JP2005002952A - Valve opening/closing timing controller - Google Patents

Valve opening/closing timing controller Download PDF

Info

Publication number
JP2005002952A
JP2005002952A JP2003169287A JP2003169287A JP2005002952A JP 2005002952 A JP2005002952 A JP 2005002952A JP 2003169287 A JP2003169287 A JP 2003169287A JP 2003169287 A JP2003169287 A JP 2003169287A JP 2005002952 A JP2005002952 A JP 2005002952A
Authority
JP
Japan
Prior art keywords
spring
rotation
hydraulic oil
axial direction
closing timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003169287A
Other languages
Japanese (ja)
Inventor
Masaki Kobayashi
昌樹 小林
Hiroyuki Kawai
啓之 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2003169287A priority Critical patent/JP2005002952A/en
Priority to CNA2004100492040A priority patent/CN1573029A/en
Priority to EP04013370A priority patent/EP1486644A1/en
Priority to US10/862,322 priority patent/US20050016482A1/en
Publication of JP2005002952A publication Critical patent/JP2005002952A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34473Lock movement perpendicular to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a valve opening/closing timing controller which prevents such defective operation that a wound coil part of a spring runs on a guide part during operation of the spring energizing a lock member. <P>SOLUTION: The valve opening/closing timing controller is equipped with a retraction groove part 34 formed on a rotating transmission member 3 and housing a lock plate 80 which is energized toward a rotating member 2 by a coil spring 81; a spring housing hole 35 communicating with the retraction groove part 34, housing the coil spring 81 and provided with the guide part 35a for guiding the coil spring 81 in an axial direction; and a receiving part 23 which is formed on the rotating member 2 and which a head part 80a of the lock plate 80 is set into when the relative position of the rotating member 2 and the rotating transmission member 3 corresponds to a predetermined position. Length A of the guide part 35a in the axial direction is set larger than a clearance B between wound coils adjacent to each other in an axial direction of the coil spring 81. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、内燃機関の吸・排気弁の開閉時期を制御する弁開閉時期制御装置に関するものである。
【0002】
【従来の技術】
この種の弁開閉時期制御装置としては、弁開閉用のカムシャフトと一体に連結される回転部材と、回転部材に所定範囲で相対回転可能に組付けられクランク軸からの回転動力が伝達される回転伝達部材とを備え、回転部材に取付けたベーンによって、回転伝達部材内に形成された油室を進角用油室と遅角用油室とに二分し、進角用油室および遅角用油室にそれぞれ作動油を給排する第1および第2作動油通路を備え、各油室に対して作動油を給排することで回転部材と回転伝達部材を互いに相対回転させるものがある。回転伝達部材にはスプリングで回転部材に向けて付勢されたロック部材を収容する退避溝部が形成され、更に、退避溝部に連通しスプリングを収容すると共に、スプリングを軸方向にガイドするガイド部を設けたスプリング収容孔が形成されている。また、回転部材には回転伝達部材との相対位置が所定の位置になったときロック部材の頭部が嵌入される受容部が形成されている。そして、ロック部材と受容部とを嵌合させて回転部材に対して回転伝達部材をロックすることがでるようにしている。
【0003】
このような弁開閉時期制御装置においては、スプリング収容孔には、ロック部材の出没に伴ないスプリングが伸縮するとき、スプリングの巻線部が屈曲しないように、巻線部の外周とスプリング収容孔の内周との間に適切なクリアランスを設け、スプリングをガイドするガイド部が形成されている。一方、スプリングの両端部が夫々着座するスプリング収容孔の径方向の両端面とガイド部の内周面との接合部、つまりガイド部の端部に、スプリングの両端部の着座面を確保すると共に、回転部材と回転伝達部材とのロック時、回転方向に回転動力が加わったときに発生する応力が集中しないように凹状の隅Rが形成される(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2003−13713号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記する従来構成では、スプリングをスプリング収容孔に組付けるとき、或いはロック部材の頭部が受容部に没入されスプリングが伸張しているときに、スプリングの巻線がガイド部の端部(凹状の隅R)に乗り上げ、巻線部が収縮できないために、ロック部材が退避溝部に収容されず作動不良となる可能性がある。
【0006】
このために、本発明の課題は、ロック部材を付勢するスプリングが作動中に、その巻線部がガイド部に乗り上げるような作動不良を起こさない弁開閉時期制御装置を実現することである。
【0007】
【課題を解決するための手段】
上記の技術的課題を解決するためになされた第1の技術的手段は、内燃機関のシリンダヘッドに回転自在に組付けられる弁開閉用のカムシャフトと一体に連結される回転部材と、前記回転部材に対して所定範囲で相対回転可能に組付けられクランク軸からの回転動力が伝達される回転伝達部材と、前記回転部材または前記回転伝達部材のいずれか一方に設けられるベーンと、前記回転部材と前記回転伝達部材との間に形成され前記ベーンによって進角用油室と遅角用油室とに二分される作動油圧室と、前記進角用油室および遅角用油室にそれぞれ作動油を給排する第1および第2作動油通路と、前記回転伝達部材または前記回転部材に形成され、スプリングにより前記回転部材または前記回転伝達部材に向けて付勢されたのロック部材を収容する退避部と、前記退避部に連通し前記スプリングを収容すると共に、前記スプリングを軸方向にガイドするガイド部を設けたスプリング収容孔と、前記回転部材または前記回転伝達部材に形成され、前記回転部材と前記回転伝達部材の相対位置が所定の位置で一致したとき前記ロック部材の頭部が没入する受容部と、該受容部に作動油を給排する第3作動油通路とを備え、内燃機関の吸気弁又は排気弁の開閉時期を制御する弁開閉時期制御装置において、前記ガイド部の前記軸方向の長さを前記スプリングの軸方向に隣り合う巻線の間に設けられる線間隙間より大きく設定したことである。
【0008】
この手段によれば、ガイド部の軸方向の長さをスプリングの軸方向に隣り合う巻線の間に設けられる線間隙間より大きく設定したことにより、スプリングをスプリング収容孔に組み付けるとき、或いは、ロック部材の頭部が受容部に嵌入されスプリングが伸張しているときに、巻線がガイド部の端部(凹状の隅R)に乗り上げ、巻線部が収縮できないために、ロック部材が退避部に収容されず作動不良となることを防止できる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0010】
図1乃至図4に示す弁開閉時期制御装置1は、内燃機関のシリンダヘッド100に回転自在に支持されたカムシャフト10と、カムシャフト10の先端部に一体的に組付けた内部ロータ20とからなる弁開閉用の回転部材2を有している。また、弁開閉時期制御装置1は、内部ロータ20に対して所定範囲で相対回転が可能となるように組付けられる外部ロータ30、フロントプレート40、リアプレート50から成る回転伝達部材3を有している。外部ロータ30の外周には、一体的に設けたタイミングスプロケット31が形成されている。さらに、内部ロータ20とフロントプレート40間に組付けられたトーションスプリング60と、内部ロータ20に組付けた4枚のベーン70と、外部ロータ30に組付けたロックプレート80(図2)等が備えられている。
【0011】
タイミングスプロケット31には、周知のように、図示を省略したクランク軸からクランクスプロケットとタイミングチェーンを介して、図2にカムシャフト回転方向として示される時計方向に回転動力が伝達される。
【0012】
カムシャフト10は、吸気弁(図示省略)を開閉する周知のカム(図示省略)を有し、カムシャフト10の内部にはカムシャフト10の軸方向に延びる進角通路(第1作動油通路)11と遅角通路(第2作動油通路)12が設けられている。進角通路11は、カムシャフト10に設けた径方向の通路71及び環状溝14とシリンダヘッド100に設けた接続通路16を通して切換弁200の第1接続ポート201に接続されている。また、遅角通路12は、カムシャフト10に設けた径方向の通路72及び環状溝13とシリンダヘッド100に設けた接続通路15を通して切換弁200の第2接続ポート202に接続されている。
【0013】
切換弁200はそのソレノイド203へ通電することによりスプール204を図示しないスプリングに抗して移動させる周知のものである。その非通電時には、内燃機関によって駆動されるオイルポンプ205に接続された供給ポート206が第2接続ポート202に連通すると共に、第1接続ポート201が排出ポート207に連通するように構成されている。また通電時には、図1に示すように供給ポート206が第1接続ポート201に連通すると共に、第2接続ポート202が排出ポート207に連通するように構成されている。このため切換弁200の非通電時には遅角通路12に作動油(油圧)が供給され、通電時には進角通路11に作動油(油圧)が供給される構成となっている。切換弁200は単位時間当たりの通電と非通電の割合を変えるデューティ制御される。例えば、デューティ比50%で制御すると、第1及び第2ポート201,202と供給及び排出ポート206,207は互いに全く連通しない状態になる。
【0014】
内部ロータ20は取付けボルト91によってカムシャフト10に一体的に固着されている。また、図2に示されるように、内部ロータ20には4つのベーン溝21と、受容部22が形成されている。また、内部ロータ20には、その径方向に延びる3つの第1作動油通路23と、1つの作動油溝23aと、4つの第2作動油通路24と、受容部22の底部を進角通路11に連通させる1つの第3作動油通路25からなる複数の作動油の通路が設けられている。
【0015】
図2に示されるように、各ベーン溝21にはベーン70が挿入され、ベーン70は後述する外部ロータ30と内部ロータ20間に形成される4つの作動油圧室R0内で移動可能に、かつ作動油圧室R0をそれぞれ進角用油室R1と遅角用油室R2に分割するように配置されている。ベーン溝21の底部とベーン70の底面との間にはベーンスプリング73(図1)が配設されており、ベーン溝21には4枚の各ベーン70のそれぞれが径方向に押し出されるように移動可能に取付けられている。
【0016】
受容部22には、図2に示した状態、即ち、カムシャフト10および内部ロータ20と外部ロータ30の相対位置が所定の位置(最遅角位置)で一致したとき、外部ロータ30に移動可能に取付けられた平板状のロックプレート(ロック部材)80の頭部80aが所定量没入し、外部ロータ30と内部ロータ20の回転をロック可能に構成している。
【0017】
図2に示されるように、各ベーン70によって分割されて形成される4つの遅角用油室R2には遅角通路12および第2作動油通路24を介して作動油(油圧)が給排される構成となっている。また、4つの進角用油室R1のうち3つに対しては、進角通路11および第1作動油通路23を介して作動油(油圧)が給排される構成となっている。他の1つの進角用油室R1には、ロックプレート80に対して、受容部22の底部に設けられた第3作動油通路25からの作動油(油圧)が供給され、ロックプレート80が移動したとき、第3作動油通路25と進角用油室R1を連結する作動油溝23aを介して給排可能とされるように構成されている。このように一箇所の進角用油室R1に対しては第1作動油通路23を設けず、第3作動油通路25を兼用することによって作動油通路の構成を簡単にし、安価に製造できる構成にしている。
【0018】
外部ロータ30の軸方向の両側には、環状のフロントプレート40とリアプレート50が接合され、4本の連結ボルト92によって一体的に組付けされている。そして、作動油圧室R0内で移動するベーン70とロックプレート80によって規定される角度範囲で外部ロータ30と内部ロータ20は互いに相対回転可能となっている。
【0019】
外部ロータ30のリアプレート50が接合される軸方向端部の外周にはタイミングスプロケット31が一体に形成されている。また、外部ロータ30の内周には周方向に5個の凸部33が径方向内方に向けてそれぞれ突出すように形成されている。これら凸部33の内周面は内部ロータ20の外周面上で滑る様に接しており、外部ロータ30が内部ロータ20に回転自在に支承される。5個の凸部33の内、2個の凸部33の間にロックプレート80を収容する退避溝部(退避部)34と、退避溝部34と連通しロックプレート80を径方向内方へと付勢するコイルスプリング(スプリング)81を収容するスプリング収容孔35が形成されている。また、前述した4つの作動油圧室R0は、この5個の各凸部33の間に形成されている。
【0020】
図4に示すように、スプリング収容孔35内にはロックプレート80を外部ロータ30の径方向の中心側に押すようにコイルスプリング81が配置されている。コイルスプリング81は、巻線部81aと軸方向両端部から構成されている。巻線部81aは線材をらせん状に巻線され形成され、軸方向に隣り合う間隔(線間隙間:隣り合う線材間の隙間)Bを設けて巻線されている。両端部は軸方向に垂直の面に平行に形成されている。スプリング収容孔35には、ロックプレート80の出没に伴ないコイルスプリング81が伸縮するとき、コイルスプリング81の巻線部81aが屈曲しないように、巻線部81aの外周とスプリング収容孔35の内周との間に適切なクリアランスを設け、コイルスプリング81をガイドするガイド部35aが形成されている。コイルスプリング81の両端部が夫々着座するスプリング収容孔35の径方向の両端面とガイド部35aの内周面との接続部には、コイルスプリング81の両端部の着座面の確保すると共に、回転部材2と回転伝達部材3とのロック時、回転方向に回転動力が加わったときに発生する応力が集中しないように凹状の隅Rが形成されている。この構成において、ガイド部35aのコイルスプリング81の軸方向の長さAは、コイルスプリング81の線間隙間Bより大きく設定されている。これにより、コイルスプリング81をスプリング収容孔35に組み付ける場合、或いは、ロックプレート80の頭部80aが受容部22に嵌入されコイルスプリング81が伸張しているときに、巻線がガイド部35aの端部(凹状の隅R)に乗り上げ、巻線部81aが収縮できなくなることを防止できる。
【0021】
トーションスプリング60は、一端をフロントプレート40に係止し、他端を内部ロータ20に係止して取付けられ、内部ロータ20を外部ロータ30、フロントプレート40及びリアプレート50に対して進角側(図2の時計方向)に付勢している。従って、内部ロータ20の進角側への作動応答性の向上が図られる構成となっている。
【0022】
内部ロータ20と外部ロータ30が進角するように相対的に回転することは、つまり図2に示される最遅角位置の状態から、図3に示されるベーン70が進角方向(時計方向)への移動することである。最進角はベーン70が凸部33の周方向の一方の側面に当接する位置で規制され、最遅角はロックプレート80の頭部80aが受容部22に入り込む位置で規制されている。この実施形態では、最遅角の位置ではベーン70の一つが凸部33の他方の側面に当接している。
【0023】
以上のように構成した本実施の弁開閉時期制御装置1の作用を説明する。内燃機関が停止している時はオイルポンプ205が停止しており、且つ切換弁200が非通電の状態にあるので、作動油圧室R0には作動油(油圧)が供給されていない。このため、図2に示したように、内部ロータ20と外部ロータ30とは遅角方向に働くカムフリクションにより、図2に示す最遅角位置になる。ロックプレート80の頭部80aが内部ロータ20の受容部22に没入し、最遅角位置で内部ロータ20と外部ロータ30の相対回転が規制されている。内燃機関を始動してオイルポンプが駆動されても、切換弁200に通電するデューティ比が小さい(単位時間当たりの非通電時間に対する通電時間の割合が小さい)間は、オイルポンプから供給される作動油(油圧)は接続通路15、遅角通路12および通路24を通って実質的に遅角用油室R2に供給されるだけなので、弁開閉時期制御装置1はロック状態に維持される。
【0024】
内燃機関の運転条件によって、弁開閉時期に進角が必要となると、切換弁200に通電するデューティ比が大きくされ、スプール204の位置が切り換えられる。オイルポンプから供給される作動油(油圧)は、接続通路16、進角通路11および第1作動油通路23を通って、あるいは第3作動油通路25から受容部22に供給され作動油溝23aを通って進角用油室R1へと供給される。
【0025】
一方、角用油室R2にあった作動油(油圧)は、通路24、遅角通路12および接続通路15を介して切換弁200の排出ポート207から排出される。従って、ロックプレート80がスプリング81に抗して移動し、その頭部80aが受容部22から退出して内部ロータ20と外部ロータ30のロックが解除されると共に、カムシャフト10と一体的に回転する内部ロータ20と各ベーン70が外部ロータ30およびフロントプレート40とリアプレート50に対して進角側(図2の時計方向)に相対回転する。この相対回転によって、図2の状態から図3の状態へと移行し、カムのタイミングは進角させられる。制御弁200のデューティ比を制御することで、相対回転位置は任意の位置、例えば図3のような中間位置に止めることもできる。
【0026】
【発明の効果】
以上のように、請求項1の発明にて講じた技術的手段によれば、ガイド部の軸方向の長さをスプリングの軸方向に隣り合う巻線の間に設けられる線間隙間より大きく設定したことにより、スプリングをスプリング収容孔に組み付けるとき、或いは、ロック部材の頭部が受容部に嵌入されスプリングが伸張しているときに、巻線がガイド部の端部(凹状の隅R)に乗り上げ、巻線部が収縮できないために、ロック部材が退避部に収容されず作動不良となることを防止できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に従った弁開閉時期制御装置の縦断面図で、図2に示すA−A線に沿う部分での断面である。
【図2】本発明の実施の形態に従った弁開閉時期制御装置の最遅角状態であって、図1におけるB−B線に沿う断面図を示す。
【図3】本発明の実施の形態に従った弁開閉時期制御装置の中間進角状態であって、図1におけるB−B線に沿う断面図を示す。
【図4】本発明の実施の形態に従った弁開閉時期制御装置の縦断面図で、図2におけるD部分の拡大図である。
【符号の説明】
2 回転部材
3 回転伝達部材
22 受容部
23 第1作動油通路
24 第2作動油通路
25 第3作動油通路
34 退避溝部(退避部)
35 スプリング収容孔
35a ガイド部
70 ベーン
80 ロックプレート(ロック部材)
80a 頭部
81 コイルスプリング(スプリング)
100 シリンダヘッド
R0 作動油圧室
R1 進角用油室
R2 遅角用油室
A ガイド部軸方向長さ
B 線間隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a valve opening / closing timing control device for controlling the opening / closing timing of intake and exhaust valves of an internal combustion engine.
[0002]
[Prior art]
As this kind of valve opening / closing timing control device, a rotating member integrally connected to a valve opening / closing camshaft, and a rotating member is assembled to the rotating member so as to be relatively rotatable within a predetermined range, and rotational power from a crankshaft is transmitted. The oil chamber formed in the rotation transmission member is divided into an advance oil chamber and a retard oil chamber by a vane attached to the rotation member, and the advance oil chamber and the retard angle. There are first and second hydraulic oil passages that supply and discharge hydraulic oil to and from the oil chamber, respectively, and rotate and rotate the rotation member and the rotation transmission member relative to each other by supplying and discharging hydraulic oil to and from each oil chamber. . The rotation transmitting member is formed with a retracting groove portion that accommodates the lock member biased toward the rotating member by the spring, and further includes a guide portion that communicates with the retracting groove portion and accommodates the spring and guides the spring in the axial direction. A provided spring accommodation hole is formed. The rotating member is formed with a receiving portion into which the head of the locking member is inserted when the relative position with respect to the rotation transmitting member is a predetermined position. Then, the rotation transmission member can be locked to the rotation member by fitting the lock member and the receiving portion.
[0003]
In such a valve opening / closing timing control device, the outer periphery of the winding portion and the spring accommodation hole are provided in the spring accommodation hole so that the spring winding portion does not bend when the spring expands and contracts as the lock member extends and retracts. An appropriate clearance is provided between the inner periphery and the guide portion for guiding the spring. On the other hand, while securing the seating surface of the both ends of a spring at the junction part of the radial direction both ends of the spring accommodation hole which the both ends of a spring seat, and the inner peripheral surface of a guide part, ie, the end part of a guide part, When the rotating member and the rotation transmitting member are locked, a concave corner R is formed so that stress generated when rotational power is applied in the rotation direction is not concentrated (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
[Patent Document 1] Japanese Patent Laid-Open No. 2003-13713
[Problems to be solved by the invention]
However, in the conventional configuration described above, when the spring is assembled in the spring accommodating hole, or when the head of the lock member is immersed in the receiving portion and the spring is extended, the spring winding is connected to the end portion of the guide portion ( There is a possibility that the lock member is not accommodated in the retracting groove portion and malfunctions because the winding portion cannot be contracted by riding on the concave corner R).
[0006]
Therefore, an object of the present invention is to realize a valve opening / closing timing control device that does not cause a malfunction such that a winding portion rides on a guide portion while a spring for energizing a lock member is operating.
[0007]
[Means for Solving the Problems]
A first technical means made to solve the above technical problem includes a rotating member integrally connected to a valve opening / closing camshaft rotatably mounted on a cylinder head of an internal combustion engine, and the rotation A rotation transmission member that is assembled so as to be relatively rotatable within a predetermined range with respect to the member, and that transmits rotational power from a crankshaft; a vane provided on either the rotation member or the rotation transmission member; and the rotation member And an oil hydraulic chamber formed between the rotation transmission member and the advance oil chamber and the retard oil chamber by the vane, and the advance oil chamber and the retard oil chamber, respectively. First and second hydraulic oil passages for supplying and discharging oil, and a lock member formed in the rotation transmission member or the rotation member and biased toward the rotation member or the rotation transmission member by a spring And a retraction part, a spring accommodating hole that communicates with the retraction part, and has a guide part that guides the spring in the axial direction, and the rotation member or the rotation transmission member. A receiving portion into which the head of the lock member is retracted when the relative position of the member and the rotation transmitting member coincides with each other at a predetermined position, and a third hydraulic oil passage for supplying and discharging hydraulic oil to and from the receiving portion. In the valve opening / closing timing control device for controlling the opening / closing timing of the intake valve or the exhaust valve of the engine, the length of the guide portion in the axial direction is determined by a gap between lines provided between windings adjacent in the axial direction of the spring. This is a large setting.
[0008]
According to this means, when the length of the guide portion in the axial direction is set larger than the gap between the lines provided between the windings adjacent to each other in the axial direction of the spring, when assembling the spring in the spring accommodating hole, or When the head of the lock member is inserted into the receiving part and the spring is extended, the winding member runs over the end part (concave corner R) of the guide part, and the winding part cannot contract, so the lock member is retracted. It is possible to prevent malfunction due to being not accommodated in the part.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010]
A valve opening / closing timing control device 1 shown in FIGS. 1 to 4 includes a camshaft 10 that is rotatably supported by a cylinder head 100 of an internal combustion engine, and an internal rotor 20 that is integrally assembled to the tip of the camshaft 10. And a rotary member 2 for opening and closing the valve. Further, the valve timing control device 1 has a rotation transmission member 3 including an external rotor 30, a front plate 40, and a rear plate 50 that are assembled so as to be able to rotate relative to the internal rotor 20 within a predetermined range. ing. An integrally provided timing sprocket 31 is formed on the outer periphery of the outer rotor 30. Further, a torsion spring 60 assembled between the inner rotor 20 and the front plate 40, four vanes 70 assembled to the inner rotor 20, a lock plate 80 (FIG. 2) assembled to the outer rotor 30, and the like. Is provided.
[0011]
As is well known, rotational power is transmitted to the timing sprocket 31 from a crankshaft (not shown) via a crank sprocket and a timing chain in the clockwise direction shown as the camshaft rotation direction in FIG.
[0012]
The camshaft 10 has a known cam (not shown) that opens and closes an intake valve (not shown), and an advance angle passage (first hydraulic oil passage) extending in the axial direction of the camshaft 10 inside the camshaft 10. 11 and a retard passage (second hydraulic oil passage) 12 are provided. The advance passage 11 is connected to the first connection port 201 of the switching valve 200 through the radial passage 71 and the annular groove 14 provided in the camshaft 10 and the connection passage 16 provided in the cylinder head 100. Further, the retard passage 12 is connected to the second connection port 202 of the switching valve 200 through the radial passage 72 provided in the camshaft 10 and the connection groove 15 provided in the annular groove 13 and the cylinder head 100.
[0013]
The switching valve 200 is a known valve that energizes the solenoid 203 to move the spool 204 against a spring (not shown). When the power is not supplied, the supply port 206 connected to the oil pump 205 driven by the internal combustion engine communicates with the second connection port 202, and the first connection port 201 communicates with the discharge port 207. . When energized, the supply port 206 communicates with the first connection port 201 and the second connection port 202 communicates with the discharge port 207 as shown in FIG. Therefore, hydraulic oil (hydraulic pressure) is supplied to the retard passage 12 when the switching valve 200 is not energized, and hydraulic oil (hydraulic pressure) is supplied to the advance passage 11 when energized. The switching valve 200 is duty-controlled to change the ratio between energization and non-energization per unit time. For example, when the duty ratio is controlled at 50%, the first and second ports 201 and 202 and the supply and discharge ports 206 and 207 are not in communication with each other.
[0014]
The inner rotor 20 is integrally fixed to the camshaft 10 by mounting bolts 91. Further, as shown in FIG. 2, four vane grooves 21 and a receiving portion 22 are formed in the inner rotor 20. The inner rotor 20 has three first hydraulic oil passages 23 extending in the radial direction, one hydraulic oil groove 23a, four second hydraulic oil passages 24, and a bottom portion of the receiving portion 22 through an advance passage. A plurality of hydraulic oil passages including one third hydraulic oil passage 25 that communicates with the first hydraulic oil passage 11 are provided.
[0015]
As shown in FIG. 2, a vane 70 is inserted into each vane groove 21, and the vane 70 is movable in four working hydraulic pressure chambers R <b> 0 formed between an external rotor 30 and an internal rotor 20 described later, and The hydraulic operating chamber R0 is arranged so as to be divided into an advance oil chamber R1 and a retard oil chamber R2. A vane spring 73 (FIG. 1) is disposed between the bottom of the vane groove 21 and the bottom surface of the vane 70, and each of the four vanes 70 is pushed into the vane groove 21 in the radial direction. Mounted movably.
[0016]
The receiving portion 22 can move to the external rotor 30 in the state shown in FIG. 2, that is, when the relative positions of the camshaft 10 and the internal rotor 20 and the external rotor 30 coincide with each other at a predetermined position (most retarded position). A head 80a of a flat plate-like lock plate (lock member) 80 attached to the head is recessed by a predetermined amount so that the rotation of the outer rotor 30 and the inner rotor 20 can be locked.
[0017]
As shown in FIG. 2, hydraulic oil (hydraulic pressure) is supplied to and discharged from the four retard oil chambers R <b> 2 divided by the vanes 70 through the retard passage 12 and the second hydraulic oil passage 24. It becomes the composition which is done. In addition, hydraulic oil (hydraulic pressure) is supplied to and discharged from three of the four advance oil chambers R <b> 1 through the advance passage 11 and the first hydraulic passage 23. The other hydraulic oil chamber R1 is supplied with hydraulic oil (hydraulic pressure) from the third hydraulic oil passage 25 provided at the bottom of the receiving portion 22 with respect to the lock plate 80. When moved, it is configured to be able to supply and discharge via a hydraulic oil groove 23a that connects the third hydraulic oil passage 25 and the advance oil chamber R1. As described above, the first hydraulic oil passage 23 is not provided for the one advance oil chamber R1, and the third hydraulic oil passage 25 is also used, whereby the configuration of the hydraulic oil passage can be simplified and manufactured at low cost. It has a configuration.
[0018]
An annular front plate 40 and a rear plate 50 are joined to both sides of the outer rotor 30 in the axial direction, and are integrally assembled by four connecting bolts 92. The outer rotor 30 and the inner rotor 20 are rotatable relative to each other within an angle range defined by the vane 70 and the lock plate 80 that move in the working hydraulic chamber R0.
[0019]
A timing sprocket 31 is integrally formed on the outer periphery of the end portion in the axial direction where the rear plate 50 of the external rotor 30 is joined. In addition, five convex portions 33 are formed on the inner periphery of the outer rotor 30 so as to protrude radially inward. The inner peripheral surfaces of these convex portions 33 are in contact with each other so as to slide on the outer peripheral surface of the inner rotor 20, and the outer rotor 30 is rotatably supported by the inner rotor 20. Of the five protrusions 33, a retracting groove (retracting part) 34 that accommodates the lock plate 80 between the two protruding parts 33, and a lock plate 80 that communicates with the retracting groove 34 and is attached radially inward. A spring accommodating hole 35 for accommodating the energizing coil spring (spring) 81 is formed. Further, the four hydraulic hydraulic chambers R0 described above are formed between the five convex portions 33.
[0020]
As shown in FIG. 4, a coil spring 81 is disposed in the spring accommodation hole 35 so as to push the lock plate 80 toward the center in the radial direction of the external rotor 30. The coil spring 81 includes a winding portion 81a and both end portions in the axial direction. The winding part 81a is formed by winding a wire in a spiral shape, and is wound with an interval (space between wires: space between adjacent wires) B adjacent in the axial direction. Both end portions are formed in parallel to a plane perpendicular to the axial direction. In the spring accommodating hole 35, when the coil spring 81 expands and contracts as the lock plate 80 protrudes and retracts, the outer periphery of the winding part 81a and the inside of the spring accommodating hole 35 are prevented so that the winding part 81a of the coil spring 81 does not bend. An appropriate clearance is provided between the periphery and a guide portion 35 a for guiding the coil spring 81 is formed. In addition to securing seating surfaces at both ends of the coil spring 81 at the connecting portion between the both end surfaces in the radial direction of the spring accommodation hole 35 on which both ends of the coil spring 81 are seated and the inner peripheral surface of the guide portion 35a, rotation is ensured. When the member 2 and the rotation transmitting member 3 are locked, a concave corner R is formed so that stress generated when rotational power is applied in the rotation direction is not concentrated. In this configuration, the axial length A of the coil spring 81 of the guide portion 35 a is set to be larger than the inter-line gap B of the coil spring 81. Thereby, when the coil spring 81 is assembled to the spring accommodating hole 35, or when the head portion 80a of the lock plate 80 is fitted into the receiving portion 22 and the coil spring 81 is extended, the winding is connected to the end of the guide portion 35a. It is possible to prevent the winding portion 81a from contracting by climbing on the portion (concave corner R).
[0021]
The torsion spring 60 is attached with one end locked to the front plate 40 and the other end locked to the inner rotor 20. The inner rotor 20 is advanced with respect to the outer rotor 30, the front plate 40 and the rear plate 50. It is energized (clockwise in FIG. 2). Therefore, the operation response to the advance side of the internal rotor 20 is improved.
[0022]
The relative rotation of the inner rotor 20 and the outer rotor 30 to advance each other means that the vane 70 shown in FIG. 3 is advanced (clockwise) from the most retarded position shown in FIG. Is to move on. The most advanced angle is regulated at a position where the vane 70 comes into contact with one side surface in the circumferential direction of the convex portion 33, and the most retarded angle is regulated at a position where the head 80 a of the lock plate 80 enters the receiving portion 22. In this embodiment, one of the vanes 70 is in contact with the other side surface of the convex portion 33 at the most retarded position.
[0023]
The operation of the valve timing control apparatus 1 of the present embodiment configured as described above will be described. When the internal combustion engine is stopped, the oil pump 205 is stopped and the switching valve 200 is in a non-energized state, so that hydraulic oil (hydraulic pressure) is not supplied to the hydraulic pressure chamber R0. For this reason, as shown in FIG. 2, the internal rotor 20 and the external rotor 30 are in the most retarded position shown in FIG. 2 due to cam friction acting in the retarded direction. The head portion 80a of the lock plate 80 is immersed in the receiving portion 22 of the inner rotor 20, and relative rotation between the inner rotor 20 and the outer rotor 30 is restricted at the most retarded position. Even when the internal combustion engine is started and the oil pump is driven, the operation supplied from the oil pump is performed while the duty ratio for energizing the switching valve 200 is small (the ratio of the energization time to the non-energization time per unit time is small). Since the oil (hydraulic pressure) is substantially supplied to the retarding oil chamber R2 through the connecting passage 15, the retarding passage 12 and the passage 24, the valve opening / closing timing control device 1 is maintained in the locked state.
[0024]
If the valve opening / closing timing requires an advance angle depending on the operating conditions of the internal combustion engine, the duty ratio for energizing the switching valve 200 is increased, and the position of the spool 204 is switched. The hydraulic oil (hydraulic pressure) supplied from the oil pump is supplied to the receiving portion 22 through the connection passage 16, the advance passage 11 and the first hydraulic oil passage 23, or from the third hydraulic oil passage 25 to the hydraulic oil groove 23 a. And is supplied to the advance oil chamber R1.
[0025]
On the other hand, the hydraulic oil (hydraulic pressure) in the corner oil chamber R <b> 2 is discharged from the discharge port 207 of the switching valve 200 through the passage 24, the retard passage 12, and the connection passage 15. Therefore, the lock plate 80 moves against the spring 81, and its head 80a is retracted from the receiving portion 22 to unlock the inner rotor 20 and the outer rotor 30 and rotate integrally with the camshaft 10. The inner rotor 20 and the vanes 70 are rotated relative to the outer rotor 30, the front plate 40, and the rear plate 50 in the advance side (clockwise in FIG. 2). Due to this relative rotation, the state of FIG. 2 is shifted to the state of FIG. 3, and the cam timing is advanced. By controlling the duty ratio of the control valve 200, the relative rotational position can be stopped at an arbitrary position, for example, an intermediate position as shown in FIG.
[0026]
【The invention's effect】
As described above, according to the technical means taken in the invention of claim 1, the axial length of the guide portion is set to be larger than the gap between the lines provided between the adjacent windings in the axial direction of the spring. As a result, when the spring is assembled into the spring accommodating hole, or when the head of the lock member is fitted into the receiving portion and the spring is extended, the winding is at the end (concave corner R) of the guide portion. It is possible to prevent the lock member from being housed in the retracting portion and malfunctioning because the winding portion and the winding portion cannot contract.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a valve opening / closing timing control device according to an embodiment of the present invention, which is a section taken along a line AA shown in FIG.
FIG. 2 is a cross-sectional view taken along line B-B in FIG. 1 in the most retarded state of the valve timing control device according to the embodiment of the present invention.
FIG. 3 is a cross-sectional view taken along the line BB in FIG. 1 in an intermediate advance state of the valve timing control device according to the embodiment of the present invention.
4 is a longitudinal sectional view of the valve timing control apparatus according to the embodiment of the present invention, and is an enlarged view of a portion D in FIG.
[Explanation of symbols]
2 Rotating member 3 Rotation transmitting member 22 Receiving portion 23 First hydraulic oil passage 24 Second hydraulic oil passage 25 Third hydraulic oil passage 34 Retraction groove (retraction portion)
35 Spring accommodating hole 35a Guide portion 70 Vane 80 Lock plate (lock member)
80a Head 81 Coil spring (spring)
100 Cylinder head R0 Hydraulic oil chamber R1 Advance angle oil chamber R2 Delay angle oil chamber A Guide section axial length B Clearance between lines

Claims (1)

内燃機関のシリンダヘッドに回転自在に組付けられる弁開閉用のカムシャフトと一体に連結される回転部材と、
前記回転部材に対して所定範囲で相対回転可能に組付けられクランク軸からの回転動力が伝達される回転伝達部材と、
前記回転部材または前記回転伝達部材のいずれか一方に設けられるベーンと、
前記回転部材と前記回転伝達部材との間に形成され前記ベーンによって進角用油室と遅角用油室とに二分される作動油圧室と、
前記進角用油室および遅角用油室にそれぞれ作動油を給排する第1および第2作動油通路と、
前記回転伝達部材または前記回転部材に形成され、スプリングにより前記回転部材または前記回転伝達部材に向けて付勢されたのロック部材を収容する退避部と、
前記退避部に連通し前記スプリングを収容すると共に、前記スプリングを軸方向にガイドするガイド部を設けたスプリング収容孔と、
前記回転部材または前記回転伝達部材に形成され、前記回転部材と前記回転伝達部材の相対位置が所定の位置で一致したとき前記ロック部材の頭部が没入する受容部と、
該受容部に作動油を給排する第3作動油通路とを備える内燃機関の吸気弁又は排気弁の開閉時期を制御する弁開閉時期制御装置において、
前記ガイド部の前記軸方向の長さを前記スプリングの軸方向に隣り合う巻線の間に設けられる線間隙間より大きく設定したことを特徴とする弁開閉時期制御装置。
A rotating member integrally connected to a camshaft for opening and closing a valve that is rotatably assembled to a cylinder head of an internal combustion engine;
A rotation transmitting member that is assembled so as to be relatively rotatable with respect to the rotating member within a predetermined range, and that transmits rotational power from a crankshaft;
A vane provided on either the rotating member or the rotation transmitting member;
An operating hydraulic chamber formed between the rotating member and the rotation transmitting member and divided into an advance oil chamber and a retard oil chamber by the vane;
First and second hydraulic oil passages for supplying and discharging hydraulic oil to and from the advance oil chamber and the retard oil chamber,
A retraction portion that accommodates a lock member formed on the rotation transmission member or the rotation member and biased toward the rotation member or the rotation transmission member by a spring;
A spring accommodating hole that communicates with the retracting portion and accommodates the spring, and is provided with a guide portion that guides the spring in the axial direction;
A receiving portion that is formed on the rotation member or the rotation transmission member, and into which the head of the lock member is immersed when the relative position of the rotation member and the rotation transmission member coincides at a predetermined position;
In a valve opening / closing timing control device for controlling the opening / closing timing of an intake valve or an exhaust valve of an internal combustion engine comprising a third hydraulic oil passage for supplying and discharging hydraulic oil to and from the receiving portion,
The valve opening / closing timing control device characterized in that the length of the guide portion in the axial direction is set larger than a gap between lines provided between windings adjacent in the axial direction of the spring.
JP2003169287A 2003-06-13 2003-06-13 Valve opening/closing timing controller Pending JP2005002952A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003169287A JP2005002952A (en) 2003-06-13 2003-06-13 Valve opening/closing timing controller
CNA2004100492040A CN1573029A (en) 2003-06-13 2004-06-02 Variable valve timing control device
EP04013370A EP1486644A1 (en) 2003-06-13 2004-06-07 Vane type phaser with locking pin
US10/862,322 US20050016482A1 (en) 2003-06-13 2004-06-08 Variable valve timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169287A JP2005002952A (en) 2003-06-13 2003-06-13 Valve opening/closing timing controller

Publications (1)

Publication Number Publication Date
JP2005002952A true JP2005002952A (en) 2005-01-06

Family

ID=33296903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169287A Pending JP2005002952A (en) 2003-06-13 2003-06-13 Valve opening/closing timing controller

Country Status (4)

Country Link
US (1) US20050016482A1 (en)
EP (1) EP1486644A1 (en)
JP (1) JP2005002952A (en)
CN (1) CN1573029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562204A (en) * 2010-12-10 2012-07-11 株式会社电装 Valve timing control apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161277B2 (en) 2005-03-11 2008-10-08 アイシン精機株式会社 Valve timing control device
JP4752953B2 (en) * 2009-06-10 2011-08-17 株式会社デンソー Valve timing adjustment device
JP5321911B2 (en) * 2009-09-25 2013-10-23 アイシン精機株式会社 Valve timing control device
JP2011169215A (en) * 2010-02-18 2011-09-01 Hitachi Automotive Systems Ltd Control valve apparatus
CN101900005B (en) * 2010-06-29 2011-10-26 绵阳富临精工机械股份有限公司 Smart camshaft phase regulator of variable valve timing system of engine
JP5505257B2 (en) 2010-10-27 2014-05-28 アイシン精機株式会社 Valve timing control device
JP5994297B2 (en) * 2012-03-08 2016-09-21 アイシン精機株式会社 Valve timing control device
CN103452614B (en) * 2012-05-30 2016-01-06 爱信精机株式会社 Valve opening and closing time-controlling arrangement and control system for internal combustion engine
JP6007689B2 (en) * 2012-09-11 2016-10-12 アイシン精機株式会社 Valve timing control device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192504A (en) * 1987-09-30 1989-04-11 Aisin Seiki Co Ltd Valve opening and closing timing control device
US5797361A (en) * 1996-04-03 1998-08-25 Toyota Jidosha Kabushiki Kaisha Variable valve timing mechanism for internal combustion engine
JP3744594B2 (en) * 1996-05-15 2006-02-15 アイシン精機株式会社 Valve timing control device
JP3116858B2 (en) * 1996-11-29 2000-12-11 トヨタ自動車株式会社 Variable valve timing mechanism for internal combustion engine
JP3164007B2 (en) * 1997-02-14 2001-05-08 トヨタ自動車株式会社 Valve timing adjustment device for internal combustion engine
JP3760566B2 (en) * 1997-06-05 2006-03-29 アイシン精機株式会社 Valve timing control device
JP3815014B2 (en) * 1997-12-24 2006-08-30 アイシン精機株式会社 Valve timing control device
JP3918971B2 (en) * 1998-04-27 2007-05-23 アイシン精機株式会社 Valve timing control device
US6477999B1 (en) * 1999-12-28 2002-11-12 Borgwarner Inc. Vane-type hydraulic variable camshaft timing system with lockout feature
US6276321B1 (en) * 2000-01-11 2001-08-21 Delphi Technologies, Inc. Cam phaser having a torsional bias spring to offset retarding force of camshaft friction
JP4203703B2 (en) * 2000-06-14 2009-01-07 アイシン精機株式会社 Valve timing control device
JP3971887B2 (en) * 2000-06-22 2007-09-05 株式会社日立製作所 Valve timing changing device for internal combustion engine
JP3983457B2 (en) * 2000-06-22 2007-09-26 株式会社日立製作所 Valve timing changing device for internal combustion engine
JP4262873B2 (en) * 2000-08-18 2009-05-13 三菱電機株式会社 Valve timing adjusting device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562204A (en) * 2010-12-10 2012-07-11 株式会社电装 Valve timing control apparatus

Also Published As

Publication number Publication date
CN1573029A (en) 2005-02-02
EP1486644A1 (en) 2004-12-15
US20050016482A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP3846605B2 (en) Valve timing control device
JP5500350B2 (en) Valve timing control device
US6450137B2 (en) Variable valve timing system
JP4203703B2 (en) Valve timing control device
JP3952015B2 (en) Valve timing control device
JP2002276312A (en) Valve opening/closing timing control apparatus
JP2005002952A (en) Valve opening/closing timing controller
JP4001070B2 (en) Valve timing control device
JP2006291944A (en) Valve opening/closing timing control device
JP4214972B2 (en) Valve timing control device
JP3823451B2 (en) Valve timing control device
JP4042661B2 (en) Valve timing control device
JP4736986B2 (en) Valve timing control device
JP2004084611A (en) Valve opening/closing timing control device
JP4200920B2 (en) Valve timing control device
JP6404466B2 (en) Valve timing control device for internal combustion engine
JP4168525B2 (en) Valve timing control device
JP4645561B2 (en) Valve timing control device
US11255227B2 (en) Valve opening and closing timing control device
JP2005036789A (en) Valve timing control device
JP4013157B2 (en) Valve timing changing device for internal combustion engine
JP4134495B2 (en) Valve timing control device
US20210172346A1 (en) Valve opening and closing timing control device
JP4140360B2 (en) Valve timing control device
JP2001317314A (en) Timing control device for opening and closing valve