JP2005002883A - Controller for internal combustion engine - Google Patents

Controller for internal combustion engine Download PDF

Info

Publication number
JP2005002883A
JP2005002883A JP2003167267A JP2003167267A JP2005002883A JP 2005002883 A JP2005002883 A JP 2005002883A JP 2003167267 A JP2003167267 A JP 2003167267A JP 2003167267 A JP2003167267 A JP 2003167267A JP 2005002883 A JP2005002883 A JP 2005002883A
Authority
JP
Japan
Prior art keywords
knocking
compression ratio
control
engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003167267A
Other languages
Japanese (ja)
Other versions
JP4134821B2 (en
Inventor
Toru Noda
徹 野田
Takanobu Sugiyama
孝伸 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003167267A priority Critical patent/JP4134821B2/en
Publication of JP2005002883A publication Critical patent/JP2005002883A/en
Application granted granted Critical
Publication of JP4134821B2 publication Critical patent/JP4134821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress reduction of engine output at a transient time for suppressing knocking. <P>SOLUTION: This spark ignition type internal combustion engine provided with an ignition plug 9 is provided with a variable compression ratio mechanism 20 for changing engine compression ratio. When detecting the occurrence of knocking by a knock sensor 15, engine compression ratio and ignition time are controlled so that reduction of engine output becomes the minimum extent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、可変圧縮比機構を備えた火花点火式内燃機関の制御装置に関し、特に、ノッキングを有効に回避する技術に関する。
【0002】
【従来の技術】
特許文献1には、機関圧縮比を変更可能な可変圧縮比機構及び点火プラグを備えた火花点火式の内燃機関において、ノッキングセンサによりノッキングが検出された場合、まず圧縮比を低下し、その後もノッキングが続く場合には、点火時期を遅角することにより、ノッキングを回避する技術が開示されている。
【0003】
【特許文献1】
特公平05−059273号公報
【0004】
【発明が解決しようとする課題】
上記の特許文献1には、ノッキングを回避するために圧縮比や点火時期を変更する過渡期における機関出力・トルクの低下については考慮されていない。本発明は、この点に着目してなされたものである。
【0005】
【課題を解決するための手段】
機関圧縮比を変更可能な可変圧縮比機構及び点火プラグを備えた火花点火式の内燃機関の制御装置において、検知手段によりノッキングの発生が検知された場合、機関の出力低下が最小となる様に、機関圧縮比と点火時期とを制御する。
【0006】
【発明の効果】
本発明によれば、ノッキングが検知された場合に、機関の出力低下を最小限に抑えつつ、ノッキングの発生を抑制・回避することができる。
【0007】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面に基づいて詳細に説明する。図1を参照して、この内燃機関は、シリンダヘッド1とシリンダブロック2とにより大略構成されており、かつ、ピストン3の上方に画成される燃焼室4内の混合気を火花点火する点火プラグ9を備えたガソリンエンジン等の火花点火式内燃機関である。この内燃機関は、周知のように、吸気ポート7を開閉する吸気弁5と、排気ポート8を開閉する排気弁6と、吸気ポート7に燃料を噴射する燃料噴射弁10と、吸気コレクタ18の上流側を開閉して吸入空気量を調整するスロットル16と、を有し、かつ、機関圧縮比を変更可能な可変圧縮比機構20を備えている。
【0008】
ECU(エンジン・コントロール・ユニット)11は、CPU,ROM,RAM及び入出力インターフェースを備えた周知のデジタルコンピュータであり、アクセル開度を検出するアクセル開度センサ12,機関水温を検出する水温センサ13,機関回転数を検出するクランク角センサ14,及びノッキングの有無を検出するノックセンサ15等の各種センサからの検出信号等に基づいて、燃料噴射弁10,点火プラグ9,スロットル16の駆動装置16a,及び可変圧縮比機構20の駆動装置21等の各種アクチュエータへ制御信号を出力して、燃料噴射量,燃料噴射時期,点火時期,スロットル開度,及び機関圧縮比等を統括的に制御する。
【0009】
図2を参照して、可変圧縮比機構20は、クランクシャフト22のクランクピン23に回転可能に装着されたロアリンク24と、このロアリンク24とピストン3とを連携するアッパリンク25と、偏心軸28が設けられたコントロールシャフト27と、偏心軸28とロアリンク24とを連携するコントロールリンク26と、を有している。上記の駆動装置21(図1参照)によりコントロールシャフト27の回転位置を変更することにより、コントロールリンク26によるロアリンク24の運動拘束条件が変化し、ピストン3のストローク特性、すなわちピストン3の上死点位置及び機関圧縮比が連続的に変更・制御される。
【0010】
図3及び図4は、本発明に係るノッキング発生時の点火時期と圧縮比との制御の一例を示している。ノッキングの発生を検知すると、機関の出力・トルク低下が最小となるように、点火時期及び機関圧縮比を制御する。例えば、点Aを初期圧縮比及び点火時期の設定点とすると、気温の上昇等でノッキングが発生し、これをノックセンサで検知した場合には、先ずB点に向かって点火時期を遅角することでノッキングを回避する。更にノッキングの発生が続く場合には、点火時期を遅角するとともに圧縮比を低下してC点へ移行し、更にノッキングの発生が続く場合には、圧縮比を低下してD点へと移動する。
【0011】
例えば、ノッキングの発生を検知すると、先ず圧縮比を低下していき、圧縮比が設定可能な最低値に達した以降もノッキングが検知される場合には、点火時期の遅角によってノッキングを回避する様に制御を行ってもよい。あるいは、ノッキングの発生を検知すると、先ず点火時期を遅角していき、点火時期が遅角限界に達して以降もノッキングが検知される場合には、圧縮比の低下によってノッキングを回避する様に制御を行うようにしてもよい。なお、ノッキング回避のための制御量、すなわち点火時期の遅角量や圧縮比の低下量は、好ましくは機関回転数や負荷等の機関運転条件に応じて設定される。
【0012】
図5は、本発明の第1実施例に係る制御の流れを示すフローチャートである。本ルーチンは、例えばECU11により所定期間毎に繰り返し実行される。S(ステップ)11では、ノックセンサ15の検出信号を読み込む。S12では、上記ノックセンサ15の検出信号に基づいて、ノッキングの発生の有無を判定する。ノッキングが発生していないと判定されればS24へ進み、後述する指標K及び変数I,Jを0に初期化して本ルーチンを終了する。
【0013】
S13では、ノッキング強度指標Kに1を加算するとともに、機関出力指標Tの最大値TMAXを0に初期化する。上記のノッキング強度指標Kは、ノッキングの抑制度合いに相当し、基本的には指標Kの値が大きいほどノッキングを低下させるための点火時期の遅角度合いや機関圧縮比の低下度合いが大きく、指標Kの値が小さいほどノッキングを低下させるための点火時期の遅角度合いや機関圧縮比の低下度合いが小さい。
【0014】
S14では、点火時期制御変数Iに1を加算する。S15では圧縮比制御変数Jに1を加算する。S16では、値K(I,J)とノッキング強度指標Kとを比較し、K(I,J)がKとが等しくなければ、S17及びS18をスキップしてS19へ進む。上記のK(I,J)は、図6に示すように、予め設定されるノッキング強度指標Kマップに、現在の変数I及び変数Jをマッピングして求められる。例えば、K(2,3)は5である。
【0015】
S17では、値T(I,J)がTMAX以上であるかを判定する。上記の値T(I,J)は、図7に示す機関出力指標Tマップに変数I,Jをマッピングして求められる。図7のマップ上のT11,T12,〜,T88には、それぞれ機関出力・トルクに対応する値が格納されている。これらの値は、予め設定された固定値であってもよく、あるいは機関回転数や機関負荷に基づいて演算・更新するようにしても良い。T(I,J)がTMAXよりも小さい場合には、S18をスキップしてS19へ進む。S16及びS17の双方が肯定されるとS18へ進み、変数IをITRGを代入し、変数JをJTRGに代入する。
【0016】
S19では、変数Jと、この変数の最大値JMAX(図6及び図7の例では8)とを比較する。変数Jが最大値JMAXに達していなければ、上記のS14へ戻る。S20では、変数Iと、この変数の最大値IMAX(図6及び図7の例では8)とを比較する。変数Iが最大値IMAXに達していなければ、上記のS15へ戻る。
【0017】
変数I,Jの双方が最大値に達し、図6のマップの全ての領域・組み合わせについての処理を終了すると、S19及びS20の判定が肯定されてS21へ進み、上記のITRGに基づいて点火時期の制御指令値ADV、すなわちノッキングを回避するための点火時期(の遅角度合い)を演算し、かつ、上記のJTRGに基づいて機関圧縮比の制御指令値CR、すなわちノッキングを回避するための圧縮比(の低下度合い)を演算する。S22では、上記の制御指令値ADVに基づいて点火時期の遅角制御を行う。S23では、上記の制御指令値CRに基づいて機関圧縮比の低下制御を行う。
【0018】
本ルーチンによれば、ノッキングが検出されると、先ず、S13においてノッキング抑制度合いに相当するノッキング強度指標Kが1に設定され、図6のマップを参照してK=1となる点火時期制御変数Iと圧縮比制御変数Jとの組み合わせK(I,J)を選び(S16)、選ばれた複数の組み合わせの中で機関出力が最も大きい組み合わせT(I,J)を選び(S17)、その組み合わせT(I,J)に対応した点火時期制御変数ITRGと圧縮比制御変数JTRGとに基づいて、点火時期と圧縮比とを制御する(S18,S21〜S23)。再びノッキングが検出されれば、S13において、ノッキング抑制度合いに相当するノッキング強度指標Kを一段階上げて2とし、上述したように機関出力が最も大きくなるように点火時期と圧縮比とを制御する。このようにして、ノッキングの発生が検出されなくなるまで、ノッキング強度を段階的に変化させながら、機関出力が最大(機関の出力低下が最小)となるように点火時期と圧縮比とが制御される。従って、ノッキングを回避するために点火時期と機関圧縮比とを制御する過渡期に、機関出力の低下を最小限に抑制することができる。
【0019】
図8は、本発明の第2実施例に係る制御の流れを示すフローチャートである。図5に示す第1実施例と同じ処理内容には同じ参照符号を付して重複する説明を省略する。この第2実施例では、S13において、ノッキング強度指標Kに1を加算した後、S13aへ進み、ノッキング強度指標Kが最大値KMAX(図6の例では7)を越えたかを判定する。ノッキング強度指標Kが最大値KMAXを越えるまでは、S14へ進み、上記第1実施例と同様の処理が行われる。ノッキング強度指標Kが最大値KMAXを越えると、S13aからS25へ進み、吸気量を制限する。具体的には、スロットル16の開度を小さくする。
【0020】
この第2実施例によれば、上記第1実施例と同様の効果が得られることに加え、点火時期の遅角及び圧縮比の低下によりノッキングの発生を回避できない状況でも、吸入空気量の低下によりノッキングを回避することが可能となり、より確実にノッキングの発生を回避・抑制することができる。
【0021】
以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の制御装置を示すシステム構成図。
【図2】可変圧縮比機構を示す概略構成図。
【図3】ノッキング発生時の点火時期及び圧縮比の制御の様子を示す特性図。
【図4】同じくノッキング発生時の点火時期及び圧縮比の制御の様子を示す特性図。
【図5】本発明の第1実施例に係る制御の流れを示すフローチャート。
【図6】ノッキング強度指標Kの制御マップ。
【図7】機関出力指標Tの制御マップ。
【図8】本発明の第2実施例に係る制御の流れを示すフローチャート。
【符号の説明】
4…燃焼室
9…点火プラグ
11…ECU
15…ノックセンサ
16…スロットル
20…可変圧縮比機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a spark ignition internal combustion engine having a variable compression ratio mechanism, and more particularly to a technique for effectively avoiding knocking.
[0002]
[Prior art]
In Patent Document 1, in a spark ignition type internal combustion engine equipped with a variable compression ratio mechanism capable of changing the engine compression ratio and an ignition plug, when knocking is detected by a knocking sensor, the compression ratio is first lowered, and thereafter A technique for avoiding knocking by retarding the ignition timing when knocking continues is disclosed.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 05-059273 [0004]
[Problems to be solved by the invention]
The above-mentioned Patent Document 1 does not take into consideration a decrease in engine output / torque during a transition period in which the compression ratio and the ignition timing are changed in order to avoid knocking. The present invention has been made paying attention to this point.
[0005]
[Means for Solving the Problems]
In a spark ignition type internal combustion engine control device equipped with a variable compression ratio mechanism capable of changing the engine compression ratio and an ignition plug, when the occurrence of knocking is detected by the detection means, the output reduction of the engine is minimized. The engine compression ratio and ignition timing are controlled.
[0006]
【The invention's effect】
According to the present invention, when knocking is detected, the occurrence of knocking can be suppressed and avoided while minimizing a decrease in engine output.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, this internal combustion engine is roughly constituted by a cylinder head 1 and a cylinder block 2, and an ignition for spark-igniting an air-fuel mixture in a combustion chamber 4 defined above a piston 3. A spark ignition internal combustion engine such as a gasoline engine provided with a plug 9. As is well known, this internal combustion engine includes an intake valve 5 that opens and closes an intake port 7, an exhaust valve 6 that opens and closes an exhaust port 8, a fuel injection valve 10 that injects fuel into the intake port 7, and an intake collector 18. And a throttle 16 for adjusting the intake air amount by opening and closing the upstream side, and a variable compression ratio mechanism 20 capable of changing the engine compression ratio.
[0008]
The ECU (engine control unit) 11 is a well-known digital computer having a CPU, ROM, RAM, and an input / output interface, and includes an accelerator opening sensor 12 that detects the accelerator opening, and a water temperature sensor 13 that detects the engine water temperature. Based on detection signals from various sensors such as a crank angle sensor 14 for detecting the engine speed and a knock sensor 15 for detecting the presence or absence of knocking, a driving device 16a for the fuel injection valve 10, the spark plug 9, and the throttle 16 is provided. , And a control signal is output to various actuators such as the drive unit 21 of the variable compression ratio mechanism 20 to comprehensively control the fuel injection amount, fuel injection timing, ignition timing, throttle opening, engine compression ratio, and the like.
[0009]
Referring to FIG. 2, the variable compression ratio mechanism 20 includes a lower link 24 rotatably attached to a crankpin 23 of a crankshaft 22, an upper link 25 that links the lower link 24 and the piston 3, and an eccentricity. A control shaft 27 provided with a shaft 28 and a control link 26 that links the eccentric shaft 28 and the lower link 24 are provided. When the rotational position of the control shaft 27 is changed by the driving device 21 (see FIG. 1), the motion restraint condition of the lower link 24 by the control link 26 changes, and the stroke characteristics of the piston 3, that is, the top dead of the piston 3 The point position and the engine compression ratio are continuously changed and controlled.
[0010]
3 and 4 show an example of control of the ignition timing and the compression ratio when knocking occurs according to the present invention. When the occurrence of knocking is detected, the ignition timing and the engine compression ratio are controlled so that the output / torque reduction of the engine is minimized. For example, if point A is set as the initial compression ratio and ignition timing, knocking occurs due to a rise in temperature or the like, and when this is detected by a knock sensor, the ignition timing is first retarded toward point B. To avoid knocking. If knocking continues, the ignition timing is retarded and the compression ratio is lowered to shift to point C. If knocking continues, the compression ratio is lowered and moved to point D. To do.
[0011]
For example, when the occurrence of knocking is detected, the compression ratio is first lowered, and if knocking is detected after the compression ratio reaches the lowest value that can be set, knocking is avoided by retarding the ignition timing. Control may be performed in the same way. Alternatively, when the occurrence of knocking is detected, the ignition timing is first retarded, and if knocking is detected after the ignition timing reaches the retardation limit, knocking is avoided by reducing the compression ratio. Control may be performed. It should be noted that the control amount for avoiding knocking, that is, the retard amount of the ignition timing and the decrease amount of the compression ratio are preferably set according to engine operating conditions such as engine speed and load.
[0012]
FIG. 5 is a flowchart showing a flow of control according to the first embodiment of the present invention. This routine is repeatedly executed by the ECU 11 at predetermined intervals, for example. In S (step) 11, the detection signal of the knock sensor 15 is read. In S12, based on the detection signal of the knock sensor 15, it is determined whether or not knocking has occurred. If it is determined that knocking has not occurred, the process proceeds to S24, an index K and variables I and J, which will be described later, are initialized to 0, and this routine is terminated.
[0013]
In S13, 1 is added to the knocking strength index K, and the maximum value TMAX of the engine output index T is initialized to 0. The knocking strength index K corresponds to the degree of knocking suppression. Basically, the larger the value of the index K, the greater the retard of the ignition timing and the degree of decrease in the engine compression ratio for reducing knocking. The smaller the value of K, the smaller the retard of the ignition timing and the degree of decrease in the engine compression ratio for reducing knocking.
[0014]
In S14, 1 is added to the ignition timing control variable I. In S15, 1 is added to the compression ratio control variable J. In S16, the value K (I, J) is compared with the knocking strength index K. If K (I, J) is not equal to K, S17 and S18 are skipped and the process proceeds to S19. As shown in FIG. 6, the above K (I, J) is obtained by mapping the current variable I and variable J to a preset knocking strength index K map. For example, K (2,3) is 5.
[0015]
In S17, it is determined whether the value T (I, J) is equal to or greater than TMAX. The value T (I, J) is obtained by mapping the variables I and J to the engine output index T map shown in FIG. Values corresponding to the engine output / torque are stored in T11, T12,..., T88 on the map of FIG. These values may be fixed values set in advance, or may be calculated and updated based on the engine speed and the engine load. If T (I, J) is smaller than TMAX, S18 is skipped and the process proceeds to S19. If both S16 and S17 are affirmed, the process proceeds to S18, where variable I is substituted for ITRG and variable J is substituted for JTRG.
[0016]
In S19, the variable J is compared with the maximum value JMAX (8 in the examples of FIGS. 6 and 7) of this variable. If the variable J has not reached the maximum value JMAX, the process returns to S14. In S20, the variable I is compared with the maximum value IMAX (8 in the examples of FIGS. 6 and 7) of this variable. If the variable I has not reached the maximum value IMAX, the process returns to S15 described above.
[0017]
When both the variables I and J reach the maximum value and the processing for all the regions / combinations in the map of FIG. 6 is completed, the determinations in S19 and S20 are affirmed and the process proceeds to S21, and the ignition timing is based on the above-mentioned ITRG. Control command value ADV, that is, an ignition timing (a retarded angle) for avoiding knocking, and a control command value CR for engine compression ratio, that is, compression for avoiding knocking, based on the above JTRG The ratio (degree of decrease) is calculated. In S22, ignition timing retardation control is performed based on the control command value ADV. In S23, the engine compression ratio is lowered based on the control command value CR.
[0018]
According to this routine, when knocking is detected, first, in S13, the knocking intensity index K corresponding to the knocking suppression degree is set to 1, and the ignition timing control variable is set to K = 1 with reference to the map of FIG. The combination K (I, J) of I and the compression ratio control variable J is selected (S16), and the combination T (I, J) having the largest engine output is selected from the selected combinations (S17). The ignition timing and the compression ratio are controlled based on the ignition timing control variable ITRG and the compression ratio control variable JTRG corresponding to the combination T (I, J) (S18, S21 to S23). If knocking is detected again, in S13, the knocking intensity index K corresponding to the degree of knocking suppression is increased by one level to 2, and the ignition timing and the compression ratio are controlled so that the engine output becomes maximum as described above. . In this way, the ignition timing and the compression ratio are controlled so that the engine output is maximized (the engine output decrease is minimized) while gradually changing the knocking intensity until occurrence of knocking is not detected. . Therefore, it is possible to minimize a decrease in the engine output during the transition period in which the ignition timing and the engine compression ratio are controlled in order to avoid knocking.
[0019]
FIG. 8 is a flowchart showing the flow of control according to the second embodiment of the present invention. The same processing contents as those in the first embodiment shown in FIG. In the second embodiment, after adding 1 to the knocking strength index K in S13, the process proceeds to S13a to determine whether the knocking strength index K exceeds the maximum value KMAX (7 in the example of FIG. 6). Until the knocking strength index K exceeds the maximum value KMAX, the process proceeds to S14 and the same processing as in the first embodiment is performed. When the knocking strength index K exceeds the maximum value KMAX, the process proceeds from S13a to S25, and the intake air amount is limited. Specifically, the opening degree of the throttle 16 is reduced.
[0020]
According to the second embodiment, the same effect as the first embodiment can be obtained, and the intake air amount can be reduced even in a situation where the occurrence of knocking cannot be avoided due to the retard of the ignition timing and the reduction of the compression ratio. Therefore, knocking can be avoided, and knocking can be avoided and suppressed more reliably.
[0021]
As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes without departing from the spirit of the present invention. .
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing a control device for an internal combustion engine according to the present invention.
FIG. 2 is a schematic configuration diagram showing a variable compression ratio mechanism.
FIG. 3 is a characteristic diagram showing how ignition timing and compression ratio are controlled when knocking occurs.
FIG. 4 is a characteristic diagram showing how ignition timing and compression ratio are similarly controlled when knocking occurs.
FIG. 5 is a flowchart showing a control flow according to the first embodiment of the present invention.
FIG. 6 is a control map of a knocking strength index K.
FIG. 7 is a control map of an engine output index T.
FIG. 8 is a flowchart showing a control flow according to the second embodiment of the present invention.
[Explanation of symbols]
4 ... Combustion chamber 9 ... Spark plug 11 ... ECU
15 ... Knock sensor 16 ... Throttle 20 ... Variable compression ratio mechanism

Claims (4)

機関圧縮比を変更可能な可変圧縮比機構及び点火プラグを備えた火花点火式の内燃機関の制御装置において、
ノッキングの発生を検知する検知手段と、
この検知手段によりノッキングの発生が検知された場合、機関の出力低下が最小となる様に、機関圧縮比と点火時期とを制御する制御手段と、
を有することを特徴とする内燃機関の制御装置。
In a control device for a spark ignition internal combustion engine having a variable compression ratio mechanism capable of changing the engine compression ratio and an ignition plug,
Detection means for detecting the occurrence of knocking;
Control means for controlling the engine compression ratio and the ignition timing so as to minimize the decrease in engine output when knocking is detected by the detection means;
A control apparatus for an internal combustion engine, comprising:
上記制御手段は、ノッキングの発生が検知されなくなるまで、ノッキングの抑制度合いに相当するノッキング強度指標を段階的に上げていく請求項1に記載の内燃機関の制御装置。2. The control device for an internal combustion engine according to claim 1, wherein the control unit increases a knocking strength index corresponding to a degree of suppression of knocking in a stepwise manner until occurrence of knocking is not detected. 上記制御手段は、上記ノッキング強度指標が等しい複数組の点火時期制御変数と圧縮比制御変数の組み合わせの中から、機関出力が最大となる組み合わせを選び出し、この選ばれた組み合わせの点火時期制御変数と圧縮比制御変数とに基づいて、点火時期及び機関圧縮比を制御する請求項2に記載の内燃機関の制御装置。The control means selects a combination that maximizes engine output from a plurality of combinations of ignition timing control variables and compression ratio control variables that have the same knocking strength index, and sets the ignition timing control variable for the selected combination. The control apparatus for an internal combustion engine according to claim 2, wherein the ignition timing and the engine compression ratio are controlled based on the compression ratio control variable. 上記検知手段によりノッキングの発生が検知された場合に、吸気量を低減する手段を有する請求項1〜3のいずれかに記載の内燃機関の制御装置。The control apparatus for an internal combustion engine according to any one of claims 1 to 3, further comprising means for reducing an intake air amount when occurrence of knocking is detected by the detection means.
JP2003167267A 2003-06-12 2003-06-12 Control device for internal combustion engine Expired - Fee Related JP4134821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167267A JP4134821B2 (en) 2003-06-12 2003-06-12 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167267A JP4134821B2 (en) 2003-06-12 2003-06-12 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005002883A true JP2005002883A (en) 2005-01-06
JP4134821B2 JP4134821B2 (en) 2008-08-20

Family

ID=34093121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167267A Expired - Fee Related JP4134821B2 (en) 2003-06-12 2003-06-12 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4134821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525207A (en) * 2007-04-16 2010-07-22 ラビー,ヴィアニー Electrohydraulic device for closed-loop drive of a variable compression ratio engine control jack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525207A (en) * 2007-04-16 2010-07-22 ラビー,ヴィアニー Electrohydraulic device for closed-loop drive of a variable compression ratio engine control jack

Also Published As

Publication number Publication date
JP4134821B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4103769B2 (en) Control device for internal combustion engine
US8205589B2 (en) Engine starting control apparatus
US7121233B2 (en) Control apparatus for an internal combustion engine
JP5024216B2 (en) Ignition timing control device and ignition timing control method for internal combustion engine
US7831377B2 (en) Ignition timing control system and method for internal combustion engine and engine control unit
JP4525406B2 (en) Valve characteristic control device for internal combustion engine
JP6380678B2 (en) Control method and control apparatus for internal combustion engine
JP4497089B2 (en) Control device for internal combustion engine
JP3925391B2 (en) Knocking control device for internal combustion engine
JP4670765B2 (en) Valve characteristic control device for internal combustion engine
EP1828576B1 (en) Valve characteristic control apparatus for internal combustion engine
US8682567B2 (en) Intake air control apparatus and intake air control method for internal-combustion engine
JP4758770B2 (en) Intake air amount control device for internal combustion engine
JP5593132B2 (en) Control device for internal combustion engine
JP4432729B2 (en) Engine stop control device
JP4419800B2 (en) Engine starter
JP4134821B2 (en) Control device for internal combustion engine
JP2001234801A (en) Knocking control device of internal combustion engine
JP4284972B2 (en) Control device for internal combustion engine
JP5041167B2 (en) Engine control device
JP4702476B2 (en) Control device for internal combustion engine
JP2007009835A (en) Control device for internal combustion engine
JP4343954B2 (en) Engine control device
JP6548585B2 (en) Control device for internal combustion engine
JP6432548B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Ref document number: 4134821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees