JP2004346925A - Device for securing noncontact of rotary part in noncontact pump - Google Patents

Device for securing noncontact of rotary part in noncontact pump Download PDF

Info

Publication number
JP2004346925A
JP2004346925A JP2003180325A JP2003180325A JP2004346925A JP 2004346925 A JP2004346925 A JP 2004346925A JP 2003180325 A JP2003180325 A JP 2003180325A JP 2003180325 A JP2003180325 A JP 2003180325A JP 2004346925 A JP2004346925 A JP 2004346925A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
impeller
rotor
contact
non
side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003180325A
Other languages
Japanese (ja)
Inventor
Isamu Aotani
Yoshio Yano
芳雄 矢野
勇 青谷
Original Assignee
Isamu Aotani
Yoshio Yano
芳雄 矢野
勇 青谷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0425Passive magnetic bearings with permanent magnets on both parts repelling each other for radial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4293Details of fluid inlet or outlet

Abstract

PROBLEM TO BE SOLVED: To make a noncontact pump a complete device, by adding a new device, and changing a structure, since a conventional structural device is insufficient for setting a rotary part in a noncontact state, wherein the rotary part is free without having a bearing and a seal on the structure in a noncontact pump.
SOLUTION: Since excessive floating of an impeller 2 by a difference in pressure between an impeller delivery port (the upper side) and the opposite side (the lower side) is one cause of contacting the impeller and a rotor with a peripheral wall, an impeller casing 1 is formed into a double wall, to prevent the excessive floating, by balancing pressure applied above and below the impeller, by arranging delivery holes from the impeller in upper-lower two places.
COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
非接触のポンプの構造に関する。 About the structure of the non-contact pump.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
本発明の対象とするポンプは例へば図1に示す如き横置型側方吸込上方吐出式のポンプでインペラーの駆動方式はインペラーをモーターの駆動軸で直接駆動するのではなく間接的に駆動する方式のポンプである。 Pump to which the present invention is Tatoeba driving method of the impeller with the lateral standing side suction upper discharge type pump as shown in FIG. 1 is a method for indirectly driven rather than directly drive the impeller in the motor drive shaft it is a pump.
図1に於いてインペラー(2)にローター(3)をローター連結軸(4)で取付けてある。 It is mounted a rotor (3) with a rotor connecting shaft (4) to the impeller (2) In FIG. ローター(3)は有底、片側開放の非磁性導電性の金属円筒で表面は樹脂等でコーティングしてある。 Rotor (3) having a bottom surface with a non-magnetic conductive metal cylinder on one side open are coated with a resin or the like. ローターは非磁性、電気絶縁体で作られた二重円筒のキャン(5)の隙間内で自由に回転しうる。 Rotor may freely rotate within the clearance of the non-magnetic, double cylinder made of an electrical insulator scan (5). キャンはケーシング(1)に連結されている。 The can is connected to the casing (1). キャンの内外に偶数で対応面が互いに異極の磁石(6)、(7)をモーター(8)で同時に回転させるとキャン内には回転磁界が発生しローター(3)はこの誘導により回転力及び磁石に対して反発力が発生しキャンの隙間の中央で回転しようとする。 Scan of the corresponding surface opposite poles of the magnet with each other in an even and out (6), (7) is rotated simultaneously with the motor (8) is in the can rotating magnetic field is generated rotor (3) is rotating force by the induced and repulsive force tries to rotate in the center of the gap of the can occur with respect to the magnet. ローター(3)はインペラー(2)とローター連結軸(4)で連結されているのでこれにてインペラーは回転しポンプとしての機能がある。 Rotor (3) This at the impeller since it is connected with the impeller (2) and the rotor connecting shaft (4) has a function as a rotation pump. 矢印は液の流れを示す。 The arrows indicate the flow of liquid. この時液中にはインペラーとローターしかなくその他はすべて液外にあり亦シール及び軸受もない。 During this Tokieki have only impeller and rotor other is all liquid outside also no seals and bearings.
このような構成にするとインペラー及びローターの回転部分を周壁と非接触になしうる。 With such a structure can form a rotating part of the impeller and rotor in the circumferential wall and a non-contact. 即ち非接触ポンプとなしうる。 That can be no non-contact pump. 図2は図1のX1−Y1断面図である。 Figure 2 is a X1-Y1 cross-sectional view of FIG. 然しながら運転中、回転部分(ローター及びインペラー)を確実に周壁と非接触にする事は困難であった。 However in operation, it is difficult to ensure the peripheral wall and the non-contact rotating parts (rotor and impeller). 又空運転した場合ローターとキャンが全面的に摺動する。 Rotor and the can case of Matasora operation entirely slide.
【0003】 [0003]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
インペラー及びローターを含む回転部分がフリーであることは回転部分が正常な位置から外れ、上下左右に動き亦傾く可能性があることである。 It rotating part including the impeller and the rotor is free outside of the normal position rotating part, is that there is a possibility that the inclined Yi movement vertically and horizontally. これ等をなくし正常位置で回転させることが非接触の基本条件である。 It is a fundamental condition for the non-contact rotating at a normal position eliminate this like.
前記【0002】の不具合を解決する為の課題は具体的には、 Challenges to solve the problem of the [0002] is specifically,
i)運転中に於けるインペラー側壁との接触をなくすこと。 i) eliminating the contact between at impeller side wall during operation.
ii)運転中に於けるローターとキャンの接触をなくすことにある。 ii) in eliminating contact in the rotor and the can during operation.
【0004】 [0004]
【課題を解決する為の手段】 Means for Solving the Problems]
運転中の不具合は回転部分が均衡のとれた姿勢で回転していない事にある。 During operation failure is to not rotating in the balanced posture of the rotating parts is balance.
ローターとキャンの隙間は内外磁石の磁路を短くしてローターの回転力を大きく保つ為には極力狭くする必要があるのでローターの僅かの傾きでもキャンと接触する恐れがある。 Clearance of the rotor and the can there is a possibility that contact with the can even a slight inclination of the rotor it is necessary to as small as possible in order to keep increasing the rotational force of the rotor to shorten the magnetic path of the inner and outer magnets.
図1に示すよう吐出口が上方にある場合吐出口の液圧は低くなりインペラー(2)はフリーであるので上方に浮上する力を受ける。 If the discharge port of the hydraulic pressure is lower impeller discharge ports as shown in FIG. 1 is in the upper (2) is subjected to a force which floats upward since it is free. 即ちインペラーが正規の位置より上方に移動するとローターも上方によりキャン(5)とQ1、Q2及びその対称側で接触する、そうするとインペラーも傾きケーシング(1)とQ3、Q4で接触し、インペラー、ローター共傾いて回転を続けている。 That impeller also contacted by at the can and (5) Q1, Q2 and its symmetry side upper rotor when moving upward from the normal position, Then impeller also in contact with the slope casing (1) and Q3, Q4, impeller, rotor It continues to rotate tilted co. この状態を図3に示す。 This state is shown in FIG. これに対してはインペラーを正常な位置で正常な状態で回転するようにすればよい。 It is sufficient to rotate in a normal state an impeller in the normal position, on the other hand. その対策として図4に示す如くインペラーケーシング(1)を内壁(1−2)を付けた二重壁とし内外壁間の約半分(1−3)を閉鎖し内壁に吐出孔(1−4)と(1−5)を対称の位置にあけておく、吐出孔(1−4)と(1−5)から吐出された液は吐出口(1−1)で合流する。 About half (1-3) discharge holes closed inner wall of inter and outer wall and double wall an impeller casing (1) with a inner wall (1-2) as shown in FIG. 4 as a countermeasure (1-4) and set aside (1-5) positioned symmetrically, discharged discharge hole and (1-4) to (1-5) liquid merges with the discharge port (1-1). 孔(1−4)と(1−5)を略同じ大きさにしておけば孔(1−4)の圧力P と孔(1−5)の圧力P は略同じ圧力になりインペラーが上方に押上られることはなく正常な位置で回転する。 Holes impeller becomes substantially the same pressure is the pressure P 2 of the pressure P 1 and the hole of the (1-4) and if in the substantially same size of (1-5) hole (1-4) (1-5) pushed is it upwards without rotating in the normal position. 従ってローター(3)がキャン(5)と接触する事も、インペラーがケーシングと接触する事もない。 Therefore it rotor (3) is in contact with the can (5), nor the impeller is in contact with the casing. 即ち図3の如き状態はおこらない。 That state as in FIG. 3 does not occur. 然しながら回転磁界より受けるローターの反発力(即ち浮上力)が不足するとローターが下がりすぎてキャンと接触する恐れがある。 However repulsive force of the rotor to receive from the rotating magnetic field (i.e., the lift force) is too low is the insufficient rotor may come into contact with the can.
これについて次記の磁気装置により対応する。 This will correspond to the following Symbol magnetic device. 図中Uは上側Dは下側を示す。 Figure U is upper D indicates the lower side.
【0005】 [0005]
磁石装置の説明の前に磁石の組み合わせによる現象について説明する。 It will be described phenomenon by the combination of the magnet prior to the description of the magnet system.
図5は2ケの磁石の同極面を対応させた時の反発力の説明図である。 Figure 5 is an illustration of a repulsive force with respect to a corresponding homopolar surfaces of two positions of the magnet.
磁石(10)と(11)を対応させ、磁石(10)を(11)に近づけると各磁石の磁力線(12)(13)は1点(P 01 )で相対するようになり、P 01にて相互の反発力が集中し押し付け力f が中心線上にない(即ち少しでもずれ)と(10)はどの方向(E 又はE )に逃げるか不定である。 Is associated magnet (10) and (11), a magnet (10) (11) to close the magnetic field lines of each magnet (12) (13) is as relatively at one point (P 01), the P 01 repulsion each other by the pressing force f 0 concentration is not on the center line Te (i.e. shift even slightly) (10) is indefinite or escape in any direction (E 1 or E 2). 即ちf が強力でも安定させる事は不可能に近い。 In other words it is almost impossible to f 0 is to be strong even stable.
このように1点のみに反発力を集中させると極めて不安定になりこの状態を保つ事は極めて困難である。 Thus to concentrate the repulsive force only in one point when becomes very unstable keeping this state is very difficult. 次に円筒形磁石の場合について図6、図7、図8によって説明する。 Next, FIG. 6 for the case of a cylindrical magnet, FIG. 7, will be explained with reference to FIG. 8. 図6は同形の円筒形磁石(14)(15)の(14)の中に(15)をいれ、2つの中心線¢ 、¢ が一致するようにした場合である。 Figure 6 is in the same shape of the cylindrical magnet (14) (15) (14) put (15), two central lines ¢ 1, a case which is adapted ¢ 2 matches.
この場合反発点P 02はつながって1つの円(R ・P 02 )をなす、この場合も(15)はE3〜E6どの方向に飛び出すかは全く不定である。 In this case the repulsive point P 02 constitutes one circle (R 1 · P 02) connected, in this case also (15) is or pops out which direction E3~E6 is quite indeterminate.
図7は図6のX2−Y2断面図である。 7 is a X2-Y2 sectional view of FIG.
次に図8は図6の磁石(14)(15)の中心線¢ 、¢ をδ だけずらした図で反発の連続はR ・P 03となり(15)はE7〜E8の方向に飛び出すがその方向は不安定である。 Next, FIG. 8 is the center line ¢ 1, ¢ in the continuous repulsive diagram 2 shifted by δ 1 R 2 · P 03 becomes (15) the direction of E7~E8 magnet (14) (15) in FIG. 6 Although fly out in that direction is unstable. 図7の磁石筒を分割し回転軸(25)に取り付けた図が図9、図10で、図11は図9のX3〜Y3断面図である。 FIG attached to divide the magnet tube 7 rotation axis (25) of FIG. 9, in FIG. 10, FIG. 11 is a X3~Y3 sectional view of FIG. このような配置にすると磁石筒(20)及び軸(25)は上方への力を受ける。 Such With the arrangement magnet tube (20) and the shaft (25) is subjected to upward force. この時各場所の反発点をつなぐ線は夫々別個の円弧R ・P 04 、R ・P 05 、R ・P 06 、R ・P 07となり、各円弧間は切れているので図7よりは、はるかに安定する。 In this case the line connecting the repulsion points of each location each separate arc R 3 · P 04, R 4 · P 05, R 5 · P 06, R 6 · P 07 , and the so between the arc is off 7 than is much more stable. 内磁石筒(20)に対して分割外磁石筒を図9の如くδ だけずらせば内磁石筒はE9の方向へ、図10では反対のE10の方向に動く。 The split outer magnet tube [delta] 2 by shifting if the inner magnet tube as shown in FIG. 9 in the direction of E9 relative to the inner magnet tube (20), move in the direction of the E10 opposite in FIG. このとき外磁石筒を連続した一体にすると図6、図8の如き挙動をなし、不安定になる。 6 When this time together a continuous outer magnet tube, without the such behavior of FIG. 8, becomes unstable. この外磁石筒は軸(25)を支えるのが主目的であるが左右いずれかに動くのでその方向を予め決めておくと対応し易いのでこのようにしておく。 Since the outer magnet tube because it is the main purpose of supporting the shaft (25) moves to either the left or right to correspond idea decide that direction in advance easily advance in this way. 図9の磁石装置をMS1−1、図10をMS1−2とする。 The magnet apparatus of FIG. 9 MS1-1, Figure 10 and MS1-2.
【0006】 [0006]
次に一方が回転、他方が固定の2つの充実円筒(30)(33)の相対応する端面を安定して対応させる反発用磁石の取り付けについて説明する。 Then one is rotated, the other will be described two phases corresponding mounting repelling magnets which correspond to stabilize the end surface of the solid cylinder (30) (33) fixed. これを図12、図13に示す。 This Figure 12, shown in FIG. 13. 図13は図11のX4〜Y4矢視図である。 Figure 13 is a X4~Y4 arrow view of FIG. 11. 図12に於いて回転側(30)、固定側(34)とも対応面はいずれも円形とし、相互の中心線¢ 、¢ は一致しているものとする。 Rotating side In FIG. 12 (30), both corresponding surfaces with fixed side (34) is circular, the mutual center line ¢ 3, ¢ 4 shall be consistent. 回転側(30)に棒状円筒磁石(31)をその中心点が半径r の円になるように複数個配列、中央に1ヶの磁石(32)を配置し埋め込む。 Rotating side (30) a plurality arranged to the rod-like cylindrical magnet (31) whose center point a circle of radius r 1, the embedding place one month of the magnet (32) in the center. 固定側(33)にも棒状円筒磁石(34)を、その中心点が半径r の円になるよう複数個配列、中心に1ヶの磁石(35)を配置し埋め込む。 The rod-like cylindrical magnet to the fixed side (33) (34), such that the center point is a circle of radius r 2 a plurality sequences, embedded place one month of the magnet (35) in the center.
この時図においてr <r 、g <g である。 It is r 1 <r 2, g 3 <g 4 in this case FIG.
(31)の径は(34)の径より小さくし(31)と(34)の対応面は適当な反発力が発生する距離(g )とする。 Diameter (31) and smaller than the diameter of the (34) (31) and the distance corresponding surfaces such that a suitable repulsive force (34) is generated (g 3). (31)と(34)の対応面は同極、(32)と(35)の対応面は異極とする。 Corresponding surface homopolar (31) and (34), the corresponding surface is different poles (32) and (35). (30)の磁石装置をMS2−1に(33)の磁石装置をMS2−2とする。 A magnet device (30) to MS2-1 magnet device (33) and MS2-2. (30)を回転させながら(33)に近づけて行くと両者間のギャップ(g )が小さくなるに従って(30)は外側に逃げようとする。 While rotating the (30) is moved toward the (33) the gap between them (g 3) (30) becomes smaller tries to escape to the outside. その時(31)と(35)は吸引して(31)が外側に逃げるのを抑制する。 Then (31) (35) suppress the by suction (31) to escape to the outside. 亦(34)は(31)より外側にあるのでこれを抑制する。 Also (34) inhibits this because on the outside of the (31). (32)と(35)は互いに吸引して中心線の一致を保とうとする等の力が働き(g )が適当な間隔の時(30)は略安定して回転する。 (32) and (35) force acts such that attempts to keep the coincidence of the center line by suction each other (g 4) when the appropriate spacing (30) is rotated substantially stable. 即ち(30)と(33)は非接触の状態を保ちうる。 That (30) and (33) can maintain a non-contact state. この時¢ 、¢ は多少ずれてはいるがそのずれは運転上差し支えない程度に押さえうる。 At this time ¢ 3, ¢ 4 are slightly displaced but the deviation can hold about operational no problem.
次にこれらの磁石装置(MS1−1)(MS1−2)の取付法について図14、図15にて説明する。 Then 14 will be described with reference to FIG. 15 for mounting method of the magnet arrangement (MS1-1) (MS1-2).
回転部分の重量支持装置をMS1−1にした時はキャン側にMS2をMS1−2にした時はローター軸の延長軸(4−2)側にMS2を取り付けて左右方向の軸の動きを抑制する。 Extension axis of the rotor shaft when the MS2 in MS1-2 weight support device the can side when the MS1-1 rotating parts (4-2) suppressed the movement in the lateral direction of the axis is attached to MS2 on side to.
以上よりして反発用磁石の配置条件は、 Arrangement condition of repulsion magnet and from above,
i)相互の磁石の反発点が唯1点のみに集中しないようにする。 i) the repulsive point of mutual magnet is prevented from concentrating only on only one point.
ii)反発点が連続した1つの線にならないようにすること。 ii) to ensure that not one of the lines rebound point are consecutive. 即ち分断された状態にすることにある。 That is to the divided state.
【0007】 [0007]
インペラーが左右へ動くとインペラーとケーシングが接触する恐れがある。 Impeller there is a risk that the impeller and the casing is in contact when moving to the left and right.
インペラーがクローズド形で両側に側板(2−1)(2−2)がある場合この側板に対応させてインペラーケーシングに斜面(1−6−1)をもつ複数個の板(1−6)(以下楔板と記す)を取り付ける。 A plurality of plates impeller has a side plate on both sides in a closed form (2-1) (2-2) to correspond to this side plate when there is slope in the impeller casing (1-6-1) (1-6) ( install the following referred to as wedge plate). インペラーよりの吐出流はインペラーとケーシング間の隙間より吸込口にもどる還流があるのでこの還流が楔板(1−6)とインペラー側板の間に入り楔効果を発生し、インペラーが接触するのを防ぐ。 Discharge flow from impeller a wedge effect generated enters the reflux wedges there is a reflux return to the suction port than the gap between the impeller and the casing and (1-6) on the impeller side plates, prevents the impeller from contacting . 亦還流量を減少させインペラーの効率低下も防ぐ。 Also prevent the efficiency reduction of the impeller to reduce the recirculation amount.
【0008】 [0008]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
実験は既製の非接触ポンプ(図1)を図14の如くに改造して行った。 Experiments were performed modified off-the-shelf non-contact pump (Figure 1) in as in Figure 14.
改造部分はインペラー、インペラーケーシング、キャンでインペラーケーシングは二重壁とした。 Modified portion impeller, the impeller casing, the impeller casing scan was double wall.
新たに磁石装置(MS1−1)(MS2)を追加した。 Newly added magnet device (MS1-1) (MS2). 使用磁石はネオジとし、接液部分は樹脂で被覆した。 Use magnets and neodymium, wetted portion was coated with a resin. モーター(8)は0.75kW、2P。 Motor (8) is 0.75kW, 2P. 回転磁界発生装置(6)(7)は流用した。 Rotating magnetic field generating device (6) (7) is diverted. 回転部分をすべて赤色塗装し、接触による塗装の剥離検査をした。 The rotating part all red paint was peeling test paint by contact. 尚流量、揚程、効率等は変わらなかった。 It should be noted that the flow rate, pump head, efficiency, and the like did not change.
空運転時といえども回転磁界よりローターは反発力(浮上)は受けているので重量支持装置(MS1)により更に安定した運転が出来、回転部分と周壁との非接触は維持出来た。 Idling time and survive even rotor from rotating magnetic field repulsion (levitation) further can stable operation by weight support device (MS1) since receiving a non-contact between the rotating portion and the peripheral wall could be maintained. テストとしては3時間連続運転を5回行い、塗装の剥離なく、非接触を確認、良好である結果を得た。 Carried out 3 hours of continuous operation five times as a test, no peeling of the paint, check the non-contact, to obtain a a a result good.
【0009】 [0009]
【発明の効果】 【Effect of the invention】
本装置は液中に軸受、シールがなく且つ磁石等も簡単に樹脂等でコーティング又はライニングが出来るので接液部分に金属の露出をなくすことが出来る。 The apparatus can be eliminated exposure of metal in the wetted portion so in the liquid bearing, sealing without and magnet or the like may easily coated or lined with a resin or the like is possible.
又回転部分がすべて周壁と非接触なので摺動によるコンタミの発生、金属イオンの液中への溶出を防ぐ事が出来ると共に耐蝕(含電蝕)にしうるので腐蝕性のある液、コンタミを避けなければならない場合等に使用範囲は極めて広いという効果がある・ The rotating part is the generation of all the peripheral wall and the non-contact since contamination due to sliding, so is possible to prevent the elution into the liquid metal ion can in corrosion (含電 corrosion) with can corrosion resistant is liquid, be avoided contamination use range, etc. If you do not Banara is, that there is an effect that a very wide
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】従来の非接触ポンプの縦断面図【図2】図1のX1〜Y1断面図【図3】従来のポンプに於いてインペラーが過浮上した場合のインペラー、ローターの周壁との接触を示す図【図4】インペラーケーシングを二重壁にした場合の液流、圧力の変化を示す図【図5】2ケの磁石の反発を示す説明図【図6】2ケの円筒形磁石の反発を示す説明図【図7】図6のX2〜Y2断面図【図8】2ケの円筒形磁石の反発を示す説明図【図9】回転軸に円筒形磁石を取り付けた時の作用力を示す図【図10】回転軸に円筒形磁石を取り付けた時の作用力を示す図【図11】図9のX3〜Y3断面図【図12】回転軸のスラスト力に対する反発装置の断面及び作用力説明図【図13】図12のX4〜Y4断面図【図14】本発明全体の横断面図【図 [1] when the impeller at the conventional longitudinal sectional view of a non-contact pump X1~Y1 sectional view of FIG. 1. FIG 3 shows a conventional pump is over-flying impeller, contact between the peripheral wall of the rotor Figure 4 shows the liquid flow when the impeller casing and a double wall showing a diagram [6] 2 pcs cylindrical magnet shown Figure 5 shows repulsion 2 pcs magnets showing changes in pressure action when fitted with a cylindrical magnet X2~Y2 sectional view FIG. 8 is an explanatory diagram showing a rebound of two positions of the cylindrical magnet 9 the axis of rotation of illustration Figure 7 Figure 6 showing a rebound the cross-section of Figure 10 shows repulsion device for thrust forces X3~Y3 sectional view [12] rotation shaft of FIG. 11 9 showing the acting force when fitted with a cylindrical magnet in the rotation axis showing the force and the acting force diagram 13 X4~Y4 sectional view of FIG. 12 and FIG. 14 is a cross-sectional view of the overall invention Figure 5】本発明全体の横断面図【図16】楔板の取り付け図【図17】図16のX5〜Y5断面図【図18】楔板の断面図【符号の説明】 5] cross-section of the entire invention Figure 16 shows the mounting of the wedge plate Figure [X5~Y5 sectional view of FIG. 17] 16 [18] a cross-sectional view of the wedge plate EXPLANATION OF REFERENCE NUMERALS
1 インペラーケーシング1−1 吐出口1−2 内壁1−3 内外壁間充填部分1−4 上吐出孔1−5 下吐出孔1−6 楔板1−6−1 楔板の斜面部β 楔角度P 1−4の液圧P 1−5の液圧2 インペラー2−1 羽根取付板3 ローター4 ローター軸5 キャン6 外磁石7 内磁石8 モーター10 磁石(フリー側) 1 inclined surface β wedge angle of the impeller casing 1-1 discharge ports 1-2 inner wall 1-3 inner and outer walls between filled portion 1-4 on the discharge hole 1-5 lower discharge hole 1-6 wedges 1-6-1 wedges P 1 1-4 of hydraulic P 2 1-5 hydraulic 2 impellers 2-1 blade mounting plate 3 rotor 4 rotor shaft 5 can 6 outer magnets 7 in the magnet 8 motor 10 magnets (drive side)
11 磁石(固定側) 11 magnet (fixed side)
12 磁力線13 磁力線P 01反発点E1〜E8 磁石の飛びだそうとする方向g (10)(11)間のギャップU 上側D 下側14 円筒形磁石(外磁石筒) 12 field lines 13 direction g 1 to be jump out of the magnetic field lines P 01 rebound point E1~E8 magnet (10) (11) gap U upper D lower 14 cylindrical magnet (outer magnet tube) between
15 円筒形磁石(内磁石筒) 15 cylindrical magnet (inner magnet tube)
¢ (14)の中心線¢ (15)の中心線P 02反発点R ・P 02反発線R ・P 03反発線δ (14)と(15)のずれ20 円筒形磁石(内磁石筒) ¢ 1 14 centerline ¢ 2 centerline P 02 displaced 20 cylindrical magnet rebound point R 1 · P 02 rebound line R 2 · P 03 rebound line [delta] 1 (14) (15) (15) of ( the inner magnet tube)
21 分割型円弧形磁石筒22 分割型円弧形磁石筒23 分割型円弧形磁石筒24 分割型円弧形磁石筒25 回転軸δ (20)と(21)のずれδ (20)と(21)のずれR ・P 04反発線R ・P 05反発線R ・P 06反発線R ・P 07反発線g 内外磁石間のギャップE9 (25)の飛び出し方向E10 (25)の飛び出し方向30 回転円筒31 棒状円筒磁石32 棒状円筒磁石r (31)の取り付け半径r (31)の取り付け半径33 固定側円筒34 棒状円筒磁石35 棒状円筒磁石g (31)と(34)の極間隔g (31)と(34)の極間隔¢ (30)の中心線¢ (33)の中心線 21 shift [delta] 3 of the split mold arcuate magnet tube 22 split arcuate magnet tube 23 split arcuate magnet tube 24 split arcuate magnet tube 25 rotation axis [delta] 2 (20) and (21) (20 ) and (21) of the displacement R 3 · P 04 repulsive lines R 4 · P 05 repulsive lines R 5 · P 06 rebound line R 6 · P 07 repulsive lines g 2 protruding direction of the gap between the inner and outer magnets E9 (25) E10 (25) in the protruding direction 30 rotary cylinder 31 rod-like cylindrical magnet 32 rod-like cylindrical magnet r 1 (31) mounted radially r 2 attached radius 33 fixed side cylindrical 34 bar-like cylindrical magnet 35 rod-like cylindrical magnet g 3 (31) (31) the center line of the (34) electrode spacing g 4 (31) with the center line of pole pitch of (34) ¢ 3 (30) ¢ 4 (33)

Claims (4)

  1. インペラーケーシングを内外壁のある二重壁とし、内壁の上下にインペラーよりの吐出液を通す吐出孔をあける。 A double wall with inner and outer walls of the impeller casing, drilling discharge hole through which discharge fluid from the impeller and below the inner wall. 上方吐出孔は吐出管につながる吐出口と下方の孔は上方の吐出口で上方の吐出孔と合流する様な構造とする。 Upper discharge holes discharge opening and below the hole leading to the discharge pipe to such a structure joins the upper discharge holes above the discharge port.
    上記の構造のインペラーケーシングによる非接触ポンプの回転部分の非接触を確実にする装置。 Device to ensure the non-contact rotating parts of the non-contact pump according impeller casing above structure.
  2. インペラーに回転力を与える円筒(以下ローターと記す)とインペラーを連結する連結軸(以下ローター軸と記す)に回転部分の重量を非接触で支える磁気軸受を設置する。 Installing a magnetic bearing for supporting without contact the weight of the rotary part into a cylindrical give a rotational force to the impeller (hereinafter referred to as the rotor) and the connecting shaft connecting the impeller (hereinafter referred to as rotor shaft). この磁気軸受は回転部分の重量を支えると共にそれをローター側に押す力を発生させるような構造とする。 The magnetic bearing is a structure to generate a force that pushes it to the rotor side with supporting the weight of the rotating parts.
    ローター軸の先端とローターのキャンの内側に対応させて相互に反発作用を有する反発用磁石装置を取り付ける。 To correspond to the inside of the tip and the rotor of the can of the rotor shaft mounting a repulsive magnet apparatus having a repulsion with each other. そしてその反発力は前記磁気軸受によるローター軸をローター側に押す力と均衡させるようにする。 Then the repulsive force so as to balance the force pushing the rotor shaft by the magnetic bearing on the rotor side.
    上記の構造、構成の非接触の磁気軸受及び磁気反発装置による請求項1記載の非接触ポンプの回転部分の非接触を確実にする装置。 The above structure, apparatus for ensuring non-contact rotating parts of the non-contact pump according to claim 1, wherein a non-contact magnetic bearings and magnetic repulsion device configuration.
  3. ローター軸に磁気軸受を設置するがこの軸受は回転部分の重量を支えると共に、それをローターと反対側即ちインペラー側に押す力を発生させる構造とする。 Placing the magnetic bearing to the rotor axis but with the bearing supporting the weight of the rotating parts, to which a structure for generating a force to press the opposite side, namely the impeller side rotor. ローター軸をインペラー内に貫通させて反対側に延長し(以下延長軸と記す)、その先端に請求項2記載の磁石装置と同じ構造の反発力磁石装置を取り付けローター軸をインペラー側に押す力と均衡させるようにする。 The rotor shaft by penetrating in the impeller extends to the opposite side (hereinafter referred to as the extension axis), a force pushing the rotor shaft mounting the repulsion magnet apparatus of the same structure as the magnet apparatus according to claim 2 wherein in the distal end to the impeller side so as to balance with. 上記の構造、構成の非接触の磁気軸受及び磁気反発装置による請求項1記載の非接触ポンプの回転部分の非接触を確実にする装置。 The above structure, apparatus for ensuring non-contact rotating parts of the non-contact pump according to claim 1, wherein a non-contact magnetic bearings and magnetic repulsion device configuration.
  4. インペラーがクローズド形の場合インペラー両側板に対応するケーシングに僅かの傾斜角を有する複数個の板(以下楔板と記す)をつけインペラーの還流によりインペラーとローター間に楔効果を発生させることによってインペラーが側板に接触するのを防ぐようにする。 Impeller by generating a wedge effect impeller and between the rotor by refluxing the impeller with a plurality of plates (hereinafter referred to as wedge plate) which impeller has an angle of inclination of slightly casing corresponding to when the impeller side plates of the closed type There are so prevented from contacting the side plate.
    上記の構造の楔板による請求項1記載の非接触ポンプの回転部分の非接触を確実にする装置。 Device to ensure the non-contact rotating parts of the non-contact pump according to claim 1, wherein by the wedge plate of the above structure.
JP2003180325A 2003-05-20 2003-05-20 Device for securing noncontact of rotary part in noncontact pump Pending JP2004346925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003180325A JP2004346925A (en) 2003-05-20 2003-05-20 Device for securing noncontact of rotary part in noncontact pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003180325A JP2004346925A (en) 2003-05-20 2003-05-20 Device for securing noncontact of rotary part in noncontact pump

Publications (1)

Publication Number Publication Date
JP2004346925A true true JP2004346925A (en) 2004-12-09

Family

ID=33535157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003180325A Pending JP2004346925A (en) 2003-05-20 2003-05-20 Device for securing noncontact of rotary part in noncontact pump

Country Status (1)

Country Link
JP (1) JP2004346925A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297997A (en) * 2007-05-31 2008-12-11 Isamu Aotani Pump device
WO2012008297A1 (en) * 2010-07-12 2012-01-19 Ntn株式会社 Centrifugal pump device
US9067005B2 (en) 2008-12-08 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9109601B2 (en) 2008-06-23 2015-08-18 Thoratec Corporation Blood pump apparatus
US9132215B2 (en) 2010-02-16 2015-09-15 Thoratee Corporation Centrifugal pump apparatus
US9133854B2 (en) 2010-03-26 2015-09-15 Thoratec Corporation Centrifugal blood pump device
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9382908B2 (en) 2010-09-14 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9381285B2 (en) 2009-03-05 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9410549B2 (en) 2009-03-06 2016-08-09 Thoratec Corporation Centrifugal pump apparatus
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297997A (en) * 2007-05-31 2008-12-11 Isamu Aotani Pump device
US9109601B2 (en) 2008-06-23 2015-08-18 Thoratec Corporation Blood pump apparatus
US9067005B2 (en) 2008-12-08 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9381285B2 (en) 2009-03-05 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9410549B2 (en) 2009-03-06 2016-08-09 Thoratec Corporation Centrifugal pump apparatus
US9132215B2 (en) 2010-02-16 2015-09-15 Thoratee Corporation Centrifugal pump apparatus
US9133854B2 (en) 2010-03-26 2015-09-15 Thoratec Corporation Centrifugal blood pump device
WO2012008297A1 (en) * 2010-07-12 2012-01-19 Ntn株式会社 Centrifugal pump device
JP2012021413A (en) * 2010-07-12 2012-02-02 Ntn Corp Centrifugal pump device
EP2594799A1 (en) * 2010-07-12 2013-05-22 NTN Corporation Centrifugal pump device
EP2594799A4 (en) * 2010-07-12 2014-11-05 Thoratec Corp Centrifugal pump device
US9068572B2 (en) 2010-07-12 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9638202B2 (en) 2010-09-14 2017-05-02 Tc1 Llc Centrifugal pump apparatus
US9382908B2 (en) 2010-09-14 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9709061B2 (en) 2013-01-24 2017-07-18 Tc1 Llc Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection

Similar Documents

Publication Publication Date Title
US6368083B1 (en) Sealless rotary blood pump
US3719436A (en) Axial flow pump
US6264635B1 (en) Active magnetic bearing system for blood pump
US5149253A (en) Magnet pumps
US5288213A (en) Pump having an internal pump
US4116592A (en) Turbomolecular high-vacuum pulp
US20040027018A1 (en) Hydraulic compensation for magnetically biased fluid dynamic bearing motor
US6206659B1 (en) Magnetically driven rotor for blood pump
US20070078293A1 (en) Impeller for a rotary ventricular assist device
US6808371B2 (en) Ultra-thin pump and cooling system including the pump
US6280157B1 (en) Sealless integral-motor pump with regenerative impeller disk
US7385332B2 (en) Permanent magnet dynamoelectric machine with axially displaceable permanent magnet rotor assembly
JP2008219960A (en) Rotary electric machine
US5923111A (en) Modular permanent-magnet electric motor
US20050095151A1 (en) Rotary blood pump
US7205695B2 (en) High speed rotor
US20130170970A1 (en) Centrifugal pump apparatus
EP2372160A1 (en) Centrifugal pump device
US5308229A (en) Pump having an internal gas pump
US20130121821A1 (en) Centrifugal pump apparatus
US6846168B2 (en) Pump with an electrodynamically supported impeller and a hydrodynamic bearing between the impeller and the stator
US20050121983A1 (en) Permanent-magnetically excited electrical motor
US20120089225A1 (en) High efficiency blood pump
US7699588B2 (en) Centrifugal pump
JP2007089972A (en) Centrifugal blood pump apparatus