JP2005012107A - Intermediate substrate with built-in capacitor - Google Patents

Intermediate substrate with built-in capacitor Download PDF

Info

Publication number
JP2005012107A
JP2005012107A JP2003176896A JP2003176896A JP2005012107A JP 2005012107 A JP2005012107 A JP 2005012107A JP 2003176896 A JP2003176896 A JP 2003176896A JP 2003176896 A JP2003176896 A JP 2003176896A JP 2005012107 A JP2005012107 A JP 2005012107A
Authority
JP
Japan
Prior art keywords
electrode conductor
type
capacitor
terminal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003176896A
Other languages
Japanese (ja)
Other versions
JP4570338B2 (en
Inventor
Atsushi Otsuka
淳 大塚
Manabu Sato
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003176896A priority Critical patent/JP4570338B2/en
Publication of JP2005012107A publication Critical patent/JP2005012107A/en
Application granted granted Critical
Publication of JP4570338B2 publication Critical patent/JP4570338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intermediate substrate with a built-in capacitor that has rigidity capable of sufficiently withstanding thermal stresses and can easily secure the electrostatic capacitance required for a decoupling capacitor. <P>SOLUTION: The intermediate substrate 1 with the built-in capacitor has a laminated ceramic capacitor substrate 60 in which class 1 baked electrode conductor layers 57 and class 2 baked electrode conductor layers 54 are alternately laminated upon baked ceramic dielectric layers 52. On the first principal surface of the ceramic capacitor substrate 60, class 1 electrode conductor layers 14, class 2 electrode conductor layers 17, and high polymer laminated capacitor sections 10 alternately laminated upon high polymer dielectric layers 13 are formed. In addition, a first terminal array 5 composed of class 1 terminals 5a and class 2 terminals 5b respectively connected electrically to the class 1 and 2 electrode conductor layers 14 and 17 are formed. On the second principal surface of the substrate 60, a second terminal array 7 composed of class 1 substrate-side terminals 7a and class 2 substrate-side terminals 7b is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明はコンデンサ内蔵中間基板に関する。
【0002】
【従来の技術】
【特許文献1】
特開2003−142624号公報
【0003】
CPUやその他のLSIなどの高速動作する集積回路デバイスにおいては、集積回路内の複数の回路ブロックに対し、共通の電源から分岐する形で電源線が割り振られているが、回路ブロック内の多数の素子が同時に高速でスイッチングすると、電源から一度に大きな電流が引き出され、電源電圧の変動が一種のノイズとなり、電源線を介して各回路ブロックに伝播してしまう問題がある。そこで、各回路ブロック毎に電源インピーダンスを下げるためのデカップリングコンデンサを設けることが、電源電圧変動によるブロック間ノイズ伝播を抑制する上で有効である。また、サージノイズなどの外来性ノイズを交流フィルタリング的に除去するバイパスコンデンサ(「パスコン」と通称される)が、同様の接続形態で設けられる場合もある。
【0004】
ところで、CPUなどの大規模な集積回路の場合、作りこまれる回路ブロックの数も多く、電源端子やグランド端子の数も増加する傾向にあり、端子間距離も縮小しつつある。デカップリングコンデンサは各回路ブロックに向かう電源線毎に接続する必要があり、多数の端子が密集した集積回路にコンデンサを個別接続するのが実装技術的に困難であるばかりでなく、小型化等の流れにも逆行する。
【0005】
そこで、特許文献1には、薄膜コンデンサを用いた中間基板型デカップリングコンデンサが開示されている。これにより、多数の回路ブロックにて使用するデカップリングコンデンサを中間基板内に集約できる。また、高速スイッチング時の電源電圧変動によるノイズ問題が特に表面化しやすい高周波領域(特に100MHz以上)においては、電源インピーダンスに占める誘導性リアクタンス項の比重が大きくなる。従って、デカップリングコンデンサ(あるいはパスコン)として機能するコンデンサを、中間基板の形で半導体素子に直結することで、デカップリングコンデンサを半導体素子により近づけることができ、電源端子とデカップリングコンデンサとの配線長を短縮できる。その結果、コンデンサ端子部のインダクタンスを低減することができ、デカップリングコンデンサの低インピーダンス化に寄与する。
【0006】
【発明が解決しようとする課題】
しかし、前述の特許文献1においては、薄膜コンデンサを単独で中間基板化した構成となっている。この構成は、薄膜コンデンサの剛性がそれほど高くないため、接続先となる主基板が、マザーボードや、2段目の中間基板をなすオーガニックパッケージ基板など、高分子材料を主体とするものであった場合、半田リフローなどの熱履歴が加わると、その熱応力により、半田剥がれや薄膜コンデンサ自体が剛性不足のため損傷する、といった不具合につながる惧れがある。
【0007】
本発明の課題は、半田リフローなどの熱履歴が加わわった場合でも、半導体素子と主基板との線膨張係数係数差による熱応力に十分耐えることができる剛性を有し、かつデカップリングコンデンサの機能実現に必要な静電容量も確保しやすいコンデンサ内蔵中間基板を提供することにある。
【0008】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明のコンデンサ内蔵中間基板は、
直流的に互いに分離された第一種焼成電極導体層と第二種焼成電極導体層とが、それら焼成電極導体と同時焼成された焼成セラミック誘電体層と交互に積層された積層セラミックコンデンサ基体と、
積層セラミックコンデンサ基体の第一主表面上に設けられ、第一種焼成電極導体層に導通する第一種電極導体層と、第二種焼成電極導体層に導通する第二種電極導体層とが、直流的に互いに分離された形で高分子誘電体層と交互に積層された高分子積層コンデンサ部とを有し、
高分子積層コンデンサの第一主表面に、第一種電極導体層と第二種電極導体層とにそれぞれ導通する第一種端子と第二種端子とからなる第一端子アレーが形成され、
積層セラミックコンデンサ基体の第二主表面に、第一種焼成電極導体層と第二種焼成電極導体層とにそれぞれ導通する第一種基体側端子と第二種基体側端子とからなる第二端子アレーが形成されてなることを特徴とする。
【0009】
上記本発明のコンデンサ内蔵中間基板では、積層セラミックコンデンサ基体上に高分子積層コンデンサが一体化されている。そして、高分子積層コンデンサの第一主表面に形成された第一端子アレーには、シリコン集積回路チップ等で構成された半導体素子側の電源端子及びグランド端子をそれぞれ半田接続できる。また、積層セラミックコンデンサ基体の第二主表面に形成された第二端子アレーには、電源端子及びグランド端子をそれぞれ接続できる。従って、該構造のコンデンサは、半導体素子と主基板との中間に位置して両者の接続の仲立ちをする中間基板として機能させることができる。高分子積層コンデンサは誘電率が比較的小さい高分子材料を誘電体として用いるので、それほど大きな静電容量は期待できず剛性も小さいが、これに誘電率の高いセラミックを用いた積層セラミックコンデンサを基体として複合化することで、静電容量向上と中間基板としての剛性向上とを同時に図ることができる。その結果、半田リフローなどの熱履歴が加わわった場合でも、半導体素子と主基板との線膨張係数係数差による熱応力に十分耐えることができる剛性を有し、かつデカップリングコンデンサ用としての静電容量も確保しやすいコンデンサ内蔵中間基板が実現する。
【0010】
当然、デカップリングコンデンサ(あるいはパスコン)として機能するコンデンサが、これを内蔵した中間基板の形で半導体素子に直結されるので、デカップリングコンデンサを半導体素子により近づけることができ、電源端子とデカップリングコンデンサとの配線長を短縮できる。その結果、コンデンサ端子部のインダクタンスを低減することができ、デカップリングコンデンサの低インピーダンス化に寄与する。また、中間基板内にデカップリングコンデンサが組み込まれるので、デカップリングコンデンサを別素子として主基板の裏面側に配置する必要がなくなり、部品点数の削減あるいは装置の小型化とを図ることができる。なお、剛性向上の観点においては、積層セラミックコンデンサ基体をは、剛性の低い高分子積層コンデンサよりも厚く形成しておくとより有利である。
【0011】
セラミック誘電体の誘電率が高分子材料の誘電率よりも一般には高いので、積層セラミックコンデンサ基体の静電容量を高分子積層コンデンサの静電容量よりも大きく設定することがきわめて容易である。これにより、積層セラミックコンデンサ基体は、高分子積層コンデンサの静電容量を補う効果を当然有するほか、比較的大容量のコンデンサと、それよりも容量的には小さいコンデンサとの並列的な組合せを一素子で実現でき、インピーダンス低減効果をより広い周波数帯域にて確保できる場合もある。
【0012】
積層セラミックコンデンサ基体に使用する誘電体層は、高誘電率セラミック(比誘電率が50以上のセラミックと定義する:例えば強誘電性セラミック)にて構成すると、その静電容量を大幅に高めることができ、ひいては高分子積層コンデンサの静電容量の不足をより効果的に補填することができる。また、同容量のコンデンサを得る観点においては、電極面積を縮小できるので、中間基板の小型化の観点においても有利である。さらに、高誘電率セラミックとしては、ペロブスカイト型結晶構造を有した複合酸化物、例えばチタン酸バリウム、チタン酸ストロンチウム及びチタン酸鉛の1種又は2種以上にて構成されたものが特に高誘電率であり、本発明に好適に採用できる。
【0013】
一方、インピーダンス低減を図る周波数帯域によっては、積層セラミックコンデンサ基体側の静電容量をそれほど高めなくてもよい場合があり、この場合は使用するセラミックを、線膨張係数が低く、他方、剛性率(ヤング率)の高い材質とするのがよい。これにより、半導体素子(例えばシリコン)と中間基板間、及び中間基板と高分子材料を主体とする主基板間との各膨張係数差を縮小し、ひいては半田リフロー時等において中間基板の両面に形成された各端子に加わる熱的な剪断応力のレベルを低減して、端子における半田剥がれ等を防止することができる。
【0014】
室温から半田リフローに使用される300℃付近までのシリコンの線膨張係数は2〜3ppm/℃と低く、逆に、主基板(マザーボードあるいはオーガニックパッケージ基板)を構成するエポキシ樹脂等の高分子材料は17〜20ppm/℃と高い。そして、高分子積層コンデンサの誘電体層もまた、感光性エポキシ樹脂などの線膨張係数の高い高分子材料にて構成されるので、なるべく線膨張係数の小さいセラミック材料にて板状基体を構成することが、上記の各線膨張係数差の縮小、ひいては端子に働く剪断応力の軽減により効果的である。このようなセラミック材料としては、アルミナ(7〜8ppm/℃)や、ホウケイ酸系ガラスあるいはホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを40〜60重量部添加したガラスセラミックなどを使用できる。また、その他のセラミック材料としては、窒化アルミニウム、窒化珪素、ムライト、二酸化珪素、酸化マグネシウムなども使用可能である。
【0015】
次に、特許文献1においては、その図2に示されているように、コンデンサ電極とは別に、端子間隔変換のための引き回し配線部(符号32:第三の導電体層)を最上層位置にわざわざ設けており、層数増加により製造工程が長くなるばかりでなく、半導体素子の端子部に直結する位置に長い引き回し配線部が形成されるために、端子部のインダクタンスが大きく増加し、低インピーダンス化及び広帯域化を図ることが困難である。
【0016】
この問題を解決するためには、高分子積層コンデンサ部の第一主表面において、第一端子アレーをなす第一種端子と第二種端子とが、第一主表面に最も近い第一種電極導体層及び第二種電極導体層に対し、それぞれ直接又は補助ビア導体を介して積層方向に結合されてなる構造を採用することが有効である。この構造によると、端子に直結する導体部が、コンデンサをなす電極導体層か、又はその電極導体層に導通する積層方向の補助ビア導体となる。その結果、インダクタンス増加の原因となる特許文献1のような引き回し配線部を効果的に排除でき、ひいてはコンデンサの低インピーダンス化及び広帯域化を図ることができる。また、電極導体層と別に引き回し配線部を設ける必要がなくなるので、構造が単純化され、製造工程の簡略化も図ることができる。
【0017】
次に、本発明のコンデンサ内蔵中間基板は、第二端子アレーの端子配列間隔を第一端子アレーの端子配列間隔よりも広く設定することができる。コンデンサの接続対象となる集積回路素子の端子間隔は、集積回路素子の小型化と高密度化により、近年より狭くなる傾向にある。他方、主基板側の端子間隔は、製造コスト上の観点からむやみに狭くできない場合があり、この場合、集積回路素子の端子間隔と主基板側の端子間隔とが一致しないケースが生ずる。しかし、上記のように、コンデンサ内蔵中間基板において、高分子積層コンデンサの第一主表面に形成する第一端子アレーよりも、板状基体の第二主表面に形成される第二端子アレーの端子配列間隔を広く設定しておけば、中間基板をなすコンデンサの表裏において、上記のような端子間隔の不一致が生じていても、両者を問題なく接続できる。
【0018】
上記構成の高分子積層コンデンサにおいては、電極導体層の少なくとも一層を、第一端子アレー側から当該電極導体層にビア導体部(高分子積層コンデンサのビア導体部である)が第一配列間隔にて接続する一方、第二端子アレー側から当該電極導体層に第一配列間隔よりも広い第二配列間隔にてビア導体部(高分子積層コンデンサのビア導体部又は基体側結合導体部のいずれかである)が接続する間隔変換用層とすることができる。本明細書において第一配列間隔及び第二配列間隔は、いずれもビア導体部の平均的な間隔を意味するものとして定義する。該間隔変換用層の上下に接続するビア導体部の、対応するもの同士の位置を互いに異ならせることで、端子間隔の変換をきわめて簡単に行なうことができる。
【0019】
この場合、高分子積層コンデンサにおいて、第一種電極導体層の少なくとも一層と、第二種電極導体層の少なくとも一層とを、それぞれ間隔変換用層とすることができる。これにより、第一種端子と第二種端子の直流的な分離状態を維持しつつ、それぞれ独立に端子間隔の変換を容易に行なうことができる。つまり、第一種電極導体層を第一種端子に導通するビア導体部の間隔拡張に使用し、第二種電極導体層を第二種端子に導通するビア導体部の間隔拡張に使用することで、各種別の端子の間隔を、積層方向において互いに異なる位置で拡張変換することができる。
【0020】
異なる種別の端子の間隔を、積層方向の同じ位置で行なおうとすると、第一極性(第一種及び第二種の一方)の電極導体層中に貫通孔を穿ち、その貫通孔内に第二極性(第一種及び第二種の他方)の導体層を、誘電体にて隔てられた形で、端子間隔拡張のため比較的大面積で配置しなければならない。この第二極性の導体層は、高分子誘電体層を隔てて隣接する導体層と同極性になるため、静電容量形成にはほとんど寄与しない。他方、第一極性の電極導体層は、高分子誘電体層を隔てて隣接する導体層と異極性になるため、静電容量形成の主体となるが、第二極性の導体層を配置するために貫通孔を大きく形成しなければならないので、電極実効面積が減少し、静電容量の低下につながる。
【0021】
しかし、各種別の端子の間隔を、積層方向において互いに異なる位置で拡張変換すれば、積層方向の同一位置において、第一極性の導体層に上記のような第二極性の導体層を混在させる必要がなくなるので、静電容量の低下を防止することができる。より具体的には、第一種電極導体層及び第二種電極導体層は、間隔変換用層に対して第一端子アレー側に最も近い同種の電極導体層を変換前層として定義し、同じく第二端子アレー側に最も近い同種の電極導体層を変換後層として定義したとき、変換前層と間隔変換用層との間、及び間隔変換用層と変換後層との間で、各ビア導体部の結合位置が面内方向にてそれぞれ互いに一致してなり、かつ、変換前層と間隔変換用層との間、及び間隔変換用層と変換後層との間にそれぞれ位置する2つの他種の電極導体層に、ビア導体部を通すための第二貫通孔を互いにずれた位置関係で形成した構成とすることができる。これにより、端子間隔変換を行なうにもかかわらず、第一種電極導体層及び第二種電極導体層に形成する貫通孔は、ビア導体部を通す必要最小限の面積で済み、貫通孔形成による静電容量低下の影響を可及的に排除することができる。
【0022】
上記のように端子間隔の拡張変換を行なう場合、第一端子アレーと第二端子アレーとの面積差を利用して、高分子積層コンデンサの第二主表面側に配列する、第一種電極導体層と第二種電極導体層との組の一部のものを、第一主表面側に配列する第一種電極導体層と第二種電極導体層との組よりも大面積とすることができる。これにより、コンデンサの静電容量を一層高めることができる。
【0023】
また、積層セラミックコンデンサ基体においても上記と類似の構造を採用でき、同様の効果を達成することができる。すなわち、積層セラミックコンデンサ基体において、焼成電極導体層の少なくとも一層を、第一端子アレー側から当該焼成電極導体層にビア導体部が第一配列間隔にて接続する一方、第二端子アレー側から当該焼成電極導体層に第一配列間隔よりも広い第二配列間隔にてビア導体部が接続する間隔変換用層とすることができる。この場合、第一種焼成電極導体層の少なくとも一層と、第二種焼成電極導体層の少なくとも一層とを、それぞれ間隔変換用層とすることができる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を用いて説明する。
図1は、本発明の一実施形態をなすコンデンサ内蔵中間基板(以下、単に中間基板ともいう)1を、半導体集積回路素子2と主基板3との間に配置される中間基板として構成した例である。また、本実施形態において板状部材の第一主表面は、図中にて上側に表れている面とし、第二主表面は下側に表れている面とする。
【0025】
半導体集積回路素子2は第二主表面に各々複数の信号端子、電源端子及びグランド端子からなる素子側端子アレー4を有し、中間基板1の第一主表面に形成された第一端子アレー5に対し、半田接続部6を介してフリップチップ接続されている。他方、主基板3はマザーボード、あるいは2段目の中間基板をなすオーガニック積層パッケージ基板であり、いずれもセラミック粒子あるいは繊維をフィラーとして強化された高分子材料を主体に構成されており、半田ボールあるいは金属ピンからなる主基板側端子アレー8において、中間基板1の第二主表面に形成された第二端子アレー7に対し、半田接続部6を介して接続されている。中間基板をなすコンデンサ内蔵中間基板1は、図2に示すように、半導体集積回路素子2の電源ラインに並列接続されるデカップリングコンデンサとして機能する。なお、図2の等価回路では、電源ライン毎に独立したデカップリングコンデンサを設けているように描いているが、これらのデカップリングコンデンサは全て、同一電圧の電源ラインとグランドとの間に並列接続されるので、以下の実施形態においては、該デカップリングコンデンサを、単一のコンデンサとして電源ライン間で共用化した構成により代表させて説明する(ただし、これに限られるものではない)。
【0026】
図3に示すように、コンデンサ内蔵中間基板1は、積層セラミックコンデンサ基体60と、その積層セラミックコンデンサ基体60の第一主表面に、高分子積層コンデンサ部10が接合された構造を有する。高分子積層コンデンサ部10の第一主表面には、一方が電源端子、他方がグランド端子として使用される第一種端子5aと第二種端子5bとが互い違いの格子状(あるいは千鳥状でもよい)に配列され、第一端子アレー5を形成している。また、積層セラミックコンデンサ基体60の第二主表面には、一方が電源端子、他方がグランド端子として使用される第一種基体側端子7aと第二種基体側端子7bとが、第一端子アレー5の端子配列に対応した互い違いの格子状(あるいは千鳥状でもよい)に配列され、第二端子アレー7を形成している。なお、いずれのアレー5,7も、電源端子とグランド端子との格子状配列を取り囲む形態で複数の信号用端子5s及び信号用基体側端子7sを有している。
【0027】
図4は、中間基板1の詳細構造を示すものである。
高分子積層コンデンサ部10は、複数の高分子誘電体層13と複数の電極導体層14,17とが交互に積層されたものである。電極導体層14,17は、第一種端子5aに導通する第一種電極導体層14と、第二種端子5bに導通する第二種電極導体層17とが、高分子誘電体層13により隔てられた形で積層方向に交互に配列している。そして、一部拡大例示するように、積層方向に隣接する一方の同種電極導体層(ここでは、第二種電極導体層)17(A)と、他方の同種電極導体層17(B)との間に、第一の高分子誘電体層13(A)と、他種電極導体層(ここでは、第一種電極導体層)14と、第二の高分子誘電体層13(B)とがこの順序で配列してなる。第一の高分子誘電体層13(A)に形成された第一貫通孔13h(A)と、他種電極導体層14に形成された第二貫通孔16とは面内投影にて重なりを有し、該第二貫通孔16と第二の高分子誘電体層13(B)に形成された第三貫通孔13h(B)とが面内投影にて重なりを有している(例示した部分では、これらの貫通孔は円形断面により同軸的に配置されている)。
【0028】
そして、第一貫通孔13h(A)と第三貫通孔13h(B)とをそれぞれ充填する形で、一方の同種電極導体層17(A)と、他方の同種電極導体層17(B)とを結合するビア導体部19が形成されている。ここでは、2つの高分子誘電体層13,13に個別に形成されたビア同士を互いに結合した、いわゆるスタックドビア形態が採用されている。そして、第二貫通孔16内において、第一の高分子誘電体層13(A)及び第二の高分子誘電体層13(B)とそれぞれ一体化(結合)された誘電体孔内充填部13vにより、ビア導体部19の外周面と該第二貫通孔16の内周面とが直流的に分離されてなる。上記構造において、第一電極導体層14と第二電極導体層17とが反転した構造部も同様に形成されている。
なお、図4では、貫通孔16,18の図示に伴い、電極導体層14,17は面内方向に分断されているように見えるが、実際は図5のごとく、貫通孔16,18以外の部分では面内方向に連続層を形成している。また、高分子誘電体層13についても同様である。
【0029】
上記構造の高分子積層コンデンサ部10は、周知のビルドアップ法にて形成されるものであり、高分子誘電体層13は、エポキシ樹脂などの樹脂組成物からなるビルドアップ層として、厚さが例えば20μm以上50μm以下に形成される。本実施形態において高分子誘電体層13はエポキシ樹脂にて構成され、SiOからなる誘電体フィラーを10質量%以上30質量%以下の比率にて配合したものであり、比誘電率εが2〜4(例えば3程度)に調整されている。他方、さらなる比誘電率向上のため、高誘電率セラミック(具体的には、ペロブスカイト型結晶構造を有した複合酸化物、例えばチタン酸バリウム、チタン酸ストロンチウム及びチタン酸鉛の1種又は2種以上にて構成されたもの)からなるフィラーを用いてもよい。
【0030】
電極導体層14,17は、該ビルドアップ層上へのパターンメッキ層(例えば電解Cuメッキ層である)として、厚さが例えば10μm以上20μm以下に形成される。ビア導体部15,19は、高分子誘電体層13にフォトビアプロセス(高分子誘電体層13は感光性樹脂組成物、例えば紫外線硬化型エポキシ樹脂にて構成される)、あるいはレーザー穿孔ビアプロセス(高分子誘電体層13は非感光性樹脂組成物にて構成される)などの周知の手法によりビアホールを穿設し、その内側をメッキ等によるビア導体で充填もしくは覆った構造を有する。なお、高分子積層コンデンサ部10の第一主表面は、第一種端子5aと第二種端子5bとを露出させる形で、感光性樹脂組成物よりなるソルダーレジスト層11にて覆われている。
【0031】
次に、ビア導体部15(19)にて結合される同種の電極導体層14(17)は、直流抵抗増大を防止するために、電極導体層14(17)毎に、同じ主表面側にて該電極導体層14(17)に導通するビア導体部15(19)を複数個形成してあり、具体的には、第一端子アレー5の各端子と同数にて、ビア導体部15(19)が分散形成されてなる。
【0032】
また、第一端子アレー5内の第一種端子5aと第二種端子5bとは、該第一主表面に最も近い第一種電極導体層14及び第二種電極導体層17に対し、それぞれ直接(本実施形態では第一種電極導体層14側)又は補助ビア導体部19’(本実施形態では第二種電極導体層17側)を介して層厚方向に結合された構造となっている。
【0033】
次に、積層セラミックコンデンサ基体60は、基本構造は高分子積層コンデンサ部10と略同様であり、直流的に互いに分離された第一種焼成電極導体層57と第二種焼成電極導体層54(いずれも、厚さ:例えば0.5μm以上5μm以下)とが、それら焼成電極導体層57,54と同時焼成された焼成セラミック誘電体層52(厚さ:例えば1μm以上10μm以下)と交互に積層された構造を有する。このような積層セラミックコンデンサ基体60は、構成セラミックの原料粉末を含有した周知のセラミックグリーンシートを用いて製造でき、焼成電極導体層57,54のパターンは、金属ペーストの印刷塗布により形成することができる。また、ビア導体部59,55は、セラミックグリーンシートにパンチングあるいはレーザー穿孔等により形成したビアホールに、金属粉末ペーストを充填し、焼成することにより形成される。同極性となる電極導体層57同士あるいは54同士は、ビア導体部59,55により積層方向に連結され、極性の異なる電極導体層57,54とビア導体部59,55同士は、金属ペーストの印刷パターンニング時において各電極導体層57,54に形成された貫通孔58,56により直流的に分離される。
【0034】
第二端子アレー7内の第一種基体側端子7aと第二種基体側端子7bとは、積層セラミックコンデンサ基体60の第二主表面に最も近い第一種焼成電極導体層57及び第二種焼成電極導体層54に、ビア導体部55,59を介して層厚方向に結合された構造となっている。そして、高分子積層コンデンサ部10の第二主表面(積層セラミックコンデンサ基体60の第一主表面)において、積層セラミックコンデンサ基体60側のビア導体部59,55は、高分子積層コンデンサ部10側の対応する極性の電極導体層14,17に、直接又はビア導体部15”を介して接続されてなる。
【0035】
積層セラミックコンデンサ基体60に使用する焼成誘電体層52は、静電容量向上を優先したい場合は、高誘電率セラミック、例えばチタン酸バリウム、チタン酸ストロンチウム及びチタン酸鉛の1種または2種以上からなるペロブスカイト型酸化物層として構成するのがよい。他方、中間基板1全体の線膨張係数を下げ、また、剛性を高める効果を優先したい場合は、焼成誘電体層52を、アルミナやガラスセラミックなど、常誘電性のセラミックで構成することも可能である。
【0036】
次に、本実施形態のコンデンサ(中間基板)1においては、第二端子アレー7の端子配列間隔が、第一端子アレー5の端子配列間隔よりも広く設定されている。積層セラミックコンデンサ基体60の第一主表面には、第一種基体側端子7aに導通する第一種基体側結合導体部51aと、第二種基体側端子7bに導通する第二種基体側結合導体部51bとの各端部が、第一端子アレー5の端子間隔よりも(平均値にて)大間隔にて配列している。この場合、第一端子アレー5側の狭い端子間隔を、広い第二端子アレー7の端子配列に合わせるために、コンデンサ内蔵中間基板1の内部で端子間隔の変換を行なう必要がある。
【0037】
次に、電極導体層14,17は、その少なくとも一層が間隔変換用層LTとされている。間隔変換用層LTにおいては当該電極導体層14,17に対し、第一端子アレー5側からはビア導体部15(B)(19(B))が第一配列間隔d1にて接続し、第二端子アレー7側からは、該第一配列間隔d1よりも広い第二配列間隔d2にてビア導体部15”(55)が接続する。つまり、間隔変換用層LTは、その上下に接続するビア導体部の接続位置を互いに異ならせることで、端子間隔の変換を実現している。なお、間隔変換用層LTの上下に接続するビア導体部15(B)(19(B))及び15”(55)の配列間隔は、例えば等間隔配列を基本に設計できるが、異極性のビア導体部との干渉回避などのため局所的に間隔変更されることもあり、最終的な配列間隔は必ずしも等間隔になるとは限らない。上記の第一配列間隔d1及び第二配列間隔d2は、こうした場合も考慮して、複数のビア導体部の各縁間間隔の平均値にて表すものとしている。
【0038】
本実施形態のコンデンサ内蔵中間基板1においては、上記のように端子間隔の拡張変換を行なっており、第二端子アレー7の方が第一端子アレー5よりもアレー面積が大きくなっている。そこで、その面積差を利用して、高分子積層コンデンサ部10の第二主表面側に配列する、第一種電極導体層14と第二種電極導体層17との組の一部のもの、ここでは最下層の2層14(W),17(W)を、第一主表面側に配列する第一種電極導体層14と第二種電極導体層17との組よりも大面積としている。これにより、コンデンサ内蔵中間基板1の静電容量を一層高めることができる。
【0039】
また、第一種電極導体層14と第二種電極導体層17との双方が、それぞれ間隔変換用層LTとして利用され、第一種電極導体層14は第一種端子5aに導通するビア導体部15の間隔拡張に使用され、第二種電極導体層17は第二種端子5bに導通するビア導体部19の間隔拡張に使用されている。具体的には、間隔変換量を大きく確保できることから、他の膜よりも面積拡張された第一種電極導体層14と第二種電極導体層17との組(すなわち、最下層の2層14(W),17(W))を、間隔変換用層LT,LTとして用いている(ただし、最上層を除く各々全ての電極導体層14,17を間隔変換用層LTとしてもよい)。
【0040】
次に、高分子積層コンデンサ部10の第一主表面には、第一種端子5a及び第二種端子5bの他に、第一端子アレー5の外周領域を割り当てる形で、前述の信号用端子5sが複数形成されている。ここれら信号用端子5sは、積層セラミックコンデンサ基体60の第二主表面に形成された信号用基体側端子7sに対し、高分子積層コンデンサ部10内にて電極導体層14,17に導通しない形で(本実施形態では、電極導体層14,17を面内方向外側に迂回する形で)、高分子積層コンデンサ部10内の信号用ビア導体部22及び積層セラミックコンデンサ基体60内の信号用ビア導体部51sを介して接続されている。
【0041】
なお、図4の実施形態では、第一端子アレー5は第二端子アレー7内に投影関係において包含されるように形成されており、アレーの外側に位置する端子ほど、配置間隔拡大に伴うアレー間の対応端子同士の位置ずれ量が大きい。従って、第一端子アレー5の外周領域に配置される信号用端子5sは、対応する信号用基体側端子7sに接続するために、高分子積層コンデンサ部10内に形成される面内方向の引き回し配線部21も長く確保する必要がある。本実施形態では、第一端子アレー5から第二端子アレー7への端子間隔変換量が比較的大きく設定されているため、内側に位置する信号用端子5sの引き回し配線部21が、外側の信号用端子5sの引き回し配線部21と面内方向に干渉することを避けるため、両配線部21,21を、互いに異なる層に作りこんでいる。しかし、端子間隔変換量がそれほど大きくない場合は、内外の信号用端子5sの引き回し配線部21を同一層内に形成することも可能である。また、上記の実施形態では、第一端子アレー5の外周領域を割り当てる形で、信号用端子5sが形成されているが、信号ラインのシールド性を高めクロストーク抑制を図るために、信号用端子5s(及びこれに導通する信号ライン)を、グランド端子(及びこれに導通するグランドライン)にて包囲することも可能である。
【0042】
以下、本発明のコンデンサ内蔵中間基板の変形例について説明する。
図6の中間基板100は、積層セラミックコンデンサ基体60内の焼成電極導体層57,54を、薄膜コンデンサ10における間隔変換用薄膜LTと同様に、上下のビア導体部59,55の連結位置が異なる端子間隔変換層LT’とされ、該積層セラミックコンデンサ基体60にて端子間隔変換を行なうようにしているい。ここでは、薄膜コンデンサ10内にも間隔変換用薄膜LTを設けて適当な間隔までビア導体部15,19の配列間隔を広げ、さらに、積層セラミックコンデンサ基体60内の端子間隔変換層LT’により、基体側結合導体部59,55の配列間隔を広げることにより、端子間隔変換を2段階にて行なっている(もちろん、積層セラミックコンデンサ基体60内でのみ、端子間隔変換を行なうようにしてもよい)。
【0043】
また、図7の中間基板100においては、第一端子アレー5との第二端子アレー7との端子配列間隔が同一に設定されている。この場合、図8に示すように、間隔変換用層LT,LTは形成されない。
【図面の簡単な説明】
【図1】本発明のコンデンサを中間基板として構成した一例を示す側面模式図。
【図2】集積回路用のデカップリングコンデンサの使用形態の一例を示す等価回路図。
【図3】図1の本発明のコンデンサを取り出して示す平面図及び側面断面模式図。
【図4】図3のコンデンサの詳細構造を示す断面図。
【図5】電極導体層の平面形態を例示して示す模式図。
【図6】図4のコンデンサの第一変形例を示す断面図。
【図7】同じく第二変形例を示す平面図及び側面断面模式図。
【図8】図7の要部拡大断面模式図。
【符号の説明】
1,100,200 コンデンサ内蔵中間基板
5 第一端子アレー
5a 第一種端子
5b 第二種端子
5s 信号用端子
7 第二端子アレー
7a 第一種基体側端子
7b 第二種基体側端子
7s 信号用基体側端子
10 高分子積層コンデンサ
13 高分子誘電体層
13h 貫通孔
13v 誘電体孔内充填部
14 第一種電極導体層
15,19 ビア導体部
17 第二種電極導体層
16,18 貫通孔
57 第一種焼成電極導体層
54 第二種焼成電極導体層
59,55 ビア導体部
60 積層セラミックコンデンサ基体
LT,LT’ 間隔変換用層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intermediate substrate with a built-in capacitor.
[0002]
[Prior art]
[Patent Document 1]
JP 2003-142624 A
[0003]
In an integrated circuit device such as a CPU or other LSI that operates at high speed, power lines are allocated to a plurality of circuit blocks in the integrated circuit so as to branch from a common power source. When the elements are simultaneously switched at a high speed, a large current is drawn from the power supply at once, and there is a problem that fluctuations in the power supply voltage become a kind of noise and propagate to each circuit block through the power supply line. Therefore, providing a decoupling capacitor for reducing the power supply impedance for each circuit block is effective in suppressing noise propagation between blocks due to power supply voltage fluctuations. Further, a bypass capacitor (commonly referred to as “pass capacitor”) that removes external noise such as surge noise in an AC filtering manner may be provided in the same connection form.
[0004]
By the way, in the case of a large-scale integrated circuit such as a CPU, the number of circuit blocks to be built is large, the number of power supply terminals and ground terminals tends to increase, and the distance between terminals is also decreasing. Decoupling capacitors need to be connected to each power supply line going to each circuit block, and it is not only difficult to mount capacitors individually in an integrated circuit where many terminals are densely packed, but also miniaturization, etc. Go backwards in the flow.
[0005]
Therefore, Patent Document 1 discloses an intermediate substrate type decoupling capacitor using a thin film capacitor. As a result, decoupling capacitors used in a large number of circuit blocks can be collected in the intermediate substrate. In addition, in the high frequency region (especially 100 MHz or more) where the noise problem due to power supply voltage fluctuation at the time of high-speed switching is particularly likely to appear, the specific gravity of the inductive reactance term in the power supply impedance becomes large. Therefore, by directly connecting a capacitor functioning as a decoupling capacitor (or bypass capacitor) to a semiconductor element in the form of an intermediate substrate, the decoupling capacitor can be brought closer to the semiconductor element, and the wiring length between the power supply terminal and the decoupling capacitor Can be shortened. As a result, the inductance of the capacitor terminal can be reduced, which contributes to lowering the impedance of the decoupling capacitor.
[0006]
[Problems to be solved by the invention]
However, the above-described Patent Document 1 has a configuration in which a thin film capacitor is independently formed as an intermediate substrate. In this configuration, since the rigidity of the thin film capacitor is not so high, the main board that is the connection destination is mainly made of a polymer material such as a mother board or an organic package board that forms the second intermediate board. If a thermal history such as solder reflow is applied, the thermal stress may lead to defects such as solder peeling and damage to the thin film capacitor itself due to insufficient rigidity.
[0007]
An object of the present invention is to provide a rigidity sufficient to withstand thermal stress due to a difference in coefficient of linear expansion between a semiconductor element and a main substrate even when a thermal history such as solder reflow is applied, and a decoupling capacitor The object is to provide an intermediate substrate with a built-in capacitor that can easily secure the capacitance necessary for realizing the function.
[0008]
[Means for solving the problems and actions / effects]
In order to solve the above problem, the intermediate substrate with a built-in capacitor of the present invention is
A multilayer ceramic capacitor substrate in which first-type fired electrode conductor layers and second-type fired electrode conductor layers separated from each other in direct current are alternately laminated with fired ceramic dielectric layers fired simultaneously with the fired electrode conductors; ,
A first type electrode conductor layer provided on the first main surface of the multilayer ceramic capacitor substrate and conducting to the first type sintered electrode conductor layer; and a second type electrode conductor layer conducting to the second type sintered electrode conductor layer. A polymer multilayer capacitor portion alternately laminated with polymer dielectric layers in a form separated from each other in a direct current manner,
On the first main surface of the polymer multilayer capacitor, a first terminal array comprising a first type terminal and a second type terminal respectively conducting to the first type electrode conductor layer and the second type electrode conductor layer is formed,
A second terminal comprising a first-type substrate-side terminal and a second-type substrate-side terminal that are electrically connected to the first-type sintered electrode conductor layer and the second-type sintered electrode conductor layer on the second main surface of the multilayer ceramic capacitor substrate. An array is formed.
[0009]
In the above-described intermediate substrate with built-in capacitor, the polymer multilayer capacitor is integrated on the multilayer ceramic capacitor substrate. The first terminal array formed on the first main surface of the polymer multilayer capacitor can be solder-connected to the power supply terminal and the ground terminal on the semiconductor element side made of a silicon integrated circuit chip or the like. A power terminal and a ground terminal can be connected to the second terminal array formed on the second main surface of the multilayer ceramic capacitor substrate. Therefore, the capacitor having the structure can be functioned as an intermediate substrate that is located between the semiconductor element and the main substrate and mediates the connection between the two. A polymer multilayer capacitor uses a polymer material with a relatively low dielectric constant as a dielectric, so that a large capacitance cannot be expected and rigidity is low, but a multilayer ceramic capacitor using a ceramic with a high dielectric constant is used as the base. As a composite, it is possible to simultaneously improve the capacitance and the rigidity of the intermediate substrate. As a result, even when a thermal history such as solder reflow is added, it has sufficient rigidity to withstand thermal stress due to the difference in coefficient of linear expansion between the semiconductor element and the main board, and it is static for decoupling capacitors. An intermediate substrate with a built-in capacitor that can easily secure the capacitance is realized.
[0010]
Naturally, a capacitor that functions as a decoupling capacitor (or a bypass capacitor) is directly connected to the semiconductor element in the form of an intermediate board incorporating the capacitor, so that the decoupling capacitor can be brought closer to the semiconductor element, and the power supply terminal and the decoupling capacitor The wiring length can be shortened. As a result, the inductance of the capacitor terminal can be reduced, which contributes to lowering the impedance of the decoupling capacitor. Further, since the decoupling capacitor is incorporated in the intermediate board, it is not necessary to arrange the decoupling capacitor as a separate element on the back side of the main board, and the number of parts can be reduced or the apparatus can be downsized. From the viewpoint of improving rigidity, it is more advantageous that the multilayer ceramic capacitor substrate is formed thicker than the polymer multilayer capacitor having low rigidity.
[0011]
Since the dielectric constant of the ceramic dielectric is generally higher than the dielectric constant of the polymer material, it is very easy to set the capacitance of the multilayer ceramic capacitor substrate to be larger than the capacitance of the polymer multilayer capacitor. As a result, the multilayer ceramic capacitor substrate naturally has the effect of supplementing the electrostatic capacitance of the polymer multilayer capacitor, and also has a parallel combination of a relatively large capacitor and a smaller capacitor. In some cases, the impedance reduction effect can be secured in a wider frequency band.
[0012]
When the dielectric layer used for the multilayer ceramic capacitor substrate is made of a high dielectric constant ceramic (defined as a ceramic having a relative dielectric constant of 50 or more: for example, a ferroelectric ceramic), its capacitance can be greatly increased. As a result, the shortage of the capacitance of the polymer multilayer capacitor can be compensated more effectively. Further, from the viewpoint of obtaining a capacitor having the same capacity, the electrode area can be reduced, which is advantageous from the viewpoint of reducing the size of the intermediate substrate. Further, as the high dielectric constant ceramic, a composite oxide having a perovskite type crystal structure, for example, one composed of one or more of barium titanate, strontium titanate and lead titanate is particularly high dielectric constant. And can be suitably used in the present invention.
[0013]
On the other hand, depending on the frequency band for impedance reduction, there is a case where the capacitance on the multilayer ceramic capacitor substrate side does not need to be increased so much. In this case, the ceramic used has a low coefficient of linear expansion, while the rigidity ( A material with a high Young's modulus) is preferable. This reduces the difference in expansion coefficient between the semiconductor element (for example, silicon) and the intermediate substrate, and between the intermediate substrate and the main substrate mainly composed of a polymer material, and thus is formed on both surfaces of the intermediate substrate during solder reflow. It is possible to reduce the level of thermal shear stress applied to each of the terminals, and to prevent the solder from peeling off at the terminals.
[0014]
The linear expansion coefficient of silicon from room temperature to around 300 ° C used for solder reflow is as low as 2-3 ppm / ° C. Conversely, polymer materials such as epoxy resins that constitute the main substrate (motherboard or organic package substrate) are It is as high as 17 to 20 ppm / ° C. Since the dielectric layer of the polymer multilayer capacitor is also composed of a polymer material having a high linear expansion coefficient such as a photosensitive epoxy resin, the plate-like substrate is composed of a ceramic material having a low linear expansion coefficient as much as possible. This is effective by reducing the difference between the linear expansion coefficients and reducing the shear stress acting on the terminal. As such a ceramic material, alumina (7 to 8 ppm / ° C.), glass ceramic obtained by adding 40 to 60 parts by weight of an inorganic ceramic filler such as alumina to borosilicate glass or lead borosilicate glass can be used. As other ceramic materials, aluminum nitride, silicon nitride, mullite, silicon dioxide, magnesium oxide, and the like can also be used.
[0015]
Next, in Patent Document 1, as shown in FIG. 2, in addition to the capacitor electrode, a lead wiring portion (reference numeral 32: third conductor layer) for terminal interval conversion is positioned at the uppermost layer position. Not only does the manufacturing process become longer due to the increased number of layers, but also the long lead-out wiring part is formed at the position directly connected to the terminal part of the semiconductor element. It is difficult to achieve impedance and wide bandwidth.
[0016]
In order to solve this problem, on the first main surface of the polymer multilayer capacitor part, the first type terminal and the second type terminal forming the first terminal array are closest to the first main surface. It is effective to employ a structure in which the conductor layer and the second-type electrode conductor layer are coupled in the stacking direction directly or via an auxiliary via conductor. According to this structure, the conductor portion directly connected to the terminal is the electrode conductor layer that forms the capacitor or the auxiliary via conductor in the stacking direction that conducts to the electrode conductor layer. As a result, it is possible to effectively eliminate the lead-out wiring portion as in Patent Document 1 that causes an increase in inductance, and thus it is possible to reduce the impedance of the capacitor and increase the bandwidth. Further, since it is not necessary to provide a lead wiring portion separately from the electrode conductor layer, the structure is simplified and the manufacturing process can be simplified.
[0017]
Next, in the intermediate substrate with a built-in capacitor according to the present invention, the terminal arrangement interval of the second terminal array can be set wider than the terminal arrangement interval of the first terminal array. In recent years, the interval between terminals of an integrated circuit element to be connected to a capacitor tends to become narrower due to the miniaturization and higher density of the integrated circuit element. On the other hand, the terminal interval on the main board side may not be narrowed from the viewpoint of manufacturing cost. In this case, the terminal interval of the integrated circuit element and the terminal interval on the main board side may not match. However, as described above, in the capacitor built-in intermediate substrate, the terminals of the second terminal array formed on the second main surface of the plate-like substrate rather than the first terminal array formed on the first main surface of the polymer multilayer capacitor. If the arrangement interval is set wide, even if the above-described terminal interval mismatch occurs on the front and back sides of the capacitor forming the intermediate substrate, both can be connected without any problem.
[0018]
In the polymer multilayer capacitor having the above configuration, at least one of the electrode conductor layers has via conductor portions (via conductor portions of the polymer multilayer capacitor) arranged from the first terminal array side to the electrode conductor layer at the first arrangement interval. Are connected to the electrode conductor layer from the second terminal array side at a second arrangement interval wider than the first arrangement interval, either via conductor portion of polymer multilayer capacitor or substrate side coupling conductor portion. ) Is connected to the interval conversion layer. In this specification, the first arrangement interval and the second arrangement interval are both defined as meaning the average interval of the via conductor portions. By changing the positions of the corresponding via conductor portions connected to the upper and lower sides of the interval conversion layer, the terminal interval can be converted very easily.
[0019]
In this case, in the polymer multilayer capacitor, at least one layer of the first-type electrode conductor layer and at least one layer of the second-type electrode conductor layer can be used as an interval conversion layer, respectively. Thereby, it is possible to easily convert the terminal interval independently while maintaining the DC separation state of the first type terminal and the second type terminal. In other words, the first type electrode conductor layer is used for expanding the interval of the via conductor portion conducting to the first type terminal, and the second type electrode conductor layer is used for expanding the interval of the via conductor portion conducting to the second type terminal. Thus, the intervals between the various types of terminals can be expanded and converted at different positions in the stacking direction.
[0020]
If spacing between different types of terminals is to be performed at the same position in the stacking direction, a through hole is formed in the electrode conductor layer of the first polarity (one of the first type and the second type), and the first hole is inserted into the through hole. Bipolar (the other of the first type and the second type) conductor layers must be arranged in a relatively large area in order to expand the terminal spacing, separated by a dielectric. Since the second polarity conductor layer has the same polarity as the conductor layer adjacent to the polymer dielectric layer, it hardly contributes to the formation of capacitance. On the other hand, the first polarity electrode conductor layer has a different polarity from the adjacent conductor layer across the polymer dielectric layer. In this case, the through hole must be formed large, so that the effective area of the electrode is reduced and the capacitance is reduced.
[0021]
However, if the distance between the various terminals is extended and converted at different positions in the stacking direction, the first polarity conductor layer must be mixed with the second polarity conductor layer at the same position in the stacking direction. Therefore, the capacitance can be prevented from decreasing. More specifically, the first-type electrode conductor layer and the second-type electrode conductor layer define the same type of electrode conductor layer closest to the first terminal array side with respect to the interval conversion layer as the pre-conversion layer. When the same type of electrode conductor layer closest to the second terminal array side is defined as a post-conversion layer, each via between the pre-conversion layer and the interval conversion layer and between the interval conversion layer and the post-conversion layer Two positions where the coupling positions of the conductor portions coincide with each other in the in-plane direction, and are located between the pre-conversion layer and the interval conversion layer and between the interval conversion layer and the post-conversion layer, respectively. The second through hole for passing the via conductor portion may be formed in another electrode conductor layer with a positional relationship shifted from each other. Accordingly, the through hole formed in the first-type electrode conductor layer and the second-type electrode conductor layer suffices with the minimum necessary area for passing the via conductor portion, although the terminal interval conversion is performed. The influence of the decrease in capacitance can be eliminated as much as possible.
[0022]
When performing an extended conversion of the terminal spacing as described above, a first-type electrode conductor arranged on the second main surface side of the polymer multilayer capacitor using the area difference between the first terminal array and the second terminal array A part of the set of the layer and the second type electrode conductor layer may have a larger area than the set of the first type electrode conductor layer and the second type electrode conductor layer arranged on the first main surface side. it can. As a result, the capacitance of the capacitor can be further increased.
[0023]
Also, a structure similar to the above can be adopted in the multilayer ceramic capacitor substrate, and the same effect can be achieved. That is, in the multilayer ceramic capacitor substrate, at least one layer of the fired electrode conductor layer is connected from the first terminal array side to the fired electrode conductor layer with via conductor portions at the first arrangement interval, while the second terminal array side is concerned. It can be set as the space | interval conversion layer which a via conductor part connects to a baking electrode conductor layer by the 2nd arrangement space wider than a 1st arrangement space. In this case, at least one layer of the first-type fired electrode conductor layer and at least one layer of the second-type fired electrode conductor layer can be used as the interval conversion layer, respectively.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example in which a capacitor built-in intermediate substrate (hereinafter also simply referred to as an intermediate substrate) 1 constituting an embodiment of the present invention is configured as an intermediate substrate disposed between a semiconductor integrated circuit element 2 and a main substrate 3. It is. In the present embodiment, the first main surface of the plate-like member is a surface appearing on the upper side in the drawing, and the second main surface is a surface appearing on the lower side.
[0025]
The semiconductor integrated circuit element 2 has an element side terminal array 4 including a plurality of signal terminals, a power supply terminal, and a ground terminal on the second main surface, and a first terminal array 5 formed on the first main surface of the intermediate substrate 1. On the other hand, it is flip-chip connected via the solder connection portion 6. On the other hand, the main substrate 3 is a mother board or an organic laminated package substrate forming a second-stage intermediate substrate, each of which is mainly composed of a polymer material reinforced with ceramic particles or fibers as fillers. The main board side terminal array 8 made of metal pins is connected to the second terminal array 7 formed on the second main surface of the intermediate board 1 via the solder connection portion 6. As shown in FIG. 2, the capacitor-embedded intermediate substrate 1 serving as the intermediate substrate functions as a decoupling capacitor connected in parallel to the power supply line of the semiconductor integrated circuit element 2. In the equivalent circuit of FIG. 2, it is drawn that an independent decoupling capacitor is provided for each power supply line, but these decoupling capacitors are all connected in parallel between the power supply line of the same voltage and the ground. Therefore, in the following embodiments, the decoupling capacitor will be described by being representatively represented by a configuration in which the power supply line is shared as a single capacitor (however, the present invention is not limited to this).
[0026]
As shown in FIG. 3, the capacitor-embedded intermediate substrate 1 has a structure in which a multilayer ceramic capacitor substrate 60 and a polymer multilayer capacitor portion 10 are bonded to the first main surface of the multilayer ceramic capacitor substrate 60. On the first main surface of the polymer multilayer capacitor portion 10, a first-type terminal 5a and a second-type terminal 5b, one of which is used as a power supply terminal and the other as a ground terminal, may have a staggered lattice shape (or a staggered shape). ) To form a first terminal array 5. Also, on the second main surface of the multilayer ceramic capacitor substrate 60, there are a first type substrate side terminal 7a and a second type substrate side terminal 7b, one of which is used as a power supply terminal and the other as a ground terminal. The second terminal array 7 is formed in an alternating grid pattern (or a zigzag pattern) corresponding to the five terminal arrays. Each of the arrays 5 and 7 has a plurality of signal terminals 5s and a signal base-side terminal 7s in a form surrounding a grid-like arrangement of power supply terminals and ground terminals.
[0027]
FIG. 4 shows a detailed structure of the intermediate substrate 1.
The polymer multilayer capacitor unit 10 is formed by alternately laminating a plurality of polymer dielectric layers 13 and a plurality of electrode conductor layers 14 and 17. The electrode conductor layers 14 and 17 are composed of a first dielectric electrode conductor layer 14 conducting to the first kind terminal 5 a and a second dielectric electrode conductor layer 17 conducting to the second kind terminal 5 b by the polymer dielectric layer 13. They are arranged alternately in the stacking direction in a separated form. And, as partially enlarged, one of the same kind of electrode conductor layers (here, the second kind of electrode conductor layer) 17 (A) adjacent to the stacking direction and the other of the same kind of electrode conductor layer 17 (B) Between the first polymer dielectric layer 13 (A), the other type electrode conductor layer (here, the first type electrode conductor layer) 14, and the second polymer dielectric layer 13 (B). Arranged in this order. The first through hole 13h (A) formed in the first polymer dielectric layer 13 (A) and the second through hole 16 formed in the other-type electrode conductor layer 14 overlap with each other by in-plane projection. And the second through hole 16 and the third through hole 13h (B) formed in the second polymer dielectric layer 13 (B) are overlapped by in-plane projection (illustrated) In part, these through-holes are arranged coaxially with a circular cross-section).
[0028]
The first through-hole 13h (A) and the third through-hole 13h (B) are filled, respectively, so that one homogeneous electrode conductor layer 17 (A) and the other identical electrode conductor layer 17 (B) A via conductor portion 19 is formed to couple the two. Here, a so-called stacked via configuration in which vias individually formed in the two polymer dielectric layers 13 and 13 are coupled to each other is adopted. Then, in the second through-hole 16, the dielectric hole filling portion integrated (coupled) with the first polymer dielectric layer 13 (A) and the second polymer dielectric layer 13 (B), respectively. 13v separates the outer peripheral surface of the via conductor portion 19 and the inner peripheral surface of the second through hole 16 in a direct current manner. In the above structure, a structure portion in which the first electrode conductor layer 14 and the second electrode conductor layer 17 are inverted is also formed in the same manner.
In FIG. 4, the electrode conductor layers 14 and 17 appear to be divided in the in-plane direction along with the illustration of the through holes 16 and 18, but actually, the portions other than the through holes 16 and 18 as shown in FIG. 5. Then, a continuous layer is formed in the in-plane direction. The same applies to the polymer dielectric layer 13.
[0029]
The polymer multilayer capacitor portion 10 having the above structure is formed by a well-known build-up method, and the polymer dielectric layer 13 has a thickness as a build-up layer made of a resin composition such as an epoxy resin. For example, it is formed to 20 μm or more and 50 μm or less. In this embodiment, the polymer dielectric layer 13 is composed of an epoxy resin, and SiO. 2 A dielectric filler composed of 10% by mass to 30% by mass is adjusted, and the relative dielectric constant ε is adjusted to 2 to 4 (for example, about 3). On the other hand, a high dielectric constant ceramic (specifically, a complex oxide having a perovskite crystal structure, for example, one or more of barium titanate, strontium titanate, and lead titanate for further improvement of the dielectric constant) It is also possible to use a filler made of
[0030]
The electrode conductor layers 14 and 17 are formed in a thickness of, for example, 10 μm or more and 20 μm or less as a pattern plating layer (for example, an electrolytic Cu plating layer) on the buildup layer. The via conductor portions 15 and 19 are formed on the polymer dielectric layer 13 by a photo via process (the polymer dielectric layer 13 is made of a photosensitive resin composition, for example, an ultraviolet curable epoxy resin), or a laser drilling via process. A via hole is formed by a known method such as (the polymer dielectric layer 13 is made of a non-photosensitive resin composition), and the inside thereof is filled or covered with a via conductor such as plating. In addition, the 1st main surface of the polymer multilayer capacitor | condenser part 10 is covered with the soldering resist layer 11 which consists of a photosensitive resin composition in the form which exposes the 1st type terminal 5a and the 2nd type terminal 5b. .
[0031]
Next, the same kind of electrode conductor layer 14 (17) coupled by the via conductor portion 15 (19) is disposed on the same main surface side for each electrode conductor layer 14 (17) in order to prevent an increase in DC resistance. A plurality of via conductor portions 15 (19) that are electrically connected to the electrode conductor layer 14 (17) are formed. Specifically, the via conductor portions 15 ( 19) is formed in a dispersed manner.
[0032]
In addition, the first type terminal 5a and the second type terminal 5b in the first terminal array 5 are respectively in the first type electrode conductor layer 14 and the second type electrode conductor layer 17 closest to the first main surface. Directly (in this embodiment, the first-type electrode conductor layer 14 side) or an auxiliary via conductor portion 19 ′ (in this embodiment, the second-type electrode conductor layer 17 side) is coupled in the layer thickness direction. Yes.
[0033]
Next, the basic structure of the multilayer ceramic capacitor substrate 60 is substantially the same as that of the polymer multilayer capacitor unit 10, and the first-type sintered electrode conductor layer 57 and the second-type sintered electrode conductor layer 54 ( In any case, the thickness is, for example, 0.5 μm or more and 5 μm or less) and the fired ceramic dielectric layers 52 (thickness: for example, 1 μm or more and 10 μm or less) that are co-fired with the fired electrode conductor layers 57 and 54 are alternately laminated. Has a structured. Such a multilayer ceramic capacitor substrate 60 can be manufactured using a known ceramic green sheet containing a raw material powder of a constituent ceramic, and the patterns of the fired electrode conductor layers 57 and 54 can be formed by printing and applying a metal paste. it can. The via conductor portions 59 and 55 are formed by filling a metal powder paste into a via hole formed by punching or laser drilling in a ceramic green sheet and firing it. The electrode conductor layers 57 or 54 having the same polarity are connected in the stacking direction by via conductor portions 59 and 55, and the electrode conductor layers 57 and 54 and the via conductor portions 59 and 55 having different polarities are printed with a metal paste. At the time of patterning, the through holes 58 and 56 formed in the electrode conductor layers 57 and 54 are separated in a direct current manner.
[0034]
The first-type substrate-side terminal 7 a and the second-type substrate-side terminal 7 b in the second terminal array 7 are the first-type fired electrode conductor layer 57 and the second type that are closest to the second main surface of the multilayer ceramic capacitor substrate 60. It has a structure in which it is coupled to the fired electrode conductor layer 54 in the layer thickness direction via via conductor portions 55 and 59. The via conductors 59 and 55 on the multilayer ceramic capacitor substrate 60 side are on the polymer multilayer capacitor unit 10 side on the second main surface of the polymer multilayer capacitor unit 10 (first main surface of the multilayer ceramic capacitor substrate 60). The electrode conductor layers 14 and 17 having the corresponding polarities are connected directly or via via conductor portions 15 ″.
[0035]
The sintered dielectric layer 52 used for the multilayer ceramic capacitor substrate 60 is made of a high dielectric constant ceramic, for example, one or more of barium titanate, strontium titanate, and lead titanate, in order to prioritize the improvement of capacitance. The perovskite type oxide layer is preferable. On the other hand, if priority is given to the effect of lowering the linear expansion coefficient of the entire intermediate substrate 1 and increasing the rigidity, the fired dielectric layer 52 can be made of a paraelectric ceramic such as alumina or glass ceramic. is there.
[0036]
Next, in the capacitor (intermediate substrate) 1 of the present embodiment, the terminal arrangement interval of the second terminal array 7 is set wider than the terminal arrangement interval of the first terminal array 5. On the first main surface of the multilayer ceramic capacitor substrate 60, a first-type substrate-side coupling conductor portion 51a that conducts to the first-type substrate-side terminal 7a and a second-type substrate-side coupling that conducts to the second-type substrate-side terminal 7b. Each end with the conductor 51b is arranged at a larger interval (in average value) than the terminal interval of the first terminal array 5. In this case, in order to adjust the narrow terminal interval on the first terminal array 5 side to the terminal arrangement of the wide second terminal array 7, it is necessary to convert the terminal interval inside the intermediate substrate 1 with built-in capacitor.
[0037]
Next, at least one of the electrode conductor layers 14 and 17 is a spacing conversion layer LT. In the distance conversion layer LT, via conductor portions 15 (B) (19 (B)) are connected to the electrode conductor layers 14 and 17 from the first terminal array 5 side at the first arrangement interval d1. From the two-terminal array 7 side, via conductor portions 15 ″ (55) are connected at a second arrangement interval d2 wider than the first arrangement interval d1. That is, the interval conversion layer LT is connected to the upper and lower sides thereof. The terminal conductors are converted by changing the connection positions of the via conductors, and the via conductors 15 (B) (19 (B)) and 15 connected to the upper and lower sides of the interval conversion layer LT. The arrangement interval of (55) can be designed on the basis of, for example, an equidistant arrangement. However, the arrangement interval may be locally changed in order to avoid interference with a via conductor portion having a different polarity. The intervals are not necessarily equal. The first arrangement interval d1 and the second arrangement interval d2 are expressed by an average value of the intervals between the edges of the plurality of via conductor portions in consideration of such a case.
[0038]
In the intermediate substrate 1 with a built-in capacitor according to the present embodiment, the terminal interval expansion conversion is performed as described above, and the array area of the second terminal array 7 is larger than that of the first terminal array 5. Therefore, using the difference in area, a part of the set of the first-type electrode conductor layer 14 and the second-type electrode conductor layer 17 arranged on the second main surface side of the polymer multilayer capacitor unit 10, Here, the lowermost two layers 14 (W) and 17 (W) have a larger area than the combination of the first-type electrode conductor layer 14 and the second-type electrode conductor layer 17 arranged on the first main surface side. . Thereby, the electrostatic capacitance of the intermediate substrate 1 with a built-in capacitor can be further increased.
[0039]
Further, both the first-type electrode conductor layer 14 and the second-type electrode conductor layer 17 are used as the interval conversion layer LT, and the first-type electrode conductor layer 14 is a via conductor that is electrically connected to the first-type terminal 5a. The second type electrode conductor layer 17 is used for expanding the interval of the via conductor portion 19 that is electrically connected to the second type terminal 5b. Specifically, since it is possible to secure a large distance conversion amount, a set of the first-type electrode conductor layer 14 and the second-type electrode conductor layer 17 whose area is expanded as compared with other films (that is, the lowermost two layers 14). (W) and 17 (W)) are used as the interval conversion layers LT and LT (however, all the electrode conductor layers 14 and 17 except the uppermost layer may be used as the interval conversion layers LT).
[0040]
Next, in addition to the first type terminal 5a and the second type terminal 5b, the signal terminal described above is assigned to the first main surface of the polymer multilayer capacitor unit 10 in addition to the outer peripheral region of the first terminal array 5. A plurality of 5s are formed. These signal terminals 5 s are not electrically connected to the electrode conductor layers 14 and 17 in the polymer multilayer capacitor portion 10 with respect to the signal base-side terminals 7 s formed on the second main surface of the multilayer ceramic capacitor base 60. (In this embodiment, the electrode conductor layers 14 and 17 are detoured outwardly in the in-plane direction), the signal via conductor portion 22 in the polymer multilayer capacitor portion 10 and the signal via in the multilayer ceramic capacitor substrate 60. The conductors 51s are connected to each other.
[0041]
In the embodiment of FIG. 4, the first terminal array 5 is formed so as to be included in the second terminal array 7 in a projection relationship, and the terminals located on the outer side of the array are arranged as the arrangement interval increases. There is a large amount of misalignment between corresponding terminals. Accordingly, the signal terminals 5 s arranged in the outer peripheral area of the first terminal array 5 are routed in the in-plane direction formed in the polymer multilayer capacitor portion 10 in order to connect to the corresponding signal base-side terminals 7 s. It is necessary to secure the wiring part 21 for a long time. In this embodiment, since the terminal interval conversion amount from the first terminal array 5 to the second terminal array 7 is set to be relatively large, the routing wiring portion 21 of the signal terminal 5s located on the inner side is connected to the outer signal. In order to avoid interference in the in-plane direction with the routing wiring portion 21 of the terminal 5s, both wiring portions 21 and 21 are formed in different layers. However, when the terminal interval conversion amount is not so large, it is possible to form the routing wiring portion 21 of the inner and outer signal terminals 5s in the same layer. In the above embodiment, the signal terminal 5s is formed so as to allocate the outer peripheral area of the first terminal array 5. However, in order to improve the shielding property of the signal line and to suppress the crosstalk, the signal terminal It is also possible to surround 5s (and a signal line that conducts to it) with a ground terminal (and a ground line that conducts to it).
[0042]
Hereinafter, modified examples of the intermediate substrate with a built-in capacitor according to the present invention will be described.
In the intermediate substrate 100 of FIG. 6, the connection positions of the upper and lower via conductor portions 59 and 55 are different between the fired electrode conductor layers 57 and 54 in the multilayer ceramic capacitor substrate 60 in the same manner as the distance conversion thin film LT in the thin film capacitor 10. A terminal interval conversion layer LT ′ is used, and the terminal interval conversion is performed by the multilayer ceramic capacitor substrate 60. Here, a thin film LT for distance conversion is also provided in the thin film capacitor 10 to widen the arrangement interval of the via conductor portions 15 and 19 to an appropriate distance, and further, by the terminal space conversion layer LT ′ in the multilayer ceramic capacitor substrate 60, The terminal interval conversion is performed in two stages by widening the arrangement interval of the substrate-side coupling conductor portions 59 and 55 (of course, the terminal interval conversion may be performed only in the multilayer ceramic capacitor substrate 60). .
[0043]
Further, in the intermediate substrate 100 of FIG. 7, the terminal arrangement interval between the first terminal array 5 and the second terminal array 7 is set to be the same. In this case, as shown in FIG. 8, the interval conversion layers LT and LT are not formed.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing an example in which a capacitor of the present invention is configured as an intermediate substrate.
FIG. 2 is an equivalent circuit diagram illustrating an example of a usage pattern of a decoupling capacitor for an integrated circuit.
FIGS. 3A and 3B are a plan view and a side cross-sectional schematic view showing the capacitor of the present invention in FIG.
4 is a cross-sectional view showing a detailed structure of the capacitor of FIG. 3;
FIG. 5 is a schematic view illustrating a planar form of an electrode conductor layer.
6 is a cross-sectional view showing a first modification of the capacitor of FIG. 4;
FIG. 7 is a plan view and a side cross-sectional schematic view showing a second modified example.
8 is a schematic enlarged cross-sectional view of the main part of FIG.
[Explanation of symbols]
1,100,200 Intermediate board with built-in capacitor
5 First terminal array
5a Type 1 terminal
5b Type 2 terminal
5s signal terminal
7 Second terminal array
7a Type 1 substrate side terminal
7b Type 2 substrate side terminal
7s Signal base terminal
10 Polymer multilayer capacitors
13 Polymer dielectric layer
13h Through hole
13v Dielectric hole filling part
14 First kind electrode conductor layer
15, 19 Via conductor
17 Second-class electrode conductor layer
16, 18 through hole
57 First-class fired electrode conductor layer
54 Second-class fired electrode conductor layer
59, 55 Via conductor
60 Multilayer ceramic capacitor substrate
LT, LT 'interval conversion layer

Claims (8)

直流的に互いに分離された第一種焼成電極導体層と第二種焼成電極導体層とが、それら焼成電極導体と同時焼成された焼成セラミック誘電体層と交互に積層された積層セラミックコンデンサ基体と、
前記積層セラミックコンデンサ基体の第一主表面上に設けられ、前記第一種焼成電極導体層に導通する前記第一種電極導体層と、前記第二種焼成電極導体層に導通する第二種電極導体層とが、直流的に互いに分離された形で高分子誘電体層と交互に積層された高分子積層コンデンサ部とを有し、
前記高分子積層コンデンサの第一主表面に、前記第一種電極導体層と第二種電極導体層とにそれぞれ導通する第一種端子と第二種端子とからなる第一端子アレーが形成され、
前記積層セラミックコンデンサ基体の第二主表面に、前記第一種焼成電極導体層と第二種焼成電極導体層とにそれぞれ導通する第一種基体側端子と第二種基体側端子とからなる第二端子アレーが形成されてなることを特徴とするコンデンサ内蔵中間基板。
A multilayer ceramic capacitor substrate in which first-type fired electrode conductor layers and second-type fired electrode conductor layers separated from each other in direct current are alternately laminated with fired ceramic dielectric layers fired simultaneously with the fired electrode conductors; ,
The first-type electrode conductor layer provided on the first main surface of the multilayer ceramic capacitor substrate and conducting to the first-type fired electrode conductor layer; and the second-type electrode conducting to the second-type fired electrode conductor layer A conductor layer and a polymer multilayer capacitor portion alternately laminated with polymer dielectric layers in a form separated from each other in a direct current manner;
On the first main surface of the polymer multilayer capacitor, a first terminal array comprising a first type terminal and a second type terminal respectively conducting to the first type electrode conductor layer and the second type electrode conductor layer is formed. ,
A second main surface of the multilayer ceramic capacitor substrate is provided with a first-type substrate-side terminal and a second-type substrate-side terminal respectively connected to the first-type sintered electrode conductor layer and the second-type sintered electrode conductor layer. An intermediate substrate with a built-in capacitor, wherein a two-terminal array is formed.
焼成セラミック誘電体層は高誘電率セラミックからなる請求項1記載のコンデンサ内蔵中間基板。The intermediate substrate with a built-in capacitor according to claim 1, wherein the fired ceramic dielectric layer is made of a high dielectric constant ceramic. 前記高誘電率セラミックはチタン酸バリウム、チタン酸ストロンチウム及びチタン酸鉛の1種又は2種以上からなる請求項2記載のコンデンサ内蔵中間基板。3. The capacitor built-in intermediate substrate according to claim 2, wherein the high dielectric constant ceramic is made of one or more of barium titanate, strontium titanate and lead titanate. 前記焼成セラミック誘電体層がアルミナ、ガラスセラミック、窒化アルミニウム、窒化珪素、ムライト、二酸化珪素及び酸化マグネシウムのいずれかからなる請求項1記載のコンデンサ内蔵中間基板。The intermediate substrate with a built-in capacitor according to claim 1, wherein the fired ceramic dielectric layer is made of any one of alumina, glass ceramic, aluminum nitride, silicon nitride, mullite, silicon dioxide, and magnesium oxide. 前記高分子積層コンデンサ部の前記第一主表面において、前記第一端子アレーをなす第一種端子と前記第二種端子とが、前記第一主表面に最も近い前記第一種電極導体層及び前記第二種電極導体層に対し、それぞれ直接又は補助ビア導体を介して積層方向に結合されてなる請求項1ないし請求項4のいずれか1項に記載のコンデンサ内蔵中間基板。In the first main surface of the polymer multilayer capacitor portion, the first type electrode conductor layer and the first type terminal forming the first terminal array and the second type terminal are closest to the first main surface, and 5. The capacitor built-in intermediate substrate according to claim 1, wherein the intermediate substrate is built-in according to claim 1, wherein the intermediate substrate is coupled to the second-type electrode conductor layer directly or via an auxiliary via conductor in the stacking direction. 前記第二端子アレーの端子配列間隔が前記第一端子アレーの端子配列間隔よりも広く設定されてなる請求項1ないし請求項5のいずれか1項に記載のコンデンサ内蔵中間基板。6. The capacitor built-in intermediate substrate according to claim 1, wherein a terminal arrangement interval of the second terminal array is set wider than a terminal arrangement interval of the first terminal array. 前記高分子積層コンデンサ部において、複数の前記第一種電極導体層と複数の前記第二種電極導体層とが、前記高分子誘電体層を介して交互に積層され、複数の前記第一種電極導体層同士及び複数の前記第二種電極導体層同士がそれぞれビア導体部にて積層方向に結合され、
前記電極導体層の少なくとも一層が、前記第一端子アレー側から当該電極導体層に前記ビア導体部が第一配列間隔にて接続する一方、前記第二端子アレー側から当該電極導体層に前記第一配列間隔よりも広い第二配列間隔にて前記ビア導体部が接続する間隔変換用層とされている請求項6記載のコンデンサ内蔵中間基板。
In the polymer multilayer capacitor portion, a plurality of the first type electrode conductor layers and a plurality of the second type electrode conductor layers are alternately stacked via the polymer dielectric layers, and a plurality of the first type electrode conductor layers are stacked. The electrode conductor layers and the plurality of second-type electrode conductor layers are respectively coupled in the laminating direction at the via conductor portions,
At least one of the electrode conductor layers is connected to the electrode conductor layer from the first terminal array side to the electrode conductor layer at a first arrangement interval, while the first conductor array layer side is connected to the electrode conductor layer from the second terminal array side. The intermediate substrate with a built-in capacitor according to claim 6, wherein the intermediate layer is an interval conversion layer to which the via conductor portions are connected at a second arrangement interval wider than one arrangement interval.
前記積層セラミックコンデンサ基体において、複数の前記第一種焼成電極導体層と複数の前記第二種焼成電極導体層とが、前記焼成セラミック誘電体層を介して交互に積層され、複数の前記第一種焼成電極導体層同士及び複数の前記第二種焼成電極導体層同士がそれぞれビア導体部にて積層方向に結合され、
前記焼成電極導体層の少なくとも一層が、前記第一端子アレー側から当該焼成電極導体層に前記ビア導体部が第一配列間隔にて接続する一方、前記第二端子アレー側から当該焼成電極導体層に前記第一配列間隔よりも広い第二配列間隔にて前記ビア導体部が接続する間隔変換用層とされている請求項6又は請求項7に記載のコンデンサ内蔵中間基板。
In the multilayer ceramic capacitor substrate, a plurality of the first-type fired electrode conductor layers and a plurality of the second-type fired electrode conductor layers are alternately laminated via the fired ceramic dielectric layers, Seed-fired electrode conductor layers and a plurality of the second-type fired electrode conductor layers are bonded to each other in the laminating direction at via conductor portions,
At least one layer of the fired electrode conductor layer is connected to the fired electrode conductor layer from the first terminal array side to the fired electrode conductor layer at a first arrangement interval, while the fired electrode conductor layer is connected from the second terminal array side. 8. The capacitor built-in intermediate substrate according to claim 6, wherein the via conductor portions are connected to each other at a second array interval wider than the first array interval.
JP2003176896A 2003-06-20 2003-06-20 Intermediate board with built-in capacitor Expired - Fee Related JP4570338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176896A JP4570338B2 (en) 2003-06-20 2003-06-20 Intermediate board with built-in capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176896A JP4570338B2 (en) 2003-06-20 2003-06-20 Intermediate board with built-in capacitor

Publications (2)

Publication Number Publication Date
JP2005012107A true JP2005012107A (en) 2005-01-13
JP4570338B2 JP4570338B2 (en) 2010-10-27

Family

ID=34099644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176896A Expired - Fee Related JP4570338B2 (en) 2003-06-20 2003-06-20 Intermediate board with built-in capacitor

Country Status (1)

Country Link
JP (1) JP4570338B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730258A (en) * 1993-07-13 1995-01-31 Ngk Spark Plug Co Ltd Multilayer wiring board with built-in capacitor, and its manufacture
JPH07142867A (en) * 1993-11-15 1995-06-02 Murata Mfg Co Ltd Manufacture of multilayer substrate
JPH088362A (en) * 1994-06-23 1996-01-12 Nec Kyushu Ltd Semiconductor device
JPH11163524A (en) * 1997-11-27 1999-06-18 Matsushita Electric Ind Co Ltd Multilayer wiring board and semiconductor device employing the same
JP2001044591A (en) * 1999-08-03 2001-02-16 Ngk Spark Plug Co Ltd Wiring board
JP2002261449A (en) * 2000-12-27 2002-09-13 Matsushita Electric Ind Co Ltd Module with built-in component and its manufacturing method
JP2003051427A (en) * 2001-05-30 2003-02-21 Matsushita Electric Ind Co Ltd Capacitor sheet and manufacturing method therefor, board having built-in capacitor and semiconductor device
JP2003158378A (en) * 2001-11-26 2003-05-30 Hitachi Ltd Method for manufacturing electronic circuit device having multi-layer circuit board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730258A (en) * 1993-07-13 1995-01-31 Ngk Spark Plug Co Ltd Multilayer wiring board with built-in capacitor, and its manufacture
JPH07142867A (en) * 1993-11-15 1995-06-02 Murata Mfg Co Ltd Manufacture of multilayer substrate
JPH088362A (en) * 1994-06-23 1996-01-12 Nec Kyushu Ltd Semiconductor device
JPH11163524A (en) * 1997-11-27 1999-06-18 Matsushita Electric Ind Co Ltd Multilayer wiring board and semiconductor device employing the same
JP2001044591A (en) * 1999-08-03 2001-02-16 Ngk Spark Plug Co Ltd Wiring board
JP2002261449A (en) * 2000-12-27 2002-09-13 Matsushita Electric Ind Co Ltd Module with built-in component and its manufacturing method
JP2003051427A (en) * 2001-05-30 2003-02-21 Matsushita Electric Ind Co Ltd Capacitor sheet and manufacturing method therefor, board having built-in capacitor and semiconductor device
JP2003158378A (en) * 2001-11-26 2003-05-30 Hitachi Ltd Method for manufacturing electronic circuit device having multi-layer circuit board

Also Published As

Publication number Publication date
JP4570338B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP2960276B2 (en) Multilayer wiring board, semiconductor device using this substrate, and method of manufacturing multilayer wiring board
US6885541B2 (en) Capacitor, and capacitor manufacturing process
JP2004502315A (en) Ceramic multilayer capacitor array
JP2005039243A (en) Intermediate substrate
US7394645B2 (en) Multilayer capacitor
JP2002329976A (en) Multilayer wiring board
JPH04220004A (en) Voltage controlled oscillator
JP5124150B2 (en) Multilayer printed wiring board
US9538644B2 (en) Multilayer wiring substrate and module including same
JP2000200732A (en) Passive electronic element for multi-layered low temperature co-fired ceramic
JP2005167468A (en) Electronic apparatus and semiconductor device
JP4570338B2 (en) Intermediate board with built-in capacitor
JP2005033195A (en) Capacitor and method of manufacturing capacitor
JP3914731B2 (en) Multilayer wiring board
JP2005019572A (en) Intermediate substrate
JP2005012106A (en) Capacitor
JP2002158448A (en) Multilayer wring board
JP3792472B2 (en) Multilayer wiring board
JP3796104B2 (en) Multilayer wiring board
JP2002217545A (en) Multilayer wiring board
US7277006B2 (en) Chip resistor
US20090021887A1 (en) Multi-layer capacitor and wiring board having a built-in capacitor
JPH09237855A (en) Ceramic multilayer wiring substrate
JP3754865B2 (en) Multilayer wiring board
WO2022085715A1 (en) Multilayer structure and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees