JP2004502510A - Improvement of intraocular lens by GCIB - Google Patents

Improvement of intraocular lens by GCIB Download PDF

Info

Publication number
JP2004502510A
JP2004502510A JP2002508632A JP2002508632A JP2004502510A JP 2004502510 A JP2004502510 A JP 2004502510A JP 2002508632 A JP2002508632 A JP 2002508632A JP 2002508632 A JP2002508632 A JP 2002508632A JP 2004502510 A JP2004502510 A JP 2004502510A
Authority
JP
Japan
Prior art keywords
intraocular lens
gas cluster
ion beam
cluster ion
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002508632A
Other languages
Japanese (ja)
Other versions
JP2004502510A5 (en
Inventor
カークパトリック,アレン,アール
Original Assignee
エピオン コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エピオン コーポレイション filed Critical エピオン コーポレイション
Publication of JP2004502510A publication Critical patent/JP2004502510A/en
Publication of JP2004502510A5 publication Critical patent/JP2004502510A5/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/02Artificial eyes from organic plastic material
    • B29D11/023Implants for natural eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0056Biocompatible, e.g. biopolymers or bioelastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0812Ionized cluster beam [ICB] sources

Abstract

エッジ現象と、その結果発生する眩光現象とを減少させるためにGCIB(100)を利用してIOL(10)の外側エッジを平滑処理する原子レベルの表面平滑処理が開示されている。さらに、本発明は眼膜嚢へのIOL(10)の接着を改善するため、IOL(10)の前面及び/又は後面をGCIB(100)を利用して原子レベルで平滑処理し、細胞内側成長と、その結果発生する二次白内障とを防止する。GCIB(100)で平滑処理された表面は、表面への異物の付着を減少させ、IOL(10)の表面に存在する微小凹凸を減少させて眼の炎症をも減少させる。An atomic level surface smoothing process for smoothing the outer edge of the IOL (10) using the GCIB (100) to reduce the edge phenomenon and the resulting glare phenomenon is disclosed. Furthermore, in order to improve the adhesion of the IOL (10) to the ocular sac, the present invention smoothes the front and / or the rear of the IOL (10) at the atomic level using the GCIB (100), and performs cell ingrowth. And the resulting secondary cataract. The surface smoothed with GCIB (100) reduces the adhesion of foreign substances to the surface, reduces microscopic irregularities present on the surface of IOL (10), and also reduces inflammation of the eye.

Description

【0001】
【発明の属する技術分野】
発明の分野
本発明はレンズ等の医療器具に関し、特にガスクラスタイオンビーム(GCIB)技術を利用した眼内レンズの表面平滑性を向上させる方法とシステムとに関する。
【0002】
【従来の技術】
発明の背景
白内障手術での眼内レンズ(IOL)の使用に伴い、術後に視力障害症状が残ることがある。二次性白内障とも言うべきIOLの術後曇現象は最も頻発する症状であり、全IOL埋め込み手術の30%から50%にも及ぶ。二次性白内障は眼球赤道から元のレンズ(水晶体)嚢とIOLとの間の領域への通常水晶体上皮細胞の後方移動によるものである。
【0003】
さらに、IOLとの生和合性に起因し、炎症反応(例えば、血管浸透性の増加、化学走性の増強及び食作用の増進等)を引き起こす反応物体の形成に導きかねない急性または慢性炎症反応も起こり得る。加えて、IOL患者によっては、眼内レンズにおける外植の主たる原因となる“エッジ現象”が発生する。このエッジ現象はエッジ部分で光を拡散させる角状外側粗エッジによって引き起こされる。光は網膜に焦点せず、眩光現象の原因となる。水晶体の摘出技術の発展や水晶体物質の交換の研究にも拘わらず、白内障手術には術後の視覚障害が頻発する。
【0004】
【発明が解決しようとする課題】
よって、本発明の1目的は眼内レンズの原子レベルでの表面平滑処理の提供である。
【0005】
本発明の別目的は眼内レンズの表面をガスクラスタイオンビームによって改善し、そのようなレンズを使用することによる視覚障害を軽減することである。
【0006】
【課題を解決するための手段】
発明の概要
本発明の前述の目的並びに他の目的及び利点は以下にて解説する本発明によって達成される。
【0007】
本発明はGCIBを利用した眼内レンズ(IOL)の表面改善を提供し、IOLの後面及び前面並びにそのエッジ部を平滑にする。この平滑処理は上皮細胞の移動を防止し、レンズ表面の生和合性を向上させ、術後の障害を軽減する。術後障害の軽減は医療経費を節減させ、患者の苦しみを緩和させる。
【0008】
本発明はGCIBを利用して原子レベルの表面平滑処理を施し、IOLの外側エッジに滑らかな丸みを帯びさせ、“エッジ現象”と眩光現象を抑える。さらに、本発明はGCIBを活用して原子レベルの表面平滑処理を施し、IOLの後面及び/又は前面を平滑処理してIOLの眼嚢への接着状態を向上させ、細胞の内方成長を防止し、二次性白内障の発生を抑える。GCIBにより平滑処理された表面は表面への異質物体の付着を減少させ、従来には不可避であったIOL表面の微粗性を減少させることで炎症の発症をも減少させる。
【0009】
本発明の理解を助けるため、添付の図面と詳細な説明を利用して本発明を説明する。
【0010】
【発明の実施の形態】
好適方法と実施例の詳細な説明
高圧真空条件で加速されたエネルギーイオンビームである荷電原子またはビームは、半導体装置ジャンクションの形成、スパッタリングによる平面平滑処理及び薄膜特性の向上等に幅広く活用されている。ガスクラスタイオンは共通の電荷を共有し、高い全エネルギーを持つように高圧で加速される多数の弱く結合した原子あるいは分子で形成されている。クラスタイオンは衝突で分裂し、クラスタの全エネルギーは構成原子間で分配される。このエネルギー分配のため、原子は通常イオンあるいは非クラスタイオンと較べて個々にはずっと少ないエネルギー状態となり、原子はずっと浅く表面浸透するだけである。表面スパッタリング効果は通常イオンにより発生する対応効果よりも強力なエネルギーを必要とするため、本発明は他の方法ではできない微細な表面平滑処理を施すことができる。
【0011】
ガスクラスタイオンビーム(GCIB)処理の概念は10年前程に紹介された。GCIBをドライエッチング、クリーニング及び材料平滑処理に使用することは知られており、例えば、出口他の米国特許第5814194号「基板表面処理方法」(1998年)において記述されている。数千個単位のガス原子または分子を含んだイオン化クラスタの形成が可能であり、数千電子ボルト程度のエネルギーを与えることができるので、クラスタ内の個々の原子または分子はそれぞれ単独で数電子ボルト程度のエネルギーを有する。例えば山田の米国特許第5459326の教示から、そのような個々の原子は、プラズマ処理の場合とは異なって表面深く浸透して内部損傷を引き起こすほどには強力なエネルギーを持っていないことが知られている。いずれにしろ、クラスタ自身は充分なエネルギー(数千電子ボルト)を有しており、効果的に硬質表面をエッチング処理、平滑処理あるいはクリーニング処理することができる。
【0012】
ガスクラスタイオン内の個々の原子のエネルギーは数電子ボルト程度と低いので、原子は衝突時に標的表面のせいぜい数原子層程度を貫通するだけである。この浅い貫通は全クラスタイオンにより運搬される全エネルギーが10−12秒程度で上表面層の極浅領域内で消費されるからである。このことはイオンインプランテーションの場合とは異なる。イオンインプランテーションでは普通のイオンが使用され、その目的は材料内にイオンを浸透させることであり、その強度は材料を、時に数千オングストロム貫通する程で、材料の表面特性を変化させる。クラスタイオンの高全エネルギーと極小反応領域のため、衝突部位での放出エネルギー強度は普通イオンによる処理よりも格段に大きい。
【0013】
図1を利用して解説する。図1にはIOL10の表面平滑処理用の本発明のガスクラスタイオンビーム(GCIB)プロセッサ100が図示されている。プロセッサ100は3体の連通チャンバに分割されている真空容器102と、発生源チャンバ104と、イオン化/加速チャンバ106と、ガスクラスタイオンビームで均質な平滑処理をするためにIOL10をポジショニングできる独特な形態の対象物体ホルダー150を含んだ処理チャンバ108とで構成されている。
【0014】
本発明の平滑法では、これら3体のチャンバはそれぞれ真空ポンプシステム146a、146b、146cで適当な圧力に真空処理される。シリンダ111に保存された濃縮可能なガス源112(例えばアルゴンまたはN2)は圧力下でガスメータバルブ113とガス供給管114を介して停留チャンバ116に導入され、適当な形状のノズル110で低圧内に噴射され、超音波ガスジェット118を発生させる。ジェット流による冷却でガスジェット118の一部は複数のクラスタとなる。それぞれのクラスタは弱く結合した原子または分子で成る。ガススキマーアパーチャ120はクラスタジェットになっていないガス分子をクラスタジェットと部分的に分離し、高圧が不都合な下流領域(例えばイオナイザー122、高圧電極126、処理チャンバ108)の圧力を抑える。適当な濃縮可能なガス源112とはアルゴン、窒素、二酸化炭素等である。
【0015】
ガスクラスタを含んだ超音速ガスジェット118が形成された後、クラスタはイオナイザー122でイオン化される。イオナイザー122は典型的には電子衝突イオナイザーであり、白熱フィラメント124から熱電子を発生させ、電子を加速して方向性を与え、ガスジェット118のガスクラスタと衝突させ、ジェットをイオナイザー122に通す。電子衝突はクラスタから電子を発生させ、クラスタの一部を陽イオン化させる。適当にバイアスされた高圧電極セット126はイオナイザー122からクラスタイオンを引き出してビームを形成させ、クラスタイオンに望むエネルギーを付与するように加速させ(典型的には1K電子ボルトから数十K電子ボルト)、焦点処理して当初経路154を有したGCIB128を形成させる。フィラメント電源136はVを提供し、イオナイザーフィラメントを加熱する。陽極電源134はVを提供してフィラメント124から排出される熱電子を加速し、ガスジェット118を含んだクラスタに衝突させ、イオンを発生させる。導出電源138はVを提供し、高圧電極をバイアスしてイオナイザー122のイオン化領域からイオンを導出し、GCIB128を形成する。加速器電源140はVAccを提供し、イオナイザー122に関して高圧電極をバイアスし、VAcc電子ボルトに等しい加速エネルギーを提供する。レンズ電源(例えば142と144)は電位(例えばVL1とVL2)で高圧電極をバイアスしてGCIB128を焦点させる。
【0016】
本発明においては、GCIBプロセッサ100で処理される眼内レンズ(IOL)10は対象物体ホルダー150で保持され、GCIB128の通路内に配置される。IOL10の均質な平滑処理を可能にするため、対象物体ホルダー150は次のように設計されている。
【0017】
GCIBを利用して最良のIOL10の平滑処理を施すには、図2に示す非平面状のIOL表面を直角ビーム入射角に対して特定角度許容誤差内に配置しなければならない。これには、処理最良化と均質性とを提供するために一定の露出レベルにて全部の非平面状表面をその許容範囲誤差角内で補正するようにレンズ固定具と対象物体ホルダーを調整しなければならない。直角入射角から±15°以上の角度で処理ビームに露出される表面を含んだレンズ10は調整を必要とする。特に、IOL10を平滑化するとき、対象物体ホルダー150はGCIBプロセッサ100の端部の機構152で回転されて調整される。回転/調整機構152は好適には長軸154周囲で360°回転させ、軸154に垂直な軸156周囲で充分な装置の調整をさせるものであり、レンズ10の表面を直角ビーム入射角から±15°以内に維持させる。
【0018】
特定の条件下では、IOL10のサイズによっては均質平滑度を提供するにはスキャンシステムの利用が望ましい。GCIB処理には必要ではないが、2ペアの直交静電気スキャンプレート130と132を利用し、長い処理領域のラスタまたは他のパターンを創出させる。ビームスキャンが実行されると、スキャン発生器156はX軸とY軸のスキャン信号電圧をリード先ペア158と160を介してスキャンプレート130と132のペアに提供する。スキャン信号電圧は異なる周波数の三角波であり、GCIB128をスキャン処理されたGCIBに変換させ、IOL10の全表面をスキャン処理する。
【0019】
ビームスキャンが望まれないときは、処理は一般的にビームの直径によって定義される領域に限定される。ビームの直径は電源(例えば142と144)の電圧(VL1とVL2)を選択することでセットされ、対象物体に対して望むビーム径を提供する。
【0020】
本発明で眼内レンズ10の表面平滑度を改善することができる。GCIB処理前のアクリル製IOL10の表面は微小粗性を有していた。表面粗度はRで46.5オングストロム、RRMSで59.4オングストロムであった。これら粗度は術後の諸症状を引き起こす細胞レベルで表面の微小粗性問題を提起した。GCIB処理後のアクリルIOL10の表面はレンズ自体の構造的変化を発生させずに表面の粗度を減少させた。GCIB処理後の表面粗度はRで22.6オングストロムであり、RRMSで28.9オングストロムであった。
【0021】
本発明はいくつかの実施例を利用して解説されているが、本発明は請求項の精神と範囲内でさらなる実施形態が可能である。
【図面の簡単な説明】
【図1】図1は本発明のガスクラスタイオンビーム処理システムの概略図である。
【図2】図2はガスクラスタイオンビーム処理システムの一部分解図であり、対象体ホルダーを示している。
【図3】図3は原子顕微鏡画像であり、GCIB処理前のIOLの表面を示している。
【図4】図4は原子顕微鏡画像であり、GCIB処理後のIOLの表面を示している。
[0001]
TECHNICAL FIELD OF THE INVENTION
FIELD OF THE INVENTION The present invention relates to medical devices such as lenses, and more particularly, to a method and system for improving the surface smoothness of an intraocular lens utilizing gas cluster ion beam (GCIB) technology.
[0002]
[Prior art]
BACKGROUND OF THE INVENTION With the use of intraocular lenses (IOLs) in cataract surgery, vision impairment symptoms may remain postoperatively. Postoperative clouding of IOL, which can be called secondary cataract, is the most frequent symptom, accounting for 30% to 50% of all IOL implantation surgery. Secondary cataracts are usually due to posterior migration of lens epithelial cells from the equator of the eye to the area between the original lens (lens) capsule and the IOL.
[0003]
In addition, acute or chronic inflammatory reactions due to compatibility with the IOL, which can lead to the formation of reactive objects that cause inflammatory responses (eg, increased vascular permeability, enhanced chemotaxis and increased phagocytosis, etc.) Can also occur. In addition, in some IOL patients, an "edge phenomenon" occurs, which is a major cause of explants in the intraocular lens. This edge phenomenon is caused by a corner outer rough edge that diffuses light at the edge portion. The light does not focus on the retina and causes glare. Despite the development of lens extraction techniques and studies of lens material replacement, cataract surgery frequently causes postoperative visual impairment.
[0004]
[Problems to be solved by the invention]
Accordingly, one object of the present invention is to provide an atomic level surface smoothing treatment of an intraocular lens.
[0005]
It is another object of the present invention to improve the surface of an intraocular lens by a gas cluster ion beam and reduce visual impairment by using such a lens.
[0006]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The foregoing and other objects and advantages of the present invention are achieved by the present invention described below.
[0007]
The present invention provides a GCIB-based intraocular lens (IOL) surface improvement to smooth the posterior and anterior surfaces of the IOL and its edges. This smoothing prevents migration of epithelial cells, improves the compatibility of the lens surface, and reduces postoperative damage. Reducing postoperative disability saves medical costs and reduces patient suffering.
[0008]
The present invention performs an atomic level surface smoothing process using GCIB to make the outer edge of the IOL smooth and round, thereby suppressing the "edge phenomenon" and the glare phenomenon. Furthermore, the present invention uses GCIB to perform an atomic level surface smoothing process, smoothes the posterior and / or anterior surface of the IOL to improve the adhesion of the IOL to the eye capsule, and prevents the ingrowth of cells. And reduce the occurrence of secondary cataracts. The surface smoothed by GCIB reduces the attachment of foreign objects to the surface and also reduces the onset of inflammation by reducing the micro-roughness of the IOL surface that was previously inevitable.
[0009]
To assist in understanding the invention, the invention will be described with reference to the accompanying drawings and detailed description.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Detailed Description of Preferred Methods and Examples Charged atoms or beams, which are energy ion beams accelerated under high-pressure vacuum conditions, are widely used for forming semiconductor device junctions, planarizing by sputtering, and improving thin film characteristics. . Gas cluster ions are formed of a number of weakly bonded atoms or molecules that share a common charge and are accelerated at high pressure to have a high total energy. Cluster ions are split by collision, and the entire energy of the cluster is distributed among the constituent atoms. Due to this energy distribution, the atoms are individually in a much lower energy state than normal or non-cluster ions, and the atoms only penetrate the surface much shallower. Since the surface sputtering effect requires more energy than the corresponding effect normally generated by ions, the present invention can provide a fine surface smoothing treatment that cannot be achieved by other methods.
[0011]
The concept of gas cluster ion beam (GCIB) processing was introduced about ten years ago. The use of GCIB for dry etching, cleaning and material smoothing is known and described, for example, in Exit et al., US Pat. No. 5,814,194, “Method of Treating Substrate Surfaces” (1998). It is possible to form ionized clusters containing thousands of gas atoms or molecules, and to apply energy of about several thousand electron volts. It has a degree of energy. For example, from the teachings of Yamada U.S. Pat. No. 5,459,326, it is known that such individual atoms do not have enough energy to penetrate deeper into the surface and cause internal damage, unlike plasma treatment. ing. In any case, the cluster itself has sufficient energy (thousands of electron volts) and can effectively etch, smooth or clean the hard surface.
[0012]
Since the energy of the individual atoms in the gas cluster ions is as low as a few electron volts, the atoms penetrate at most a few atomic layers of the target surface during collision. This shallow penetration is because the total energy carried by all cluster ions is consumed in the very shallow region of the upper surface layer in about 10-12 seconds. This is different from the case of ion implantation. Normal ions are used in ion implantation, the purpose of which is to penetrate the ions into the material, the intensity of which changes the surface properties of the material, sometimes to the extent of penetrating thousands of angstroms. Due to the high total energy of the cluster ions and the minimal reaction region, the emission energy intensity at the collision site is much higher than the treatment with ordinary ions.
[0013]
This will be described with reference to FIG. FIG. 1 illustrates a gas cluster ion beam (GCIB) processor 100 of the present invention for surface smoothing of an IOL 10. The processor 100 includes a vacuum vessel 102 divided into three communicating chambers, a source chamber 104, an ionization / acceleration chamber 106, and a unique IOL 10 capable of positioning the IOL 10 for uniform smoothing with a gas cluster ion beam. And a processing chamber 108 including a target object holder 150 in the form.
[0014]
In the smoothing method of the present invention, these three chambers are evacuated to an appropriate pressure by vacuum pump systems 146a, 146b, 146c, respectively. A condensable gas source 112 (e.g., argon or N2) stored in a cylinder 111 is introduced under pressure through a gas meter valve 113 and a gas supply line 114 into a retention chamber 116, where the pressure is reduced to a low pressure by a suitably shaped nozzle 110. It is jetted and generates an ultrasonic gas jet 118. A part of the gas jet 118 becomes a plurality of clusters by cooling by the jet flow. Each cluster consists of weakly bonded atoms or molecules. The gas skimmer aperture 120 partially separates gas molecules that are not cluster jets from the cluster jets and reduces the pressure in downstream areas where high pressures are disadvantageous (eg, ionizer 122, high pressure electrode 126, processing chamber 108). Suitable enrichable gas sources 112 include argon, nitrogen, carbon dioxide, and the like.
[0015]
After the supersonic gas jet 118 containing the gas clusters is formed, the clusters are ionized in the ionizer 122. The ionizer 122 is typically an electron impact ionizer that generates thermionic electrons from the incandescent filament 124, accelerates the electrons to provide directionality, impinges on the gas clusters of the gas jet 118, and passes the jet through the ionizer 122. Electron collisions generate electrons from the clusters, causing some of the clusters to become cations. An appropriately biased high voltage electrode set 126 pulls cluster ions from the ionizer 122 to form a beam and accelerates them (typically from 1 K electron volts to tens of K electron volts) to impart the desired energy to the cluster ions. Focus processing to form a GCIB 128 having an initial path 154. Filament power supply 136 provides V F, to heat the ionizer filament. Anode power supply 134 provides VA to accelerate thermionic electrons emitted from filament 124 and impinge on clusters containing gas jets 118 to generate ions. Deriving power 138 provides V E, and biasing the high-voltage electrode to derive the ions from the ionization region of ionizer 122, to form a GCIB 128. Accelerator power supply 140 provides V Acc and biases the high voltage electrode with respect to ionizer 122 to provide acceleration energy equal to V Acc electron volts. Lens power supply (e.g., 142 and 144) to focus the GCIB128 by biasing the high voltage electrode at a potential (e.g., V L1 and V L2).
[0016]
In the present invention, the intraocular lens (IOL) 10 that is processed by the GCIB processor 100 is held by the target object holder 150 and is located in the passage of the GCIB 128. To enable a uniform smoothing of the IOL 10, the target object holder 150 is designed as follows.
[0017]
In order to perform the best IOL 10 smoothing using GCIB, the non-planar IOL surface shown in FIG. 2 must be positioned within a specified angle tolerance with respect to the orthogonal beam incidence angle. This involves adjusting the lens fixture and target object holder to correct all non-planar surfaces within their tolerance angle of error at a constant exposure level to provide process optimization and homogeneity. There must be. Lenses 10 including surfaces that are exposed to the processing beam at angles greater than ± 15 ° from normal incidence require adjustment. In particular, when smoothing the IOL 10, the target object holder 150 is rotated and adjusted by a mechanism 152 at the end of the GCIB processor 100. The rotation / adjustment mechanism 152 preferably rotates 360 ° about the long axis 154 and provides sufficient device adjustment about an axis 156 that is perpendicular to the axis 154 so that the surface of the lens 10 is ± Keep within 15 °.
[0018]
Under certain conditions, depending on the size of the IOL 10, the use of a scanning system is desirable to provide uniform smoothness. Although not required for GCIB processing, two pairs of orthogonal electrostatic scan plates 130 and 132 are utilized to create long processing area rasters or other patterns. When the beam scan is performed, the scan generator 156 provides the X-axis and Y-axis scan signal voltages to the pair of scan plates 130 and 132 via the read destination pairs 158 and 160. The scan signal voltage is a triangular wave having a different frequency, and converts the GCIB 128 into a scan-processed GCIB to scan the entire surface of the IOL 10.
[0019]
When beam scanning is not desired, processing is generally limited to the area defined by the beam diameter. The beam diameter is set by selecting the voltage (V L1 and V L2 ) of the power supply (eg, 142 and 144) to provide the desired beam diameter for the target object.
[0020]
According to the present invention, the surface smoothness of the intraocular lens 10 can be improved. The surface of the acrylic IOL 10 before the GCIB treatment had minute roughness. Surface roughness was 46.5 Å, 59.4 Å in R RMS with R a. These roughnesses have raised the problem of surface microroughness at the cellular level causing postoperative symptoms. The surface of the acrylic IOL 10 after the GCIB treatment reduced the surface roughness without causing any structural changes in the lens itself. Surface roughness after GCIB processing is 22.6 Å in R a, was 28.9 Å with R RMS.
[0021]
Although the present invention has been described using several embodiments, the invention is capable of further embodiments within the spirit and scope of the appended claims.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a gas cluster ion beam processing system of the present invention.
FIG. 2 is a partially exploded view of the gas cluster ion beam processing system, showing an object holder.
FIG. 3 is an atomic microscope image showing the IOL surface before GCIB processing.
FIG. 4 is an atomic microscope image showing the surface of the IOL after GCIB processing.

Claims (10)

ガスクラスタイオンビーム処理で眼内レンズの表面を改善させる装置であって、
真空容器と、
該真空容器と作動可能に連動されたガスクラスタイオンビームを発生させるガスクラスタイオンビーム源と、
ガスクラスタ通路に沿ってガスクラスタイオンビームを加速させる加速装置と、
該ガスクラスタ通路内で進行軸に沿って提供され、ガスクラスタイオン処理のために眼内レンズを配置保持する眼内レンズホルダーと、
該眼内レンズホルダーと作動可能に連結され、該眼内レンズホルダーと眼内レンズを前記進行軸周囲で回転させ、該眼内レンズホリダーと眼内レンズを該進行軸と垂直な軸周囲でポジション調整させるポジション調整手段と、
を含んで構成されていることを特徴とする装置。
An apparatus for improving the surface of an intraocular lens by gas cluster ion beam processing,
A vacuum vessel,
A gas cluster ion beam source for generating a gas cluster ion beam operatively associated with the vacuum vessel;
An accelerator for accelerating the gas cluster ion beam along the gas cluster path;
An intraocular lens holder provided along the advancing axis within the gas cluster passage for positioning and holding the intraocular lens for gas cluster ion processing;
The intraocular lens holder and the intraocular lens are operably connected to the intraocular lens holder, and the intraocular lens holder and the intraocular lens are rotated around the traveling axis, and the intraocular lens holder and the intraocular lens are positioned around an axis perpendicular to the traveling axis. Position adjusting means for adjusting,
An apparatus characterized by comprising:
ポジション調整装置は眼内レンズの複数領域のポジション調整を行い、該眼内レンズに垂直なビーム入射角となるようにガスクラスタイオンビームをインターセプトさせることを特徴とする請求項1記載の装置。2. The apparatus according to claim 1, wherein the position adjustment device adjusts the positions of a plurality of regions of the intraocular lens, and intercepts the gas cluster ion beam so as to have a beam incident angle perpendicular to the intraocular lens. ビーム入射角は垂直の±15°であることを特徴とする請求項2記載の装置。3. The apparatus according to claim 2, wherein the beam incident angle is ± 15 [deg.] Perpendicular. ガスクラスタイオンビームと眼内レンズを相対的にスキャン処理するスキャン手段をさらに含んでいることを特徴とする請求項1記載の装置。2. The apparatus according to claim 1, further comprising scanning means for relatively scanning the gas cluster ion beam and the intraocular lens. ガスクラスタイオンビーム処理は眼内レンズの表面を平滑化させることを特徴とする請求項1記載の装置。The apparatus of claim 1, wherein the gas cluster ion beam treatment smoothes the surface of the intraocular lens. ガスクラスタイオンビーム処理は眼内レンズのエッジを平滑化させることを特徴とする請求項1記載の装置。The apparatus of claim 1, wherein the gas cluster ion beam processing smooths the edges of the intraocular lens. ガスクラスタイオンビーム処理で眼内レンズの表面を改善させる方法であって、
真空チャンバ内で不活性ガスクラスタイオンビームを形成するステップと、
該ガスクラスタイオンビームを加速させるステップと、
前記真空チャンバ内で眼内レンズの表面をポジション調整し、処理のために前記ガスクラスタイオンビームを受領させるステップと、
前記眼内レンズの表面を所定のエネルギーを有したガスクラスタイオンビームの所定照射量で照射するステップと、
を含んで提供されることを特徴とする方法。
A method of improving the surface of an intraocular lens by gas cluster ion beam processing,
Forming an inert gas cluster ion beam in a vacuum chamber;
Accelerating the gas cluster ion beam;
Adjusting the position of the surface of the intraocular lens in the vacuum chamber to receive the gas cluster ion beam for processing;
Irradiating the surface of the intraocular lens with a predetermined dose of a gas cluster ion beam having a predetermined energy,
A method characterized by being provided including:
手術用インプラントのポジションを調整し、眼内レンズの表面を平滑処理させるステップをさらに含んでいることを特徴とする請求項7記載の方法。The method of claim 7, further comprising adjusting the position of the surgical implant to smooth the surface of the intraocular lens. 眼内レンズのポジションを調整し、眼内レンズのエッジを平滑処理させるステップをさらに含んでいることを特徴とする請求項7記載の方法。The method of claim 7, further comprising the step of adjusting the position of the intraocular lens and smoothing edges of the intraocular lens. 手術用インプラントのポジションを調整し、眼内レンズの領域を処理するステップと、
眼内レンズに対して垂直な入射角のガスクラスタイオンビームで該眼内レンズを照射するステップと、
をさらに含んでいることを特徴とする請求項7記載の方法。
Adjusting the position of the surgical implant and processing the area of the intraocular lens;
Illuminating the intraocular lens with a gas cluster ion beam at an angle of incidence perpendicular to the intraocular lens;
The method of claim 7, further comprising:
JP2002508632A 2000-07-10 2001-07-09 Improvement of intraocular lens by GCIB Pending JP2004502510A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21719800P 2000-07-10 2000-07-10
PCT/US2001/021673 WO2002004196A1 (en) 2000-07-10 2001-07-09 Improving effectiveness of introaocular lenses by gcib

Publications (2)

Publication Number Publication Date
JP2004502510A true JP2004502510A (en) 2004-01-29
JP2004502510A5 JP2004502510A5 (en) 2008-11-13

Family

ID=22810053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002508632A Pending JP2004502510A (en) 2000-07-10 2001-07-09 Improvement of intraocular lens by GCIB

Country Status (4)

Country Link
US (1) US20020017454A1 (en)
JP (1) JP2004502510A (en)
AU (1) AU2001277862A1 (en)
WO (1) WO2002004196A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520150A (en) * 2009-03-11 2012-09-06 エクソジェネシス コーポレーション A method for improving the bioactive properties of a surface and an object having a surface improved by this method
JP2020522321A (en) * 2017-05-30 2020-07-30 シファメド・ホールディングス・エルエルシー Surface treatment for accommodating intraocular lenses and related methods and devices
US11583390B2 (en) 2014-08-26 2023-02-21 Shifamed Holdings, Llc Accommodating intraocular lens

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676989B2 (en) * 2000-07-10 2004-01-13 Epion Corporation Method and system for improving the effectiveness of medical stents by the application of gas cluster ion beam technology
JP4168381B2 (en) * 2000-12-26 2008-10-22 ティーイーエル エピオン インク. Charge control and dosimetry system for gas cluster ion beam
AU2002308659A1 (en) 2001-05-09 2002-11-18 Epion Corporation Method and system for improving the effectiveness of artificial joints by the application of gas cluster ion beam technology
US7923055B2 (en) 2001-05-11 2011-04-12 Exogenesis Corporation Method of manufacturing a drug delivery system
US20100036502A1 (en) * 2008-08-07 2010-02-11 Exogenesis Corporation Medical device for bone implant and method for producing such device
US7666462B2 (en) * 2001-05-11 2010-02-23 Exogenesis Corporation Method of controlling a drug release rate
US8889169B2 (en) * 2001-05-11 2014-11-18 Exogenesis Corporation Drug delivery system and method of manufacturing thereof
EP2210626B1 (en) * 2001-05-11 2015-01-21 Exogenesis Corporation Medical devices having drugs adhered to the surface thereof.
WO2004044954A2 (en) * 2002-11-08 2004-05-27 Epion Corporation Gcib processing of integrated circuit interconnect structures
US8367092B2 (en) * 2007-09-14 2013-02-05 Exogenesis Corporation Method for modifying the wettability and/or other biocompatibility characteristics of a surface of a biological material by the application of gas cluster ion beam technology and biological materials made thereby
EP2323708A4 (en) * 2008-08-07 2015-11-18 Exogenesis Corp Drug delivery system and method of munufacturing thereof
CA3193600A1 (en) 2013-03-21 2014-09-25 Shifamed Holdings, Llc Accommodating intraocular lens
RU2585010C1 (en) * 2014-12-12 2016-05-27 Антон Борисович Архипов Plant for double-sided finishing surface of intraocular lenses

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286570A (en) * 1987-05-15 1988-11-24 Nissin Electric Co Ltd Thin film formation device
JPH06208090A (en) * 1991-12-06 1994-07-26 Johnson & Johnson Vision Prod Inc Improvement of mold of lens for eye disease
JPH08104980A (en) * 1994-10-07 1996-04-23 Res Dev Corp Of Japan Cluster ion beam sputtering device
JPH08120470A (en) * 1994-10-26 1996-05-14 Res Dev Corp Of Japan Ultraprecision grinding by gas cluster ion beam
JPH0940441A (en) * 1995-07-26 1997-02-10 Canon Inc Working device and working method for aspherical lens
JPH1066721A (en) * 1996-08-28 1998-03-10 Showa Gomme Kk Surface treatment of medical article with gas cluster ion beam
JPH1179759A (en) * 1997-09-04 1999-03-23 Canon Inc Production of mold for forming optical element
JP2000087227A (en) * 1998-09-15 2000-03-28 Japan Science & Technology Corp Formation of nitride by gaseous nitrogen compound cluster ion beam

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278493A (en) * 1980-04-28 1981-07-14 International Business Machines Corporation Method for cleaning surfaces by ion milling
JP2991469B2 (en) * 1990-09-21 1999-12-20 オリンパス光学工業株式会社 Regeneration method of mold

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286570A (en) * 1987-05-15 1988-11-24 Nissin Electric Co Ltd Thin film formation device
JPH06208090A (en) * 1991-12-06 1994-07-26 Johnson & Johnson Vision Prod Inc Improvement of mold of lens for eye disease
JPH08104980A (en) * 1994-10-07 1996-04-23 Res Dev Corp Of Japan Cluster ion beam sputtering device
JPH08120470A (en) * 1994-10-26 1996-05-14 Res Dev Corp Of Japan Ultraprecision grinding by gas cluster ion beam
JPH0940441A (en) * 1995-07-26 1997-02-10 Canon Inc Working device and working method for aspherical lens
JPH1066721A (en) * 1996-08-28 1998-03-10 Showa Gomme Kk Surface treatment of medical article with gas cluster ion beam
JPH1179759A (en) * 1997-09-04 1999-03-23 Canon Inc Production of mold for forming optical element
JP2000087227A (en) * 1998-09-15 2000-03-28 Japan Science & Technology Corp Formation of nitride by gaseous nitrogen compound cluster ion beam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520150A (en) * 2009-03-11 2012-09-06 エクソジェネシス コーポレーション A method for improving the bioactive properties of a surface and an object having a surface improved by this method
US11583390B2 (en) 2014-08-26 2023-02-21 Shifamed Holdings, Llc Accommodating intraocular lens
JP2020522321A (en) * 2017-05-30 2020-07-30 シファメド・ホールディングス・エルエルシー Surface treatment for accommodating intraocular lenses and related methods and devices
JP7370052B2 (en) 2017-05-30 2023-10-27 シファメド・ホールディングス・エルエルシー Surface treatments and related methods and devices for accommodating intraocular lenses

Also Published As

Publication number Publication date
WO2002004196A1 (en) 2002-01-17
US20020017454A1 (en) 2002-02-14
AU2001277862A1 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
JP2004502510A (en) Improvement of intraocular lens by GCIB
US6676989B2 (en) Method and system for improving the effectiveness of medical stents by the application of gas cluster ion beam technology
US6491800B2 (en) Method and system for improving the effectiveness of artificial hip joints by the application of gas cluster ion beam technology
US6863786B2 (en) Method and system for improving the effectiveness of artificial joints by the application of gas cluster ion beam technology
JP5858496B2 (en) Method and system for modifying patterned photoresist using multi-step ion implantation
US7923055B2 (en) Method of manufacturing a drug delivery system
US7105199B2 (en) Methods of adhering drugs to the surface of medical devices through ion beam surface modification
US9824894B2 (en) Method for correcting wafer bow from overlay
JP2004503064A (en) System and method for improving thin films by gas cluster ion beam processing
US8354655B2 (en) Method and system for controlling critical dimension and roughness in resist features
JP2003532349A (en) System and method for adjusting device characteristics by GCIB processing
JP3572081B2 (en) Steam-enhanced charged particle beam processing method
US20090198264A1 (en) Method and System for Improving Surgical Blades by the Application of Gas Cluster Ion Beam Technology and Improved Surgical Blades
JP5337028B2 (en) apparatus
KR20030033879A (en) Ultra surface smoothing device of ito thin film and method thereof using gas cluster ion beam
JP2007103107A (en) Charged particle beam device and irradiation method of charged particle beam
JPH0254851A (en) Control method of electric field ionization type gas ion source
JPH0940441A (en) Working device and working method for aspherical lens
JP2010116613A (en) Cluster ion-assisted vapor deposition apparatus and method
US8889169B2 (en) Drug delivery system and method of manufacturing thereof
JP2002261003A (en) Transfer mask blank, transfer mask and method for exposure
JPWO2002052621A1 (en) Transfer mask blank, transfer mask and exposure method
JPH10112426A (en) Method for processing substrate surface using neutral argon beam

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090623

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090630

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090723

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090824

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100618

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100630

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100728

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100825

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906