JP2005016390A - 内燃機関の排気還流装置 - Google Patents

内燃機関の排気還流装置 Download PDF

Info

Publication number
JP2005016390A
JP2005016390A JP2003181338A JP2003181338A JP2005016390A JP 2005016390 A JP2005016390 A JP 2005016390A JP 2003181338 A JP2003181338 A JP 2003181338A JP 2003181338 A JP2003181338 A JP 2003181338A JP 2005016390 A JP2005016390 A JP 2005016390A
Authority
JP
Japan
Prior art keywords
passage
particulate filter
exhaust gas
internal combustion
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003181338A
Other languages
English (en)
Inventor
Michio Furuhashi
道雄 古橋
Hisayoshi Kato
久喜 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2003181338A priority Critical patent/JP2005016390A/ja
Publication of JP2005016390A publication Critical patent/JP2005016390A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】内燃機関の排気の一部を吸気通路に還流させる還流通路と、その通路途中に設けられた冷却装置とを備えた装置構成において、微粒子等による冷却装置の詰まりを抑制することのできる内燃機関の排気還流装置を提供する。
【解決手段】エンジン1の還流通路(EGR通路)30には、同通路30内を流れるガス(EGRガス)の流れ方向に沿って上流から下流にかけ、電気ヒータ31、パティキュレートフィルタ32、EGRクーラ33、EGR弁34が、順次配設されている。電子制御ユニット20は、EGR通路30のパティキュレートフィルタ32下流の温度に基づき、電気ヒータ31の通電状態(オン/オフ)を切り替える。この結果、EGR通路30に流入する排気(EGRガス)の温度が低い条件下であっても、パティキュレートフィルタ32が閉塞(目詰まり)することなく効率的に機能する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気の一部を吸気通路に還流させる排気還流装置に関する。
【0002】
【従来の技術】
従来、排気の一部を排気通路から吸気通路に還流させる還流通路(以下、EGR(Exhaust Gas Recirculation)通路という)を備えた内燃機関の排気還流装置が知られている。排気中には不活性ガスが多量に含まれている。このため、排気の一部が吸気通路に導入されると、不活性ガスの熱容量分、機関の燃焼温度が低下し、機関燃焼に伴って発生するNOxの量が低減される。
【0003】
ところで、還流する排気(以下、EGRガスという)の温度が高くなると、当該EGRガスが導入されても機関の燃焼温度が低下し難くなる。このため、EGRガスの温度がある程度以上上がらないように、通常、EGR通路の通路途中には冷却装置(以下、EGRクーラという)が設けられる(例えば特許文献1)。
【0004】
【特許文献1】
特開2000−045881号公報
【特許文献2】
特開平05−187329号公報
【0005】
【発明が解決しようとする課題】
ところが、EGRクーラによってEGRガスの温度が低下すると、排気中に含まれる炭化水素(HC)等の未燃ガス成分や、微粒子(PM:Particulate Matter)が煤となってEGR通路(EGRクーラの設置部位)の内壁に付着し、当該通路を詰まらせてしまう懸念がある。
【0006】
本発明は、このような実情に鑑みてなされたものであって、その目的とするところは、内燃機関の排気の一部を吸気通路に還流させる還流通路と、その通路途中に設けられた冷却装置とを備えた装置構成において、微粒子等による冷却装置の配設部位又はその近傍における還流通路の詰まりを抑制することのできる内燃機関の排気還流装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、
(1)内燃機関の排気の一部を吸気通路に還流させる還流通路と、前記還流通路に設けられ還流する排気中の微粒子を捕捉するパティキュレートフィルタと、前記還流通路における前記パティキュレートフィルタのガス流路上流に、又は、前記還流通路において前記パティキュレートフィルタと一体に設けられるヒータと、前記還流通路における前記パティキュレートフィルタのガス流路下流に設けられる冷却装置と、を備えることを要旨とする。
【0008】
同構成によれば、特に還流通路に流入する排気の温度が低い条件下であっても、ヒータの機能に基づき、パティキュレートフィルタに到達する排気の温度、又は、パティキュレートフィルタ内の温度を上昇させ、その排気に含まれる微粒子及び未燃ガス成分の反応性を高めることができる。
【0009】
この結果、パティキュレートフィルタを閉塞(目詰まり)させることなく効率的に機能させ、冷却装置の配設部位又はその近傍における還流通路の詰まりを防止することができる。
【0010】
(2)前記還流通路における前記ヒータの配設部位又はその下流の温度を検出する温度検出手段と、前記検出される温度が低くなると、前記ヒータの発熱量を高くする制御を行う制御手段と、を備えるのが好ましい。
【0011】
同構成によれば、パティキュレートフィルタに流入する排気の温度、又は、パティキュレートフィルタ内の温度が、所定温度以上に保持され、同フィルタに流入する排気中の微粒子等が、安定して連続的に酸化分解される。
【0012】
(3)また、前記還流通路における前記パティキュレートフィルタのガス流路上流の圧力と、前記パティキュレートフィルタのガス流路下流の圧力との差を検出する差圧検出手段と、前記検出される圧力の差が大きくなると、前記ヒータの発熱量を高くする制御を行う制御手段と、を備えるのが好ましい。
【0013】
パティキュレートフィルタに対する微粒子の堆積量(目詰まりの度合い)が大きくなるほど、パティキュレートフィルタのガス流路上流の圧力と下流の圧力との差は大きくなる。同構成によれば、パティキュレートフィルタに対する微粒子の堆積量がある程度以上にならないように、ヒータを機能させることができる。
【0014】
(4)また、当該内燃機関の負荷及び回転数の少なくとも一方に関するパラメータが低くなるほど前記ヒータの発熱量を高くする制御を行う制御手段と、を備えるのが好ましい。なお、「パラメータが低くなるほど前記ヒータの発熱量を高くする制御」には、当該パラメータが所定値を下回った場合にヒータを作動させるようなオン/オフ制御も含まれるし、当該パラメータの変化に応じてヒータの発熱量を段階的又は無段階に変更する制御も含まれる。
【0015】
機関負荷及び機関回転数は、排気の温度と相関が高いことから、同構成によっても比較的正確に、パティキュレートフィルタに流入する排気の温度を制御することができる。また、温度検出手段によって検出される温度と、負荷検出手段によって検出又は推定されるパラメータとを併せ参照すれば、パティキュレートフィルタに流入する排気の温度を一層緻密に制御することができる。
【0016】
(5)また、前記ヒータを前記還流通路における前記パティキュレートフィルタのガス流路上流に備えて、且つ、前記ヒータを通過するガスの流路断面は前記パティキュレートフィルタを通過するガスの流路断面よりも小さく、前記ヒータを通過するガスの流路体積は前記パティキュレートフィルタを通過するガスの流路体積よりも小さくするのが好ましい。
【0017】
同構成によれば、ヒータによる排気の昇温効率が一層高められる。
【0018】
(6)また、他の発明は、内燃機関の排気の一部を吸気通路に還流させる還流通路を備えて、且つ、高密度の貴金属を担持してなる酸化触媒と、ガス中の微粒子を捕捉するパティキュレートフィルタと、冷却装置とを、前記還流通路内のガス流路上流から下流に順次配設することを要旨とする。
【0019】
同構成によれば、還流通路に導入される排気の温度が比較的低い場合であっても、還流通路に流入する排気に含まれる微粒子及び未燃ガス成分が酸化触媒によって酸化分解されるか、又は極めて分解され易い状態となってパティキュレートフィルタに到達する。さらに、このとき発生する熱が同通路内の排気の温度を上昇させる。このため、パティキュレートフィルタにおける微粒子の分解反応が促進される。
【0020】
(7)とくに、前記酸化触媒は、担体基材と該担体基材表面に形成されたコート層と該コート層に担持される貴金属とを有して、且つ、前記貴金属の担持密度は、前記コート層の容積1L当たり10g以上であるのが好ましい。
【0021】
(8)前記酸化触媒を通過するガスの流路断面は前記パティキュレートフィルタを通過するガスの流路断面よりも小さく、且つ、前記酸化触媒を通過するガスの流路体積は前記パティキュレートフィルタを通過するガスの流路体積よりも小さくするのが好ましい。
【0022】
同構成によれば、酸化触媒による排気の昇温効率が一層高められる。
【0023】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明を、ディーゼルエンジンの排気還流装置として具体化した第1の実施の形態について説明する。
【0024】
〔エンジンの基本構造及び機能〕
図1に示すように、内燃機関(以下、エンジンという)1は、吸入行程、圧縮行程、爆発行程(膨張行程)及び排気行程の4サイクルを繰り返して出力を得るディーゼルエンジンである。エンジン1は、その内部に燃焼室(シリンダ)2を形成する。燃焼室2で発生する燃料の爆発力は、ピストン3及びコンロッド4を介してクランクシャフト(図示略)の回転力に変換される。また、燃焼室2には、吸気通路5の最下流部をなす吸気ポート5Aと、排気通路6の最上流部をなす排気ポート6Aとが設けられている。吸気ポート5Aと燃焼室2との境界は吸気弁5Bによって開閉される。また、排気ポート6Aと燃焼室2との境界は排気弁6Bによって開閉される。
【0025】
エンジン1は、燃料噴射弁10を備える。燃料噴射弁10は、高圧ポンプ(図示略)等によって加圧された軽油を、燃焼室2に適宜の量、適宜のタイミングで噴射供給する電磁駆動式開閉弁である。
【0026】
エンジン1は、運転者によるアクセルペダル(図示略)の踏込量に応じた信号を出力するアクセルポジションセンサ(図示略)、クランクシャフト(図示略)の回転速度(エンジン回転数)NEに応じた信号を出力する回転速度センサ、及びエンジン1内を循環する冷却水の温度(冷却水温)に応じた信号を出力する水温センサ、吸気通路5を通じて燃焼室2に導入される空気の流量(吸入空気量)に応じた信号を出力するエアフロメータ等、各種センサを備える。これら各種センサの信号は、電子制御ユニット(Electronic Control Unit:ECU)20に入力される。
【0027】
ECU20は、CPU、RAM、ROM等からなる論理演算回路を備え、各種センサの信号に基づいてエンジン1の各種構成要素を統括制御する。例えば、ECU20は、エンジン1の運転状態に基づき燃料噴射弁10の開閉操作(燃料噴射制御)を行う。
【0028】
また、排気通路6には、排気中に含まれる窒素酸化物(NOx)、炭化水素(HC)、一酸化炭素(CO)、微粒子(PM:Particulate Matter)等を浄化する排気浄化用触媒7が設けられている。
【0029】
また、エンジン1には、吸気通路5と排気通路6とを連通する還流通路(EGR通路)30が形成されている。このEGR通路30は、排気の一部を適宜吸気通路5に戻す機能を有する。EGR通路30には、同通路30内を流れるガス(以下、EGRガスという)の流れ方向(図1中において矢印で示す)に沿って上流から下流にかけ、電気ヒータ31、パティキュレートフィルタ(以下、単にフィルタという)32、EGRクーラ33、EGR弁34が、順次配設されている。電気ヒータ31の通電状態(オン/オフ)は、ECU20によって制御される。フィルタ32は、例えば多孔質材料を主成分とするフィルタ構造物であって、EGRガスに含まれるPMを捕捉する。フィルタ32又はフィルタ32を通過するEGRガスの温度がある程度以上になると、フィルタ32に捕捉されたPMは、自然に酸化分解される。なお、電気ヒータ31を通過するEGRガスの流路断面が、フィルタ32を通過するEGRガスの流路断面よりも小さく、電気ヒータ31を通過するEGRガスの流路体積がフィルタ32を通過するEGRガスの流路体積よりも小さくなるように、電気ヒータ31及びフィルタ32の構造(形状及びサイズ)を決定するのが好ましい。
【0030】
EGRクーラ33は、EGR通路30の周囲を取り巻くように設けられ、EGRガスを冷却する。EGR弁34は、ECU20の指令信号に従って無段階に開閉される電子制御弁であり、EGRガスの流量を自在に調整することができる。また、EGR通路30には、温度センサ35が設けられている。温度センサ35は、フィルタ32及びEGRクーラ33間を通過するEGRガスの温度(EGRガス温)THEGRに応じた信号を出力する。また、EGR通路30には、差圧センサ36が設けられている。差圧センサ36は、電気ヒータ31に流入するEGRガスの圧力と、フィルタ32及びEGRクーラ33間を通過するEGRガスの圧力との差(差圧)PDIFに応じた信号を出力する。温度センサ35及び差圧センサ36は、電子制御ユニット(ECU)20と電気的に接続されている。
【0031】
ECU20は、中央処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及びバックアップRAM、タイマーカウンタ等からなる論理演算回路を備える。ECU20は、エンジン1の運転状態に関する各種制御を実行する。例えば、ECU20は、温度センサ35及び差圧センサ36等の出力する信号に基づいて、電気ヒータ31の通電状態を制御する。
【0032】
〔パティキュレートフィルタの機能〕
排気(EGRガス)に含まれるPMは、EGR通路30を介して吸気通路5に流入すると、エンジン1の燃焼状態に悪影響を与える。また、EGRガスに含まれるPMは、EGRガスの温度が低くなるほど成長し堆積しやすくなる。このため、EGR通路30のEGRクーラ33の設置部位やその下流部位には、PMが堆積しやすい。このようなPMの堆積は、EGR通路30の詰まりやEGR弁34の動作不良を引き起こす。
【0033】
本実施の形態にかかるエンジン1では、EGR通路30において、電気ヒータ31、フィルタ32、EGRクーラ33及びEGR弁34を、EGRガスの流れの上流側から下流側に順次配設する。このような構成を採用すれば、例えば、EGR通路30においてフィルタ32を通過するEGRガスの温度が所定値を上回るように電気ヒータの通電制御を行い、EGRガスに含まれるPMをフィルタ32で捕捉しつつ、ほぼ連続的に酸化除去することができる。
【0034】
ここで、EGR通路30の断面は排気通路6の断面に比して極めて小さいため、EGRクーラ33やEGR弁34は、短時間で閉塞する懸念がある。しかし、本実施の形態にかかるエンジン1では、フィルタ32に捕捉されたPMを、電気ヒータ31の機能を用いて連続的に(又は比較的短周期で断続的に)酸化分解する。つまり、EGRガスに含まれるPMは、EGRクーラ33やEGR弁34の設置部位に到達することなく、効率的に取り除かれる。しかも、捕捉されたPMによってフィルタ32が閉塞(目詰まり)する懸念も生じない。
【0035】
〔電気ヒータの通電制御〕
以下、エンジン1で採用し得る電気ヒータ31の通電制御の一例について説明する。
【0036】
図2は、電気ヒータ31の通電制御の具体的な手順(ルーチン)を示すフローチャートである。本ルーチンは、エンジン1の始動後、ECU20を通じて所定時間毎に繰り返し実行される。
【0037】
本ルーチンにおいて、ECU20は先ずステップS101でエンジン1の運転状態を反映する各種情報(例えば燃料噴射量Qやエンジン回転数NE等)を取得する。
【0038】
続くステップS102においてECU20は、エンジン1の運転状態がいわゆる高負荷・高回転条件にあるか否かを判断する。この判断は、例えばエンジン1の燃料噴射量Qとエンジン回転数NEとによって規定されるマップ(図示略)に基づいて行えばよい。同ステップS102での判断が肯定である場合、ECU20はステップS106にジャンプし、電気ヒータ31への通電状態を「オフ」にした上で本ルーチンを一旦抜ける。また、電気ヒータ31の通電状態が既に「オフ」であれば、何らの処理を行うことなく本ルーチンを一旦抜ける。高負荷・高回転条件では本来的に排気(EGRガス)の温度が高く、電気ヒータ31を発熱させなくても、フィルタ32に捕捉されたPMの酸化分解が効率的に進行するためである。
【0039】
一方、同ステップS102での判断が否定である場合、ECU20はステップS103に進み、電気ヒータ31の通電状態が「オン」になっているか否かを判断する。
【0040】
ステップS103での判断が肯定である場合、温度センサ35の信号に基づいて把握されるEGRガス温THEGRが所定値A+αを上回り(S104)、且つ、差圧センサ36の信号に基づいて把握されるフィルタ32上流とフィルタ32下流の間の差圧PDIFが所定値B未満であれば(S105)、電気ヒータ31の通電状態を「オフ」にした上で(S106)本ルーチンを一旦抜ける。これに対し、EGRガス温THEGRが所定値A+α以下であるか(S104)、又は、差圧PDIFが所定値B以上であれば(S105)、何らの処理を行うことなく本ルーチンを一旦抜ける。
【0041】
他方、ステップS103での判断が否定である場合、EGRガス温THEGRが所定値A未満であるか(S107)、又は、差圧PDIFが所定値B+βを上回っていれば(S108)、電気ヒータ31の通電状態を「オン」にした上で(S109)本ルーチンを一旦抜ける。これに対し、EGRガス温THEGRが所定値A以上であり(S107)、且つ、差圧PDIFが所定値B+β以下であれば(S108)、何らの処理を行うことなく本ルーチンを一旦抜ける。
【0042】
このようにして、ECU20は、エンジン1の運転状態が中低負荷・中低回転条件にある場合に、EGRガス温THEGRが「A〜A+α」の範囲に保持され、差圧PDIFが「B〜B+β」の範囲に保持されるように、電気ヒータ31の通電制御を行う。
【0043】
なお、所定値A,α,B,βには、何れも正の値を採用する。また、所定値Aとしては例えば600(℃)程度の数値を採用することができる。また、所定値Bとしては、マップ等を参照し、エンジン1の運転状態(例えば負荷及び回転数)に応じて異なる数値を採用するのが好ましい。フィルタ32に同程度の量のPMが堆積していても、例えばエンジン負荷が大きくなるほど(エンジン回転数が大きくなるほど)、差圧PDIFは大きくなるためである。
【0044】
なお、図3のルーチンのように、より簡略な手順に従って電気ヒータ31の通電制御を行うこともできる。
【0045】
図3のルーチンでは、必要な情報を取得した上で(ステップS201)、エンジン1の運転状態によらず、EGRガス温THEGRのみに基づいて電気ヒータ31の通電状態を制御する。言い換えれば、EGRガス温THEGRが「A〜A+α」の範囲に保持されるように、電気ヒータ31の通電状態を切り替える(S202〜S206)。図3のルーチンに従う通電制御の方法は、制御の緻密性という点で図2のルーチンに従う通電制御の方法よりは劣る。しかし、制御構造が簡素であるためECU20の演算負荷を低減できるといった点では、図3のルーチンに従う通電制御の方法に優位性がある。
【0046】
以上説明したように、本実施の形態にかかるエンジン1の排気還流装置によれば、特にEGR通路30に流入する排気(EGRガス)の温度が低い条件下であっても、電気ヒータ31の機能に基づき、フィルタ32に到達するEGRガスの温度を上昇させ、又は、そのEGRガスに含まれるPM及び未燃ガス成分の反応性を高めることができる。この結果、フィルタ32を閉塞(目詰まり)させることなく効率的に機能させ、冷却装置の配設部位におけるEGR通路30の詰まりを防止することができる。
【0047】
また、温度センサ35の信号に基づき電気ヒータ31の通電状態(発熱量)を制御することで、フィルタ32に流入するEGRガスの温度が、所定温度(例えば600℃)以上に保持され、フィルタ32に流入するEGRガス中のPMが、安定して連続的に酸化分解される。
【0048】
またとくに、図2のフローチャートにかかる制御構造を採用した場合、排気の温度と相関の高い燃料噴射量(エンジン負荷を代表するパラメータ)Q及びエンジン回転数NEを併せ参照することで、フィルタ32に流入するEGRガスの温度を一層緻密に制御することができる。
【0049】
また、本実施の形態においては、電気ヒータ31を通過するEGRガスの流路断面が、フィルタ32を通過するEGRガスの流路断面よりも小さく、電気ヒータ31を通過するEGRガスの流路体積がフィルタ32を通過するEGRガスの流路体積よりも小さくなるように、電気ヒータ31及びフィルタ32の構造(形状及びサイズ)を決定することにした。このような構成によれば、電気ヒータ31によるEGRガスの昇温効率が一層高められる。
【0050】
なお、図3のフローチャートにかかる制御構造のように、EGRガス温THEGRのみに基づいて電気ヒータ31の通電状態を切り替える制御を行う代わりに、差圧PDIFのみに基づいて電気ヒータ31の通電状態を切り替える制御を行ってもよい。
【0051】
また、電気ヒータ31の通電制御を、「オン/オフ」の切り替えではなく、段階的又は無段階に行い、フィルタ32に流入するEGRガスの温度(又は反応性)をより緻密に管理してもよい。この場合、例えばEGRガス温TEGRに対応する電気ヒータ31への通電量のデータを記憶したマップを予め用意し、同マップを参照しつつ電気ヒータ31への通電量を制御することにより、EGRガス温TEGRが低くなるほど電気ヒータ31への通電量を(段階的に又は無段階に)大きくすればよい。また、そのようなマップに替え、EGRガス温TEGRを独立変数、電気ヒータ31への通電量を従属変数とする関数を用いてもよい。
【0052】
また、図2又は図3のフローチャートに、EGR弁の開度に基づき電気ヒータ31の通電状態を変更する制御構造を組み込んでもよい。例えば、EGR弁の開度が所定値以下である場合(又はEGR弁が閉弁している場合)、電気ヒータ31の通電状態を「オフ」にする制御構造を組み込むことができる。
【0053】
また、電気ヒータ31の通電状態を、エンジン負荷(燃料噴射量)Q、又はエンジン回転数NEのみに基づいて制御し、フィルタ32に流入するEGRガスの温度(反応性)を管理することもできる。
【0054】
また、電気ヒータ31に限らず、発熱量を制御することが可能な他のヒータを採用してもよい。ただし、EGR通路に流入する排気(EGRガス)の温度に関わらずフィルタ32によるPMの分解効率を、常時高い状態に保つためには、発熱量を緻密に制御することが可能な電気ヒータを用いるのが好ましい。
【0055】
また、電気ヒータ31に替え、パティキュレートフィルタと一体に形成された電気ヒータを採用し、パティキュレートフィルタ又はパティキュレートフィルタを通過するEGRガスを直接加熱するようにしてもよい。
【0056】
また、本実施の形態では、温度センサ35をフィルタ32とEGRクーラ33の間に配置することにしたが、EGR通路30内の他の部位に配置しても、本実施の形態に準ずる効果を奏することができる。
【0057】
(第2の実施の形態)
次に、本発明を、ディーゼルエンジンの排気還流装置として具体化した第2の実施の形態について、第1の実施の形態と異なる点を中心に説明する。
【0058】
図4は、第2の実施の形態にかかるエンジン1′を示す概略構成図である。同図4に示すように、第2の実施の形態にかかるエンジン1′は、電気ヒータ31(図1参照)に替え、EGR通路30のフィルタ32の上流に酸化触媒31′を備える点で第1の実施の形態にかかるエンジン1(図1参照)とは異なる。
【0059】
酸化触媒31′は、例えばコージェライト等の材料からなるハニカム状の担体基材(図示略)と、その担体基材表面に形成されたコート層と、そのコート層に担持される例えば白金(Pt)等の貴金属とを有する。貴金属は、高密度(例えば、コート層の容積1L当たり10g以上)でコート層に分布する。
【0060】
また、酸化触媒31′を通過するEGRガスの流路断面が、フィルタ32を通過するEGRガスの流路断面よりも小さく、酸化触媒31′を通過するEGRガスの流路体積がフィルタ32を通過するEGRガスの流路体積よりも小さくなるように、酸化触媒31′及びフィルタ32の構造(形状及びサイズ等)を決定するのが好ましい。
【0061】
このような構成を有するエンジン1′の排気還流装置では、EGR通路30に流入した排気(EGRガス)が高密度の貴金属を含む酸化触媒31′を通過する際、EGRガスに含まれるPM及び未燃ガス成分が酸化分解されるか、又は極めて分解され易い状態となってフィルタ32に到達する。さらに、このとき発生する熱がEGRガスの温度を上昇させる。このため、フィルタ32におけるPMの分解反応が促進される。還流通路30に導入されるEGRガスの温度が比較的低い場合(例えば600℃未満である場合)、この効果は特に顕著となる。
【0062】
また、このように簡易な構成を採用すれば、電気ヒータ31、温度センサ35及び差圧センサ36等の機器(図1参照)を用いることなく、また特段の制御(電気ヒータ31の通電制御)を実施するまでもなく、フィルタ32におけるPMの分解反応を、常時促進することができる。
【0063】
なお、上記第1の実施の形態にかかる電気ヒータ31(図1参照)及び第2の実施の形態にかかる酸化触媒31′(図4参照)の双方を、EGR通路30のフィルタ32上流に設けてもよい。このような構成によれば、一層高い効率でフィルタ32におけるPMの分解反応を促進することができる。
【0064】
また、上記各実施の形態で採用されるフィルタ32の表面には、PMの酸化分解反応を促進する材料(例えば触媒等)を担持するようにしてもよい。
【0065】
また、上記各実施の形態で採用される排気浄化用触媒としては、排気中の有害成分を浄化する機能を有する各種の材料を用いることができる。
【0066】
【発明の効果】
以上説明したように、本発明によれば、還流通路に流入する排気の温度が低い条件下であっても、ヒータの機能に基づき、パティキュレートフィルタに到達する排気の温度、又は、パティキュレートフィルタ内の温度を上昇させ、その排気に含まれる微粒子及び未燃ガス成分の反応性を高めることができる。
この結果、パティキュレートフィルタを閉塞(目詰まり)させることなく効率的に機能させ、冷却装置の配設部位又はその近傍における還流通路の詰まりを防止することができる。
また、他の発明によれば、還流通路に導入される排気の温度が比較的低い場合であっても、還流通路に流入する排気に含まれる微粒子及び未燃ガス成分が酸化触媒によって酸化分解されるか、又は極めて分解され易い状態となってパティキュレートフィルタに到達する。さらに、このとき発生する熱が同通路内の排気の温度を上昇させる。このため、パティキュレートフィルタにおける微粒子の分解反応が促進される。
この結果、パティキュレートフィルタを閉塞(目詰まり)させることなく効率的に機能させ、冷却装置の配設部位又はその近傍における還流通路の詰まりを防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態にかかるディーゼルエンジンを示す概略構成図。
【図2】同実施の形態で採用される電気ヒータの通電制御の一例について、その具体的な手順を示すフローチャート。
【図3】同実施の形態で採用される電気ヒータの通電制御の他の例について、その具体的な手順を示すフローチャート。
【図4】本発明の第2の実施の形態にかかるディーゼルエンジンを示す概略構成図。
【符号の説明】
1,1′ 内燃機関(ディーゼルエンジン)
2 燃焼室
3 ピストン
5 吸気通路
5A 吸気ポート
5B 吸気弁
6 排気通路
6A 排気ポート
6B 排気弁
7 排気浄化用触媒
20 電子制御ユニット(ECU)
30 還流通路(EGR通路)
31 電気ヒータ
31′ 酸化触媒
32 パティキュレートフィルタ(フィルタ)
33 EGRクーラ(冷却装置)
34 EGR弁
35 温度センサ
36 差圧センサ

Claims (8)

  1. 内燃機関の排気の一部を吸気通路に還流させる還流通路と、
    前記還流通路に設けられ還流する排気中の微粒子を捕捉するパティキュレートフィルタと、
    前記還流通路における前記パティキュレートフィルタのガス流路上流に、又は、前記還流通路において前記パティキュレートフィルタと一体に設けられるヒータと、
    前記還流通路における前記パティキュレートフィルタのガス流路下流に設けられる冷却装置と、を備えることを特徴とする内燃機関の排気還流装置。
  2. 前記還流通路における前記ヒータの配設部位又はその下流の温度を検出する温度検出手段と、
    前記検出される温度が低くなると、前記ヒータの発熱量を高くする制御を行う制御手段と、を備えることを特徴とする請求項1記載の内燃機関の排気還流装置。
  3. 前記還流通路における前記パティキュレートフィルタのガス流路上流の圧力と、前記パティキュレートフィルタのガス流路下流の圧力との差を検出する差圧検出手段と、
    前記検出される圧力の差が大きくなると、前記ヒータの発熱量を高くする制御を行う制御手段と、を備えることを特徴とする請求項1記載の内燃機関の排気還流装置。
  4. 当該内燃機関の負荷及び回転数の少なくとも一方に関するパラメータが低くなるほど前記ヒータの発熱量を高くする制御を行う制御手段と、を備えることを特徴とする請求項1〜3の何れかに記載の内燃機関の排気還流装置。
  5. 前記ヒータを前記還流通路における前記パティキュレートフィルタのガス流路上流に備えて、
    且つ、
    前記ヒータを通過するガスの流路断面は前記パティキュレートフィルタを通過するガスの流路断面よりも小さく、前記ヒータを通過するガスの流路体積は前記パティキュレートフィルタを通過するガスの流路体積よりも小さいことを特徴とする請求項1〜4の何れかに記載の内燃機関の排気還流装置。
  6. 内燃機関の排気の一部を吸気通路に還流させる還流通路を備えて、
    且つ、
    高密度の貴金属を担持してなる酸化触媒と、ガス中の微粒子を捕捉するパティキュレートフィルタと、冷却装置とを、前記還流通路内のガス流路上流から下流に順次配設することを特徴とする内燃機関の排気還流装置。
  7. 前記酸化触媒は、担体基材と該担体基材表面に形成されたコート層と該コート層に担持される貴金属とを有して、
    且つ、
    前記貴金属の担持密度は、前記コート層の容積1L当たり10g以上であることを特徴とする請求項6記載の内燃機関の排気還流装置。
  8. 前記酸化触媒を通過するガスの流路断面は前記パティキュレートフィルタを通過するガスの流路断面よりも小さく、且つ、前記酸化触媒を通過するガスの流路体積は前記パティキュレートフィルタを通過するガスの流路体積よりも小さいことを特徴とする請求項6又は7記載の内燃機関の排気還流装置。
JP2003181338A 2003-06-25 2003-06-25 内燃機関の排気還流装置 Pending JP2005016390A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181338A JP2005016390A (ja) 2003-06-25 2003-06-25 内燃機関の排気還流装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181338A JP2005016390A (ja) 2003-06-25 2003-06-25 内燃機関の排気還流装置

Publications (1)

Publication Number Publication Date
JP2005016390A true JP2005016390A (ja) 2005-01-20

Family

ID=34182078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181338A Pending JP2005016390A (ja) 2003-06-25 2003-06-25 内燃機関の排気還流装置

Country Status (1)

Country Link
JP (1) JP2005016390A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123011A1 (ja) 2006-04-10 2007-11-01 Isuzu Motors Limited 排気ガス浄化方法及び排気ガス浄化システム
FR2902470A1 (fr) * 2006-06-19 2007-12-21 Peugeot Citroen Automobiles Sa Systeme de rechauffage du siege de soupape d'une vanne egr
US7770385B2 (en) * 2003-11-25 2010-08-10 Emcon Technologies Llc Internal combustion engine exhaust system
US20130019848A1 (en) * 2011-03-24 2013-01-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus of internal combustion engine
US20140020361A1 (en) * 2012-07-17 2014-01-23 GM Global Technology Operations LLC Exhaust gas recirculation cooler with a heated filter
WO2014156427A1 (ja) * 2013-03-28 2014-10-02 ヤンマー株式会社 エンジン
KR101619540B1 (ko) * 2010-09-29 2016-05-10 현대자동차주식회사 저압 배기가스 재순환 장치의 비상 필터의 클리닝 방법

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770385B2 (en) * 2003-11-25 2010-08-10 Emcon Technologies Llc Internal combustion engine exhaust system
US8209967B2 (en) 2003-11-25 2012-07-03 Emcon Technologies Llc Internal combustion engine exhaust system
WO2007123011A1 (ja) 2006-04-10 2007-11-01 Isuzu Motors Limited 排気ガス浄化方法及び排気ガス浄化システム
US8056321B2 (en) 2006-04-10 2011-11-15 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
FR2902470A1 (fr) * 2006-06-19 2007-12-21 Peugeot Citroen Automobiles Sa Systeme de rechauffage du siege de soupape d'une vanne egr
KR101619540B1 (ko) * 2010-09-29 2016-05-10 현대자동차주식회사 저압 배기가스 재순환 장치의 비상 필터의 클리닝 방법
US20130019848A1 (en) * 2011-03-24 2013-01-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus of internal combustion engine
US20140020361A1 (en) * 2012-07-17 2014-01-23 GM Global Technology Operations LLC Exhaust gas recirculation cooler with a heated filter
WO2014156427A1 (ja) * 2013-03-28 2014-10-02 ヤンマー株式会社 エンジン
JP2014190322A (ja) * 2013-03-28 2014-10-06 Yanmar Co Ltd エンジン
US9932919B2 (en) 2013-03-28 2018-04-03 Yanmar Co., Ltd. Engine

Similar Documents

Publication Publication Date Title
JP5299572B2 (ja) 内燃機関
KR100629208B1 (ko) 배기 정화장치
EP1908947B1 (en) Exhaust Gas Temperature Control Method and Apparatus and Internal Combustion Engine System
US8615988B2 (en) Electrical diesel particulate filter (DPF) regeneration
JP2007162569A (ja) 希釈オイル再生装置及び希釈オイル再生方法
JP2010059886A (ja) 内燃機関の排気浄化装置
JP2004162675A (ja) ディーゼルエンジンの排気浄化装置
WO2002095197A1 (fr) Dispositif d'echappement comportant des moyens pour purifier les gaz d'echappement d'un moteur diesel
CN107109983A (zh) 用于内燃发动机的排气净化系统
JP2006242104A (ja) 酸化触媒の温度制御方法及び内燃機関の排気浄化装置
JP2005016390A (ja) 内燃機関の排気還流装置
JP2005030231A (ja) 内燃機関の排気浄化装置
JP2006250048A (ja) 排気ガス浄化用フィルタの再生制御方法
JP4742942B2 (ja) 排気浄化装置
JP2008138537A (ja) 内燃機関の排気浄化装置
JP5761517B2 (ja) エンジンの排気熱回収装置
JP5569690B2 (ja) 内燃機関の排気浄化装置
JP5516888B2 (ja) 内燃機関の排気浄化装置
JP2009299617A (ja) 内燃機関の排気浄化装置
JP2004143988A (ja) 排気浄化装置
JP2004353596A (ja) 排気浄化装置
JP3888115B2 (ja) 内燃機関の制御装置
JP2004263579A (ja) 排気ガス浄化フィルタの再生方法およびプログラム
JPWO2007029339A1 (ja) 内燃機関の排ガス浄化装置及び排ガス浄化方法
JP2006274985A (ja) 排気後処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014