JP2005001055A - Robot device - Google Patents

Robot device Download PDF

Info

Publication number
JP2005001055A
JP2005001055A JP2003166977A JP2003166977A JP2005001055A JP 2005001055 A JP2005001055 A JP 2005001055A JP 2003166977 A JP2003166977 A JP 2003166977A JP 2003166977 A JP2003166977 A JP 2003166977A JP 2005001055 A JP2005001055 A JP 2005001055A
Authority
JP
Japan
Prior art keywords
robot
posture
acceleration vector
container
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003166977A
Other languages
Japanese (ja)
Other versions
JP3910157B2 (en
Inventor
Toru Shirahata
透 白幡
Nobuhito Matsuo
信人 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2003166977A priority Critical patent/JP3910157B2/en
Publication of JP2005001055A publication Critical patent/JP2005001055A/en
Application granted granted Critical
Publication of JP3910157B2 publication Critical patent/JP3910157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a robot device which stores liquid and powder, etc. into a container and efficiently carries the liquid and powder, etc. without spilling them from an opening of the container. <P>SOLUTION: The container is held by a hand mounted at a distal end of a robot arm to carry the liquid and powder, etc. stored into the container. The attitude of the container is directed in the same direction (just under) as that of gravitational acceleration vector when starting the carrying. As acceleration is increased in an acceleration process, inertia acceleration vector is gradually increased, and inclination is increased in an opposite direction of the direction of the acceleration. When the acceleration is changed to a decrease, the inertia acceleration vector is gradually decreased and the inclination is reduced. When the acceleration process is completed and speed becomes constant, the inclination is eliminated. In a deceleration process, the inclination is increased in the direction opposite to that in the acceleration process as deceleration is increased. When the deceleration is changed to a decrease, the inclination is reduced. When a robot stops, the inclination is eliminated and the container is returned to the attitude directed to the just under direction when starting the carrying. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ロボット(運動機構を備えた本体部)とそれを制御する制御装置を備えたロボット装置に関し、更に詳しく言えば、液体、粉体、または小サイズの成形品(例えば小サイズのネジ)等を容器(バケット等)に収容した状態で搬送するロボット装置に関する。なお、本明細書において、「容器」とは、例えばバケット等のように開口部を持つ容器を指し、密封容器は除くものとする。
【0002】
【従来の技術】
液体、粉体、又は極めて小サイズの物体の集合などを容器に収容した状態でロボットにより搬送する場合、ロボットの移動中に加速度により液面、粉体の表面あるいは小サイズ物体の最上面が揺れ、容器からこぼれ出る場合がある。従来は、これを防ぐ為に容器の最大容量よりかなり少ない量の液体、粉体あるいは小サイズ物体しか搬送出来ず、運搬効率が低かった。また、移動時の速度及び加速度についてもこれら被搬送物が容器からこぼれ出ないように低くする必要があり、サイクルタイムも長くなっていた。
【0003】
このような欠点を回避する手法として、容器の傾きについて1自由度の変化を許容する取っ手を容器に取り付け、ロボットはこの取っ手を介して容器を支持して搬送を行なう方法があるが、容器の姿勢変化が1自由度のため、特定の移動方向の搬送時のみにしか有効でない。また、ロボットが停止時等に容器が揺動する場合があり、速度、加速度を液体等がこぼれない様低く設定する必要があった。
【0004】
また、2自由度の取っ手を取り付けることも考えられるが、その場合でも、加加速度(加速度の変化率)が大きい場合には、液体等がこぼれる可能性が大きい。
【0005】
更に、本発明に関連性を持つ先行技術として下記特許文献1がある。これは、長軸のパイプなどを把持するために、移動方向に対して非対称な把持力を持つハンドを採用し、ワークにかかる慣性力のみを考慮して、加速度に対して大きな把持力を持つ方向にハンドの姿勢を制御するものである。この先行技術は、特定の非対称な把持力を持つハンドに依存した発明であり、慣性力は考慮しているが重力を考慮しておらず、また液体、粉体などの運搬には適用困難である。
【0006】
【特許文献】
特開平9−300255号公報
【0007】
【発明が解決しようとする課題】
上記したように、ロボットを利用して、液体、粉体、又は極めて小サイズの物体の集合など、流動性乃至それに準じた性質を持つ被搬送物を容器に収容した状態でこぼさずに効率良く搬送する技術の開発は十分に進んでいるとは言えない。そこで、本発明の目的は、ロボットに支持される容器に収容される被搬送物が、液体、粉体、又は小サイズの物体の集合などのように流動性乃至それに準じた性質を持っていても、同容器からこぼさずに効率良く搬送することが出来るロボット装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、被搬送物を容器に収容した状態で搬送する際に、同容器乃至ロボットの姿勢を、被搬送物にかかる重カ加速ベクトルと加速する方向の反対方向にかかる慣性加速ベクトルを考慮して重力加速ベクトルと慣性加速ベクトルの合成ベクトルを算出し、この合成加速度ベクトルの方向を指標に用いて、適正な搬送姿勢(以下、「適正搬送姿勢」とも言う)を求め、該適正搬送姿勢が実現されるように、ロボットの姿勢を制御することで、上記技術課題を解決したものである。
【0009】
ここで、「適正搬送姿勢」とは、被搬送物を容器からこぼさないという観点で、上記合成加速度ベクトルの方向に基づいて算出されるロボット姿勢のことである。但し、この「ロボット姿勢」は、被搬送物を収容した「容器」の姿勢、あるいは、同容器を把持するロボットハンドの姿勢(ロボットハンドで容器を把持した場合)と1対1対応関係にある。従って、ロボットの適正搬送姿勢を求めることと、容器あるいはハンドについて適正搬送姿勢を求めることは実質的に同等である。
【0010】
本発明は、容器に入れられた被搬送物を、搬送開始位置から搬送終了位置まで、前記被搬送物が前記容器からこぼれないように搬送するロボットと、前記ロボットを制御する制御装置を備えたロボット装置に適用される。本発明の基本的な特徴に従い、同ロボット装置は、前記搬送中の被搬送物にかかる慣性加速度ベクトルを所定周期毎に演算する手段と、前記慣性加速度ベクトルと重力加速度ベクトルとを合成し、合成加速度ベクトルを求める手段と、該求めた合成加速度ベクトルに基き、前記搬送中の前記ロボットの適正搬送姿勢を求める手段と、該求められた適正搬送姿勢に基づいて前記ロボットの姿勢を制御する手段とを備えている。
【0011】
ロボット姿勢は、前記合成加速度ベクトルの方向の変化に追従して変化するように制御される。そのために、前記合成加速度ベクトルの方向と前記重力加速度ベクトルの方向の差異を求める手段と、前記搬送開始位置における前記ロボットの姿勢を基準にして、前記差異に対応した量だけ姿勢変更した前記ロボットの適正搬送姿勢を求める手段がロボット装置に設けられる。
【0012】
また、合成加速度ベクトルの初期値を重力加速度ベクトルとして、前回の周期における合成加速度ベクトルの方向と、今回の周期で求めた合成加速度ベクトルの方向の差異に対応する前記ロボットの姿勢変更量を求める手段と、前記ロボットの搬送姿勢の初期値を前記搬送開始位置における前記ロボットの適正搬送姿勢として、前回の周期で求められた適性搬送姿勢を前記姿勢変更量だけ変更して今回の周期における適正搬送姿勢を求める手段を設け、該求められた適正搬送姿勢に基づいて前記ロボットの姿勢を制御するようにしても良い。
【0013】
所定周期毎の慣性加速度ベクトルの算出は、指令プログラムにより与えられた、搬送開始位置、搬送終了位置、及び速度指令と、所定の加減速処理とに基いて行なうことが出来る。あるいは、搬送中の慣性加速度ベクトルを、前記容器又はその近傍に設けられた慣性加速度ベクトルの計測手段から得るようにしても良い。
なお、例えば空の容器を搬送する場合、被搬送物がこぼれる心配がない場合などに対応するために、指令プログラムの指令により、前記適正搬送姿勢に基づく前記ロボットの姿勢制御を行なわないモードを選択できるようにすることが好ましい。
【0014】
【発明の実施の形態】
図1は、本発明の実施形態に係るロボット装置による搬送の様子を示した概要配置図である。符号1は搬送を行なうロボット(本体機構部)で、アーム先端に容器3を把持するロボットハンド(以下、単に「ハンド」とも言う)2が装着されている。ロボット1は、ロボット制御装置5に接続され、このロボット制御装置5によってその動作が制御される。容器3は、液体、粉体、あるいは小サイズ物体の集合など、流動性乃至それに準じた性質を持つ被搬送物を収容するためのもので、ここではバケットが用いられている。
【0015】
容器3には被搬送物の出し入れのための開口4が設けられており、図1に示した状態では、この開口4は真上に向けれらている。以下、このような容器の姿勢(空間内における姿勢)を、「(容器の)基準姿勢」と言うことにする。また、この容器3に基準姿勢をとらせるハンド2の姿勢(即ち、ロボット1の姿勢)を「(ロボットの)基準姿勢」と言うことにする。なお、一般のケースでは、「容器を支持したロボットを静止させた状態で、流動性を持つ被搬送物がこぼれ難い容器の姿勢」を「容器の基準姿勢」と考えれば良い。
【0016】
そして、空間内での容器3の姿勢を代表するベクトルとして、容器3が静止状態で基準姿勢にある時に鉛直下向き方向を向く単位ベクトルを考え、これをベクトルHとする。ベクトルHは、容器3乃至ハンド2上に固定されたベクトルで容器3乃至ハンド2が傾けば当然これに追随して傾く。
【0017】
さて、図1内に示した矢印Sは搬送方向に一例を示し、ロボット1が動作してハンド2が矢印Sの方向に移動すれば、当然、容器3に入れられた被搬送物は矢印Sの方向に搬送される。このような搬送を行なう場合、ロボット1は、搬送開始位置から始動後しばらくは加速され、指令搬終了位置の手前では減速されることになる。これに伴い、容器3内の被搬送物が不安定になり、例えば被搬送物が液体の場合、液面6が搖れて容器3の開口4からこぼれ出る現象が発生する。
【0018】
既述のように、本発明では、この現象を、搬送中の容器の姿勢制御(ベクトルHの空間内での方向制御)、換言すれば、容器を把持するロボットハンドの姿勢制御(より一般化して言えば、容器を支持するロボットの姿勢制御)によって回避する。この姿勢制御は、ベクトルHの方向が「被搬送物が受けるトータルの加速度」の方向の変化に追随して変化するように行なう。
【0019】
ロボット1の静止時及び定方向定速度移動時には、容器3内の被搬送物には、重力Mg が真下方向に作用している。この重力Mg に対応する加速度ベクトルを重力加速度ベクトルKa で表わすことにする。一方、加減速中(加速中または減速中;以下、同し)には、これに慣性力が加わる。図2はその様子を示したものである。図2に示したように、慣性力は、加速度を表わすベクトルaと質量Mの積の大きさを持ち、向きはベクトルaと逆となっている。この慣性力を−Ma で表わし、この慣性力に対応する加速度を慣性加速度ベクトルKa で表わすことにする。そして、これら重力Mg と慣性力−Ma を合成した力をMh で表わし、この合成力に対応する加速度を合成加速度ベクトルKh で表わすことにする。
【0020】
ここで、重力加速度ベクトルKg は既知の重力定数と設定座標系のデータ(例えばワールド座標系の−Z軸方向)から定めることが出来る。また、慣性加速度は、後述するように、ロボットが持つデータから演算によって求めることが出来るが、加速度センサを利用して取得することも出来る。その場合、加速度センサは、符号8で示したように容器3上に設置するか、符号9で示したようにハンド2など容器3の近傍に設置し、ロボット制御装置5により計算周期毎に検出信号を送るようにすれば良い。
【0021】
さて、慣性力−Ma が液体、粉体等に作用すると、慣性加速度ベクトルKa の方向に偏って分布しようとして容器3内で移動を起こし、不安定化する。従って、もしも容器3の姿勢(即ち、ハンド2の姿勢乃至ロボット1の姿勢;以下、同様)を基準姿勢のまま(図1参照)に保ったままであったとすれば、液体、粉体等の被搬送物が開口4からこぼれ出易くなる。
【0022】
そこで、本発明では、容器3の姿勢を合成加速度ベクトルKh の方向の変化に追従するように変化させて、被搬送物が容器3からこぼれ出ることを防止する。本実施形態では、図3に示したように、容器3(乃至ハンド2)の姿勢を表わすベクトルHが重力加速度ベクトルKg の方向(即ち、静止時の合成加速度ベクトルKh の方向)から角度Θだけ傾斜して、その時点における合成加速度ベクトルKh の方向(合成力Mh の作用する方向)と一致するように、ロボット1を制御する。
【0023】
言い換えれば、角度Θは、搬送中の合成加速度ベクトルKh が重力加速度Mg の方向(即ち、静止時の合成加速度ベクトルKh の方向)となす角度(即ち、慣性加速度ベクトルKa によって生じた合成加速度ベクトルKh の方向変化)を表わす角度である。
【0024】
このように、合成加速度ベクトルKh の方向に容器3乃至ハンド2の姿勢を制御することで、搬送中も常に容器3の底面に対して鉛直方向に合成加速度(合成力)が作用することになり、液体、流体等をこぼさずに搬送することが出来る。図4、図5は、典型的な速度と加速度の推移をもってロボットが移動するケースについて、容器3乃至ハンド2の姿勢の推移を説明する図で、図4は、搬送開始直後の加速からプログラム速度(指令速度)での直線移動に至る過程における容器乃至ハンドの姿勢推移を表わし、図5は、プログラム速度(指令速度)での直線移動から減速して搬送終了に至る過程における容器乃至ハンドの姿勢推移を表わしている。両図において、各姿勢毎に記された矢印は、前述のベクトルHの方向を表わしている。
【0025】
これらの図から判るように、搬送開始時にはベクトルHは真下(重力加速度ベクトルと同方向)を向いているが、加速過程で加速度が増加するにつれて慣性加速度ベクトルが徐々に大きくなり、加速度の向きと逆方向(慣性加速度ベクトルと同じ向き)に傾斜が増し、加速度が減少に転ずると慣性加速度ベクトルが徐々に小さくなり、その傾斜は減少する。そして、加速過程が完了して速度一定(プログラム速度での直線移動)に入ると傾斜は解消され、ベクトルHは搬送開始時の真下方向を維持する。
【0026】
次いで、減速過程で減速度(速度を減らす方向の加速度)が増すにつれて慣性加速度ベクトル(加速過程とは向きは逆)が徐々に大きくなり、加速過程とは逆方向に傾斜が増し、減速度が減少に転ずると慣性加速度ベクトル(加速過程とは向きは逆)が徐々に小さくなり、その傾斜は減少する。そして、減速過程が完了してロボット1が停止すると傾斜は解消され、ベクトルHは搬送開始時の真下方向に戻る。
【0027】
次に、上記のような姿勢制御を実行する具体的な手順について、一例を説明する。なお、容器の姿勢制御はロボット1の姿勢制御を通して行なわれ、本実施形態では、容器3はハンド2によって把持されており、ロボット1の姿勢制御を行なうことはハンド2の姿勢制御を行なうことに他ならないので、以下、「ロボット1の姿勢制御」を「ハンド2の姿勢制御」として説明する。
【0028】
前述したように、ロボット1はロボット制御装置5に接続されており(図1参照)、上述した態様のハンド2の姿勢制御がロボット制御装置5によって行なわれる。ロボット制御装置5のハードウェア構成は従来のロボット制御装置と同一であって良く、ソフトウェア構成についても、後記する処理を実行のためのソフトウェアを除けば、特に従来と変わるところはない。
【0029】
ロボット制御装置の一般構成については、周知なので、図6を参照して概要のみ極く簡単に説明する。図6に示したように、ロボット制御装置5は、プロセッサ51、ROM、RAM等からなるメモり52、表示装置53、教示操作盤のキー等の入力手段54、ロボットの各関節軸を駆動するサーボモータを駆動制御するサーボ制御手段55、ロボットの周辺機器と接続される入出力回路56等で構成されている。
【0030】
プロセッサ51は、メモリ52に格納された教示プログラムを実行し、サーボ制御手段55に移動指令を出力する。サーボ制御手段55は、この移動指令と各軸のサーボモータに取り付けられた位置、速度検出器からの位置、速度フィードバック信号に基づいて、各軸の位置、速度のフィードバック制御を行う。その結果、ロボット1(図1参照)のアーム先端に装着されたハンド2の把持点(TCP;ツール先端点)の位置、姿勢、速度が制御される。
【0031】
ここで、本実施形態では、前述した態様の姿勢制御(慣性加速度ベクトルと重カベクトルを合成した合成加速度ベクトルを追随指標に用いた姿勢制御)を実現するために、移動指令の作成・出力に際して図7のフローチャートに示した処理を実行する。
【0032】
なお、搬送動作開始直前には、容器3は被搬送物(例えば液体)を収容した状態でハンド2に把持されており、その姿勢は基準姿勢(前述したベクトルHが真下を向く姿勢)にあるものとする。この状態から、ロボット制御装置5内で教示プログラムのある行(搬送開始位置から搬送終了位置までの搬送を命令する行)が読み込まれ、現在位置よりプログラム実行行に記載の終点までの動作を行なうための処理が開始される。各ステップの要点は下記の通りである。
【0033】
ステップA1:先ず、動作の始点、終点の位置およぴプログラム速度(指令速度)より、動作当りの移動量Li と移動時間Tm を算出する。
【0034】
ステップA2:計算周期の回数を表わす指標nと時刻指標Tn を、それぞれn=1、Tn =0に初期化する。
ステップA3:時刻Tn から時刻Tn+1 までの移動量△Lt=n を算出し、その値をメモリに格納する。
【0035】
ステップA4:ハンド姿勢制御が有効かどうかを確認し、有効ならば本発明のハンド姿勢制御を行うために、ステップA5以下へ進む。もし、無効ならばステップA13へ進む。ハンド姿勢制御が有効かどうかの確認は、例えばプログラムの指令によって指定されるモードフラグ値(1or0)のチェックによって行なうことが出来る。また、入力手段54(図6参照)によりモードフラグ値設定を行ない、これをチェックすることで判別しても良い。
【0036】
ステップA5:移動量△Lt=n 及び△Lt=n+1 の差分より、速度△Vt=n を算出する。また、速度△Vt=n と速度△Vt=n+1 の差分より、加速度△At=n を算出する。なお、初期値は、△Lt=1=0 、△At=1=0 である。
ステップA6:加速度△At=n より慣性加速度ベクトルKa を算出する。また、容器に作用する重力加速度より重力加速度ベクトルKg を算出する。なお、重力加速度の大きさのデータは、予めメモリに設定しておく。
【0037】
ステップA7:慣性加速度ベクトルKa と重力加速度ベクトルKg の合成加速度ベクトルKh を算出する。
ステップA8:合成加速度ベクトルKh の方向を向くハンド姿勢(適正姿勢)Wh 、Ph 、Rh を算出する。
ステップA9:時刻Tn での位置X、Y、Z、同じく時刻Tn でのハンド姿勢W、P、R、及び、ロボットの幾何学式(例えばD−Hパラメータ)等より、各モータの移動量△Mを算出する。
【0038】
ステップA10:各モータの移動量△Mを各モータに指令し、モータを動作させる。
ステップA11:△Tだけ待機し、Tn =Tn +△Tとする。
【0039】
ステップA12:Tn ≧Tm かどうかチェックし、イエスであれば、処理を終了する。ノーであれば、ステップA3へ戻り、ステップA3〜ステップA12を繰り返す。
【0040】
ステップA13:ステップA4でハンド姿勢制御が有効でないと判断された場合には、本発明のハンド姿勢制御を行わず、通常の補間処理に従い、時刻Tn での位置、ハンド姿勢W、P、R及びロボットの幾何学式(例えばD−Hパラメータ)等より、各モータの移動量△Mを算出して、ステップA10以下へ進む。
【0041】
以後は、ステップA10→ステップA11の後、ステップA12→ステップA3→ステップA4→ステップA13→ステップA10→ステップA11→ステップA12のサイクルが所要回数(ステップA12でイエスが出るまで)繰り返されることになる。なお、このサイクルでロボットを移動させるケースとしては、容器3が空の場合、あるいは、容器3に収容される被搬送物が僅かな量しかない場合などが考えられる。
【0042】
さて、図7のフローチャートによる処理におけるステップA8では、合成加速度ベクトルKh の方向を向くハンド姿勢Wh 、Ph 、Rh 自体(時刻Tn における適正姿勢自体)を算出し、続くステップA9では、この適正姿勢を実現するためのモータ移動量ΔMを、時刻Tn での位置X、Y、Z、時刻Tn でのハンド姿勢W、P、R、及び、ロボットの幾何学式より求めている。
【0043】
しかし、ステップA8において計算される適正姿勢(合成加速度ベクトルKh の方向を向く姿勢)自体に代えて、「適正姿勢を実現するために必要なW、P、Rの変位量δW、δP、δR」を計算しても良い。このステップをステップB8とする。ここで、変位量計算の起点となる姿勢(δW=δP=δR=0に対応する姿勢)としては、搬送開始時(Tn =0)におけるハンド姿勢(ハンドの基準姿勢)を採用することが出来る。あるいは、ステップA13で計算される「合成加速度ベクトルを考慮しない場合に計算される姿勢」をδW=δP=δR=0に対応する姿勢として採用しても良い。このようなδW=δP=δR=0に対応する姿勢を便宜的にW1 、P1 、R1 で表わすことにする。
【0044】
そして、ステップB8に続くステップB9として、この姿勢W1 、P1 、R1 に上記変位量δW、δP、δRをそれぞれ加算した姿勢W’、P’、R’を計算するステップを採用することが出来る。これらステップB8、B9をステップA8、A9に代えて採用した場合の処理の概要を図8のフローチャートに示した。同フローチャートにおいて、ステップB1〜ステップB7及びステップB10〜ステップB13は、それぞれ上述のステップA1〜ステップA7及びステップA10〜ステップA13と同様であるから繰り返し説明は省略する。ステップB8及びステップB9の要点は上述した通りである。
【0045】
更に、適正姿勢の計算を含めて計算周期毎のインクリメンタル量で計算して行く処理方式を採用することも出来る。その場合の処理の概要を図9のフローチャートに示す。各ステップの要点は下記の通りである。
【0046】
ステップC1:動作の始点、終点の位置およぴプログラム速度(指令速度)より、動作当りの移動量Li と移動時間Tm を算出する。
ステップC2:計算周期の回数を表わす指標nと時刻指標Tn を、それぞれn=1、Tn =0に初期化する。
【0047】
ステップC3:時刻Tn から時刻Tn+1 までの移動量△Lt=n を算出し、その値をメモリに格納する。
ステップC4:ハンド姿勢制御が有効かどうかを確認し、有効ならば本発明のハンド姿勢制御を行うために、ステップC5以下へ進む。もし、無効ならばステップC14へ進む。
【0048】
ステップC5:移動量△Lt=n 及び△Lt=n+1 の差分より、速度△Vt=n を算出する。また、速度△Vt=n と速度△Vt=n+1 の差分より、加速度△At=n を算出する。なお、初期値は、△Lt=1=0 、△At=1=0 である。
【0049】
ステップC6:加速度△At=n より慣性加速度ベクトルKanを算出する。また、容器に作用する重力加速度より重力加速度ベクトルKgnを算出する。なお、重力加速度ベクトルは実質的に不変で毎回の計算で設定値を用いるが、便宜的にMgnと表記する。
【0050】
ステップC7:慣性加速度ベクトルKanと重力加速度ベクトルKgnの合成加速度ベクトルKhnを算出する。
【0051】
ステップC8:指標nがn=1(搬送開始時に対応)であれば、ステップC15へ進み、そうでなければステップC9へ進む。
【0052】
ステップC9:適正姿勢(合成加速度ベクトルKhnの方向を向く姿勢)を実現するために必要なW、P、Rの変位量ΔW、ΔP、ΔRを計算する。ここで、変位量計算の起点となる姿勢(ΔW=ΔP=ΔR=0に対応する姿勢)としては、前回の計算周期で計算されたハンド姿勢Wn−1 、Pn−1 、Rn−1 を採用する。
【0053】
ステップC10:ハンド姿勢Wn =Wn−1 +ΔW、Pn =Pn−1 +ΔP、Rn =Rn−1 +ΔRを計算し、これと時刻Tn での位置X、Y、Z、及び、ロボットの幾何学式等より、各モータの移動量△Mを算出する。
【0054】
ステップC11:各モータの移動量△Mを各モータに指令し、モータを動作させる。
【0055】
ステップC12:△Tだけ待機し、Tn =Tn +△Tとする。
【0056】
ステップA13:Tn ≧Tm かどうかチェックし、イエスであれば、処理を終了する。ノーであれば、ステップC3へ戻り、ステップC3〜ステップC13を繰り返す。
【0057】
ステップC14:ステップC4でハンド姿勢制御が有効でないと判断された場合には、本発明のハンド姿勢制御を行わず、通常の補間処理に従い、時刻Tn での位置、ハンド姿勢W、P、R及びロボットの幾何学式(例えばD−Hパラメータ)等より、各モータの移動量△Mを算出して、ステップC11以下へ進む。
【0058】
以後は、ステップC111→ステップC12の後、ステップC13→ステップC3→ステップC4→ステップA14→ステップC11→ステップC12→ステップC13のサイクルが所要回数(ステップC13でイエスが出るまで)繰り返されることになる。
【0059】
ステップC15:ステップC8でn=1(搬送開始時に対応)と判断された場合には、合成加速度ベクトルクトルMhnの所期値として、重力加速度ベクトルKgnを採用する。
【0060】
なお、以上説明した実施形態では、慣性加速度を加速度△At=n より算出しているが(ステップA6、B6又はC6参照)、慣性加速度のデータを加速度センサを利用して取得することも出来る。その場合、加速度センサは、容器3上に接地するか(図1中の符号8を参照)、ハンド2など容器3の近傍(図1中の符号9を参照)に設置し、ロボット制御装置5により計算周期毎に検出信号を取り込み、それに基づいて慣性加速度ベクトルを求めれば良い。
【0061】
【発明の効果】
本発明によれば、容器に収容されてロボットで搬送される被搬送物が、液体、粉体、小サイズの物体等のように、流動性あるいはそれに準ずる性質を示すものであっても、搬送中に容器から被搬送物がこぼれ出ることが防止されるように容器の姿勢が制御されるため、容器のほぼ最大容量まで液体、粉体等を収容して搬送を行なっても支障を来さないので容器当たりの運搬効率が向上する。また、搬送時のロボットの速度、加速度を大きくする事が可能となり、短いサイクルタイムで液体、粉体、小サイズの物体等を搬送することが出来るようになる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るロボット装置による搬送の様子を示した概要配置図である。
【図2】搬送中に容器内の被搬送物が受ける加速度について説明する図である。
【図3】搬送中に行なわれる姿勢制御について説明する図である。
【図4】搬送開始直後の加速からプログラム速度(指令速度)での直線移動に至る過程における容器乃至ハンドの姿勢推移について説明する図である。
【図5】減速開始からロボット停止に至る過程における容器乃至ハンドの姿勢推移について説明する図である。
【図6】実施形態で用いるロボット制御装置の構成の概要を説明するブロック図である。
【図7】実施形態で実行される処理の一例の概要を説明するフローチャートである。
【図8】実施形態で実行される処理のもう1つの例の概要を説明するフローチャートである。
【図9】実施形態で実行される処理の更にもう1つの例の概要を説明するフローチャートである。
【符号の説明】
1 ロボット(本体機構部)
2 ロボットハンド
3 容器
4 開口
5 ロボット制御装置
6 液面
8、9 加速度センサ
51 プロセッサ
52 メモリ
53 表示装置
54 入力手段
55 サーボ制御手段
56 入出力回路
S 搬送方向(ロボットの移動方向)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a robot (a main body having a motion mechanism) and a robot apparatus including a control device for controlling the robot, and more particularly, a liquid, powder, or a small-sized molded product (for example, a small-sized screw). ) And the like are related to a robot apparatus that conveys them in a state where they are accommodated in a container (bucket or the like). In this specification, “container” refers to a container having an opening, such as a bucket, and excludes a sealed container.
[0002]
[Prior art]
When transporting a liquid, powder, or a collection of extremely small objects in a container by a robot, the liquid surface, powder surface, or top surface of a small object shakes due to acceleration while the robot is moving. Spill out of container. Conventionally, in order to prevent this, only a liquid, powder or small-size object which is considerably smaller than the maximum capacity of the container can be transported, and the transport efficiency is low. Moreover, it is necessary to reduce the speed and acceleration at the time of movement so that these objects are not spilled out of the container, and the cycle time is also long.
[0003]
As a technique for avoiding such a drawback, there is a method in which a handle that allows a change of one degree of freedom with respect to the inclination of the container is attached to the container, and the robot supports and conveys the container through this handle. Since the posture change is one degree of freedom, it is effective only during conveyance in a specific movement direction. In addition, the container may swing when the robot is stopped, etc., and it is necessary to set the speed and acceleration low so that liquid or the like does not spill.
[0004]
Although it is conceivable to attach a handle with two degrees of freedom, even in such a case, when the jerk (rate of change of acceleration) is large, there is a high possibility that liquid or the like will spill.
[0005]
Furthermore, there is the following Patent Document 1 as a prior art related to the present invention. This uses a hand that has a gripping force that is asymmetric with respect to the direction of movement in order to grip a long-axis pipe, etc., and has a large gripping force with respect to acceleration, taking into account only the inertial force applied to the workpiece. It controls the posture of the hand in the direction. This prior art is an invention that relies on a hand having a specific asymmetric gripping force, which considers inertial force but does not consider gravity, and is difficult to apply to transporting liquids, powders, etc. is there.
[0006]
[Patent Literature]
Japanese Patent Laid-Open No. 9-300255
[0007]
[Problems to be solved by the invention]
As described above, a robot can be used efficiently without spilling in a state where a transported object having fluidity or a property similar to that such as a liquid, powder, or a collection of extremely small objects is contained in a container. It cannot be said that the development of the transport technology is sufficiently advanced. Therefore, an object of the present invention is that the object to be transported accommodated in a container supported by the robot has fluidity or a property similar to it, such as a collection of liquids, powders, or small-sized objects. Another object of the present invention is to provide a robot apparatus that can efficiently convey the container without spilling it.
[0008]
[Means for Solving the Problems]
The present invention takes into account the inertial acceleration vector applied in the opposite direction of the acceleration direction to the heavy acceleration vector applied to the transferred object when the transferred object is transferred in the state of being accommodated in the container. Then, a combined vector of the gravity acceleration vector and the inertial acceleration vector is calculated, and using the direction of the combined acceleration vector as an index, an appropriate transport posture (hereinafter also referred to as “appropriate transport posture”) is obtained, and the proper transport posture is calculated. The above technical problem is solved by controlling the posture of the robot so that is realized.
[0009]
Here, the “appropriate transport posture” is a robot posture calculated based on the direction of the resultant acceleration vector from the viewpoint of preventing the transported object from spilling from the container. However, this “robot posture” has a one-to-one correspondence with the posture of the “container” that accommodates the object to be transported or the posture of the robot hand that holds the container (when the container is gripped by the robot hand). . Therefore, obtaining the proper transport posture of the robot is substantially equivalent to obtaining the proper transport posture for the container or the hand.
[0010]
The present invention includes a robot that transports a transported object placed in a container from a transport start position to a transport end position so that the transported object does not spill from the container, and a control device that controls the robot. Applies to robotic devices. In accordance with the basic feature of the present invention, the robot device synthesizes the inertial acceleration vector and the gravitational acceleration vector by means of calculating means for calculating an inertial acceleration vector applied to the object being conveyed at predetermined intervals. Means for determining an acceleration vector; means for determining an appropriate transfer posture of the robot during transfer based on the determined combined acceleration vector; and means for controlling the posture of the robot based on the determined appropriate transfer posture It has.
[0011]
The robot posture is controlled to change following the change in the direction of the combined acceleration vector. For this purpose, the means for obtaining the difference between the direction of the combined acceleration vector and the direction of the gravitational acceleration vector and the robot whose posture has been changed by an amount corresponding to the difference with reference to the posture of the robot at the transfer start position. Means for obtaining an appropriate transport posture is provided in the robot apparatus.
[0012]
Means for obtaining the posture change amount of the robot corresponding to the difference between the direction of the synthesized acceleration vector in the previous cycle and the direction of the synthesized acceleration vector obtained in the current cycle, with the initial value of the synthesized acceleration vector as the gravitational acceleration vector And the appropriate transfer posture of the robot at the transfer start position as an initial value of the transfer posture of the robot, and the appropriate transfer posture obtained in the previous cycle is changed by the posture change amount, and the proper transfer posture in the current cycle May be provided, and the posture of the robot may be controlled based on the obtained proper transport posture.
[0013]
The inertial acceleration vector for each predetermined cycle can be calculated based on the conveyance start position, the conveyance end position, and the speed command given by the command program, and a predetermined acceleration / deceleration process. Or you may make it obtain the inertial acceleration vector in conveyance from the measurement means of the inertial acceleration vector provided in the said container or its vicinity.
For example, when transporting an empty container, select a mode that does not perform posture control of the robot based on the appropriate transport posture according to the command of the command program in order to cope with cases where there is no fear of spilled objects. It is preferable to be able to do this.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic layout diagram showing a state of conveyance by a robot apparatus according to an embodiment of the present invention. Reference numeral 1 denotes a robot (main body mechanism unit) that carries a robot, and a robot hand (hereinafter simply referred to as “hand”) 2 that holds the container 3 is attached to the tip of the arm. The robot 1 is connected to a robot control device 5 and its operation is controlled by the robot control device 5. The container 3 is for containing a material to be conveyed having fluidity or a property equivalent thereto, such as a liquid, powder, or a collection of small-sized objects, and a bucket is used here.
[0015]
The container 3 is provided with an opening 4 for taking in and out the object to be conveyed. In the state shown in FIG. 1, the opening 4 is directed right above. Hereinafter, such an attitude of the container (an attitude in the space) will be referred to as a “(container) reference attitude”. Further, the posture of the hand 2 (that is, the posture of the robot 1) that causes the container 3 to take the reference posture is referred to as “(robot) reference posture”. In a general case, “the attitude of the container in which the transported object with fluidity is not easily spilled while the robot supporting the container is stationary” may be considered as the “reference attitude of the container”.
[0016]
Then, as a vector representing the attitude of the container 3 in the space, a unit vector that faces in the vertically downward direction when the container 3 is in a stationary state and is in a reference attitude is considered as a vector H. The vector H is a vector fixed on the container 3 to the hand 2, and if the container 3 to the hand 2 is inclined, it naturally follows the inclination.
[0017]
The arrow S shown in FIG. 1 shows an example in the transport direction. If the robot 1 operates and the hand 2 moves in the direction of the arrow S, the object to be transported in the container 3 is naturally the arrow S. It is conveyed in the direction of. When performing such a transfer, the robot 1 is accelerated for a while after starting from the transfer start position, and decelerated before the command transfer end position. As a result, the object to be transported in the container 3 becomes unstable. For example, when the object to be transported is a liquid, a phenomenon occurs that the liquid level 6 falls and spills out from the opening 4 of the container 3.
[0018]
As described above, in the present invention, this phenomenon is controlled by the attitude control of the container being transported (direction control in the space of the vector H), in other words, the attitude control of the robot hand holding the container (more generalized). In other words, it is avoided by controlling the attitude of the robot that supports the container. This posture control is performed so that the direction of the vector H changes following the change of the direction of “total acceleration received by the conveyed object”.
[0019]
When the robot 1 is stationary and moved in a constant direction and constant speed, gravity Mg acts on the object to be transported in the container 3 in the downward direction. The acceleration vector corresponding to the gravity Mg is represented by the gravity acceleration vector Ka. On the other hand, during acceleration / deceleration (accelerating or decelerating; hereinafter the same), inertial force is applied thereto. FIG. 2 shows this state. As shown in FIG. 2, the inertia force has the magnitude of the product of the vector a representing acceleration and the mass M, and the direction is opposite to that of the vector a. This inertial force is represented by -Ma, and the acceleration corresponding to this inertial force is represented by an inertial acceleration vector Ka. A force obtained by combining the gravity Mg and the inertial force -Ma is represented by Mh, and an acceleration corresponding to the combined force is represented by a combined acceleration vector Kh.
[0020]
Here, the gravitational acceleration vector Kg can be determined from a known gravity constant and data of a set coordinate system (for example, the −Z axis direction of the world coordinate system). As will be described later, the inertial acceleration can be obtained by calculation from data held by the robot, but can also be obtained by using an acceleration sensor. In that case, the acceleration sensor is installed on the container 3 as indicated by reference numeral 8 or is installed in the vicinity of the container 3 such as the hand 2 as indicated by reference numeral 9, and is detected at each calculation cycle by the robot controller 5. Send a signal.
[0021]
Now, if the inertial force -Ma acts on the liquid, powder, etc., it will move in the container 3 in an attempt to be distributed in the direction of the inertial acceleration vector Ka and become unstable. Therefore, if the posture of the container 3 (that is, the posture of the hand 2 or the posture of the robot 1; the same applies hereinafter) is maintained in the standard posture (see FIG. 1), the liquid, powder, etc. The conveyed product is easily spilled from the opening 4.
[0022]
Therefore, in the present invention, the posture of the container 3 is changed so as to follow the change in the direction of the combined acceleration vector Kh to prevent the conveyed object from spilling out of the container 3. In this embodiment, as shown in FIG. 3, the vector H representing the attitude of the container 3 (or hand 2) is an angle Θ from the direction of the gravitational acceleration vector Kg (ie, the direction of the resultant acceleration vector Kh at rest). The robot 1 is controlled so as to incline and coincide with the direction of the resultant acceleration vector Kh at that time (the direction in which the resultant force Mh acts).
[0023]
In other words, the angle Θ is the angle formed by the resultant acceleration vector Kh during conveyance with the direction of the gravitational acceleration Mg (ie, the direction of the resultant acceleration vector Kh at rest) (ie, the resultant acceleration vector Kh generated by the inertial acceleration vector Ka 1). This is an angle representing a change in direction.
[0024]
Thus, by controlling the posture of the container 3 or the hand 2 in the direction of the combined acceleration vector Kh, the combined acceleration (synthetic force) always acts on the bottom surface of the container 3 in the vertical direction even during the conveyance. In addition, liquids, fluids, etc. can be transported without spilling. 4 and 5 are diagrams for explaining the transition of the posture of the container 3 to the hand 2 in the case where the robot moves with a typical transition of speed and acceleration, and FIG. 4 shows the program speed from the acceleration immediately after the start of conveyance. FIG. 5 shows the posture transition of the container or the hand in the process leading to the linear movement at the (command speed), and FIG. 5 shows the attitude of the container or the hand in the process of decelerating from the linear movement at the program speed (command speed) to the end of the conveyance. It represents the transition. In both figures, the arrow written for each posture represents the direction of the vector H described above.
[0025]
As can be seen from these figures, at the start of conveyance, the vector H is directly below (same direction as the gravitational acceleration vector), but as the acceleration increases during the acceleration process, the inertial acceleration vector gradually increases, When the inclination increases in the reverse direction (the same direction as the inertial acceleration vector) and the acceleration starts to decrease, the inertial acceleration vector gradually decreases and the inclination decreases. When the acceleration process is completed and the speed is constant (linear movement at the program speed), the inclination is canceled, and the vector H maintains the downward direction at the start of conveyance.
[0026]
Next, as the deceleration (acceleration in the direction of decreasing the speed) increases in the deceleration process, the inertial acceleration vector (opposite to the acceleration process) gradually increases, the slope increases in the opposite direction to the acceleration process, and the deceleration increases. If it starts to decrease, the inertial acceleration vector (opposite to the acceleration process) gradually decreases, and its inclination decreases. When the deceleration process is completed and the robot 1 is stopped, the inclination is canceled, and the vector H returns to the downward direction at the start of conveyance.
[0027]
Next, an example of a specific procedure for executing the attitude control as described above will be described. Note that the posture control of the container is performed through the posture control of the robot 1. In this embodiment, the container 3 is held by the hand 2, and the posture control of the robot 1 is to control the posture of the hand 2. Since this is none other than the above, “posture control of the robot 1” will be described as “posture control of the hand 2”.
[0028]
As described above, the robot 1 is connected to the robot control device 5 (see FIG. 1), and the posture control of the hand 2 in the above-described manner is performed by the robot control device 5. The hardware configuration of the robot control device 5 may be the same as that of the conventional robot control device, and the software configuration is not particularly different from the conventional configuration except for software for executing processing described later.
[0029]
Since the general configuration of the robot control device is well known, only the outline will be described very simply with reference to FIG. As shown in FIG. 6, the robot control device 5 drives a processor 51, a memory 52 including a ROM, a RAM, a display device 53, an input means 54 such as a key of a teaching operation panel, and each joint axis of the robot. Servo control means 55 for driving and controlling the servo motor, an input / output circuit 56 connected to peripheral devices of the robot, and the like.
[0030]
The processor 51 executes the teaching program stored in the memory 52 and outputs a movement command to the servo control means 55. The servo control means 55 performs feedback control of the position and speed of each axis based on this movement command, the position attached to the servo motor of each axis, the position from the speed detector, and the speed feedback signal. As a result, the position, posture, and speed of the grip point (TCP; tool tip point) of the hand 2 attached to the arm tip of the robot 1 (see FIG. 1) are controlled.
[0031]
Here, in the present embodiment, in order to realize the attitude control (the attitude control using the combined acceleration vector obtained by combining the inertial acceleration vector and the heavy force vector as a tracking index) in the above-described manner, 7 is executed.
[0032]
Note that immediately before the transfer operation is started, the container 3 is held by the hand 2 in a state in which an object to be transferred (for example, liquid) is accommodated, and the posture is in the reference posture (the posture in which the vector H described above faces directly below). Shall. From this state, a line having a teaching program (a line instructing conveyance from the conveyance start position to the conveyance end position) is read in the robot control device 5, and the operation from the current position to the end point described in the program execution line is performed. The process for starting is started. The main points of each step are as follows.
[0033]
Step A1: First, the movement amount Li and the movement time Tm per operation are calculated from the start and end positions of the operation and the program speed (command speed).
[0034]
Step A2: An index n representing the number of calculation cycles and a time index Tn are initialized to n = 1 and Tn = 0, respectively.
Step A3: A movement amount ΔLt = n from time Tn to time Tn + 1 is calculated, and the value is stored in the memory.
[0035]
Step A4: It is confirmed whether the hand posture control is valid. If it is valid, the flow proceeds to step A5 and subsequent steps in order to perform the hand posture control of the present invention. If invalid, the process proceeds to step A13. Whether or not the hand posture control is valid can be confirmed, for example, by checking a mode flag value (1 or 0) designated by a program command. Alternatively, the mode flag value may be set by the input means 54 (see FIG. 6) and checked by checking the mode flag value.
[0036]
Step A5: A speed ΔVt = n is calculated from the difference between the movement amounts ΔLt = n and ΔLt = n + 1. Further, acceleration ΔAt = n is calculated from the difference between the speed ΔVt = n and the speed ΔVt = n + 1. The initial values are ΔLt = 1 = 0 and ΔAt = 1 = 0.
Step A6: An inertial acceleration vector Ka is calculated from the acceleration ΔAt = n. Further, a gravitational acceleration vector Kg is calculated from the gravitational acceleration acting on the container. Note that the data on the magnitude of gravitational acceleration is previously set in a memory.
[0037]
Step A7: A combined acceleration vector Kh of the inertial acceleration vector Ka and the gravitational acceleration vector Kg is calculated.
Step A8: Hand postures (appropriate postures) Wh 1, Ph 2, Rh 1 that face the direction of the resultant acceleration vector Kh 1 are calculated.
Step A9: The amount of movement Δ of each motor from the positions X, Y, Z at time Tn, the hand postures W, P, R at time Tn, and the geometrical formula (for example, DH parameter) of the robot. M is calculated.
[0038]
Step A10: The movement amount ΔM of each motor is commanded to each motor, and the motor is operated.
Step A11: Wait for ΔT and set Tn = Tn + ΔT.
[0039]
Step A12: It is checked whether Tn ≧ Tm. If yes, the process ends. If no, return to Step A3 and repeat Step A3 to Step A12.
[0040]
Step A13: When it is determined in step A4 that the hand posture control is not effective, the hand posture control of the present invention is not performed, and the position at time Tn, the hand posture W, P, R, and The movement amount ΔM of each motor is calculated from the robot's geometric formula (for example, the DH parameter), and the process proceeds to step A10 and subsequent steps.
[0041]
Thereafter, after step A10 → step A11, the cycle of step A12 → step A3 → step A4 → step A13 → step A10 → step A11 → step A12 will be repeated as many times as necessary (until yes at step A12). . In addition, as a case where the robot is moved in this cycle, a case where the container 3 is empty or a case where only a small amount of objects to be conveyed is accommodated in the container 3 can be considered.
[0042]
In step A8 in the process of the flowchart of FIG. 7, hand postures Wh, Ph and Rh themselves (appropriate postures themselves at time Tn) facing the direction of the resultant acceleration vector Kh are calculated. In subsequent step A9, the proper postures are calculated. The motor movement amount ΔM to be realized is obtained from the positions X, Y, Z at the time Tn, the hand postures W, P, R at the time Tn, and the geometric formula of the robot.
[0043]
However, instead of the proper posture calculated in step A8 (the posture facing the direction of the combined acceleration vector Kh) itself, “the displacement amounts δW, δP, δR of W, P, R necessary for realizing the proper posture” May be calculated. This step is referred to as step B8. Here, the hand posture at the start of conveyance (Tn = 0) (the reference posture of the hand) can be employed as the posture (posture corresponding to δW = δP = δR = 0) as the starting point of the displacement amount calculation. . Alternatively, the “posture calculated when the combined acceleration vector is not considered” calculated in step A13 may be adopted as the posture corresponding to δW = δP = δR = 0. Such an attitude corresponding to δW = δP = δR = 0 is represented by W1, P1, and R1 for convenience.
[0044]
Then, as step B9 following step B8, a step of calculating postures W ′, P ′, R ′ obtained by adding the displacements δW, δP, δR to the postures W1, P1, R1 can be employed. The flowchart of FIG. 8 shows an outline of processing when these steps B8 and B9 are employed instead of steps A8 and A9. In the flowchart, Step B1 to Step B7 and Step B10 to Step B13 are the same as Step A1 to Step A7 and Step A10 to Step A13, respectively, and thus the description thereof is omitted. The main points of Step B8 and Step B9 are as described above.
[0045]
Furthermore, it is possible to adopt a processing method in which calculation is performed with an incremental amount for each calculation cycle including calculation of an appropriate posture. The outline of the process in that case is shown in the flowchart of FIG. The main points of each step are as follows.
[0046]
Step C1: A movement amount Li and a movement time Tm per operation are calculated from the start and end positions of the operation and the program speed (command speed).
Step C2: An index n indicating the number of calculation cycles and a time index Tn are initialized to n = 1 and Tn = 0, respectively.
[0047]
Step C3: A movement amount ΔLt = n from time Tn to time Tn + 1 is calculated, and the value is stored in the memory.
Step C4: It is confirmed whether or not the hand posture control is effective, and if it is effective, the flow proceeds to Step C5 and subsequent steps in order to perform the hand posture control of the present invention. If invalid, the process proceeds to step C14.
[0048]
Step C5: A speed ΔVt = n is calculated from the difference between the movement amounts ΔLt = n and ΔLt = n + 1. Further, acceleration ΔAt = n is calculated from the difference between the speed ΔVt = n and the speed ΔVt = n + 1. The initial values are ΔLt = 1 = 0 and ΔAt = 1 = 0.
[0049]
Step C6: An inertial acceleration vector Kan is calculated from the acceleration ΔAt = n. Also, a gravitational acceleration vector Kgn is calculated from the gravitational acceleration acting on the container. The gravitational acceleration vector is substantially unchanged, and a set value is used for each calculation. However, for convenience, it is expressed as Mgn.
[0050]
Step C7: A combined acceleration vector Khn of the inertial acceleration vector Kan and the gravitational acceleration vector Kgn is calculated.
[0051]
Step C8: If the index n is n = 1 (corresponding to the start of conveyance), the process proceeds to Step C15, and if not, the process proceeds to Step C9.
[0052]
Step C9: Calculate the displacement amounts ΔW, ΔP, ΔR of W, P, R necessary for realizing the appropriate posture (the posture facing the direction of the combined acceleration vector Khn). Here, hand postures Wn−1, Pn−1, and Rn−1 calculated in the previous calculation cycle are adopted as postures that serve as starting points for displacement amount calculation (postures corresponding to ΔW = ΔP = ΔR = 0). To do.
[0053]
Step C10: Hand posture Wn = Wn-1 + .DELTA.W, Pn = Pn-1 + .DELTA.P, Rn = Rn-1 + .DELTA.R are calculated, and positions X, Y, Z at time Tn, and the geometrical formula of the robot. Thus, the movement amount ΔM of each motor is calculated.
[0054]
Step C11: The movement amount ΔM of each motor is commanded to each motor, and the motor is operated.
[0055]
Step C12: Wait for ΔT, and set Tn = Tn + ΔT.
[0056]
Step A13: It is checked whether Tn ≧ Tm. If yes, the process ends. If no, return to Step C3 and repeat Step C3 to Step C13.
[0057]
Step C14: If it is determined in step C4 that the hand posture control is not effective, the hand posture control of the present invention is not performed, and the position at time Tn, the hand posture W, P, R, and The movement amount ΔM of each motor is calculated from the geometrical formula of the robot (for example, DH parameter), and the process proceeds to Step C11 and the subsequent steps.
[0058]
After that, after step C111 → step C12, the cycle of step C13 → step C3 → step C4 → step A14 → step C11 → step C12 → step C13 is repeated as many times as necessary (until yes at step C13). .
[0059]
Step C15: If n = 1 is determined in step C8 (corresponding to the start of conveyance), the gravitational acceleration vector Kgn is adopted as the expected value of the combined acceleration vector vector Mhn.
[0060]
In the embodiment described above, the inertial acceleration is calculated from the acceleration ΔAt = n (see step A6, B6, or C6), but the inertial acceleration data can also be acquired using an acceleration sensor. In that case, the acceleration sensor is grounded on the container 3 (see reference numeral 8 in FIG. 1) or is installed in the vicinity of the container 3 such as the hand 2 (see reference numeral 9 in FIG. 1). Thus, the detection signal is taken in every calculation cycle, and the inertial acceleration vector may be obtained based on the detection signal.
[0061]
【The invention's effect】
According to the present invention, even if the object to be transported accommodated in the container and transported by the robot exhibits fluidity or a property equivalent thereto, such as liquid, powder, small size object, etc. Since the position of the container is controlled so that the object to be conveyed does not spill out from the container, even if it is transported while containing liquid, powder, etc. up to the maximum capacity of the container, it will be a problem. As a result, the transport efficiency per container is improved. In addition, it is possible to increase the speed and acceleration of the robot at the time of transportation, and it is possible to transport liquids, powders, small-sized objects, etc. in a short cycle time.
[Brief description of the drawings]
FIG. 1 is a schematic layout diagram showing a state of conveyance by a robot apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining acceleration received by an object in a container during conveyance.
FIG. 3 is a diagram illustrating posture control performed during conveyance.
FIG. 4 is a diagram for explaining a change in posture of a container or a hand in a process from acceleration immediately after the start of conveyance to linear movement at a program speed (command speed).
FIG. 5 is a diagram for explaining the posture transition of the container or the hand in the process from the start of deceleration to the stop of the robot.
FIG. 6 is a block diagram illustrating an outline of a configuration of a robot control device used in the embodiment.
FIG. 7 is a flowchart illustrating an outline of an example of processing executed in the embodiment.
FIG. 8 is a flowchart illustrating an outline of another example of processing executed in the embodiment.
FIG. 9 is a flowchart illustrating an outline of still another example of processing executed in the embodiment.
[Explanation of symbols]
1 Robot (Main body mechanism)
2 Robotic hand
3 containers
4 opening
5 Robot controller
6 Liquid level
8, 9 Acceleration sensor
51 processor
52 memory
53 Display device
54 Input means
55 Servo control means
56 I / O circuit
S Transfer direction (Robot movement direction)

Claims (6)

容器に入れられた被搬送物を、搬送開始位置から搬送終了位置まで、前記被搬送物が前記容器からこぼれないように搬送するロボットと、前記ロボットを制御する制御装置を備えたロボット装置において、
前記搬送中の被搬送物にかかる慣性加速度ベクトルを所定周期毎に演算する手段と、
前記慣性加速度ベクトルと重力加速度ベクトルとを合成し、合成加速度ベクトルを求める手段と、
該求めた合成加速度ベクトルに基き、前記搬送中の前記ロボットの適正搬送姿勢を求める手段と、
該求められた適正搬送姿勢に基づいて前記ロボットの姿勢を制御する手段とを備えることを特徴とする、ロボット装置。
In a robot apparatus that includes a robot that transports a transported object placed in a container from a transport start position to a transport end position so that the transported object does not spill from the container, and a control device that controls the robot.
Means for calculating an inertial acceleration vector applied to the conveyed object being conveyed at predetermined intervals;
Means for combining the inertial acceleration vector and the gravitational acceleration vector to obtain a combined acceleration vector;
Means for determining an appropriate transfer posture of the robot during transfer based on the determined combined acceleration vector;
A robot apparatus comprising: means for controlling the posture of the robot based on the determined proper transport posture.
容器に入れられた被搬送物を、搬送開始位置から搬送終了位置まで、前記被搬送物が前記容器からこぼれないように搬送するロボットと、前記ロボットを制御する制御装置を備えたロボット装置において、
前記搬送中の被搬送物にかかる慣性加速度ベクトルを所定周期毎に演算する手段と、
前記慣性加速度ベクトルと重力加速度ベクトルとを合成し、合成加速度ベクトルを求める手段と、
前記合成加速度ベクトルの方向と前記重力加速度ベクトルの方向の差異を求める手段と、
前記搬送開始位置における前記ロボットの姿勢を基準にして、前記差異に対応する姿勢変更を施した前記ロボットの適正搬送姿勢を求める手段と、
該求められた適正搬送姿勢に基づいて前記ロボットの姿勢を制御する手段とを備えることを特徴とする、ロボット装置。
In a robot apparatus that includes a robot that transports a transported object placed in a container from a transport start position to a transport end position so that the transported object does not spill from the container, and a control device that controls the robot.
Means for calculating an inertial acceleration vector applied to the conveyed object being conveyed at predetermined intervals;
Means for combining the inertial acceleration vector and the gravitational acceleration vector to obtain a combined acceleration vector;
Means for determining a difference between the direction of the combined acceleration vector and the direction of the gravitational acceleration vector;
Means for determining an appropriate transport posture of the robot that has undergone a posture change corresponding to the difference with reference to the posture of the robot at the transport start position;
A robot apparatus comprising: means for controlling the posture of the robot based on the determined proper transport posture.
容器に入れられた被搬送物を、搬送開始位置から搬送終了位置まで、前記被搬送物が前記容器からこぼれないように搬送するロボットと、前記ロボットを制御する制御装置を備えたロボット装置において、
前記搬送中の被搬送物にかかる慣性加速度ベクトルを所定周期毎に演算する手段と、
前記慣性加速度ベクトルと重力加速度ベクトルとを合成し、合成加速度ベクトルを求める手段と、
合成加速度ベクトルの初期値を重力加速度ベクトルとして、前回の周期における合成加速度ベクトルの方向と、今回の周期で求めた合成加速度ベクトルの方向の差異に対応する姿勢変更量を求める手段と、
前記ロボットの搬送姿勢の初期値を前記搬送開始位置における前記ロボットの適正搬送姿勢として、前回の周期で求められた適性搬送姿勢を前記姿勢変更量だけ変更して今回の周期における適正搬送姿勢を求める手段と、
該求められた適正搬送姿勢に基づいて前記ロボットの姿勢を制御する手段とを備えることを特徴とする、ロボット装置。
In a robot apparatus that includes a robot that transports a transported object placed in a container from a transport start position to a transport end position so that the transported object does not spill from the container, and a control device that controls the robot.
Means for calculating an inertial acceleration vector applied to the conveyed object being conveyed at predetermined intervals;
Means for combining the inertial acceleration vector and the gravitational acceleration vector to obtain a combined acceleration vector;
Means for determining a posture change amount corresponding to the difference between the direction of the synthetic acceleration vector in the previous cycle and the direction of the synthetic acceleration vector obtained in the current cycle, with the initial value of the synthetic acceleration vector as a gravitational acceleration vector;
Using the initial value of the robot transport posture as the appropriate transport posture of the robot at the transport start position, the proper transport posture obtained in the previous cycle is changed by the posture change amount to obtain the proper transport posture in the current cycle. Means,
A robot apparatus comprising: means for controlling the posture of the robot based on the determined proper transport posture.
指令プログラムにより与えられた、搬送開始位置、搬送終了位置、及び速度指令と、所定の加減速処理とに基き、所定周期毎の慣性加速度ベクトルを求めることを特徴とする、請求項1乃至請求項3の内、何れか1項に記載のロボット装置。The inertial acceleration vector for each predetermined cycle is obtained based on a transfer start position, a transfer end position, a speed command given by the command program, and a predetermined acceleration / deceleration process. 4. The robot apparatus according to any one of 3. 搬送中の慣性加速度ベクトルを演算する手段に代えて、慣性加速度ベクトルを計測する手段を前記容器又はその近傍に設けたことを特徴とする、請求項1乃至請求項3の内、何れか1項に記載のロボット装置。4. The apparatus according to claim 1, wherein means for measuring an inertial acceleration vector is provided in or near the container in place of the means for calculating the inertial acceleration vector during conveyance. The robot apparatus as described in. 指令プログラムの指令により、前記適正搬送姿勢に基づく前記ロボットの姿勢制御を行なわないモードが選択され得ることを特徴とする、請求項1乃至請求項5の内、何れか1項に記載のロボット装置。The robot apparatus according to any one of claims 1 to 5, wherein a mode in which the posture control of the robot based on the proper transport posture is not performed can be selected by a command of a command program. .
JP2003166977A 2003-06-11 2003-06-11 Robot equipment Expired - Fee Related JP3910157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166977A JP3910157B2 (en) 2003-06-11 2003-06-11 Robot equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166977A JP3910157B2 (en) 2003-06-11 2003-06-11 Robot equipment

Publications (2)

Publication Number Publication Date
JP2005001055A true JP2005001055A (en) 2005-01-06
JP3910157B2 JP3910157B2 (en) 2007-04-25

Family

ID=34092963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166977A Expired - Fee Related JP3910157B2 (en) 2003-06-11 2003-06-11 Robot equipment

Country Status (1)

Country Link
JP (1) JP3910157B2 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260838A (en) * 2006-03-28 2007-10-11 Brother Ind Ltd Carrier robot and carrying program
JP2013039638A (en) * 2011-08-17 2013-02-28 Seiko Epson Corp Carrying method and robot
JP2014124739A (en) * 2012-12-27 2014-07-07 Seiko Epson Corp Robot
EP2988134A1 (en) * 2014-08-21 2016-02-24 Roche Diagniostics GmbH Sample container carrier for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
JP2016034685A (en) * 2014-08-04 2016-03-17 キヤノン株式会社 Conveyance control device, conveyance control method, and program
US9567167B2 (en) 2014-06-17 2017-02-14 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US9575086B2 (en) 2011-11-04 2017-02-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US9593970B2 (en) 2014-09-09 2017-03-14 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method for calibrating magnetic sensors
US9598243B2 (en) 2011-11-04 2017-03-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US9618525B2 (en) 2014-10-07 2017-04-11 Roche Diagnostics Operations, Inc. Module for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
WO2017073055A1 (en) * 2015-10-27 2017-05-04 パナソニックIpマネジメント株式会社 Conveying device
US9658241B2 (en) 2014-03-31 2017-05-23 Roche Diagnostics Operations, Inc. Sample distribution system and laboratory automation system
US9664703B2 (en) 2011-11-04 2017-05-30 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US9772342B2 (en) 2014-03-31 2017-09-26 Roche Diagnostics Operations, Inc. Dispatching device, sample distribution system and laboratory automation system
US9791468B2 (en) 2014-03-31 2017-10-17 Roche Diagnostics Operations, Inc. Transport device, sample distribution system and laboratory automation system
US9810706B2 (en) 2014-03-31 2017-11-07 Roche Diagnostics Operations, Inc. Vertical conveying device, laboratory sample distribution system and laboratory automation system
US9902572B2 (en) 2015-10-06 2018-02-27 Roche Diagnostics Operations, Inc. Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
US9939455B2 (en) 2014-11-03 2018-04-10 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US9952242B2 (en) 2014-09-12 2018-04-24 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US9989547B2 (en) 2014-07-24 2018-06-05 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10006927B2 (en) 2015-05-22 2018-06-26 Roche Diagnostics Operations, Inc. Method of operating a laboratory automation system and a laboratory automation system
US10012666B2 (en) 2014-03-31 2018-07-03 Roche Diagnostics Operations, Inc. Sample distribution system and laboratory automation system
JP2018144225A (en) * 2017-03-07 2018-09-20 株式会社日清製粉グループ本社 Adsorption pick up and transportation method
US10094843B2 (en) 2015-03-23 2018-10-09 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10119982B2 (en) 2015-03-16 2018-11-06 Roche Diagnostics Operations, Inc. Transport carrier, laboratory cargo distribution system, and laboratory automation system
US10160609B2 (en) 2015-10-13 2018-12-25 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10175259B2 (en) 2015-09-01 2019-01-08 Roche Diagnostics Operations, Inc. Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
US10197586B2 (en) 2015-10-06 2019-02-05 Roche Diagnostics Operations, Inc. Method of determining a handover position and laboratory automation system
US10197555B2 (en) 2016-06-21 2019-02-05 Roche Diagnostics Operations, Inc. Method of setting a handover position and laboratory automation system
US10228384B2 (en) 2015-10-14 2019-03-12 Roche Diagnostics Operations, Inc. Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system
US10239708B2 (en) 2014-09-09 2019-03-26 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10352953B2 (en) 2015-05-22 2019-07-16 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and a laboratory automation system
JP2019150887A (en) * 2018-02-28 2019-09-12 オムロン株式会社 Simulation apparatus, method, and program
JP2019150921A (en) * 2018-03-05 2019-09-12 株式会社日清製粉グループ本社 Adsorption pickup and transfer method
US10416183B2 (en) 2016-12-01 2019-09-17 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10436808B2 (en) 2016-12-29 2019-10-08 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10495657B2 (en) 2017-01-31 2019-12-03 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10509049B2 (en) 2014-09-15 2019-12-17 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US10520520B2 (en) 2016-02-26 2019-12-31 Roche Diagnostics Operations, Inc. Transport device with base plate modules
US10564170B2 (en) 2015-07-22 2020-02-18 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US10578632B2 (en) 2016-02-26 2020-03-03 Roche Diagnostics Operations, Inc. Transport device unit for a laboratory sample distribution system
US10605819B2 (en) 2016-02-26 2020-03-31 Roche Diagnostics Operations, Inc. Transport device having a tiled driving surface
WO2020071296A1 (en) 2018-10-05 2020-04-09 ソニー株式会社 Control device, control method, and program
WO2020200771A1 (en) * 2019-04-04 2020-10-08 Krones Ag Conveying device and method for transporting a container
US10962557B2 (en) 2017-07-13 2021-03-30 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US10989726B2 (en) 2016-06-09 2021-04-27 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method of operating a laboratory sample distribution system
US10989725B2 (en) 2017-06-02 2021-04-27 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system, and laboratory automation system
US10996233B2 (en) 2016-06-03 2021-05-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US11092613B2 (en) 2015-05-22 2021-08-17 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US11112421B2 (en) 2016-08-04 2021-09-07 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US11110463B2 (en) 2017-09-13 2021-09-07 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US11110464B2 (en) 2017-09-13 2021-09-07 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US11204361B2 (en) 2017-02-03 2021-12-21 Roche Diagnostics Operations, Inc. Laboratory automation system
US11226348B2 (en) 2015-07-02 2022-01-18 Roche Diagnostics Operations, Inc. Storage module, method of operating a laboratory automation system and laboratory automation system
WO2022172510A1 (en) * 2021-02-12 2022-08-18 株式会社京都製作所 Transfer device
WO2023032288A1 (en) * 2021-08-31 2023-03-09 TechMagic株式会社 Robot device
US11685063B2 (en) * 2018-10-05 2023-06-27 Fanuc Corporation Sensor bracket and robot system
US11709171B2 (en) 2018-03-16 2023-07-25 Roche Diagnostics Operations, Inc. Laboratory system, laboratory sample distribution system and laboratory automation system
US11747356B2 (en) 2020-12-21 2023-09-05 Roche Diagnostics Operations, Inc. Support element for a modular transport plane, modular transport plane, and laboratory distribution system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200134141A (en) 2019-05-21 2020-12-01 삼성전자주식회사 Electronic apparatus for preventing liquids spilled out while moving

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260838A (en) * 2006-03-28 2007-10-11 Brother Ind Ltd Carrier robot and carrying program
JP2013039638A (en) * 2011-08-17 2013-02-28 Seiko Epson Corp Carrying method and robot
US10126317B2 (en) 2011-11-04 2018-11-13 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US10450151B2 (en) 2011-11-04 2019-10-22 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US10031150B2 (en) 2011-11-04 2018-07-24 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US9598243B2 (en) 2011-11-04 2017-03-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US9664703B2 (en) 2011-11-04 2017-05-30 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US9575086B2 (en) 2011-11-04 2017-02-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
JP2014124739A (en) * 2012-12-27 2014-07-07 Seiko Epson Corp Robot
US9791468B2 (en) 2014-03-31 2017-10-17 Roche Diagnostics Operations, Inc. Transport device, sample distribution system and laboratory automation system
US10012666B2 (en) 2014-03-31 2018-07-03 Roche Diagnostics Operations, Inc. Sample distribution system and laboratory automation system
US9658241B2 (en) 2014-03-31 2017-05-23 Roche Diagnostics Operations, Inc. Sample distribution system and laboratory automation system
US9810706B2 (en) 2014-03-31 2017-11-07 Roche Diagnostics Operations, Inc. Vertical conveying device, laboratory sample distribution system and laboratory automation system
US9772342B2 (en) 2014-03-31 2017-09-26 Roche Diagnostics Operations, Inc. Dispatching device, sample distribution system and laboratory automation system
US9567167B2 (en) 2014-06-17 2017-02-14 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US9989547B2 (en) 2014-07-24 2018-06-05 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
JP2016034685A (en) * 2014-08-04 2016-03-17 キヤノン株式会社 Conveyance control device, conveyance control method, and program
CN105445483A (en) * 2014-08-21 2016-03-30 豪夫迈·罗氏有限公司 Sample container carrier for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP2988134A1 (en) * 2014-08-21 2016-02-24 Roche Diagniostics GmbH Sample container carrier for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US10239708B2 (en) 2014-09-09 2019-03-26 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US9593970B2 (en) 2014-09-09 2017-03-14 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method for calibrating magnetic sensors
US9952242B2 (en) 2014-09-12 2018-04-24 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10509049B2 (en) 2014-09-15 2019-12-17 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US9618525B2 (en) 2014-10-07 2017-04-11 Roche Diagnostics Operations, Inc. Module for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US9939455B2 (en) 2014-11-03 2018-04-10 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10119982B2 (en) 2015-03-16 2018-11-06 Roche Diagnostics Operations, Inc. Transport carrier, laboratory cargo distribution system, and laboratory automation system
US10094843B2 (en) 2015-03-23 2018-10-09 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US11092613B2 (en) 2015-05-22 2021-08-17 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US10006927B2 (en) 2015-05-22 2018-06-26 Roche Diagnostics Operations, Inc. Method of operating a laboratory automation system and a laboratory automation system
US10352953B2 (en) 2015-05-22 2019-07-16 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and a laboratory automation system
US11226348B2 (en) 2015-07-02 2022-01-18 Roche Diagnostics Operations, Inc. Storage module, method of operating a laboratory automation system and laboratory automation system
US10564170B2 (en) 2015-07-22 2020-02-18 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US10175259B2 (en) 2015-09-01 2019-01-08 Roche Diagnostics Operations, Inc. Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
US10197586B2 (en) 2015-10-06 2019-02-05 Roche Diagnostics Operations, Inc. Method of determining a handover position and laboratory automation system
US9902572B2 (en) 2015-10-06 2018-02-27 Roche Diagnostics Operations, Inc. Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
US10160609B2 (en) 2015-10-13 2018-12-25 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10228384B2 (en) 2015-10-14 2019-03-12 Roche Diagnostics Operations, Inc. Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system
WO2017073055A1 (en) * 2015-10-27 2017-05-04 パナソニックIpマネジメント株式会社 Conveying device
US10578632B2 (en) 2016-02-26 2020-03-03 Roche Diagnostics Operations, Inc. Transport device unit for a laboratory sample distribution system
US10605819B2 (en) 2016-02-26 2020-03-31 Roche Diagnostics Operations, Inc. Transport device having a tiled driving surface
US10520520B2 (en) 2016-02-26 2019-12-31 Roche Diagnostics Operations, Inc. Transport device with base plate modules
US10948508B2 (en) 2016-02-26 2021-03-16 Roche Diagnostics Operations, Inc. Transport device unit for a laboratory sample distribution system
US10996233B2 (en) 2016-06-03 2021-05-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10989726B2 (en) 2016-06-09 2021-04-27 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method of operating a laboratory sample distribution system
US10197555B2 (en) 2016-06-21 2019-02-05 Roche Diagnostics Operations, Inc. Method of setting a handover position and laboratory automation system
US11112421B2 (en) 2016-08-04 2021-09-07 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10416183B2 (en) 2016-12-01 2019-09-17 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10436808B2 (en) 2016-12-29 2019-10-08 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10495657B2 (en) 2017-01-31 2019-12-03 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US11204361B2 (en) 2017-02-03 2021-12-21 Roche Diagnostics Operations, Inc. Laboratory automation system
JP7038571B2 (en) 2017-03-07 2022-03-18 株式会社日清製粉グループ本社 Adsorption pickup and transfer method
JP2018144225A (en) * 2017-03-07 2018-09-20 株式会社日清製粉グループ本社 Adsorption pick up and transportation method
US10989725B2 (en) 2017-06-02 2021-04-27 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system, and laboratory automation system
US10962557B2 (en) 2017-07-13 2021-03-30 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US11110463B2 (en) 2017-09-13 2021-09-07 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US11110464B2 (en) 2017-09-13 2021-09-07 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
JP2019150887A (en) * 2018-02-28 2019-09-12 オムロン株式会社 Simulation apparatus, method, and program
JP7038572B2 (en) 2018-03-05 2022-03-18 株式会社日清製粉グループ本社 Adsorption pickup and transfer method
JP2019150921A (en) * 2018-03-05 2019-09-12 株式会社日清製粉グループ本社 Adsorption pickup and transfer method
US11709171B2 (en) 2018-03-16 2023-07-25 Roche Diagnostics Operations, Inc. Laboratory system, laboratory sample distribution system and laboratory automation system
WO2020071296A1 (en) 2018-10-05 2020-04-09 ソニー株式会社 Control device, control method, and program
US11685063B2 (en) * 2018-10-05 2023-06-27 Fanuc Corporation Sensor bracket and robot system
WO2020200771A1 (en) * 2019-04-04 2020-10-08 Krones Ag Conveying device and method for transporting a container
US11747356B2 (en) 2020-12-21 2023-09-05 Roche Diagnostics Operations, Inc. Support element for a modular transport plane, modular transport plane, and laboratory distribution system
WO2022172510A1 (en) * 2021-02-12 2022-08-18 株式会社京都製作所 Transfer device
WO2023032288A1 (en) * 2021-08-31 2023-03-09 TechMagic株式会社 Robot device
KR20230170743A (en) 2021-08-31 2023-12-19 테크매직 가부시키가이샤 robotic device

Also Published As

Publication number Publication date
JP3910157B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP3910157B2 (en) Robot equipment
JP7116901B2 (en) ROBOT CONTROL DEVICE, ROBOT CONTROL METHOD AND ROBOT CONTROL PROGRAM
US20200391385A1 (en) Object handling control device, object handling device, object handling method, and computer program product
KR100377973B1 (en) Time optimal track for cluster tool robots
US20110265311A1 (en) Workpiece holding method
US8170719B2 (en) Control apparatus and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit for controlling robot arm
CN107150911B (en) Vehicle identification and control system of bagged material loading robot
US20110015787A1 (en) Control apparatus and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit
JP5315488B2 (en) Liquid transfer device
JP2018111155A (en) Robot control device, robot and robot system
JP6643020B2 (en) Robot control device, robot control method, and computer program
WO2019167765A1 (en) Simulation device, method, and program
JP2007168053A (en) Teaching method of vertical articulated type robot and industrial robot device
EP4217151A1 (en) Velocity control-based robotic system
US11623340B2 (en) Robot system, control apparatus, and control method
JP2002192487A (en) Control method of pick-and-place device and pick-and- place device applying this method
JP7065802B2 (en) Orbit generator, orbit generation method, program, and robot system
GB2621007A (en) Controlling a robotic manipulator for packing an object
JP5899703B2 (en) robot
TWI765247B (en) Robotic hands, robots and robotic systems
JP2001310285A (en) Tube carrying device
JP2020131388A (en) Robot system, control device, and control method
JP7466003B2 (en) ROBOT SYSTEM, PICKING METHOD, AND COMPUTER PROGRAM
WO2023142724A1 (en) Robotic arm, control method and apparatus for same, robot and storage medium
JP7286524B2 (en) Picking robot, picking method and program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051205

A131 Notification of reasons for refusal

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060830

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees