JP2004520517A - 軸流圧縮機 - Google Patents

軸流圧縮機 Download PDF

Info

Publication number
JP2004520517A
JP2004520517A JP2002539689A JP2002539689A JP2004520517A JP 2004520517 A JP2004520517 A JP 2004520517A JP 2002539689 A JP2002539689 A JP 2002539689A JP 2002539689 A JP2002539689 A JP 2002539689A JP 2004520517 A JP2004520517 A JP 2004520517A
Authority
JP
Japan
Prior art keywords
rotor
flow
axial
cross
rotor blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002539689A
Other languages
English (en)
Inventor
ヤコブソン,ロルフ,アレキス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Copco Industrial Technique AB
Original Assignee
Atlas Copco Tools AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Copco Tools AB filed Critical Atlas Copco Tools AB
Publication of JP2004520517A publication Critical patent/JP2004520517A/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

各々周囲方向に整列した案内羽根(15)を備えた一つ以上の軸方向に離間したステータ部分(14)と、各々周囲に整列したロータブレード(15;A,B)備えた一つ以上のロータ部分(12、16)とを有し、二つの連続したロータブレード(A、B)間に流路が形成され、ステータ部分とロータ部分との間には、第2ロータブレード(B)の前縁の上流ある一定の距離に位置した流路の最狭横断面領域(a)から第2ロータブレード(B)の前縁の近くに位置した比較的広い横断面領域(a)までのびる拡散領域(C)を各流路に形成するように発散形態の軸方向ギャップ(22、23、24)が設けられ、各流路が比較的広い横断面領域(a)からロータブレード(A、B)の後縁までのびる実質的に非増大横断面積の転移領域(D)を備えている軸流圧縮機。

Description

【技術分野】
【0001】
本発明は、少なくとも一つの軸方向部分が周囲方向に整列した流れ方向案内羽根を備えているステータと、少なくとも一つの軸方向部分が周囲に整列したロータブレードとを有し、案内羽根とロータブレードとの間及び内周壁と外周壁との間に複数の平行な流路が形成され、また連続したロータブレード間には複数のロータ流れ通路が形成され、これらののロータ流れ通路をとおって流路がのびている軸流圧縮機に関するものである。
【背景技術】
【0002】
上記型の従来技術の圧縮機においては、各圧縮機段を横切って増大した圧力比及び(又は)増大した効率をいかにして得るかという問題がある。これらの目的に対して限界及び臨界であるファクターは、圧縮機を通る空気の流れの平均速度である。増大した空気の流れの速度によって各圧縮機段を横切っての比較的高い圧力比及び(又は)増大した効率が得られることは周知の事実である。しかし、従来技術の圧縮機においては、超音速では避けのが難しくしかも圧力比及び圧縮機効率にとって良くない衝撃波が空気の流れ中に生じるため、流速は音速より十分低く、すなわちマッハ数1.0以下、通常約0.7に保たれる。マッハ数1.0以下、通常約0.7に保つことによって、マッハ数1.0には到達せず、衝撃波が生じないことが保証される。
【0003】
マッハ数において0.7〜1.0のこのように大きな“安全“マージンを使用する理由は、従来技術の圧縮機では空気の流速が通常ステータまたはロータ部分の流路の下流端部で局所的に増大するためである。このように速度の増大する理由は、二枚の案内羽根間又は二枚の駆動ブレード間の流路から離れていく際に、空気の流れ方向が変化するために空気の流れが接線方向に縮流することにある。このように流速が増大すると、空気の流速はマッハ数約1.0に達し、空気の流れ中に望ましくない衝撃波が発生する。圧縮機内のあらゆる位置において音速に達しないようにするために、空気の流速は“安全な”マッハ数0.7以下に保たれる。
【0004】
マッハ数1.0を越える速度で運転し、衝撃波のマイナスの影響を避けるように特殊な構成にされた遷音圧縮機がある。しかし、この形式の圧縮機は、また本発明に従ってステータ及びロータの流路における空気の流れ損失が低いという利点が得られる。
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明の主目的は、亜音速の空気流速で運転し、マッハ数が1.0のレベルに到達する危険なしにステータ及びロータ部分を通る平均空気流速を相当に増大できるようにして空気の流れ通路を改善した上記型の圧縮機を提供することにある。
【0006】
本発明の別の目的及び利点は明細書及び特許請求の範囲から明らかとなる。
【発明を実施するための最良の形態】
【0007】
以下、添付図面を参照して本発明の好ましい実施の形態について詳細に説明する。
【0008】
図1には、ロータに関する流路を示し、この流路は二つの連続したロータブレードA、B間の通路を通ってのびている。ロータブレードA、B間の通路に入る前に、媒体の流れはロータブレードの運動方向ωに対向した方向に角度Δαだけ偏向され、角度Δαは元の流路角度αと新しい流路角度α’との差である。流れのこの偏向により流路の横への縮流が生じ、周知の方法(例えば、Eckert/Schnell 著“Axial-und Radialkompressoren”第2版、第269頁、又は“Dubbel Taschenbuch fuer den Mashinenbau”1974年第334頁参照)で理論的に計算できる曲率に追従する。この曲率は半径Rの円線に近い形状である。
【0009】
第2のロータブレードBの前縁の上流のある一定の距離に又は第1のロータブレードAの前縁の僅か下流における部分aに到達すると、流路は拡散領域Cを通り、この拡散領域Cは、ほぼ第2のロータブレードBの前縁における部分aまで流れ方向にのびている。従って、拡散領域Cは入口部分aと出口部分aを備え、入口部分aの横断面積は出口部分aの横断面積より小さい。拡散領域Cは、入口部分aはまたa、aで間の全流路の最狭断面部分である。
【0010】
拡散領域Cの下流において、流路は転移領域Dを通ってのび、この転移領域Dの横断面積は部分aはから出口部分aまでの全経路にわたって実質的に増大しないか又は僅かに減少している。ロータブレードA、B間の下流へ増大する距離を補償するために、ロータブレードの半径方向の長さすなわち内周壁28と外周壁29との間の半径方向距離は転移領域Dを通して横断面積を実質的に一定に保つように減少されなければならない。図2参照。ある場合には、転移領域Dを通る流れを僅かに加速させるのが有利である。
【0011】
拡散領域Cの上流においては、非増加流速を発生するように最初の部分aから拡散領域入口部分aまで流路の横断面積は実質的に一定である。図2に示すように、これは、それぞれロータ及びステータの内周及び(又は)外周壁28、29に発散面F、Gを形成することによって行われる。これらの発散面F、Gは上述のように、流路の側部縮流を補償し、そして流速のマッハ数を低く抑えしかも媒体流に衝撃波の生じるのを阻止するように機能している。
【0012】
各流路の拡散領域Cを、二つの連続したロータブレードA、B間の流れ偏向転移領域Dの上流に設けることによって、流速及び従ってロータブレードA、B間の流路偏向中の流れ損失は減少される。このことは、圧縮機の効率が改善されることを意味している。
【0013】
圧縮機の良好な効率を保証するために、流速は各ロータブレードの半径方向全長にわたって等しく高くあるべきである。これは、最初の圧縮機段に案内羽根形態を使用して、各案内羽根10がその底部端と頂部端とで流れ偏向角が異なるようにすることによって行われる。図4参照。それにより、最初の圧縮機段において各ロータブレードにおける全ての半径方向位置で流速を等しくするための最適な流れ方向が得られる。
【0014】
図3及び図4には、図1に例示した流路特性を備える本発明の好ましい実施の形態を示す。
【0015】
図3には、ハウジング11に堅固に装着された案内羽根10を含む圧縮機の最初の段の入口ノズルを断面図で示す。ノズル10の下流には、ロータブレード13を備えたロータ部分12が設けられ、それに続いてハウジング11に固定された案内羽根15を備えたステータ部分14及びロータブレード17を備えた別のロータ部分16が設けられている。ロータ流路20は二つの隣接したロータブレード13、17間にのび、またステータ流路21は二つの隣接した案内羽根15間に形成されている。流路20、21はまた内周面28及び外周面29によって画定される。
【0016】
ステータ部分とロータ部分との間には環状空気流れ通路22、23、24を形成する軸方向ギャップが設けられている。
【0017】
圧縮機を通る空気流れ通路の主特徴は、入口ノズル端から出口端へ向かって連続して集束している。図3に例示したように、空気通路の横断面積は段階状に減少し、一方、ステータ部分14とロータ部分12との間に位置した流れ通路22、23、24においては、流れ通路の半径方向長さは増大している。
【0018】
本発明の特徴は、ステータ部分とロータ部分との間に環状空気流れ通路22、23、24を形成する軸方向ギャップを設けたことにある。これらの軸方向にのびしかも半径方向に発散する通路22、23、24を導入する理由は、流れ損失を低減しかつ圧縮機の効率を高めるために、速度低減拡散領域を設けることにある。
【0019】
図4に例示したように、二つのロータブレード13、17間のロータ流路20に近づく空気の流れは集束形態である。というのは、入ってくる空気の流れとロータブレード13、17の方向との間の方向の違いに関連して、空気の流れが方向を変えることになるからである。図4に例示したように、入ってくる空気の流路の方向は半径方向平面に対してある角度を成し、βで示されている。この角度は、β’で表されるロータブレード13、17の角度より大きい。このように流れ方向が変化するために、空気の流路は接線方向の縮流を受け、流速を増大させる。これは符号b、bで示され、ここでbは、入ってくる空気の流れ断面bより狭い流路横断面を示している。空気流の加速は、流路内の摩擦損失を増大させることになるので不利益である。
【0020】
この望ましくない空気流の加速は、流れ通路において利用できる横断面積を増大することによって、すなわち中間の半径方向に発散する通路22、23、24を導入することによって避けられる。これら通路の半径方向長さを少なくとも10%増大することによって、圧縮機の効率の改善が得られる。圧縮機の効率を実質的に増大するためには、流れ通路22、23、24の半径方向長さ(拡がり)は少なくとも20%増大すべきである。図示例では、これら通路の半径方向長さは入口端におけるhから出口端におけるhに増大している。
【0021】
圧縮機を通る空気の流路の好適な形状を得るためには、中間通路22、23、24の半径方向長さの増大はある一定の通路長さにわたって行われなければならない。従って通路22、23、24の軸方向長さはそれぞれロータブレード及び案内羽根の長さを30%越えなければならない。ブレード及び羽根の半径方向長さに関連して、通路の長さはそれぞれブレード及び羽根の長さの50%以上であり得る。
【図面の簡単な説明】
【0022】
【図1】ロータブレード通路を通る流路の幾何学的配列を示す。
【図2】図1のロータブレード通路の側面図である。
【図3】本発明による圧縮機の部分縦断面図である。
【図4】図1に示す圧縮機のロータブレード及びステータ案内羽根の展開図である。

Claims (10)

  1. 少なくとも一つの軸方向部分が周囲方向に整列した流れ方向案内羽根(13、17)を備えているステータと、
    少なくとも一つの軸方向部分が周囲に整列したロータブレード(15;A,B)、内周壁(28)及び外周壁(29)を備えているロータと、
    を有し、
    ロータの回転方向(ω)において、それぞれ二つの連続したロータブレード(A、B)間及び内周壁(28)と外周壁(29)との間に流路が形成される
    軸流圧縮機において、
    各流路が、
    ロータの回転方向(ω)において第2ロータブレード(B)の前縁の上流ある一定の距離に位置した第1横断面(a)における最狭横断面領域と、
    流れ方向に連続して増大する横断面積をもちかつ上記第1横断面(a)から上記第2ロータブレード(B)の前縁の近くに位置した第2横断面(a)までのびる拡散領域(C)と、
    上記第2横断面(a)から上記第2ロータブレード(B)の後縁までのびしかも全長を通して流れ方向に横断面積の実質的に増大しない転移領域(D)と、
    を備えていることを特徴とする軸流圧縮機。
  2. 第1、第2ロータブレード(A、B)間の横断距離が上記転移領域(D)を通して増大し、一方、流路の横断面積が上記転移領域(D)を通して増大しないように、上記内周壁(28)と上記外周壁(29)との間の半径方向距離が減少する請求項1に記載の軸流圧縮機。
  3. 上記拡散領域(C)を通る流れがほぼ層流である請求項1又は2に記載の軸流圧縮機。
  4. 上記拡散領域(C)の上流の各流路がほぼ一定の横断面積をもつ請求項1〜3のいずれか一項に記載の軸流圧縮機。
  5. 少なくとも一つの周囲方向列を成す流れ方向案内羽根(13、17)を備えているステータと、少なくとも一つの周囲方向列を成すロータブレード(15;A、B)を備えているロータとを有し、上記案内羽根(13、17)と上記ロータブレード(15;A、B)との間に多数の平行流路が形成され、また上記連続したロータブレード(A、B)間に、上記流路ののびるロータ流れ通路が形成されている軸流圧縮機において、
    各流路が、上記連続したロータブレード(A、B)の第1のロータブレード(A)の前縁近くの位置から第2のロータブレード(B)の前縁近くの位置まで上記ロータの回転方向(ω)にのび、上記拡散領域(C)の下流の上記ロータ流れ通路の各々の横断面積がその全長にわたってほぼ増大しないことを特徴とする軸流圧縮機。
  6. 上記流路及び上記ロータの流れ通路が、外周壁(29)及び内周壁(28)によって部分的に画定されている請求項5に記載の軸流圧縮機。
  7. 上記ロータの流れ通路の各々が、第1のロータブレード(A)及び回転方向(ω)において上記第1のロータブレード(A)に続く第2のロータブレード(B)によって画定され、上記拡散領域(D)が、上記第1のロータブレード(A)の前縁に近い位置から上記第2のロータブレード(B)の前縁に近い位置まで流れ方向にのび、また上記流路の各々が上記拡散領域(C)の上流端において最狭横断面(a)をもつ請求項5又は6に記載の軸流圧縮機。
  8. 上記案内羽根(13、17)が二つ以上の軸方向に離間したステータ部分に配列され、上記ロータブレード(15)が二つ以上の軸方向に離間したロータ部分に配列され、
    上記ロータ部分及び上記ステータ部分がそれらの間に軸方向ギャップ(22、23、24)をもって配列され、
    上記軸方向ギャップ(22、23、24)の軸方向幅が、前の案内羽根(13、17)又はロータブレード(15)の翼弦長の少なくとも30%であり、また
    上記軸方向ギャップ(22、23、24)が軸線方向において半径方向に拡がった形状の流れ通路領域を形成している
    請求項1に記載の軸流圧縮機。
  9. 上記流れ通路領域が、上流端における半径方向長さ(h)より少なくとも10%長い下流端における半径方向長さ(h)をもつ請求項8に記載の軸流圧縮機。
  10. 上記流れ通路領域の軸方向幅が、前の案内羽根(13、17)又はロータブレード(15)の翼弦長の少なくとも50%である請求項8に記載の軸流圧縮機。
JP2002539689A 2000-11-02 2001-11-02 軸流圧縮機 Pending JP2004520517A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0004001A SE0004001D0 (sv) 2000-11-02 2000-11-02 Axial flow compressor
PCT/SE2001/002409 WO2002036965A1 (en) 2000-11-02 2001-11-02 Axial flow turbo compressor

Publications (1)

Publication Number Publication Date
JP2004520517A true JP2004520517A (ja) 2004-07-08

Family

ID=20281668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002539689A Pending JP2004520517A (ja) 2000-11-02 2001-11-02 軸流圧縮機

Country Status (9)

Country Link
US (1) US20050175448A1 (ja)
EP (1) EP1330607A1 (ja)
JP (1) JP2004520517A (ja)
KR (1) KR20030063369A (ja)
CN (1) CN1481479A (ja)
AU (1) AU2002215273A1 (ja)
CA (1) CA2427600A1 (ja)
SE (1) SE0004001D0 (ja)
WO (1) WO2002036965A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036594A1 (de) * 2004-07-28 2006-03-23 Mtu Aero Engines Gmbh Strömungsstruktur für eine Gasturbine
EP2126367B1 (en) * 2007-01-17 2014-03-12 Ansaldo Energia S.P.A. Turbogas system multistage compressor
KR101059086B1 (ko) * 2011-03-18 2011-08-24 (주)대주기계 공기 압축기 용량 조절용 가변 목 장치
SE537871C2 (sv) * 2011-12-13 2015-11-03 Xylem Ip Holdings Llc Propellerpump samt pumpstation
EP2696042B1 (de) * 2012-08-09 2015-01-21 MTU Aero Engines GmbH Strömungsmaschine mit mindestens einem Leitschaufelkranz
CN104074799B (zh) * 2013-11-17 2017-01-18 成都中科航空发动机有限公司 一种具有扩张型子午流道的轴流压气机及其设计方法
US11428241B2 (en) * 2016-04-22 2022-08-30 Raytheon Technologies Corporation System for an improved stator assembly
TWI678471B (zh) * 2018-08-02 2019-12-01 宏碁股份有限公司 散熱風扇

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH216489A (de) * 1940-04-04 1941-08-31 Sulzer Ag Mehrstufiger Axialverdichter.
US2846137A (en) * 1955-06-03 1958-08-05 Gen Electric Construction for axial-flow turbomachinery

Also Published As

Publication number Publication date
EP1330607A1 (en) 2003-07-30
CA2427600A1 (en) 2002-05-10
SE0004001D0 (sv) 2000-11-01
AU2002215273A1 (en) 2002-05-15
KR20030063369A (ko) 2003-07-28
CN1481479A (zh) 2004-03-10
WO2002036965A1 (en) 2002-05-10
US20050175448A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
KR0161107B1 (ko) 도입유로부착 축류송풍기
US5676522A (en) Supersonic distributor for the inlet stage of a turbomachine
JPH0861084A (ja) ガスタービンエンジン及びガスタービンエンジンのディフューザ
JPS6138103A (ja) 蒸気タ−ビン用段
WO2008075467A1 (ja) 軸流圧縮機の翼列
JPH0610610A (ja) タービンブレード組立体
US20160312618A1 (en) Rotor assembly with scoop
JP6624653B2 (ja) ガスタービン用プレスワーラ装置
JP3910648B2 (ja) タービンノズル、タービン動翼及びタービン段落
JP2004520517A (ja) 軸流圧縮機
JP3773565B2 (ja) タービンノズル
JP2002256810A (ja) 軸流タービン
JPH06257597A (ja) 軸流圧縮機の翼列構造
JP4184565B2 (ja) 蒸気タービンノズルおよびその蒸気タービンノズルを用いた蒸気タービン
JP2001248597A (ja) ターボ圧縮機及びターボ送風機
JP7336026B2 (ja) タービン及びこのタービンを備えるターボチャージャ
JPH09203394A (ja) 多段遠心圧縮機のリターンベーン
JPH01247798A (ja) 高速遠心圧縮機
JPH11173104A (ja) タービン動翼
WO2019111725A1 (ja) 遠心圧縮機及びターボチャージャ
JP2000204903A (ja) 軸流型タ―ビン
US11434773B2 (en) Secondary flow rectifier with integrated pipe
JPH05340265A (ja) ラジアルタービン動翼
JP2000179303A (ja) 軸流タービンノズルおよび軸流タービン
JP2000018004A (ja) ノズル付きラジアルタービン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080326