034911A (en) * 2012-08-08 2014-02-24 Jtekt Corp Motor control device and electric pump unit
JP2014034932A (en) * 2012-08-09 2014-02-24 Jtekt Corp Motor control device and electric pump unit
JP2016032414A (en) * 2014-07-30 2016-03-07 アイシン精機株式会社 Pump controller, on-vehicle pump unit, and pump controller
CN109477479A (en) * 2016-07-22 2019-03-15 爱信精机株式会社 Electric oil pump system
EP3480463A4 (en) * 2016-07-22 2019-05-08 Aisin Seiki Kabushiki Kaisha Electric oil pump device
WO2018016276A1 (en) * 2016-07-22 2018-01-25 アイシン精機株式会社 Electric oil pump device
WO2018198805A1 (en) * 2017-04-25 2018-11-01 パナソニックIpマネジメント株式会社 Fluid control device

Similar Documents

Publication Publication Date Title
JP4296186B2 (en) Electric power steering device
EP2799714B1 (en) Motor control device and electric pump unit
US7207173B2 (en) Method and apparatus for warm up control of autonomous inverter-driven hydraulic unit
KR960009372A (en) Motor controller
JP2005016460A (en) Control method and device for electric liquid pump
CN103329428B (en) Electric pump device
JP2001069787A (en) Controller for driving motor
US10211770B2 (en) Motor drive control device and control method thereof
JP2001268980A (en) Motor current estimator and motor controller comprising it
JP3915964B2 (en) Electric power steering control device
CN104514705B (en) The control of pumping system
JP2000142434A (en) Power steering device
US7155905B2 (en) Power steering apparatus
US7019480B2 (en) Synchronous-motor controller
JP5226050B2 (en) Electric oil pump control device
JP6459229B2 (en) Electric power steering device
JP2007181330A (en) Motor control device and control method
US20050093491A1 (en) Method for controlling a brushless electric motor
JP4901841B2 (en) Electric power steering device
JP6079035B2 (en) Motor control device and electric pump unit
EP2169406A1 (en) Method for determining of the velocity of an electric motor
JP2004036521A (en) Control device for vehicle
KR100692131B1 (en) An idle speed control system of engine and method thereof
WO2022201631A1 (en) Motor control device
US9061700B2 (en) Electric power steering control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060524

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070313