JP2005011681A - Cold-cathode tube driving device - Google Patents

Cold-cathode tube driving device Download PDF

Info

Publication number
JP2005011681A
JP2005011681A JP2003174632A JP2003174632A JP2005011681A JP 2005011681 A JP2005011681 A JP 2005011681A JP 2003174632 A JP2003174632 A JP 2003174632A JP 2003174632 A JP2003174632 A JP 2003174632A JP 2005011681 A JP2005011681 A JP 2005011681A
Authority
JP
Japan
Prior art keywords
voltage
cathode tube
cold
oscillation
oscillation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003174632A
Other languages
Japanese (ja)
Inventor
Junji Kuwabara
淳司 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2003174632A priority Critical patent/JP2005011681A/en
Publication of JP2005011681A publication Critical patent/JP2005011681A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such problems that it takes time until voltage Vo impressed on a cold-cathode tube becomes stable, and the time up to the start of oscillation becomes unstable by influence of environmental temperature and a state of preceding oscillation, and lowering of brightness is limited because of the flicker appearing when the brightness is lowered. <P>SOLUTION: The cold-cathode tube driving device comprises a DC-AC oscillation circuit impressing output voltage on the cold-cathode tube, a first direct-current voltage source for generating an output voltage higher than a discharge starting voltage at the DC-AC oscillation circuit, a second direct-current voltage source for generating an output voltage lower than a discharge sustaining voltage of the cold-cathode tube at the DC-AC oscillation circuit, and a power source controlling circuit selecting and supplying the first direct-current voltage or the second direct-current voltage to the DC-AC oscillation circuit. A ratio of the time length supplying the first direct-current voltage to the time length supplying the second direct-current voltage is controlled by PMW control. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、バックライト付き液晶ディスプレイ等のバックライトの光源として使用される冷陰極管の駆動装置に関するものである。
【0002】
【従来の技術】
一般に、パソコンなどの情報処理機器や薄型テレビジョン受像機のディスプレイ装置として、バックライト付き液晶ディスプレイが使用されている。このバックライトの光源としては、蛍光管のような冷陰極管が用いられている。また、冷陰極管を点灯させるためには、高い電圧を必要とし、その駆動装置は冷陰極管に高電圧を印加して、冷陰極管を点灯するとともに、高電圧の印加時間比(断続時間比)をPWM制御して、輝度の制御を行っている。
【0003】
図3に従来の冷陰極管の駆動装置の一例を示す。図に示すように、従来の冷陰極管の駆動装置は、直流電圧源Vddと、供給される入力電圧(直流電圧)Viを発振動作により交流に変換するとともに、昇圧トランスT1を介して高電圧(冷陰極管印加電圧)Voを発生するDC−AC発振回路4を備えている。DC−AC発振回路4の出力電圧Voは冷陰極管5に印加されている。また、電源制御回路1は直流電圧源Vddを選択的にDC−AC発振回路4に供給して、その発振動作を制御するとともに、断続の時間比をPWM制御する。
【0004】
DC−AC発振回路4において、各電界効果トランジスタFET1、FET2のゲート・ソース間には、バイアス制御回路6から電界効果トランジスタFET1、FET2をオン/オフ動作させる信号電圧が印加されるようになっている。
【0005】
また、電源制御回路1が直流電圧源Vddを供給しているときは、例えば、電界効果トランジスタFET1がオン作動したとすると、帰還コイルL4の正帰還作用によって電界効果トランジスタFET2が逆方向にバイアスされて電界効果トランジスタFET1は完全にオン状態となり、昇圧トランスT1の一次コイルL2と共振コンデンサC1とで並列共振する。
【0006】
この共振電圧が帰還コイルL4に帰還され電界効果トランジスタFET1、FET2は交互にオン/オフを繰り返すことになる。その結果、一次コイルL2、L3両端には正弦波の交流電圧が発生する。この交流電圧は昇圧トランスT1の一次コイル(一次側巻線)L2、L3と二次コイル(二次側巻線)L5との変成比によって昇圧され、二次コイルL5の両端には高い交流電圧Voが発生する。この高電圧Voは冷陰極管印加電圧として冷陰極管5に印加される。
【0007】
ここで、直流電圧源Vddの値は、これに応じて発生される冷陰極管印加電圧Voの大きさが、冷陰極管5の放電開始電圧Vs以上の大きさとなるように選定されているので、冷陰極管5は点灯し、DC−AC発振回路4に直流電圧源Vddが供給されている間中、点灯を続ける。
【0008】
また、電源制御回路1が直流電圧源Vddを遮断すると、DC−AC発振回路4の入力電圧Viが0となるので、DC−AC発振回路4の発振動作は停止し、出力電圧(冷陰極管印加電圧)Voも0となる。したがって、冷陰極管印加電圧Voが放電維持電圧Vh未満となるので、冷陰極管は消灯する。ここで、電源制御回路1により直流電圧源Vddを断続する時間比をPWM制御すると、冷陰極管5の輝度を制御(調光)することができる。
【0009】
【特許文献1】特開2002−354823号公報
【特許文献2】特開2002−056997号公報
【特許文献3】特開平11−235052号公報
【0010】
【発明が解決しようとする課題】
しかしながら、上記した従来の冷陰極管の駆動装置にあっては、電源制御回路1による直流電圧源Vddの断続に応じて、DC−AC発振回路4が発振状態と発振停止状態とを繰り返すために、直流電圧源Vddが印加される度に、DC−AC発振回路4が発振停止状態から発振動作を開始することになり、冷陰極管印加電圧Voが安定するまでに時間がかかるとともに、発振動作が始まるまでの時間などは周囲温度や直前の発振状態の影響を受け、不安定になっていた。このために、輝度を低くした場合に、ちらつきとなって現れ、輝度をあまり低くすることができないという問題点があった。
【0011】
本発明は、上記の問題点に着目して成されたものであって、その目的とするところは、DC−AC発振回路の発振状態を維持したまま、PWM制御により輝度を制御することができる冷陰極管の駆動装置を提供することである。
【0012】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る冷陰極管の駆動装置は、供給される直流電圧を昇圧してその出力電圧を冷陰極管に印加するDC−AC発振回路と、このDC−AC発振回路に冷陰極管の放電開始電圧以上の大きさの出力電圧を発生させるための第1の直流電圧源と、前記DC−AC発振回路に冷陰極管の放電維持電圧未満の大きさの出力電圧を発生させるための第2の直流電圧源と、これら第1および第2の直流電圧源を選択して前記DC−AC発振回路に供給する電源制御回路とを具備し、前記第1の直流電圧源の供給時間と前記第2の直流電圧源の供給時間との比をPWM制御することを特徴とするものである。
【0013】
かかる構成により、DC−AC発振回路の出力電圧(冷陰極管印加電圧)Voを放電維持電圧Vh未満の大きさとして、冷陰極管を消灯させた場合においても、DC−AC発振回路は発振動作を持続しており、DC−AC発振回路の発振動作を維持しつつ、PWM制御により輝度を制御することができる。このために、従来例の場合に見られた、発振停止状態から発振動作を開始する際の不安定な期間はなくなり、輝度を低くした場合の安定性(調光性能)を改善することができる。
【0014】
また、本発明に係る冷陰極管の駆動装置は、前記電源制御回路は、前記第1の直流電圧源を選択するタイミングを前記DC−AC発振回路の発振動作に同期させる同期回路を有することを特徴とするものである。
【0015】
かかる構成により、電源制御回路が第1の直流電圧源を選択するタイミングを、DC−AC発振回路における発振動作と同期させると、出力電圧(冷陰極管印加電圧)Voにおける放電開始電圧Vsへの立ち上がりを安定させ、輝度を低くした場合のちらつきをなくすことができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明に係る冷陰極管の駆動装置の一実施例を示す回路図である。図において、前記図3と同様のものは同一符号を付して示す。
【0017】
2は切換スイッチであり、第1の直流電圧源V1と第2の直流電圧源V2とを切り換え、選択的にDC−AC発振回路4に供給する。また、切換スイッチ2の切換動作は電源制御回路1により制御される。3は電源制御回路1における切換のタイミングを制御する同期回路である。
【0018】
ここで、第1の直流電圧源V1の値は、発生する冷陰極管印加電圧Voの大きさを冷陰極管5の放電開始電圧Vs以上の大きさとするための値に選ばれており、第2の直流電圧源V2の値は、発生する冷陰極管印加電圧Voの大きさを冷陰極管5の放電維持電圧Vh未満の大きさとするための値に選ばれている。
【0019】
すなわち、切換スイッチ2が第1の直流電圧源V1側に接続されている時には、DC−AC発振回路4の入力電圧ViはV1となり、発生される出力電圧(冷陰極管印加電圧)Voは冷陰極管5の放電開始電圧Vs以上の大きさとなる。このため、冷陰極管5は点灯し、切換スイッチ2により第1の直流電圧源V1が選択されている間中、点灯を続ける。
【0020】
また、切換スイッチ2が第2の直流電圧源V2側に接続されると、DC−AC発振回路4の入力電圧ViはV2となるので、発生される出力電圧(冷陰極管印加電圧)Voは冷陰極管5の放電維持電圧Vh未満の大きさとなる。このため、冷陰極管5は消灯し、切換スイッチ2により第2の直流電圧源V2が選択されている間中、消灯を続ける。この時、冷陰極管5は消灯するが、DC−AC発振回路4はその出力電圧Voが低くなるだけで、発振動作は持続している。
【0021】
ここで、電源制御回路1は第1の直流電圧源V1の供給時間と第2の直流電圧源V2の供給時間との比をPWM制御し、輝度の制御を行う。
【0022】
図2に各部の波形図を示す。図に示されるように、DC−AC発振回路4の入力電圧ViがV2となり、冷陰極管5が消灯している間も、DC−AC発振回路4は発振動作を持続している。このため、従来のような、発振停止状態から発振動作を開始する際の不安定な期間はなくなり、輝度を低くした場合の安定性(調光性能)を改善することができる。
【0023】
また、同期回路3は、入力電圧Viの立ち上がり(図2中のイ)を発振波形のゼロクロス点(図2中のロ)に同期させる。このように、電源制御回路1が第1の直流電圧源V1を選択するタイミングを、DC−AC発振回路4における発振動作と同期させると、出力電圧(冷陰極管印加電圧)Voにおける放電開始電圧Vsへの立ち上がりを安定させ、輝度を低くした場合のちらつきをなくすことができる。
【0024】
【発明の効果】
以上説明したように、本発明に係る冷陰極管の駆動装置によれば、供給される直流電圧を昇圧してその出力電圧を冷陰極管に印加するDC−AC発振回路と、このDC−AC発振回路に冷陰極管の放電開始電圧以上の大きさの出力電圧を発生させるための第1の直流電圧源と、前記DC−AC発振回路に冷陰極管の放電維持電圧未満の大きさの出力電圧を発生させるための第2の直流電圧源と、これら第1および第2の直流電圧源を選択して前記DC−AC発振回路に供給する電源制御回路とを具備し、前記第1の直流電圧源の供給時間と前記第2の直流電圧源の供給時間との比をPWM制御するようにしているので、DC−AC発振回路の出力電圧(冷陰極管印加電圧)Voを放電維持電圧Vh未満の大きさとして、冷陰極管を消灯させた場合においても、DC−AC発振回路は発振動作を持続しており、DC−AC発振回路の発振動作を維持しつつ、PWM制御により輝度を制御することができ、従来例の場合に見られた、発振停止状態から発振動作を開始する際の不安定な期間をなくし、輝度を低くした場合の安定性(調光性能)を改善することができる。
【0025】
また、本発明に係る冷陰極管の駆動装置によれば、前記電源制御回路は、前記第1の直流電圧源を選択するタイミングを前記DC−AC発振回路の発振動作に同期させる同期回路を有するようにしているので、出力電圧(冷陰極管印加電圧)Voにおける放電開始電圧Vsへの立ち上がりを安定させ、輝度を低くした場合のちらつきをなくすことができる。
【図面の簡単な説明】
【図1】本発明に係る冷陰極管の駆動装置の一実施例を示す回路図。
【図2】図1における各部の波形を示す波形図。
【図3】従来の冷陰極管の駆動装置を示す回路図。
【符号の説明】
1 電源制御回路
2 切換スイッチ
3 同期回路
4 DC−AC発振回路
5 冷陰極管
6 バイアス制御回路
V1 第1の直流電圧源
V2 第2の直流電圧源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold-cathode tube driving device used as a light source of a backlight such as a liquid crystal display with a backlight.
[0002]
[Prior art]
Generally, a liquid crystal display with a backlight is used as a display device for an information processing device such as a personal computer or a thin television receiver. A cold cathode tube such as a fluorescent tube is used as the light source of the backlight. Moreover, in order to light a cold cathode tube, a high voltage is required, and the driving device applies a high voltage to the cold cathode tube to light the cold cathode tube and applies a high voltage application time ratio (intermittent time). The luminance is controlled by PWM control.
[0003]
FIG. 3 shows an example of a conventional cold cathode tube driving device. As shown in the figure, the conventional cold-cathode tube driving device converts a DC voltage source Vdd and a supplied input voltage (DC voltage) Vi into AC by an oscillating operation and a high voltage via a step-up transformer T1. (Cold-cathode tube applied voltage) DC-AC oscillation circuit 4 for generating Vo is provided. The output voltage Vo of the DC-AC oscillation circuit 4 is applied to the cold cathode tube 5. Further, the power supply control circuit 1 selectively supplies the DC voltage source Vdd to the DC-AC oscillation circuit 4 to control the oscillation operation and to PWM control the intermittent time ratio.
[0004]
In the DC-AC oscillation circuit 4, a signal voltage for turning on / off the field effect transistors FET1 and FET2 is applied from the bias control circuit 6 between the gate and source of each field effect transistor FET1 and FET2. Yes.
[0005]
When the power supply control circuit 1 supplies the DC voltage source Vdd, for example, if the field effect transistor FET1 is turned on, the field effect transistor FET2 is biased in the reverse direction by the positive feedback action of the feedback coil L4. Thus, the field effect transistor FET1 is completely turned on, and resonates in parallel between the primary coil L2 of the step-up transformer T1 and the resonance capacitor C1.
[0006]
This resonance voltage is fed back to the feedback coil L4, and the field effect transistors FET1 and FET2 are alternately turned on and off. As a result, a sinusoidal AC voltage is generated across the primary coils L2, L3. This AC voltage is boosted by the transformation ratio between the primary coils (primary windings) L2 and L3 of the step-up transformer T1 and the secondary coil (secondary winding) L5, and a high AC voltage is applied to both ends of the secondary coil L5. Vo occurs. The high voltage Vo is applied to the cold cathode tube 5 as a cold cathode tube applied voltage.
[0007]
Here, the value of the DC voltage source Vdd is selected so that the magnitude of the cold cathode tube applied voltage Vo generated in accordance therewith is equal to or greater than the discharge start voltage Vs of the cold cathode tube 5. The cold cathode tube 5 is lit and continues to be lit while the DC voltage source Vdd is supplied to the DC-AC oscillation circuit 4.
[0008]
When the power supply control circuit 1 cuts off the DC voltage source Vdd, the input voltage Vi of the DC-AC oscillation circuit 4 becomes 0, so that the oscillation operation of the DC-AC oscillation circuit 4 stops and the output voltage (cold cathode tube) The applied voltage (Vo) is also zero. Therefore, since the cold cathode tube applied voltage Vo is less than the sustaining voltage Vh, the cold cathode tube is turned off. Here, when the power control circuit 1 performs PWM control of the time ratio at which the DC voltage source Vdd is intermittently connected, the luminance of the cold cathode tube 5 can be controlled (dimmed).
[0009]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2002-354823 [Patent Document 2] Japanese Patent Application Laid-Open No. 2002-056897 [Patent Document 3] Japanese Patent Application Laid-Open No. 11-235052
[Problems to be solved by the invention]
However, in the conventional cold-cathode tube driving device described above, the DC-AC oscillation circuit 4 repeats the oscillation state and the oscillation stop state in response to the intermittent connection of the DC voltage source Vdd by the power supply control circuit 1. Each time the DC voltage source Vdd is applied, the DC-AC oscillation circuit 4 starts the oscillation operation from the oscillation stop state, and it takes time until the cold cathode tube applied voltage Vo is stabilized, and the oscillation operation The time until the start was unstable due to the influence of the ambient temperature and the previous oscillation state. For this reason, there is a problem that when the luminance is lowered, it appears as flickering and the luminance cannot be lowered too much.
[0011]
The present invention has been made paying attention to the above problems, and the object of the present invention is to control the luminance by PWM control while maintaining the oscillation state of the DC-AC oscillation circuit. It is to provide a cold-cathode tube driving device.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a cold-cathode tube driving device according to the present invention includes a DC-AC oscillation circuit that boosts a supplied DC voltage and applies the output voltage to the cold-cathode tube, and this DC- A first DC voltage source for causing the AC oscillation circuit to generate an output voltage greater than or equal to the discharge start voltage of the cold cathode tube; and the DC-AC oscillation circuit having a magnitude less than the sustain voltage of the cold cathode tube. A second DC voltage source for generating an output voltage; and a power supply control circuit that selects and supplies the first and second DC voltage sources to the DC-AC oscillation circuit. The ratio between the supply time of the DC voltage source and the supply time of the second DC voltage source is PWM-controlled.
[0013]
With such a configuration, the DC-AC oscillation circuit oscillates even when the output voltage (cold cathode tube applied voltage) Vo of the DC-AC oscillation circuit is less than the sustaining voltage Vh and the cold cathode tube is turned off. The luminance can be controlled by PWM control while maintaining the oscillation operation of the DC-AC oscillation circuit. For this reason, the unstable period when starting the oscillation operation from the oscillation stop state, which is seen in the case of the conventional example, is eliminated, and the stability (dimming performance) when the luminance is lowered can be improved. .
[0014]
In the cold-cathode tube driving device according to the present invention, the power supply control circuit includes a synchronization circuit that synchronizes the timing for selecting the first DC voltage source with the oscillation operation of the DC-AC oscillation circuit. It is a feature.
[0015]
With this configuration, when the timing at which the power supply control circuit selects the first DC voltage source is synchronized with the oscillation operation in the DC-AC oscillation circuit, the discharge start voltage Vs at the output voltage (cold cathode tube applied voltage) Vo is reached. The rise can be stabilized and the flicker can be eliminated when the brightness is lowered.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing an embodiment of a cold-cathode tube driving device according to the present invention. In the figure, the same components as those shown in FIG.
[0017]
Reference numeral 2 denotes a change-over switch that switches between the first DC voltage source V1 and the second DC voltage source V2 and selectively supplies the DC-AC oscillation circuit 4. The switching operation of the selector switch 2 is controlled by the power supply control circuit 1. Reference numeral 3 denotes a synchronization circuit for controlling the switching timing in the power supply control circuit 1.
[0018]
Here, the value of the first DC voltage source V1 is selected to be a value for setting the magnitude of the generated cold cathode tube applied voltage Vo to be equal to or greater than the discharge start voltage Vs of the cold cathode tube 5, The value of the DC voltage source V2 of 2 is selected as a value for making the magnitude of the generated cold cathode tube applied voltage Vo smaller than the discharge sustaining voltage Vh of the cold cathode tube 5.
[0019]
That is, when the changeover switch 2 is connected to the first DC voltage source V1 side, the input voltage Vi of the DC-AC oscillation circuit 4 is V1, and the generated output voltage (cold cathode tube applied voltage) Vo is cold. It becomes a magnitude equal to or higher than the discharge start voltage Vs of the cathode tube 5. For this reason, the cold cathode fluorescent lamp 5 is lit and continues to be lit while the first DC voltage source V1 is selected by the changeover switch 2.
[0020]
When the changeover switch 2 is connected to the second DC voltage source V2 side, the input voltage Vi of the DC-AC oscillation circuit 4 becomes V2, so that the generated output voltage (cold cathode tube applied voltage) Vo is The voltage is less than the discharge sustaining voltage Vh of the cold cathode tube 5. For this reason, the cold-cathode tube 5 is extinguished and is kept off while the second DC voltage source V2 is selected by the changeover switch 2. At this time, the cold-cathode tube 5 is extinguished, but the DC-AC oscillation circuit 4 continues the oscillation operation only by the output voltage Vo being lowered.
[0021]
Here, the power supply control circuit 1 performs PWM control on the ratio of the supply time of the first DC voltage source V1 and the supply time of the second DC voltage source V2 to control the luminance.
[0022]
FIG. 2 shows a waveform diagram of each part. As shown in the figure, the DC-AC oscillation circuit 4 continues the oscillation operation while the input voltage Vi of the DC-AC oscillation circuit 4 becomes V2 and the cold cathode tube 5 is turned off. For this reason, there is no unstable period when the oscillation operation is started from the oscillation stop state as in the prior art, and the stability (dimming performance) when the luminance is lowered can be improved.
[0023]
The synchronizing circuit 3 synchronizes the rising edge of the input voltage Vi (a in FIG. 2) with the zero cross point (b in FIG. 2) of the oscillation waveform. Thus, when the timing at which the power supply control circuit 1 selects the first DC voltage source V1 is synchronized with the oscillation operation in the DC-AC oscillation circuit 4, the discharge start voltage at the output voltage (cold cathode tube applied voltage) Vo It is possible to stabilize the rise to Vs and eliminate flicker when the luminance is lowered.
[0024]
【The invention's effect】
As described above, according to the cold cathode tube driving device of the present invention, the DC-AC oscillation circuit that boosts the supplied DC voltage and applies the output voltage to the cold cathode tube, and the DC-AC A first DC voltage source for causing the oscillation circuit to generate an output voltage greater than or equal to the discharge start voltage of the cold cathode tube; and an output having a magnitude less than the discharge sustain voltage of the cold cathode tube to the DC-AC oscillation circuit. A second DC voltage source for generating a voltage; and a power supply control circuit that selects and supplies the first and second DC voltage sources to the DC-AC oscillation circuit. Since the ratio between the supply time of the voltage source and the supply time of the second DC voltage source is PWM-controlled, the output voltage (cold cathode tube applied voltage) Vo of the DC-AC oscillation circuit is set to the discharge sustain voltage Vh. The cold cathode tube was extinguished as a size less than In this case, the DC-AC oscillation circuit continues the oscillation operation, and the luminance can be controlled by PWM control while maintaining the oscillation operation of the DC-AC oscillation circuit. It is possible to eliminate the unstable period when starting the oscillation operation from the oscillation stop state and improve the stability (dimming performance) when the luminance is lowered.
[0025]
According to the cold cathode tube driving device of the present invention, the power supply control circuit has a synchronization circuit that synchronizes the timing of selecting the first DC voltage source with the oscillation operation of the DC-AC oscillation circuit. Thus, the rise to the discharge start voltage Vs at the output voltage (cold cathode tube applied voltage) Vo can be stabilized, and flicker can be eliminated when the luminance is lowered.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of a cold-cathode tube driving device according to the present invention.
2 is a waveform diagram showing waveforms at various parts in FIG. 1. FIG.
FIG. 3 is a circuit diagram showing a conventional cold cathode tube driving device;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power supply control circuit 2 Changeover switch 3 Synchronous circuit 4 DC-AC oscillation circuit 5 Cold cathode tube 6 Bias control circuit V1 1st DC voltage source V2 2nd DC voltage source

Claims (2)

供給される直流電圧を昇圧してその出力電圧を冷陰極管に印加するDC−AC発振回路と、このDC−AC発振回路に冷陰極管の放電開始電圧以上の大きさの出力電圧を発生させるための第1の直流電圧源と、前記DC−AC発振回路に冷陰極管の放電維持電圧未満の大きさの出力電圧を発生させるための第2の直流電圧源と、これら第1および第2の直流電圧源を選択して前記DC−AC発振回路に供給する電源制御回路とを具備し、前記第1の直流電圧源の供給時間と前記第2の直流電圧源の供給時間との比をPWM制御することを特徴とする冷陰極管の駆動装置。A DC-AC oscillation circuit that boosts the supplied DC voltage and applies the output voltage to the cold cathode tube, and generates an output voltage larger than the discharge start voltage of the cold cathode tube in the DC-AC oscillation circuit. A first DC voltage source for generating a second DC voltage source for causing the DC-AC oscillation circuit to generate an output voltage having a magnitude less than a discharge sustaining voltage of the cold cathode tube, and the first and second A power supply control circuit that selects and supplies the DC voltage source to the DC-AC oscillation circuit, and sets a ratio between the supply time of the first DC voltage source and the supply time of the second DC voltage source. A cold-cathode tube driving device characterized by PWM control. 前記電源制御回路は、前記第1の直流電圧源を選択するタイミングを前記DC−AC発振回路の発振動作に同期させる同期回路を有することを特徴とする請求項1に記載の冷陰極管の駆動装置。2. The cold cathode tube drive according to claim 1, wherein the power supply control circuit includes a synchronization circuit that synchronizes timing of selecting the first DC voltage source with an oscillation operation of the DC-AC oscillation circuit. apparatus.
JP2003174632A 2003-06-19 2003-06-19 Cold-cathode tube driving device Pending JP2005011681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174632A JP2005011681A (en) 2003-06-19 2003-06-19 Cold-cathode tube driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174632A JP2005011681A (en) 2003-06-19 2003-06-19 Cold-cathode tube driving device

Publications (1)

Publication Number Publication Date
JP2005011681A true JP2005011681A (en) 2005-01-13

Family

ID=34098066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174632A Pending JP2005011681A (en) 2003-06-19 2003-06-19 Cold-cathode tube driving device

Country Status (1)

Country Link
JP (1) JP2005011681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980511B (en) * 2005-12-01 2010-05-26 群康科技(深圳)有限公司 Back-light open circuit protection circuit
CN101409048B (en) * 2007-10-10 2010-09-29 群康科技(深圳)有限公司 Backlight protection circuit
CN102496905A (en) * 2011-12-07 2012-06-13 广州视源电子科技有限公司 High-voltage open-circuited protection circuit of LCD (Liquid Crystal Display) screen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980511B (en) * 2005-12-01 2010-05-26 群康科技(深圳)有限公司 Back-light open circuit protection circuit
CN101409048B (en) * 2007-10-10 2010-09-29 群康科技(深圳)有限公司 Backlight protection circuit
CN102496905A (en) * 2011-12-07 2012-06-13 广州视源电子科技有限公司 High-voltage open-circuited protection circuit of LCD (Liquid Crystal Display) screen

Similar Documents

Publication Publication Date Title
KR100513318B1 (en) Back-light inverter for lcd panel of asynchronous pwm driving type
US8542181B2 (en) Flat panel display device, controller, and method for displaying images
JP3799302B2 (en) Liquid crystal display
US6822633B2 (en) Liquid crystal display
EP1617712B1 (en) Discharge lamp lighting apparatus for lighting multiple discharge lamps
US7345432B2 (en) Inverter circuit for lighting backlight of liquid crystal display and method for driving the same
US20080136354A1 (en) Preheat control device for modulating voltage of gas-discharge lamp
US6784867B1 (en) Voltage-fed push LLC resonant LCD backlighting inverter circuit
JP4058530B2 (en) Separately excited inverter for backlight of liquid crystal display
JP4200542B2 (en) Liquid crystal display
JP2005011681A (en) Cold-cathode tube driving device
US8648789B2 (en) Control device for controlling the output of one or more full-bridges
US20080007187A1 (en) Method and apparatus for dc switching lamp driver
JP3259016B2 (en) Fluorescent light dimming circuit
JP2008218291A (en) Liquid crystal television and self-excited inverter circuit
JP2009300613A (en) Liquid crystal backlight device
JPH0980377A (en) Dimmer for image display device
JPH11122937A (en) Backlight controller
JP2009300612A (en) Liquid crystal backlight device
JP2002343595A (en) Operating device for inverter circuit and inverter for back light using the same
JP2010177115A (en) Rare gas discharge lamp lighting device
US8330877B2 (en) Self-excited inverter and LCD television apparatus
JP2005267941A (en) Inverter circuit system for display device
JP2000231998A (en) Power source circuit for lighting discharge tube
JPH10302991A (en) Driving circuit and driving method for fluorescent lamp