JP2004532967A - 高濃度の酸素を用いた焼却プロセス - Google Patents

高濃度の酸素を用いた焼却プロセス Download PDF

Info

Publication number
JP2004532967A
JP2004532967A JP2003507470A JP2003507470A JP2004532967A JP 2004532967 A JP2004532967 A JP 2004532967A JP 2003507470 A JP2003507470 A JP 2003507470A JP 2003507470 A JP2003507470 A JP 2003507470A JP 2004532967 A JP2004532967 A JP 2004532967A
Authority
JP
Japan
Prior art keywords
flue gas
combustion chamber
combustion
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003507470A
Other languages
English (en)
Other versions
JP2004532967A5 (ja
Inventor
シムロニー ヨラム
バクムツキー ザカリ
Original Assignee
ピュア ファイア テクノロジーズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to IL14399301A priority Critical patent/IL143993D0/xx
Application filed by ピュア ファイア テクノロジーズ リミテッド filed Critical ピュア ファイア テクノロジーズ リミテッド
Priority to PCT/IL2002/000503 priority patent/WO2003001113A1/en
Publication of JP2004532967A publication Critical patent/JP2004532967A/ja
Publication of JP2004532967A5 publication Critical patent/JP2004532967A5/ja
Granted legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/101Arrangement of sensing devices for temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/103Arrangement of sensing devices for oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/104Arrangement of sensing devices for CO or CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/60Additives supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/00001Exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07006Control of the oxygen supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07007Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber using specific ranges of oxygen percentage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

インレットガスの酸素含有量が少なくとも50vol.%であり、可燃物(51)及び該インレットガス(53)を第1燃焼チャンバー(12)へ搬送し、可燃物を燃焼チャンバー内のインレットガスの酸素で燃焼し、焼却された可燃物の熱分解生成物として排煙と固形粒子を生じ、前記排煙及び前記粒子が第2チャンバー(14)へ通され、更に燃焼が生じ、第2燃焼チャンバー(22)から出る排煙が冷却され、前記冷却された排煙(73)の一部が少なくとも1つの燃焼チャンバーに戻され、該冷却された排煙が該燃焼チャンバー内の温度を抑え、前記冷却された排煙の残部が排煙浄化システム(29)へと通過し、排煙中の汚染物質と粒子は、排煙が大気中に放出される前に実質的に無害の化合物へ変換されるか又は完全に除去される、段階を含む可燃物を焼却するプロセス。

Description

【技術分野】
【0001】
(発明の分野)
本発明は可燃物、具体的には有害廃棄物及び生物学的有害廃棄物を含む廃棄物を焼却する方法に関する。
【0002】
(背景技術)
廃棄物の処分は政府、特に市役所の深刻な問題である。廃棄物の中には有毒なものもあるため、廃棄物処理プロセスは、より厳密な規格により規制される。
産業廃棄物の場合、通常の非産業廃棄物以上に石油化学製品、PCB(ポリ塩化ビフェニル)のような、より問題のある材料がある。多くの場合、医療廃棄物と有機廃棄物は危険であり、完全な殺菌及び分解が必要である。
【0003】
以前は焼却以外の廃棄物投棄方法が一般的であった。例えば廃棄物の埋め立ては、廃棄物の焼却よりも遥かに低コストであったため、焼却の代わりに廃棄物の埋め立てが行われた。
しかしながら、より多くの厳しい環境基準により、有毒の化学薬品が長期間地面を浸透し帯水層を汚染するという認識が増え、廃棄物の埋め立てをそれほど魅力あるものとしなくなった。
同様に絶えず増加する廃棄物の量が、廃棄物の埋め立て及び他の方法を物理的に非現実的なものとする。
【0004】
その結果、焼却のような破壊的に廃棄物を分解するプロセスがより一般的となった。焼却のような破壊的な技術は、廃棄物を効率的に無害な最終生成物へと変える。このことは重大な問題であり、有害廃棄物は高温で焼却され、分解された生成物は環境上害がない。
必要とされる高温及び大量の廃棄物の処理には、経済的且つ環境上効率の良い焼却炉の開発が必要とされる。このような生成物から放射されるのは一般的にはガスであり、国際的機関及び政府機関により定められた基準に従わなければならない。
同様に焼却で生じるスラグ、焼却灰、飛灰のような固形、粒子状の廃棄物を、環境への悪影響を取り除くために中性化しなければならない。
【0005】
近年提案された焼却方法及び焼却炉の例として、米国特許第5752452号及び第5179903号、WO95/01809号がある。
後者の2つの特許は、量が酸素で増加する再利用排煙について記載される。米国特許第5752452号は、少なくとも350ft/秒の速度で加熱領域に酸素を注入するランスを備えたシステムについて記載される。
【0006】
しかしながら、焼却炉及び焼却プロセスにおける改良にもかかわらず、建設費と維持費は、未だに非常に高額である。更には周囲に流出する廃水を更に減少する必要がある。
【0007】
(本発明の要約)
本発明の目的は、廃棄物焼却炉の焼却率及び処理能力を最大化すると同時に、ガス排出及び生じる固形廃棄物を最小限にするプロセスを提供することである。
本発明の更なる目的は、有害廃棄物を含む産業廃棄物、普通ごみ、有機廃棄物に用いるための経済的な焼却プロセスを提供することである。
【0008】
必要とされる焼却炉及び排煙浄化システムのサイズを最小化し、必要な投資及び維持費を最小化することが本発明の別の目的である。
本発明の更なる目的は、大量の石炭を燃やす発電所のような大きな産業施設に適用することが可能な、経済的、且つ環境にも優しいプロセスを提供することである。
【0009】
本発明として、可燃物及びインレットガスを第1燃焼チャンバーに搬送する段階を含む可燃物を焼却するプロセスが提供され、インレットガスの酸素含有量は少なくとも50vol.%である。
このプロセスは、可燃物を燃焼チャンバー内のインレットガスの酸素で燃焼し、続いて焼却された可燃物の熱分解生成物として、排煙と固形粒子を生じる。
排煙及び粒子は第2チャンバーへ通され、更に燃焼する。第2燃焼チャンバーから出る排煙が冷却される。冷却された排煙の一部分は、少なくとも1つの燃焼チャンバーに戻され、冷却された排煙は該燃焼チャンバー内の温度を抑える。
最後に、冷却された排煙の残部は、排煙浄化システムへ通過し、排煙中の汚染物質と粒子状物質は、排煙が大気中に放出される前に、実質的に無害の化合物へ変換されるか、又は完全に除去される。
【0010】
更に本発明として、少なくとも1つの燃焼チャンバーの少なくとも1つのパラメーターの値を監視する段階を更に含むプロセスが提供され、パラメーターは、少なくとも1つの燃焼チャンバーの可燃物の熱分解の関数である。これは監視されたパラメーターの少なくとも1つの値と、パラメーターのための少なくとも1つの所定値を比較することにより行われ、該比較は制御装置によりもたらされる。
最後に、比較の結果は、少なくとも1つの燃焼チャンバー及び排煙ガス浄化システムに戻される冷却された排煙の一部を制御するための装置に伝えられる。前記排煙の一部を制御するための装置は、燃焼チャンバー及び排煙の浄化システムへ送られる排煙の相対的な大きさを調節する。
【0011】
更に本発明の実施形態として、監視段階のパラメーターの少なくとも1つは温度である。温度は第1燃焼チャンバー、第2燃焼チャンバーで、あるいは両方のチャンバーで監視することができる。
【0012】
更に本発明の好適な実施形態として、監視段階のパラメーターの少なくとも1つは一酸化炭素の濃度、又は酸素の濃度であり、あるいは両方の濃度である。これらの濃度は第2燃焼チャンバーからの排出中に測定することができる。
【0013】
本発明の好適な実施形態として、冷却ガスの量を制御する手段はバルブである。更に本発明の好適な実施形態として、搬送段階のインレットガスは、2つの高濃度酸素流路に搬送される。インレットガス流路の1つは燃焼する廃棄物に隣接して位置し、もう1方のガス流路は燃焼する廃棄物の炎の上部に位置する。
各流路からの酸素の量は制御され、燃焼する廃棄物の温度は、第1燃焼チャンバーのフロアへの損害を最小とする温度で維持され、システムの基準範囲内の酸素量%で、廃棄物の完全な燃焼が起こる。
【0014】
更に本発明の好適な実施形態として、インレットガスの酸素含有量は、少なくとも80vol.%である。
更に本発明の好適な実施形態として、インレットガスの酸素含有量は、少なくとも90vol.%である。
【0015】
更に本発明の好適な実施形態として、インレットガスの酸素含有量は、90vol.%と95vol.%の間である。
更に本発明の好適な実施形態として、第1燃焼チャンバーにおける燃焼段階は約1100℃と約2000℃の間である。
【0016】
本発明の他の好適な実施形態として、第1燃焼チャンバーにおける燃焼段階は約1200℃と約1750℃の間である。
【0017】
更に本発明の好適な実施形態として、第1燃焼チャンバーにおける燃焼段階は約1300℃と約1500℃の間である。
【0018】
本発明の更に他の好適な実施形態として、第1通過段階の第2燃焼チャンバーにおける燃焼は、約850℃と約1500℃の間である。
本発明の他の好適な実施形態として、第1通過段階の第2燃焼チャンバーにおける燃焼は、約950℃と約1350℃の間である。
【0019】
本発明の更に他の好適な実施形態として、第1通過段階の第2燃焼チャンバーにおける燃焼は、約1050℃と約1200℃の間である。
本発明の他の実施形態として、プロセスは、酸化窒素ガスを分解するために、少なくとも1つの分解された窒素化合物を追加する段階を更に含む。一般的に、少なくとも1つの分解された窒素化合物は、アンモニア又は尿素である。
【0020】
更に本発明の好適な実施形態において、プロセスは、排煙が冷却された後、排煙から固形の粒子を分離する段階を更に含む。
【0021】
更に本発明の好適な実施形態において、戻り段階の少なくとも1つの燃焼チャンバーは、第1燃焼チャンバーである。
最後に、本発明の好適な実施形態において、冷却された排煙はチャンバー内の可燃物の燃焼により生じる炎に隣接する第1燃焼チャンバーに戻される。
他の実施形態において、冷却された排煙は、焼却灰やスラグに隣接する第1燃焼チャンバーに戻される。
【0022】
本発明の更に他の好適な実施形態において、戻り段階の少なくとも1つの燃焼チャンバーは、第2燃焼チャンバーである。
最後に、本発明は有害廃棄物又は燃料を含む可燃物の廃棄物に用いることができる。
【0023】
(好適な実施形態の詳細な説明)
本発明は、図面に関連した下記の詳細な説明により理解、評価される。各図面において、同一の部品には同一の参照番号が付与される。
図1を参照すると、本発明の焼却プロセス110の好適な実施形態のフローチャートが示されている。プロセス110は、産業廃棄物、普通ごみ及び/又は有機廃棄物を焼却するために用いられるのが特に好ましい。
添付の図面と同様に以下の記載は、これら廃棄物を用いて記載する。上記プロセス110は、廃棄物の焼却プロセスとして記載されるが、一方該プロセスは、任意の燃料を燃焼し、クリーンで費用効率のよいエネルギーを生産するために用いることができる。
都市ごみ又は産業廃棄物の代わりに、プロセス110を天然ガス、重油及び石炭のような燃料を燃焼するために用いることができる。これらの燃料は、本発明を制限しない例として示される。
【0024】
プロセス110は、廃棄物がコンジット(図示せず)を介して送られる(51)第1燃焼チャンバー(PCC)12を含む。インレットガスは酸素を、少なくとも50vol.%、好ましくは少なくとも80vol.%、最も好ましくは少なくとも90vol.%含み、通常は酸素を約90vol.%から95vol.%の間で含む。インレットガスは、コンジット(図示せず)を介してPCC12へ送られる(53)。通常PCC12は燃焼している廃棄物に隣接する。
廃棄物は、過剰な化学量論の酸素量で燃焼される。廃棄物は温度が約1100から2000℃、好ましくは約1200から1750℃、更に好ましくは約1300から1500℃の間に維持されたPCC12内で燃焼される。
第1燃焼チャンバー12の中で用いられる高濃度酸素のために、燃焼された廃棄物は高い割合で完全に酸化する。酸素ランシング及び補充の酸素を導入する他の方法は必要ではない。
【0025】
焼却により生じる小さい固形粒子と混合された排煙は、PCC12から出て、コンジット(図示せず)を介して第2燃焼チャンバー(SCC)14へ送られる(55)。
一部燃焼した排煙は、SCC14で更に燃焼され、PCC12から届く残りの酸素を用いて、より完全に酸化したガスとなる。SCC14において、温度範囲は、約850から1500℃、好ましくは約950から1350℃、更に好ましくは約1000から1200℃の間に維持される。
【0026】
随意に、窒素酸化物ガス(NOx)を分解する物質が、コンジット(図示せず)を介してSCC14へ送られる(57)。
一般的には、これらの物質はPCC12及びSCC14の中で形成された窒素酸化物ガスを窒素と水へ変換するアンモニア又は尿素のような、分解された窒素化合物である。
コンジット(図示せず)を介して、段階53からPCC12を通過したインレットガスからなる窒素の量は少ないので、システム内の窒素酸化物の量は多くはない。
いくつかの実施例において、窒素酸化物ガスを分解する物質が触媒なしで用いられることもあるが、他の実施例において、触媒が必要となることがある。好ましくは、PCC12及びSCC14は単一構造内に含まれるが、必要な場合には、分離した構造に配される。
【0027】
排煙は、コンジット(図示せず)を介して、熱交換器22により搬送される(59)。
一般的には熱交換器22は、排煙から熱を除去するボイラーである場合もある。除去されるエネルギーは通常は蒸気として、コンジット(図示せず)を介して、多くの場合はタービン発電機であるエネルギー変換器18に搬送される(61)。
代わりに、電気又は蒸気を回収することができる(63)任意の熱回復システムを用いることができる。生産された電気又は取り除かれた蒸気は焼却プラントに戻す、又は外部の消費者に分配することができる。
【0028】
熱交換器22から出た後、排煙の温度は、約230℃から270℃、好ましくは約250℃である。排煙は、コンジット(図示せず)を介して(65)から粒子分離器26に移される。該粒子分離器26は、サイクロン分離器であり、コンジット(図示せず)を介して、(69)にて排煙から飛灰27を取り除く。
取り除かれた飛灰27は、収集され、袋に入れられ、有毒廃棄物処理サイトに送られる。プロセス110のこの段階において粒子分離器26を用いることは任意である。代わりに、粒子を下記に記載される排煙浄化システム29で除去することができる。また代わりに、浄化システム29は、粒子分離器26を補完する粒子除去剤を含むことができる。
【0029】
粒子分離器26と排煙浄化システム29の間に位置する2つのバルブ(図示せず)が、排煙を2つに分割する。
コンジット(図示せず)を介して(73)で再利用される排煙の割合、コンジット(図示せず)を介して(71)で通過し、更に浄化を行うために排煙浄化システム29に入る排煙の割合は、PCC12及び/又はSCC14のいくつかのパラメーターで決定される。
【0030】
更に浄化を行うために、排煙はコンジット(図示せず)を介して(71)を通過するが、詳細については記載しない。
浄化システムの正確な能力は、焼却される廃棄物、排出される排煙と粒子、適用される環境基準次第である。一般的には、排煙浄化システム29は粒子除去剤を含み、該粒子除去剤は上記したように随意に粒子分離器26を補完し、プロセス110において、時として単一粒子除去剤として機能する。
一般的に、浄化システム29での粒子除去剤は、より細かい粒子を粒子分離器26以上に捕らえる。一般的には、浄化システム29は、酸性のガスを中和するためにスクラバーを含む。
流出ガスの浄化のために一般に使用される他の装置は、(81)でガスが大気へ放出される前に、必要な排出基準を達成するために、必要に応じて加えることができる。
【0031】
排煙の他の部分は、コンジット(図示せず)を介して(73)を通過しPCC12で再利用される。一般的には、再利用され冷却される排煙は、直接炎からコンジット(図示せず)を介して73Aを通過してPCC12に戻され、従ってPCC12から熱を除去し、SCC14を介して熱交換器22へ移される。
他の実施例において、再利用された排煙は、コンジット(図示せず)を介して73Bを通過して、SCC14に戻される。更に他の実施形態において、排煙はコンジット(図示せず)を介して73Cを通過して、PCC12のフロアに置かれる焼却灰及びスラグ17を通過し再利用される。
最後に、他の実施例において、冷却される排煙は、PCC12及びSCC14の両方に戻すことができる。PCC12は1300℃を越える温度で作動するので、焼却灰は冷却された時、ガラス状になる(75)。灰のいくらかは、対流により(79)を通過しSCC14に運ばれる。
冷却されたスラグ及びガラス状の焼却灰17は、処理するためにスラグと焼却灰容器(図示せず)へ、(77)で定期的に取り除かれる。
【0032】
図2Aを参照すると、図1に示される本発明のプロセス110に沿って操作される焼却炉システム210の概略図が示されている。システム210により、図1に示されるプロセス110をより良く理解できる。しかしながら、図2Aで示されるシステムは、本発明を限定せず例示の目的でのみ示される。
【0033】
システム210は、廃棄物19が廃棄物供給口10から供給される、第1燃焼チャンバー12を有する。燃焼のためにインレットガスを供給するインレットガス配列口15がある。一般的には、インレットガスは、少なくとも酸素を90vol.%含んで構成される。
廃棄物19は、第1燃焼チャンバー(PCC)12内で燃焼される。インレットガスは、PCC12で、燃焼される廃棄物に隣接する配列15からもたらされる。第1燃焼チャンバー12に供給されるインレットガス中の高濃度の酸素は、廃棄物の燃焼速度を加速する。
PCC12の温度は、空気だけが使用される場合に生じる温度よりはるかに高温である。得られる高温は固形物を容易く燃焼し、粉砕して焼却を促進する。空気中で燃焼しない又は不完全にしか燃焼しない物質は、高濃度の酸素を含有するインレットガスで完全に燃焼することが多い。
本発明のプロセス中の酸素濃度はかなり高いので、燃焼はより完全であり、ランスされた酸素を選択的に供給する必要はない。燃焼の速度は現時点で用いられている焼却炉よりも速いので、第1燃焼チャンバー12は、従来技術の焼却炉よりも処理能力を高くすることができる一方、より小さなサイズとすることができる。
【0034】
PCC12は、細板からなるボトム・グレーティングを有し、該ボトム・グレーティングは好ましくは、燃焼している廃棄物を回転又は攪拌するために、回転可能又は移動可能なように適用される。
グレーティングは、セラミック材料から作る、又は被覆することができ、該セラミック材料は、燃焼の際の高温度からグレーティングを保護する。
一般的には、他の全てのグレーティング細板は定期的に移動され、燃焼している廃棄物を回転し、完全で迅速な燃焼を可能とする。PCC12の低い位置にある部品も又、熱から保護されなければならず、セラミック製のタイルをシールドとして用いる。
代わりに、壁及びグレーティングは隣接する送水管からの流水で冷却することができる。
第1燃焼チャンバー12の底部のグレーティング細板の代わりに、チャンバー12のフロアに回転する金属の円筒状のローラー、又は燃焼する廃棄物を定期的に移動及び/又は回転する他の手段を設けることは当業者には明白なことである。
【0035】
PCC12からのスラグと焼却灰17は冷却され、スラグ・チャンネル16を介して、スラグと焼却灰容器(図示せず)へ移される。
第1燃焼チャンバー12内が高温(1300℃を越える)のため、焼却灰17は、ガラスの様な外皮でカプセルに包まれ、冷却された時ガラス状となる。
カプセル化は有害な材料を絶縁し中和し、それ以上の処理を必要とせずに、道路敷設のような土木計画で使用できるようにする。
【0036】
PCC12からの残りの酸素と同様に、燃焼する廃棄物から排出されるガス及び飛灰は、追加の燃焼が起こる第2燃焼チャンバー14に入る。第1燃焼チャンバー12の壁のノズルの配列30は、冷却され、再利用されるガスをPCC12へ注入する。通常これら再利用されるガスは、炎11上のすぐ上のPCC12に入る。
配列30から入る、冷却され再利用される排煙は、一般的には約250℃の温度である。排煙は第1燃焼チャンバー12を所定の温度、通常約1300から1500℃に維持する。
同様に排煙は、PCC12からSCC14へ移動するガスを約1000から1300℃に冷却する。
【0037】
随意に、アンモニア又は尿素は、PCC12及びSCC14における酸化窒素ガスからの窒素及び水の生産を減少するSCC14中の排煙に加えられる。PCC12及びSCC14は、回転炉、固定炉又は他のタイプのオーブンのような複数のタイプのチャンバーの任意の1つから作ることができる。
【0038】
排煙は、第2燃焼室14から一般的にはボイラーのような熱交換器22に通される。熱交換器22は、排煙から熱を取り除き、一般的にはタービン発電機(図示せず)ヘ導かれる蒸気を形成する。タービン発電機は、電気グリッドに接続することができ、該電気グリッドから電気を消費者に直接送ることができ、又は電気をプラント内で用いるために焼却プラントに戻すことができる。
代わりに、それぞれ熱交換器/ボイラー22及びタービン発電機(図示せず)により生産された蒸気、蒸気と電気の混合物を販売することができる。
燃焼された廃棄物からの排煙及び飛灰の排気がオプショナル・ブロワー24に到達するまでに、排煙の温度は約250℃に下げられる。
【0039】
オプショナル・ブロワー24を通る飛灰は、ブロワー24を通り抜けるオプショナル・サイクロン分離器26に入り、該オプショナル・サイクロン分離器26は、ブロワー24を通過する飛灰の大部分を沈殿させる。サイクロン分離器26は、排煙からの粒子を分離する、市場で入手可能なサイクロン分離器を用いることができる。シングル・サイクロン又はマルチプル・サイクロンを用いることができる。
【0040】
本発明のプロセスによって生産された飛灰の量が大きく減少することは注目すべき点である。飛灰の減少は、インレットガスでもたらされる高濃度の酸素の直接的な結果である。高濃度の酸素は、第1燃焼チャンバー12に供給されるインレットガスの総量を減少し、該高濃度の酸素は、焼却により生じる灰のための搬送ガスを少量にする。
生じた灰の多くが焼却灰として残る。飛灰は、排煙内のダイオキシン及び重金属のような有害物資を捕らえるので、飛灰は収集し、有毒物質処理場に搬送することが法律で定められている。
従って飛灰の全ての減少が廃棄物の処理費用の削減となる。
【0041】
排ガスの大部分及び排煙は、再利用路28を介して第1燃焼チャンバー12へ戻される。再利用される排煙は、約250℃であり、配列30を介して第1燃焼チャンバー12の壁からPCC12に入る。
通常、排煙はチャンバーに炎11の近く又は上部から入る。冷却された再利用排煙は、第1燃焼チャンバー12の温度を通常1300から1500℃に保つ冷却剤として機能する。
通常、冷却された再利用排煙は、直接システムへ炎11の上部の第1燃焼チャンバー12から再度入る。随意に排煙は、SCC14、又はPCC12のフロアの焼却灰又はスラグ17へ直接入ることにより再利用することができる。
一般的に、コンジットの配列は、再利用される排煙を再導入するために用いられるが、他の実施形態において、再利用される排煙が入る場所は1箇所である。
【0042】
ブロワー24からの排煙の一部は、清浄路32へ入る。バルブ31Aと31Bは、清浄路32へ及び再利用路28へ入る排煙の量、時期を決める。90vol.%の酸素及び一般的なイスラエルの都市ごみの混合物を用いると、生じ、上記路に入る混合排煙は、組成が通常約6vol.%の酸素、5vol.%の窒素、43vol.%の二酸化炭素、46vol.%の蒸気である。
もし、第1燃焼チャンバー12に供給されるインレットガスが、空気(約21vol.%の酸素)であり、少なくとも90vol.%の酸素を含むガス混合体ではない場合、清浄路32及び再利用路28に入る排煙の窒素含有量は、約66vol.%にまで上昇する。
【0043】
バルブ31A及び31Bは制御システムに接続され、制御システムは通常第1燃焼チャンバー12及び/又は第2燃焼チャンバー14から排出するガスの温度のパラメーターを監視する。
もし温度が必要以上に高いと、排煙がより高い割合で第1燃焼チャンバーへ再循環される。もし第1燃焼チャンバー内の温度が必要以上に低いと、戻されるガスの量は減少する。
例として、PCC12内の温度が1750℃で、SCC14内の温度が1100℃の場合、排煙が再利用される割合は約60vol.%であり、40vol.%は、以下図2Bを用いて示されるように、路32を介して直接排煙浄化システム310へと通過する。
【0044】
通常、例えば熱電対のような装置は、PCC12及び/又はSCC14内の温度を測定するために用いられる。温度制御器は、1又はそれ以上の温度を目標点として、PCC12及び/又はSCC14内の温度を測定する。
次に制御器は、それぞれ2つのバルブを開く又は閉じる。制御器は必要な量の再利用される排煙をPCC12及び/又はSCC14へ戻す。冷却される排煙の再利用は、再利用が行われていない時以上に、第1燃焼チャンバー12内の温度のより良い制御を確実にする。このことは排煙の燃焼の度合いを増す。
【0045】
図2Bを参照すると、焼却プラントの浄化及び洗浄システム310の例の概略図が示されている。図2Bの装置の構成は、例示の目的のためだけに示され、本発明の範囲を限定する意図はない。
【0046】
洗浄路32は、プラントの浄化システム310へと続く。排出される固形物及び排煙は減少する。排煙及び固形物は静電集塵器(ESP)34へと通される。静電集塵器は、上記のサイクロン分離器26の代わりに補完し機能する。
残っている飛灰の多くがESP34で除去される。ESP34において、飛灰粒子は高電源で帯電され、反対の極に帯電している導電プレートへなびく。粒子の帯電は分散される。灰は沈殿し収集される。
【0047】
排煙は、ライン42を介して、システムから熱を取り除くスクラバー熱交換器36へ送られる。排煙はスクラバー40に入る。スクラバー40の温度は100℃以下であり、排煙の大部分の水蒸気は凝結する。スクラバー40において、水酸化カルシウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム又はその他のアルカリ性化合物を含む塩基性溶液の滴下剤が注入される。これらは、第2燃焼室14に随意に加えられるアンモニア、尿素によって分解されない、二酸化硫黄及び残りの窒素酸化物のような酸性ガスを中和する。
洗浄されたガスは、ライン38を介して熱交換器36へ再度入る。排煙は、スクラバー40の底部に入る前に予め排煙から回収された熱を用いて再度加熱される。その後、再加熱されたガスは路46に入る。作動する炭素注入器44は、炭素をライン46へ注入する。汚染物質中のダイオキシン及びフランは吸収される。炭素は重金属、重金属酸化粒子を含む他の汚染物質を捕らえる。
【0048】
注入された活性炭及び流出ガスは、ライン46を通って進み、繊維性フィルタ50に堆積する。繊維性フィルタ50は、排煙から注入された活性炭を除去する。酸素及び窒素のような残りのガスは、ライン48を介して排気筒52へ通される。ガスは通常は排気筒の底のブロワー49で空気中に排気される。
【0049】
インレットガスが少なくとも90vol.%の酸素を含むとき、排気筒52から排気される流出ガスの量は、現時点で用いられている焼却炉の約5分の1である。
通常、排気ガスの比率は酸素が約6vol.%、窒素が約5vol.%、水蒸気が約20vol.%、二酸化炭素が約70vol.%である。
【0050】
窒素の減少及び大量の二酸化炭素である完全に酸化された炭素は、排煙を第1燃焼チャンバーで再利用した後に、高含有量の酸素と共にインレットガスを用いた直接的な結果である。
水蒸気の減少は、上記のスクラバー40内の蒸気の高比率の凝結の結果である。
【0051】
当業者にとって、浄化路32に入った後の排水を浄化するための装置の正確な構成は可変的及び/又は随意的であることは明白である。
本発明の技術分野で既知の他のタイプのスクラバー及びフィルタを用いることができる。同様に上記した装置のいくつかは、図示していない他の装置を用いることができる場合には使用されない。
異なるプラントにおける洗浄装置は、焼却される廃棄物の性質及び守らなければならない環境基準により異なることが予想される。
【0052】
上記のプロセスの第1燃焼チャンバー12において、廃棄物を燃焼するために用いられるインレットガスは、酸素を少なくとも80vol.%、好ましくは少なくとも90vol.%、しかし通常は90vol.%と95vol.%の間で含む。
この程度の酸素含有量(90から95vol.%)は、プラクシャー社(Praxair Inc)製の蒸気圧変動吸着装置(VPSA)を用いることで容易に達成する。VPSA装置は比較的低コストで、空気から窒素を吸着し、残りのガス、即ち酸素を第1燃焼チャンバー12へ送り出す。
窒素はこし器において低圧で吸収され、バキュームで除去される。現時点でこの方法は、高濃度の酸素を有するガス精溜を得るのに最も経済的な方法である。焼却炉の性能を上げるために高濃度の酸素を用いる全ての試みは、液化した空気の蒸留が必要なためインレットガスを生産するための費用を増加させる。
【0053】
上記VPSAの使用、もしくは高濃度の酸素を含有するインレットガスを生産するための、関連する蒸気変動吸着(PSA)プロセスは制限されない。膜技術を用いる装置は、インレットガスを生産するためにも用いることができるが、該インレットガスは空気よりも酸素含有量は高いが、通常はわずか40から60vol.%である。
【0054】
焼却炉のインレットガスが少なくとも90%の酸素(廃棄物1トン当たりの絶対重量に基づく)を含む場合、焼却炉のスタックから流出するガスは約5だけ減少する可能性があるので、流出ガスを浄化するために必要な装置の大きさと費用も併せて縮小する。
同様に、焼却炉の費用は、燃焼がより速く、処理能力がより高いために減少する。更にシステムにおいて飛灰の減少、焼却灰の溶固のために、廃棄物の処理費用は減少する。
最後に、窒素はインレットガスにおいて僅かにしか含まれないので、窒素を熱する際のエネルギー損失は減少する。このエネルギーは、他の箇所で有益な使用のために回収することができる。
【0055】
図3を参照すると、本発明の他の実施例の概略が示されている。図3は第1燃焼チャンバー(PCC)12、第2燃焼チャンバー(SCC)14及びこれらの制御システム120、122及び124を含む。
更に図3において前記チャンバーに配置される、インレットガス供給配列15、補助インレットガス供給配列115及び再利用ガス排気配列30を含む。
【0056】
図3中、前記実施例のように、高濃度の酸素がPCC12のフロアで、燃焼する廃棄物に隣接するPCC12に供給される。酸素はインレットガス供給配列15により搬送される。高濃度の酸素が搬送されるので、廃棄物11の近くで非常に高温を生じる。
これら温度は、PCC12の構造に逆効果となるため、PCC12を構築するためには、違う、より耐熱性を有し、より費用がかかる物質を必要とすることもある。
【0057】
PCC12の底部領域の燃焼温度を下げるために、本実施形態はインレットガス供給配列15により第1燃焼チャンバーに供給される酸素の総量を制限することが検討される。高濃度の酸素ではなく配列15により導入される酸素を制限することは、PCC12のフロアの近くの温度を下げる。
【0058】
インレットガス供給配列15により導入される酸素の総量の減少に伴い、いくらかの廃棄物及びそこから生じる排煙が不完全に酸化することがある。全ての廃棄物と排煙の実質的に完全な燃焼を確実にするために、PCC12内に第2ガス供給配列へ高濃度の酸素を搬送する別のガス供給配列が配置される。
補助インレットガス供給配列115として示される該第2配列は、通常は90%を超える高濃度の酸素を燃焼する石炭及びそこから上昇する排煙へ供給する。
補助インレットガス供給配列115によって供給される酸素は、PCC12内で燃焼する廃棄物の排煙の実質的に完全な燃焼を行い、低温でのPCC12の作動を可能とする。
補助インレットガス供給配列115により供給される酸素は、排出する排煙の温度を上昇し、僅かな温度上昇は、PCC12のフロアに隣接する廃棄物を燃焼し、PCC12のフロアに僅かに損傷を与える。
【0059】
排出する排煙の温度は、バルブ130を介したノズル30の配列から導入される再利用ガスにより加減される。ノズルは通常SCC14の壁又はPCC12の上部に配置される。
排出する排煙の温度は、バルブ130の作動を制御する温度制御装置120に接続される熱電対、高温計あるいは他の温度監視装置142Bにより測定される。
【0060】
2つの高濃度酸素源、インレットガス供給配列15、補助インレットガス供給配列115を用いることは、PCC12の底部の近くに配される燃焼する廃棄物に隣接して、通常は低温で廃棄物の実質的に完全な燃焼を行う。
【0061】
PCC12へもたらされ、比較的低い燃焼温度を維持するために必要とされる酸素量はいくつかの方法で制御することができる。温度制御は、システムのスタック52から出る流出気体の酸素濃度の監視により行うことができる。上記のように、大気に入る排煙の濃度は厳密に規定される必要条件を満たさなければならない。酸素監視装置132は、排気の酸素vol.%を監視するために挿入又はスタック52の近くの排気口に位置することができる。
その後測定される濃度に関するデータは、酸素濃度制御装置122に供給される。システムのスタック52から出る流出気体の酸素濃度が規定によって要求された濃度より低い場合、補助インレットガス供給配列115により供給される酸素の量が増加される。
規定により要求されるより酸素量が高い場合、補助インレットガス供給配列115により供給される酸素の量は減少される。
【0062】
スタック52の排気口に位置する、酸素監視装置132の代わりとして、酸素は、再利用される排煙配列30により搬送され、PCC12又はSCC14のいずれかに入る、再利用ガスの酸素含有量の測定により監視することができる。
スタック52の酸素含有量の比率は、再利用される排煙配列30からもたらされる、再利用ガスの酸素含有量と関係がある。PCC12又はSCC14のいずれかに入る、再利用ガスの構成はスタック52における酸素が豊富か否かを決定するために用いることができる。
【0063】
本発明の他の実施例において、2つの酸素監視装置は、スタック52を排出する酸素含有量を決定するために用いることができる。装置132の1つはスタック52に位置することができ、一方他の装置132は再利用される排煙が配列30により搬送される位置に配することができる。
【0064】
システムを制御する代わりの方法は、PCC12内の温度を監視することである。少なくとも1つの熱電対又は高温計142Aが、燃焼する廃棄物の炎11の近くに位置する。
温度測定の結果は、次に制御装置124及び燃焼する廃棄物の温度制御装置に供給され、燃焼する廃棄物の温度制御装置は、予め決めていた温度設定と比較する。
ガスインレット配列15及び115の両方によってPCC12に供給される酸素の量は、バルブ126及び128の操作により炎11で設定される予め決めていた温度設定を維持するために調節される。
温度の制御により、スタック52における流出する酸素の濃度も規定する範囲内に維持される。
【0065】
補助インレットガス供給配列115によって供給される酸素量、及びインレットガス供給配列15のバルブ126及び128を介して供給される酸素量の間に相互関係があることは当業者にとっては容易に明白である。
より多くの酸素が配列15で必要とされる時、通常、必要とされる炎の温度のためには、配列115には、より少ない酸素でよい。
【0066】
燃焼する物質の温度が高すぎる場合、燃焼廃棄物温度制御ユニット124によって制御されるバルブ126は燃焼する石炭上で、インレットガス供給配列15から流れる酸素を減少する。
制御装置124は、第2燃焼チャンバー(SCC)14の排出口で温度を監視する別の制御装置(温度制御装置120)と離れている。この温度は、上記したように、2つのバルブ31A及び31B(図2A)によって達成される。該バルブ31A及び31Bは、それぞれ再利用ライン28(図2A)によりPCC12及びSCC14に戻される、又は洗浄ライン32(図2A)によりスタック52に送られる、冷却される再利用排煙の量を決定する。
【0067】
燃焼する石炭の温度が測定装置142Aで測定され、制御装置124で制御され、バルブ126及びガス供給配列15を通し、バルブ128及び補助ガス供給配列115を通すスタック52における酸素監視装置132及びその酸素制御装置122又は温度制御装置120及び再利用排煙配列30のバルブ130を通した温度監視装置142Bにより、機能的に相互に連結する3つの制御ループを形成することが簡単に示される。
通常、1つの制御ループの変化は、他の2つの制御ループに対し識別可能な効果がある。
【0068】
図3に示される実施形態は現時点で入手可能な燃焼炉よりも、温度をより良く抑制し制御する。補助ガス供給配列115及び再利用ガス配列30を備えた実施形態において、再利用ガス配列30は第2燃焼チャンバー(SCC)14又はPCC12の上部の壁のいずれかに配置され、燃焼段階の各段階において、温度の抑制を可能にする。
用いられる加熱炉の種類には関係しない加熱炉の温度は、PCC12への損害が最小となるように維持することができる。
【0069】
当業者は本発明が上記の内容に制限されないことを理解する。本発明の範囲は請求項によってのみ定義される。
【図面の簡単な説明】
【0070】
【図1】本発明のプロセスの好適な実施形態を示すフローチャートである。
【図2A】本発明の焼却作業の概略図である。
【図2B】本発明の焼却作業に用いることができる通常の浄化システムの概略図である。
【図3】本発明のプロセスの他の好適な実施形態を示す概略図である。

Claims (30)

  1. インレットガスの酸素含有量が少なくとも50vol.%であり、可燃物及び該インレットガスを第1燃焼チャンバーへ搬送する、
    前記可燃物を燃焼チャンバー内のインレットガスの酸素で燃焼し、焼却された可燃物の熱分解生成物として排煙と固形粒子を生じる、
    前記排煙及び前記粒子が第2燃焼チャンバーへ通され、更に燃焼する、
    第2燃焼チャンバーから出る排煙が冷却される、
    前記冷却された排煙の一部が少なくとも1つの燃焼チャンバーに戻され、該冷却された排煙が該燃焼チャンバー内の温度を抑える、
    前記冷却された排煙の残部が排煙浄化システムへ通過し、排煙中の汚染物質と粒子は、排煙が大気中に放出される前に、実質的に無害の化合物へ変換されるか、又は完全に除去される、
    段階を含む可燃物を焼却するプロセス。
  2. 少なくとも1つの燃焼チャンバーの少なくとも1つのパラメーターの値を監視し、該パラメーターが少なくとも1つの燃焼チャンバーの可燃物の熱分解の関数である、
    パラメーターの少なくとも1つの値と、パラメーターのための少なくとも1つの所定値を比較することが行なわれ、該比較は制御装置によりもたらされる、
    前記比較の結果を少なくとも1つの前記燃焼チャンバー及び排煙ガス浄化システムに戻される前記冷却された排煙の一部を制御するための装置に伝え、前記排煙の一部を制御するための装置が燃焼チャンバー及び排煙の浄化システムへ送られる排煙の相対的な量を調節する、
    段階を更に含む請求項1のプロセス。
  3. 前記監視段階の少なくとも1つのパラメーターが温度である請求項2のプロセス。
  4. 燃焼チャンバーの少なくとも1つが第2燃焼チャンバーである請求項2のプロセス。
  5. 燃焼チャンバーの少なくとも1つが第1燃焼チャンバーである請求項2のプロセス。
  6. 前記監視段階の少なくとも1つのパラメーターが一酸化炭素の濃度である請求項2のプロセス。
  7. 燃焼チャンバーの少なくとも1つが第2燃焼チャンバーである請求項6のプロセス。
  8. 前記監視段階の少なくとも1つのパラメーターが酸素である請求項2のプロセス。
  9. 燃焼チャンバーの少なくとも1つが第2燃焼チャンバーである請求項8のプロセス。
  10. 冷却ガスの総量を制御する手段がバルブであることを特徴とする請求項2のプロセス。
  11. 前記搬送段階のインレットガスが2つの高濃度酸素流路に搬送され、インレットガス流路の1つは燃焼する廃棄物に隣接して位置し、もう1方のガス流路は燃焼する廃棄物の炎の上部に位置し、各流路からの酸素の量は制御され、燃焼する廃棄物の温度は、第1燃焼チャンバーのフロアへ最小の損害となる温度で維持され、システムの基準範囲内の酸素量%で、廃棄物の完全な燃焼が起こることを特徴とする請求項1のプロセス。
  12. インレットガスの酸素含有量が少なくとも約80vol.%である請求項1のプロセス。
  13. インレットガスの酸素含有量が少なくとも約90vol.%である請求項1のプロセス。
  14. インレットガスの酸素含有量が約90vol.%から95vol.%の間である請求項1のプロセス。
  15. 第1燃焼チャンバーにおける前記燃焼段階が約1100℃から約2000℃の温度でもたらされる請求項1のプロセス。
  16. 第1燃焼チャンバーにおける前記燃焼段階が約1200℃から約1750℃の温度でもたらされる請求項1のプロセス。
  17. 第1燃焼チャンバーにおける前記燃焼段階が約1300℃から約1500℃の温度でもたらされる請求項1のプロセス。
  18. 前記第2燃焼チャンバー内の前記第1通過段階における前記燃焼段階が約850℃から約1500℃の温度でもたらされる請求項1のプロセス。
  19. 前記第2燃焼チャンバー内の前記第1通過段階における前記燃焼段階が約950℃から約1350℃の温度でもたらされる請求項1のプロセス。
  20. 前記第2燃焼チャンバー内の前記第1通過段階における前記燃焼段階が約1050℃から約1200℃の温度でもたらされる請求項1のプロセス。
  21. 酸化窒素ガスを分解するために、少なくとも1種類の分解された窒素化合物を前記第2燃焼チャンバーへ加える段階から更になる請求項1のプロセス。
  22. 少なくとも1種類の分解された窒素化合物がアンモニアか尿素であることを特徴とする請求項21のプロセス。
  23. 排煙が冷却された後、該排煙から固形粒子を分離する段階から更になる請求項1のプロセス。
  24. 前記戻し段階の燃焼チャンバーの少なくとも1つが第1燃焼チャンバーであることを特徴とする請求項1のプロセス。
  25. 前記燃焼の段階で炎を生じ、前記冷却された排煙が該炎に隣接する第1燃焼チャンバーに戻されることを特徴とする請求項24のプロセス。
  26. 前記冷却された排煙が、前記焼却灰及びスラグに隣接する前記第1燃焼チャンバーに戻されることを特徴とする請求項24のプロセス。
  27. 前記戻し段階の少なくとも1つの前記燃焼チャンバーが第2燃焼チャンバーであることを特徴とする請求項1のプロセス。
  28. 燃焼物質が廃棄物である請求項1のプロセス。
  29. 燃焼物質が有害廃棄物である請求項28のプロセス。
  30. 燃焼物質が燃料である請求項1のプロセス。
JP2003507470A 2001-06-26 2002-06-24 高濃度の酸素を用いた焼却プロセス Granted JP2004532967A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IL14399301A IL143993D0 (en) 2001-06-26 2001-06-26 An incineration process using high oxygen concentrations
PCT/IL2002/000503 WO2003001113A1 (en) 2001-06-26 2002-06-24 An incineration process using high oxygen concentrations

Publications (2)

Publication Number Publication Date
JP2004532967A true JP2004532967A (ja) 2004-10-28
JP2004532967A5 JP2004532967A5 (ja) 2005-12-15

Family

ID=11075549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003507470A Granted JP2004532967A (ja) 2001-06-26 2002-06-24 高濃度の酸素を用いた焼却プロセス

Country Status (5)

Country Link
US (1) US6952997B2 (ja)
EP (1) EP1412674A1 (ja)
JP (1) JP2004532967A (ja)
IL (1) IL143993D0 (ja)
WO (1) WO2003001113A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1569430B1 (de) 2004-01-30 2012-12-26 Nokia Siemens Networks GmbH & Co. KG Verfahren zur Ermittlung eines Namens eines Teilnehmers in einem Kommunikationsnetz
US7146916B2 (en) * 2004-05-14 2006-12-12 Eco/Technologies, Llc Starved air inclined hearth combustor
SE528258C2 (sv) * 2004-06-24 2006-10-03 Swedish Bioburner System Ab Anläggning för uppvärmning genom förbränning av fast bränsle
EP1917471B1 (de) * 2005-08-16 2019-03-20 BSH Hausgeräte GmbH Vorrichtung zur zeitbegrenzten leistungserhöhung
US20070269755A2 (en) * 2006-01-05 2007-11-22 Petro-Chem Development Co., Inc. Systems, apparatus and method for flameless combustion absent catalyst or high temperature oxidants
CN200982641Y (zh) * 2006-08-30 2007-11-28 林文章 移动式焚化炉
US7975628B2 (en) * 2006-09-13 2011-07-12 Martin GmbH für Umwelt- und Energietechnik Method for supplying combustion gas in incineration systems
FI119522B (fi) * 2007-08-13 2008-12-15 Waertsilae Finland Oy Ship engine assembly
US7954458B2 (en) 2007-11-14 2011-06-07 Alstom Technology Ltd Boiler having an integrated oxygen producing device
US8833276B2 (en) * 2009-02-06 2014-09-16 William Hunkyun Bang Burner system for waste plastic fuel
US20120028200A1 (en) * 2009-10-20 2012-02-02 James Kenneth Hicks Burnout of residual carbon in coal fly ash using air cyclones
WO2011069257A1 (en) 2009-12-11 2011-06-16 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Flue gas recirculation method and system for combustion systems
US20110143291A1 (en) * 2009-12-11 2011-06-16 Clements Bruce Flue gas recirculation method and system for combustion systems
US9657937B2 (en) * 2010-08-23 2017-05-23 Saudi Arabian Oil Company Steam generation system having multiple combustion chambers and dry flue gas cleaning
BR112013011435A2 (pt) * 2010-11-10 2016-08-09 Praxair Technology Inc métodos de combustão, e para aumentar a taxa de combustão de combustível em uma câmara de combustão
CN102353038B (zh) * 2011-07-18 2017-03-15 山东君睿机械科技有限公司 一种复合燃烧锅炉
SE536195C2 (sv) * 2011-10-12 2013-06-18 Ecomb Ab Publ Tillförselanordning för förbränningskammare och metod därför
US9939153B2 (en) * 2013-06-03 2018-04-10 Washington University Method and apparatus for capturing carbon dioxide during combustion of carbon containing fuel
JP6260058B2 (ja) * 2014-09-12 2018-01-17 三菱重工環境・化学エンジニアリング株式会社 ストーカ式焼却炉
CN105423315B (zh) * 2015-11-23 2017-10-03 翟树军 煤化工放空废气的回收利用方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306235A (en) * 1964-10-26 1967-02-28 Combustion Eng Corrosion reducing method and material for furnaces
FR2245915B3 (ja) 1973-09-28 1976-08-27 Bazin Claudine
US4286548A (en) * 1979-11-19 1981-09-01 Brash Leslie O Gas recirculation apparatus with integral ash hoppers
JPH07101088B2 (ja) * 1986-01-22 1995-11-01 石川島播磨重工業株式会社 流動床炉の無触媒脱硝法
US5376354A (en) * 1987-10-16 1994-12-27 Noell Abfall-Und Energietechnik Gmbh Process for disposal of waste by combustion with oxygen
US5077042A (en) * 1988-03-25 1991-12-31 Johnson Products Co., Inc. Conditioning hair relaxer system with conditioning activator
US5123364A (en) 1989-11-08 1992-06-23 American Combustion, Inc. Method and apparatus for co-processing hazardous wastes
US5179903A (en) 1991-06-24 1993-01-19 Abboud Harry I Closed loop incineration process
US5309850A (en) * 1992-11-18 1994-05-10 The Babcock & Wilcox Company Incineration of hazardous wastes using closed cycle combustion ash vitrification
US5402739A (en) 1993-10-27 1995-04-04 Abboud; Harry I. Closed loop incineration process
CH688871A5 (de) * 1994-05-16 1998-04-30 Von Roll Umwelttechnik Ag Verfahren zur thermischen Energiegewinnung aus Abfallmaterial, insbesondere Muell.
GB2297628A (en) 1995-02-03 1996-08-07 David William Ross Viewing apparatus
DE19541150C2 (de) 1995-10-25 1997-10-09 Mannesmann Ag Verfahren und Einrichtung zum Behandeln von Reststoffen
US5823124A (en) 1995-11-03 1998-10-20 Gas Research Institute Method and system to reduced NOx and fuel emissions from a furnace
US5742452A (en) * 1996-01-10 1998-04-21 International Business Machines Corporation Low mass magnetic recording head and suspension
US5752452A (en) 1996-10-25 1998-05-19 Praxair Technology, Inc. Apparatus and method for oxygen lancing in a multiple hearth furnace
EP1013993A4 (en) * 1997-08-11 2001-05-16 Ebara Corp METHOD FOR REMOVING FUELS BY MELTING
US6113389A (en) 1999-06-01 2000-09-05 American Air Liquide, Inc. Method and system for increasing the efficiency and productivity of a high temperature furnace

Also Published As

Publication number Publication date
IL143993D0 (en) 2002-04-21
US6952997B2 (en) 2005-10-11
US20040182292A1 (en) 2004-09-23
WO2003001113A1 (en) 2003-01-03
EP1412674A1 (en) 2004-04-28

Similar Documents

Publication Publication Date Title
JP2004532967A (ja) 高濃度の酸素を用いた焼却プロセス
US5309850A (en) Incineration of hazardous wastes using closed cycle combustion ash vitrification
US6655137B1 (en) Advanced combined cycle co-generation abatement system
KR100529826B1 (ko) 플라즈마 열분해에 의한 폐기물 처리 장치 및 방법
KR20030067241A (ko) 고온 플라즈마를 이용한 다이옥신 및 분진 제거방법 및 그장치
KR101107384B1 (ko) 플라즈마 열분해 공정 기술을 이용하여 폐기물로부터합성가스의 정제 공정 및 장치
JP2006015179A (ja) 排ガス処理装置、廃棄物処理装置、及び排ガス処理方法
JPH084713B2 (ja) 廃棄物焼却装置からの廃ガスを解毒する方法および装置
Lee et al. Innovative thermal destruction technologies
RU91409U1 (ru) Установка для термической переработки твердых бытовых отходов
JPH0868528A (ja) 焼却炉排ガスの処理方法及び装置
KR200280676Y1 (ko) 고온 플라즈마를 이용한 다이옥신 및 분진 제거장치
JPH11257619A (ja) 都市ごみ燃焼装置
JP2005164059A (ja) 廃棄物の焼却処理方法及び処理設備
CN108452663A (zh) 固废物焚烧烟气净化处理方法
JP4825182B2 (ja) 汚染土無害化システム
JP3664941B2 (ja) 灰溶融炉の排ガス処理方法およびそのシステム
JP2007032999A (ja) 焼却システム
JP2001334243A (ja) 廃棄物の処理方法及び装置
JP2008128539A (ja) クロムを含有する有機物を燃料とする燃焼装置及びこれを用いたクロムを含有する有機物燃料の燃焼方法
KR100353875B1 (ko) 소각재 및 배출가스 중의 다이옥신을 동시에 제거하는 방법
JP3692279B2 (ja) 灰溶融炉の排ガス処理方法およびそのシステム
JP2000356329A (ja) 廃棄物の焼却方法及びその設備
JPH10339423A (ja) 被溶融物の溶融処理方法及び溶融処理装置
CN109000263A (zh) 垃圾处理装置和垃圾处理方法