JP2004346295A - Highly efficient method of purification for liquid crystal having high specific resistance and device for the same - Google Patents

Highly efficient method of purification for liquid crystal having high specific resistance and device for the same Download PDF

Info

Publication number
JP2004346295A
JP2004346295A JP2003324945A JP2003324945A JP2004346295A JP 2004346295 A JP2004346295 A JP 2004346295A JP 2003324945 A JP2003324945 A JP 2003324945A JP 2003324945 A JP2003324945 A JP 2003324945A JP 2004346295 A JP2004346295 A JP 2004346295A
Authority
JP
Japan
Prior art keywords
electrophoresis
liquid crystal
electrode
container
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003324945A
Other languages
Japanese (ja)
Other versions
JP4288125B2 (en
Inventor
Gakumei Cho
學明 張
Ryushun Kan
龍舜 簡
Shiho To
子邦 杜
Kanki Ko
煥毅 洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of JP2004346295A publication Critical patent/JP2004346295A/en
Application granted granted Critical
Publication of JP4288125B2 publication Critical patent/JP4288125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Liquid Crystal (AREA)
  • Electrostatic Separation (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient method for purifying much soiled liquid crystal in a short time to obtain the liquid crystal having a high specific resistance and purity, and a highly efficient device for the same. <P>SOLUTION: This highly efficient method of purification for the liquid crystal having the high specific resistance (HSR) is characterized by combining both of an inorganic salt absorption method and an electrophoresis purification method, and especially the highly efficient method of purification for the HSR liquid crystal products required in a TFT, LCD and/or other field is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は比抵抗の高い液晶の精製方法及び装置、特に塩吸収方法と電気泳動方法を使用する比抵抗の高い液晶の精製方法及び装置並びに多量のTFT液晶を短時間で効率良く精製するための電気泳動装置に関する。   The present invention relates to a method and an apparatus for purifying a liquid crystal having a high specific resistance, particularly to a method and an apparatus for purifying a liquid crystal having a high specific resistance using a salt absorption method and an electrophoresis method, and to efficiently purify a large amount of TFT liquid crystals in a short time. It relates to an electrophoresis apparatus.

液晶ディスプレイ(LCD)は薄さ、軽量、電力保存、及び低放射線の特徴を有する。薄膜トランジスタ(TFT)の技術はLCDをカラーの世界にもたらし、これは従来のCRTモニターを置換する勢いを持ち、大きな市場潜在性を有する。TFT-LCDは高い比抵抗の、即ち、高純度の液晶を必要とする。結果として、多くの液晶が微量の汚染のために製造過程でスクラップにしなければならない。現行のLCDパネル技術では、歩留りが50%よりわずかに大きく、一方、汚染された液晶の30%〜50%が捨てられなければならない。液晶は高単価の薬品であるので、廃液晶のリサイクル、精製及び再利用が重要な技術と考えられる。   Liquid crystal displays (LCDs) have the features of thinness, light weight, power conservation, and low radiation. Thin film transistor (TFT) technology brings LCDs to the color world, which has the momentum to replace traditional CRT monitors and has great market potential. TFT-LCD requires a liquid crystal with high specific resistance, that is, high purity. As a result, many liquid crystals must be scrapped during the manufacturing process due to trace contamination. With current LCD panel technology, yields are slightly greater than 50%, while 30% to 50% of contaminated liquid crystals must be discarded. Since liquid crystals are expensive chemicals, recycling, refining and reusing waste liquid crystals are considered important technologies.

液晶のリサイクルに関する幾つかの技術が、無機塩及び有機溶媒を添加し、次いで加熱し、撹拌することによる液晶の精製方法を記載した特開平8-277391号をはじめとする特許に開示されている。しかしながら、その方法は低純度要件でもって、またTFT液晶が必要とするものよりもかなり高い不純物を含む液晶を精製し得るにすぎず、それ故、高い比抵抗値を要求するTFT液晶の如き液晶を精製し、リサイクルするのには使用し得ない。また、電気泳動方法を使用することにより液晶を精製する幾つかの技術があり、これらは特開昭50-108186号、同51-011079号、特開平4-171419号、同4-288520号、同8-297290号、及び特開2002-60752の特許請求の範囲に記載されている。しかしながら、このような技術はあらゆるその他のメカニズムを組み合わせないで精製のための純粋な電気泳動方法を使用する。   Some techniques relating to the recycling of liquid crystals are disclosed in patents such as JP-A-8-277391 which describes a method for purifying liquid crystals by adding an inorganic salt and an organic solvent, and then heating and stirring. . However, the method can only purify liquid crystals with low purity requirements and containing impurities that are significantly higher than those required by TFT liquid crystals, and therefore liquid crystals such as TFT liquid crystals that require high resistivity values. Cannot be used for purification and recycling. There are also several techniques for purifying liquid crystals by using an electrophoresis method, and these are described in JP-A-50-108186, JP-A-51-011079, JP-A-4-171419, JP-A-4-288520, No. 8-297290 and claims in JP-A-2002-60752. However, such techniques use pure electrophoretic methods for purification without combining any other mechanisms.

上記特開昭50-108186号の特許請求の範囲は、或る種のガスをポンプで除去して(真空にするために)、外部電界を適用することによる液晶の精製方法を記載している。液晶が一つの貯蔵タンクから別のタンクに移動する場合、それは外壁に備えられた電極を含む管を通過する。電極が精製目的のために不純物イオンを吸収するであろう。しかしながら、1cmより大きい電極クリアランスのために強い電界が確立し得ず、また液晶がほんの限られた時間しか電気泳動を受けないので、液晶は制限された程度にしか精製し得ない。上記特開平4-171419号の特許請求の範囲は液晶が真空環境中でLCDパネルに充填されている場合の液晶の精製方法を明らかにしている。電界が液晶容器に外部適用されて不純物イオンを吸収してこのようなイオンがパネルに吸収される可能性を低減する。しかしながら、1Vの電圧が1cmより大きいクリアランスを有する電極に使用される。結果として、TFT液晶が実質的に精製し得ない。上記特開平4-288520号の特許請求の範囲はLCDパネルを外部電界中で充填する方法を明らかにしている。液晶を含むのに使用される金属容器はまたカソードとして作用し、これは増大された電極領域を送出する。加えて、その電圧は20Vまで増大される。しかしながら、電極は依然として1cmより大きいクリアランスを有するので、その方法はTFT液晶を精製するのに直接使用し得ない。   The claims of JP-A-50-108186 describe a method of purifying liquid crystals by removing certain gases by a pump (to create a vacuum) and applying an external electric field. . As the liquid crystal moves from one storage tank to another, it passes through a tube containing electrodes provided on the outer wall. The electrode will absorb impurity ions for purification purposes. However, liquid crystals can only be purified to a limited extent because strong electric fields cannot be established due to electrode clearances greater than 1 cm and the liquid crystals undergo electrophoresis for only a limited time. The claims of the above-mentioned Japanese Patent Application Laid-Open No. 4-171419 clarify a method of purifying a liquid crystal when the liquid crystal is filled in an LCD panel in a vacuum environment. An electric field is applied externally to the liquid crystal container to absorb impurity ions and reduce the likelihood of such ions being absorbed by the panel. However, a voltage of 1 V is used for electrodes having a clearance greater than 1 cm. As a result, the TFT liquid crystal cannot be substantially purified. The claims of the above-mentioned Japanese Patent Application Laid-Open No. 4-288520 disclose a method of filling an LCD panel in an external electric field. The metal container used to contain the liquid crystal also acts as the cathode, which delivers an increased electrode area. In addition, the voltage is increased to 20V. However, the method cannot be used directly to purify TFT liquid crystals because the electrodes still have a clearance of more than 1 cm.

上記特開平8-297290号の特許請求の範囲はSiO2スパッタリングコートを使用して電極クリアランスを0.01cmまで減少し、また電圧を500Vまで増大する。不運なことに、コートに含まれるSiO2はまた不純物イオンを放出するというリスクをまねく。それ故、その方法はTFT液晶の要件内に入るSR値を依然として提供し得ない。上記の四つの特許請求の範囲に明らかにされた精製技術のいずれもが本発明に記載されるTFT液晶又は一層高い純度もしくはSR値を有するあらゆるその他の液晶を有効に精製するのに充分ではないが、それらは低純度要件を有する液晶、例えば、STN液晶を精製するのに使用し得る。
上記特開2002-60752の特許請求の範囲には、300Vの電極が電気泳動精製のために1cmのクリアランスを有する電極に適用される場合の真空環境中の高い比抵抗(HSR)の液晶の精製方法が記載されている。反復の電極洗浄により、HSR液晶が2〜17時間で精製し得る。しかしながら、電極面積は10cm2であり、1サイクルあたり、わずかに約30mlの液晶が加工されるにすぎない。それ故、その方法は大量プラント生産(これは精製が大規模で行なわれることを必要とする)に直接適用し得ない。
Claims of the Japanese Patent Laid-Open No. 8-297290 is an electrode clearance was reduced to 0.01cm using SiO 2 sputtering coating, also increasing the voltage up to 500V. Unfortunately, the SiO 2 contained in the coat also carries the risk of releasing impurity ions. Therefore, the method still cannot provide SR values that fall within the requirements of TFT liquid crystals. None of the purification techniques disclosed in the above four claims are sufficient to effectively purify the TFT liquid crystal described in the present invention or any other liquid crystal having higher purity or SR value. However, they can be used to purify liquid crystals with low purity requirements, for example STN liquid crystals.
The claims of the above-mentioned JP-A-2002-60752 describe the purification of a liquid crystal having a high specific resistance (HSR) in a vacuum environment when a 300 V electrode is applied to an electrode having a clearance of 1 cm for electrophoretic purification. A method is described. With repeated electrode washing, the HSR liquid crystal can be purified in 2-17 hours. However, the electrode area is 10 cm 2 and only about 30 ml of liquid crystal is processed per cycle. Therefore, the method is not directly applicable to mass plant production, which requires refining to be performed on a large scale.

HSR、高純度液晶をリサイクルする際の上記技術の欠点を解消するために、本発明は一層高い純度及びSR値を有するTFT液晶及びその他の液晶の大量プラント精製に適している、精製方法のための装置を含む、一連の技術を確立する。このような液晶は、金属不純物イオンが5ppb以下であり、かつSRが1013Ωcmより高いことを必要とするTFT液晶について指示される。
本発明はHSR液晶の精製方法を提供することを目的とする。それは無機塩吸収方法と電気泳動方法を組み合わせて汚染された液晶を精製する。リサイクルされる液晶は1013Ωcmより大きい比抵抗で製造し得る。
In order to eliminate the disadvantages of the above technology when recycling HSR and high purity liquid crystal, the present invention provides a purification method suitable for large-scale plant purification of TFT liquid crystal and other liquid crystal having higher purity and SR value. Establish a series of technologies, including the following devices. Such liquid crystals are indicated for TFT liquid crystals that require metal impurity ions below 5 ppb and an SR higher than 10 13 Ωcm.
An object of the present invention is to provide a method for purifying an HSR liquid crystal. It combines inorganic salt absorption and electrophoresis methods to purify contaminated liquid crystals. Recycled liquid crystals can be manufactured with a resistivity greater than 10 13 Ωcm.

前記方法は下記の工程:汚染された液晶を無機塩と接触させて不純物を吸収する工程、無機塩によりその不純物を吸収させた液晶を濾過して低精製された液晶を得る工程、最後に前記低精製された液晶を電気泳動で処理して残存不純物を除去する工程を含む。前記無機塩吸収方法は溶媒を添加しないで常温で行なわれてもよい。
前記無機塩はアルミナ、シリカゲル、活性化アルミナ、ゼオライト、酸化チタン及びそれらの類似体からなる群から選ばれてもよい。
前記方法は1011Ωcmから1013Ωcmまでの範囲のSRを有する汚染された液晶を処理することが推奨される。
前記電気泳動方法は水と粒子の両方が除去されたアルゴン環境中で行なわれる。
本発明の別の目的は液晶を精製するための電気泳動装置を提供することである。前記装置は不活性ガス供給ユニット、脱水ユニット、脱粒子ユニット、電気泳動タンク、及び電源を含む。前記不活性ガス供給ユニットはアルゴンを供給することが好ましい。
前記電気泳動タンクは電気泳動容器組立体(これは複合電気泳動容器を含む)、容器ベース、及び電極板を電源に接続するための急速カプラーを含む。前記複合電気泳動容器は二つ以上の電極板、前記電極板を置くための電極ベース、及び前記電極板と電極ベースを置くための容器ボディを含む。
The method comprises the following steps: a step of bringing the contaminated liquid crystal into contact with an inorganic salt to absorb impurities; a step of filtering the liquid crystal having absorbed the impurity by the inorganic salt to obtain a low-purified liquid crystal; A step of treating the low-purified liquid crystal by electrophoresis to remove residual impurities. The inorganic salt absorption method may be performed at room temperature without adding a solvent.
The inorganic salt may be selected from the group consisting of alumina, silica gel, activated alumina, zeolite, titanium oxide and analogs thereof.
It is recommended that the method treat contaminated liquid crystals having an SR in the range of 10 11 Ωcm to 10 13 Ωcm.
The electrophoresis method is performed in an argon environment from which both water and particles have been removed.
Another object of the present invention is to provide an electrophoresis device for purifying liquid crystals. The apparatus includes an inert gas supply unit, a dehydration unit, a departicle unit, an electrophoresis tank, and a power supply. Preferably, the inert gas supply unit supplies argon.
The electrophoresis tank includes an electrophoresis container assembly (including a composite electrophoresis container), a container base, and a quick coupler for connecting the electrode plate to a power source. The composite electrophoresis container includes two or more electrode plates, an electrode base on which the electrode plate is placed, and a container body on which the electrode plate and the electrode base are placed.

前記電極板はアノードとカソードの両方について平行に置かれることが好ましい。前記電極ベースの数は多くの電極板を追加し、又は幾つかの電極板を取り外すために精製すべき液晶の量に従って必要とされる場合にはいつでも増加又は減少されてもよい。電極板は夫々について面積について制限されない。電極ベースは取り外し可能な型又は固定型のいずれであってもよい。
前記電極板は白金、ニッケル、銀、亜鉛、又はその他の材料からつくられてもよく、白金が好ましい。電極板は0.2〜1.0cmの距離で置かれることが好ましい。前記電極ベースと前記容器ボディの両方がテフロン(登録商標)製であることが好ましい。
本発明において明らかにされた精製方法は不純物を液晶から実質的に除去し、その適用について必要とされる仕様にマッチする液晶製品を製造する能力を有する。特開平8-277391号に明らかにされた上記技術(これは塩及び有機溶媒を添加し、次いで加熱し、撹拌することにより1〜3時間を要する精製方法を使用する)と較べて、本発明はほんの30分を要する塩吸収方法を使用する。電気泳動方法について、本発明はほんの3時間を要する電気泳動装置を使用し、特開2002-60752に明らかにされた特許請求された技術(これは電気泳動に17時間を費やすであろう)と比較し得る。加えて、その装置はこのような技術よりも極めて多い液晶を1サイクルで処理し得る。
上記説明により示されたように、本発明において明らかにされた比抵抗の高い液晶の精製方法及び装置は、それが精製に要する時間を大幅に短縮し、精製段階における清潔さの要件に取り組み、安全かつ容易な運転を提供する。更に重要なことに、本発明は大量プラント生産に適し、かつかなりの市場潜在性を提供する電気泳動装置を明らかにする。
Preferably, the electrode plates are placed in parallel for both the anode and the cathode. The number of electrode bases may be increased or decreased whenever needed according to the amount of liquid crystal to be refined to add more electrode plates or to remove some electrode plates. The electrode plates are not limited in area for each. The electrode base may be of a removable type or a fixed type.
The electrode plate may be made of platinum, nickel, silver, zinc, or other materials, with platinum being preferred. The electrode plates are preferably placed at a distance of 0.2-1.0 cm. It is preferable that both the electrode base and the container body are made of Teflon (registered trademark).
The purification method disclosed in the present invention has the ability to substantially remove impurities from liquid crystals and produce liquid crystal products that meet the required specifications for the application. Compared with the above technique disclosed in JP-A-8-277391 (which uses a purification method requiring 1-3 hours by adding a salt and an organic solvent, then heating and stirring), the present invention Uses a salt absorption method that takes only 30 minutes. For the electrophoresis method, the present invention uses an electrophoresis apparatus that takes only three hours, and uses the claimed technology disclosed in Japanese Patent Application Laid-Open No. 2002-60752 (which will spend 17 hours for electrophoresis). Can be compared. In addition, the device can process significantly more liquid crystals in one cycle than such techniques.
As indicated by the above description, the method and apparatus for refining a liquid crystal having a high specific resistance disclosed in the present invention greatly reduces the time required for refining, and addresses the requirement for cleanliness in the refining stage. Provide safe and easy driving. More importantly, the present invention reveals an electrophoresis apparatus that is suitable for mass plant production and offers considerable market potential.

本発明において明らかにされた電気泳動装置だけでなく、前記装置の特徴が以下に詳述される。図1は本発明において明らかにされた電気泳動装置の実施の一つを示す。その装置は鋼アルゴンシリンダー1、脱水ユニット2、脱粒子ユニット3、流量ターゲット管4、ニードル弁5、電気泳動タンク6、DC電源7、及びボール弁8を含む。本発明において明らかにされた電気泳動方法中に、アルゴンガスが推奨されるように50ml/分より大きい流量で前記鋼アルゴンシリンダー1から流出し、順に前記脱水ユニット2、脱粒子ユニット3、及び流量ターゲット管4中を通過して前記電気泳動タンク6に到達して、電気泳動操作が定常アルゴン雰囲気内にあることを保つ。   The features of the electrophoretic device as well as the electrophoretic device disclosed in the present invention will be described in detail below. FIG. 1 shows one embodiment of the electrophoresis apparatus disclosed in the present invention. The apparatus includes a steel argon cylinder 1, a dehydration unit 2, a departicle unit 3, a flow target tube 4, a needle valve 5, an electrophoresis tank 6, a DC power supply 7, and a ball valve 8. During the electrophoresis method disclosed in the present invention, argon gas flows out of the steel argon cylinder 1 at a flow rate of more than 50 ml / min as recommended, and the dehydration unit 2, departicle unit 3, and flow rate After passing through the target tube 4 and reaching the electrophoresis tank 6, the electrophoresis operation is kept in a steady argon atmosphere.

図2に示されるように、前記電気泳動タンク6の詳細な構造は電気泳動容器組立体9、アクリルボックス10、フィードスルー11、及びゴムシーリング12を含む。前記電気泳動タンク6は下記の利点を備えて設計される。電気泳動環境がアルゴンガスの導入流量を前記ニードル弁5で微細チューニングすること及びアルゴン出口及び入口の両方の位置決めだけでなく、前記ゴムシーリング12を使用することによる気密性、及び上部の前記ボール弁8を開けることによるサンプリングによりその浄化度について改善される。前記フィードスルー11(これは拡大金属ボックスに直接配置されてもよい)が使用されて外部電源を前記電気泳動タンク6に通じて安全な操作を高電圧下で確実にし、短絡を防止する。
図3は前記電気泳動組立体9の部分断面図を示し、その組立体は複合電気泳動容器13(これはテフロン(登録商標)製であることが好ましい)、アクリル容器ベース14、及び前記複合電気泳動容器13内の前記電極板16を外部電源に接続するための急速カプラー15を含む。
As shown in FIG. 2, the detailed structure of the electrophoresis tank 6 includes an electrophoresis container assembly 9, an acrylic box 10, a feedthrough 11, and a rubber sealing 12. The electrophoresis tank 6 is designed with the following advantages. The electrophoresis environment finely tunes the introduction flow rate of the argon gas with the needle valve 5 and positions both the argon outlet and the inlet, as well as hermeticity by using the rubber sealing 12 and the ball valve on the top. Sampling by opening 8 improves its cleanness. The feedthrough 11 (which may be located directly on the enlarged metal box) is used to pass an external power supply to the electrophoresis tank 6 to ensure safe operation at high voltage and prevent short circuits.
FIG. 3 shows a partial cross-sectional view of the electrophoresis assembly 9, which is a composite electrophoresis container 13 (preferably made of Teflon®), an acrylic container base 14, and the composite electric device. It includes a quick coupler 15 for connecting the electrode plate 16 in the electrophoresis container 13 to an external power supply.

図4は前記複合電気泳動容器13の構造を示す。図4Aは複合電気泳動容器13の図を示し、この容器は容器ボディ17、電極ベース18、及び前記電極ベース18内に平行に置かれた一つより多い電極板16を含む。図4Bは前記電極ベース18が取り外し可能な型のものであることを示す。このような型のベースはごくわずかのクリアランスを有する前記電極板を洗浄する難点に取り組むために電極板16(その使用が完結される場合)が洗浄のために電極ベース18から取り外し可能である。しかしながら、前記電極ベース18は固定型で容器ボディ17に固定されてもよい。図4Cは前記複合電気泳動容器13の平面図を示す。見られるように、前記電極板16は二つの電極ベース18中の相当する溝19内に平行に置かれる。前記電極板16は溝19に入れられてもよく、またそれから取り外されてもよいので、板16の数は必要により増加又は減少されてもよい。加えて、電極板16の夫々は所望されるどのような面積でも設計し得る。   FIG. 4 shows the structure of the composite electrophoresis container 13. FIG. 4A shows a diagram of a composite electrophoresis container 13, which includes a container body 17, an electrode base 18, and more than one electrode plate 16 placed parallel within said electrode base 18. FIG. 4B shows that the electrode base 18 is of a removable type. Such a type of base has negligible clearance so that the electrode plate 16 (if its use is completed) can be removed from the electrode base 18 for cleaning to address the difficulty of cleaning the electrode plate. However, the electrode base 18 may be fixed and fixed to the container body 17. FIG. 4C shows a plan view of the composite electrophoresis container 13. As can be seen, the electrode plates 16 lie parallel in corresponding grooves 19 in the two electrode bases 18. The number of plates 16 may be increased or decreased as needed, as the electrode plates 16 may be inserted into grooves 19 and removed therefrom. In addition, each of the electrode plates 16 can be designed with any desired area.

図5は電極板16を電源に接続する急速カプラー15の平面図である。本発明において設計された急速カプラー15を使用することにより、電極板16が標準様式で迅速かつ容易に外部電源に接続し得る。加えて、前記カプラーはまたトリッピング及び短絡に関する関心を減じるのに理想的な導体の接触を確実にする。
特に、本発明において明らかにされた電気泳動容器13の実施の場合に基づいて、夫々について620cm2までの面積の白金電極板16がアルゴン環境(そこでは700Vまでの高電圧が適用される)中で夫々二つの隣接板間の0.2cmのクリアランスで電気泳動処理に使用される場合、夫々のサイクルについて130mlまで処理し得る液晶の量で、TFT液晶の純度要件に達するのにわずかに3時間しか要しない。加えて、電気泳動方法中の洗浄のために電極板を繰り返して取り外す必要はない。それ故、このような処理は大量生産に実質的に配置し得る。
本発明は塩吸収方法と電気泳動方法の両方を使用することにより、より高いSRを有するTFT液晶及びその他の液晶を実質的に精製するための特別な技術を包含する。その操作は以下のとおりである。
FIG. 5 is a plan view of the quick coupler 15 for connecting the electrode plate 16 to a power source. By using the quick coupler 15 designed in the present invention, the electrode plate 16 can be quickly and easily connected to an external power supply in a standard manner. In addition, the coupler also ensures ideal conductor contact to reduce concerns regarding tripping and shorting.
In particular, based on the implementation of the electrophoresis vessel 13 disclosed in the present invention, the platinum electrode plates 16 each having an area of up to 620 cm 2 are placed in an argon environment (where high voltages up to 700 V are applied). When used for electrophoresis with a clearance of 0.2 cm between each two adjacent plates, the amount of liquid crystal that can be processed up to 130 ml for each cycle takes only three hours to reach the TFT liquid crystal purity requirement. No need. In addition, it is not necessary to repeatedly remove the electrode plate for washing during the electrophoresis method. Therefore, such processing can be substantially deployed in mass production.
The present invention includes special techniques for substantially purifying TFT liquid crystals and other liquid crystals having higher SR by using both salt absorption and electrophoresis methods. The operation is as follows.

無機塩吸収方法
無機塩吸収方法では、液晶を10重量%のAC61(これは99.3%より多いアルミナを含む)と混合し、次いでその混合物を20分間撹拌する。撹拌が完結したら、その混合物を10分間放置し、次いで0.2μmのPTFEフィルターディスクで濾過し、精製された液晶を得る。
電気泳動精製方法
液晶に関する電気泳動精製方法は液晶が電極板(これらに高電圧(500〜1100V)が適用される)の間に入れられ、電界内のイオンの電気泳動効果の結果として、イオンを吸収し、液晶から電極の表面に分離することを意味する。電気泳動精製の操作は以下のとおりである。
Inorganic salt absorption method In the inorganic salt absorption method, the liquid crystal is mixed with 10% by weight of AC61, which contains more than 99.3% alumina, and then the mixture is stirred for 20 minutes. When the stirring is completed, the mixture is left for 10 minutes and then filtered through a 0.2 μm PTFE filter disc to obtain a purified liquid crystal.
Electrophoretic purification method The electrophoretic purification method for liquid crystal is that the liquid crystal is put between the electrode plates (these are applied with high voltage (500-1100V)) and the ions are separated as a result of the electrophoretic effect of the ions in the electric field. Absorption and separation from the liquid crystal to the surface of the electrode. The operation of electrophoretic purification is as follows.

1. アノードとカソードが交互になるように、白金電極板を電気泳動容器に入れる。
2. 電極板が沈められるまで電気泳動容器に汚染された液晶を入れる。
3. 電極容器を電気泳動タンクに移動させる。キャビネットにアルゴンガスを500cc/分の流量で少なくとも20分間にわたって入れる。
4. アルゴン流量を300cc/分までに調節する。電源を入れ、電圧を700Vに調節する。電気泳動処理を開始する。
5. 電気泳動方法中に、吸引ピペットを使用することにより或る量の精製されている液晶をサンプリングしてSR値を測定する。
6. SR値を試験して適している場合、電源をそのままにして液晶を貯蔵びんに排出してその後の物理的分析を促進する。
上記無機塩吸収方法及び電気泳動精製方法は別々に使用されてもよい。しかしながら、両方の方法が組み合わせて使用される場合、1013Ωcmより大きいSR値を有する精製された液晶を与えるのに最良の結果が期待できる。
幾つかの実施例を以下にし本発明の利点を実証するが、これらの実施例は本発明の特許請求の範囲を限定することを意図するものではない。
1. Place the platinum electrode plate in the electrophoresis container so that the anode and cathode alternate.
2. Fill the electrophoresis container with the contaminated liquid crystal until the electrode plate is submerged.
3. Move the electrode container to the electrophoresis tank. The cabinet is filled with argon gas at a flow rate of 500 cc / min for at least 20 minutes.
4. Adjust the argon flow up to 300cc / min. Turn on the power and adjust the voltage to 700V. Start electrophoresis.
5. During the electrophoresis method, a certain amount of the purified liquid crystal is sampled by using a suction pipette to measure the SR value.
6. Test the SR value and, if appropriate, leave the power supply on and drain the liquid crystal into a storage bottle to facilitate subsequent physical analysis.
The above inorganic salt absorption method and the electrophoretic purification method may be used separately. However, if both methods are used in combination, the best results can be expected to give purified liquid crystals with SR values greater than 10 13 Ωcm.
Some examples are set forth below to demonstrate the benefits of the present invention, but these examples are not intended to limit the scope of the invention.

例1
2.0x1011ΩcmのSR値を有する液晶の或る量を電気泳動方法で直接精製する。SR値は約6.0x1011Ωcmに改良されるにすぎない。あまりに多くの不純物が残存しているので、その精製は明らかな効果を示さず、また電気泳動精製から仕上げられた液晶は図6に示されるように必要とされる仕様に依然としてマッチし得ない。
Example 1
An amount of liquid crystal having an SR value of 2.0 × 10 11 Ωcm is purified directly by electrophoresis. The SR value is only improved to about 6.0 × 10 11 Ωcm. Because too many impurities remain, the purification has no apparent effect and the liquid crystal finished from the electrophoretic purification can still not meet the required specifications as shown in FIG.

例2
2.0x1011ΩcmのSR値を有する液晶の或る量をAC61精製方法で精製してSR値を7.0x1012Ωcmまで増大する。更なる電気泳動精製方法後に、その値は図7に示されるように3.8x1013Ωcmまで増大され、図中、“0”分の左の曲線の部分はAC61精製方法を示し、またその右の部分は電気泳動精製を示す。
Example 2
A certain amount of liquid crystal having an SR value of 2.0 × 10 11 Ωcm is purified by AC61 purification method to increase the SR value to 7.0 × 10 12 Ωcm. After the further electrophoresis purification method, the value was increased to 3.8 × 10 13 Ωcm as shown in FIG. 7, in which the left curve portion of “0” indicates the AC61 purification method, and Part indicates electrophoretic purification.

例3
既に3.0x1012ΩcmまでのSR値を有する液晶の或る量を電気泳動方法で直接精製する。図8中の曲線“A”で示されるように、SR値が3時間の終了時に3.3x1013Ωcmまで増大し、これは高純度を有する廃液晶が実質的に精製された液晶について本発明において明らかにされた電気泳動装置で直接精製し得ることを意味する。既に3.0x1012ΩcmまでのSR値を有するこのような型の液晶がAC61精製方法で精製される場合、その値は1.2x1013Ωcmまで増大するであろう。電気泳動方法が更なる精製のために使用される場合、その値は3.7x1013Ωcmまで増大するであろう。図8中の曲線“B”を参照のこと(“0”分の左の曲線の部分はAC61精製方法を示し、またその右の部分は電気泳動精製を示す)。AC61処理を使用しないで電気泳動精製で直接精製された液晶のSR値より高い、仕上げられた液晶のSR値は、本発明において明らかにされた電気泳動装置が、精製された液晶のSR値をTFT液晶のSR値近くにさえも増大する能力を有することを示している。
Example 3
A certain amount of liquid crystals already having an SR value of up to 3.0 × 10 12 Ωcm is directly purified by electrophoretic methods. As shown by the curve “A” in FIG. 8, the SR value increased to 3.3 × 10 13 Ωcm at the end of 3 hours, which indicates that the waste liquid crystal having high purity is substantially equal to the purified liquid crystal in the present invention. It means that it can be purified directly on the disclosed electrophoresis apparatus. If a liquid crystal of this type already having an SR value of up to 3.0 × 10 12 Ωcm is purified by the AC61 purification method, its value will increase to 1.2 × 10 13 Ωcm. If the electrophoresis method is used for further purification, the value will increase to 3.7 × 10 13 Ωcm. See curve “B” in FIG. 8 (the left curve portion for “0” indicates the AC61 purification method, and the right portion indicates electrophoretic purification). The SR value of the finished liquid crystal is higher than the SR value of the liquid crystal directly purified by electrophoretic purification without using the AC61 treatment, and the electrophoresis apparatus disclosed in the present invention is capable of increasing the SR value of the purified liquid crystal. It shows that it has the ability to increase even near the SR value of the TFT liquid crystal.

本発明において明らかにされた電気泳動装置を図示する。1 illustrates an electrophoresis apparatus disclosed in the present invention. 本発明において明らかにされた電気泳動タンクの構造を図示する。1 illustrates the structure of an electrophoresis tank disclosed in the present invention. 本発明において明らかにされた電気泳動容器組立体の部分断面図を図示する。FIG. 2 illustrates a partial cross-sectional view of an electrophoresis container assembly as disclosed in the present invention. 図4A、図4B及び図4Cは、本発明において明らかにされた複合電気泳動容器の構造を図示する。4A, 4B and 4C illustrate the structure of the composite electrophoresis container disclosed in the present invention. 電極板に接続される本設計において明らかにされた急速カプラーを図示する。Figure 2 illustrates a rapid coupler as revealed in the present design connected to an electrode plate. 液晶を電気泳動方法で直接精製する本発明の例1の結果を示す。1 shows the results of Example 1 of the present invention in which a liquid crystal is directly purified by an electrophoresis method. 無機塩吸収方法と電気泳動精製方法の両方を組み合わせることにより液晶を精製する本発明の例2の結果を示す。The result of Example 2 of the present invention in which a liquid crystal is purified by combining both the inorganic salt absorption method and the electrophoretic purification method is shown. 電気泳動方法を直接使用することにより、また無機塩吸収方法及び電気泳動精製方法を順に使用することにより液晶を精製する本発明の例3の結果を比較して示す。The results of Example 3 of the present invention in which a liquid crystal is purified by directly using an electrophoresis method and by sequentially using an inorganic salt absorption method and an electrophoresis purification method are shown in comparison.

符号の説明Explanation of reference numerals

1−鋼アルゴンシリンダー
2−脱水ユニット
3−脱粒子ユニット
4−流量ターゲット管
5−ニードル弁
6−電気泳動タンク
7−DC電源
8−ボール弁
9−電気泳動容器組立体
10−アクリルボックス
11−フィールドスルー
12−ゴムシーリング
13−複合電気泳動容器
14−アクリル容器ベース
15−急速カプラー
16−電極板
17−容器ボディ
18−電極ベース
19−溝
1-Steel argon cylinder 2-Dehydration unit 3-Draining unit 4-Flow rate target tube 5-Needle valve 6-Electrophoresis tank 7-DC power supply 8-Ball valve 9-Electrophoresis container assembly 10-Acrylic box 11-Field Through 12-Rubber sealing 13-Composite electrophoresis container 14-Acrylic container base 15-Rapid coupler 16-Electrode plate 17-Container body 18-Electrode base 19-Groove

Claims (24)

塩吸収方法及び電気泳動精製方法の両方を含む、比抵抗の高い液晶の精製方法であって、下記の工程を含むことを特徴とする精製方法。
汚染された液晶を無機塩と接触させる工程、
無機塩により吸収された液晶を濾過して低精製液晶を得る工程、及び
前記低精製液晶を電気泳動精製方法で精製して残存不純物を液晶から除去する工程。
A method for purifying a liquid crystal having a high specific resistance, comprising both a salt absorption method and an electrophoretic purification method, comprising the following steps:
Contacting the contaminated liquid crystal with an inorganic salt,
Filtering the liquid crystal absorbed by the inorganic salt to obtain a low-purity liquid crystal; and purifying the low-purity liquid crystal by an electrophoretic purification method to remove residual impurities from the liquid crystal.
前記塩吸収方法を無溶媒で常温で行なう請求項1記載の方法。   The method according to claim 1, wherein the salt absorption method is carried out at room temperature without solvent. 前記無機塩がアルミナ、シリカゲル、活性化アルミナ、ゼオライト、酸化チタン及びそれらの類似体からなる群から選ばれる請求項1記載の方法。   The method of claim 1, wherein said inorganic salt is selected from the group consisting of alumina, silica gel, activated alumina, zeolite, titanium oxide, and analogs thereof. 前記無機塩がアルミナである請求項1記載の方法。   The method according to claim 1, wherein the inorganic salt is alumina. 精製液晶の比抵抗が1013Ωcm以上に増大する請求項1記載の方法。 2. The method according to claim 1, wherein the specific resistance of the purified liquid crystal increases to 10 13 Ωcm or more. 不活性ガスを電気泳動環境に供給するための不活性ガス供給ユニット、
水を前記ガスから除去するための脱水ユニット、
粒子を前記ガスから除去するための脱粒子ユニット、
電気泳動用の電気泳動タンク、及び
電圧を前記電気泳動タンクに適用して電気泳動を行なうための電源
を含むことを特徴とする液晶電気泳動精製装置。
An inert gas supply unit for supplying an inert gas to the electrophoresis environment,
A dehydration unit for removing water from said gas,
A departicle unit for removing particles from the gas,
An electrophoresis tank for electrophoresis, and a power supply for applying a voltage to the electrophoresis tank for performing electrophoresis, the liquid crystal electrophoresis purification apparatus.
前記不活性ガスがアルゴンである請求項6記載の装置。   7. The apparatus according to claim 6, wherein said inert gas is argon. 前記電気泳動タンクが電気泳動容器組立体を含み、その組立体が複合電気泳動容器、電気泳動ベース、及び電極板を電源に接続するための急速カプラーを含む請求項6記載の装置。   7. The apparatus of claim 6, wherein said electrophoresis tank includes an electrophoresis vessel assembly, said assembly including a composite electrophoresis vessel, an electrophoresis base, and a quick coupler for connecting an electrode plate to a power source. 前記複合電気泳動容器が少なくとも二つの電極板、前記電極板を置くための電極ベース、前記電極板及び電極ベースを置くための容器ボディを含む請求項8記載の装置。   9. The apparatus according to claim 8, wherein the composite electrophoresis container includes at least two electrode plates, an electrode base for placing the electrode plate, and a container body for placing the electrode plate and the electrode base. 前記電極板が平行に配置される請求項9記載の装置。   The device according to claim 9, wherein the electrode plates are arranged in parallel. 複合電気泳動容器、電気泳動ベース及び電極を電源に接続するための急速カプラーを含むことを特徴とする電気泳動容器組立体。   An electrophoresis container assembly comprising a composite electrophoresis container, an electrophoresis base and a quick coupler for connecting the electrodes to a power source. 前記複合電気泳動容器が少なくとも二つの電極板、前記電極板を置くための電極ベース、及び前記電極板と電極ベースを置くための容器ボディを含む請求項11記載の電気泳動容器組立体。   12. The electrophoresis container assembly according to claim 11, wherein the composite electrophoresis container includes at least two electrode plates, an electrode base for placing the electrode plate, and a container body for placing the electrode plate and the electrode base. 少なくとも二つの電極板、前記電極板を置くための電極ベース、及び前記電極板と電極ベースを置くための容器ボディを含むことを特徴とする複合電気泳動容器。   A composite electrophoresis container comprising at least two electrode plates, an electrode base on which the electrode plate is placed, and a container body on which the electrode plate and the electrode base are placed. 前記電極板が白金製である請求項13記載の複合電気泳動容器。   14. The composite electrophoresis container according to claim 13, wherein the electrode plate is made of platinum. 前記電極板が電極ベースの溝中に固定されている請求項13記載の複合電気泳動容器。   The composite electrophoresis container according to claim 13, wherein the electrode plate is fixed in a groove of the electrode base. 前記電極板間のクリアランスが0.2〜1.0cmである請求項13記載の複合電気泳動容器。   14. The composite electrophoresis container according to claim 13, wherein a clearance between the electrode plates is 0.2 to 1.0 cm. 前記電極板間のクリアランスが0.2cmである請求項13記載の複合電気泳動容器。   14. The composite electrophoresis container according to claim 13, wherein a clearance between the electrode plates is 0.2 cm. 前記電極板が平行に配置されている請求項13記載の複合電気泳動容器。   14. The composite electrophoresis container according to claim 13, wherein the electrode plates are arranged in parallel. 前記電極ベースが取り外し可能な型又は固定型である請求項13記載の複合電気泳動容器。   14. The composite electrophoresis container according to claim 13, wherein the electrode base is a removable type or a fixed type. 前記電極ベースが取り外し可能な型である請求項13記載の複合電気泳動容器。   14. The composite electrophoresis container according to claim 13, wherein the electrode base is of a removable type. 請求項6〜10のいずれか1項記載の装置で完結されることを特徴とする液晶を精製するための電気泳動方法。   An electrophoresis method for purifying a liquid crystal, the method being completed by the apparatus according to claim 6. 請求項11又は12記載の装置を使用して行なわれることを特徴とする液晶を精製するための電気泳動方法。   An electrophoresis method for purifying a liquid crystal, which is performed using the apparatus according to claim 11. 請求項13〜20のいずれか1項記載の装置を使用して行なわれることを特徴とする液晶を精製するための電気泳動方法。   An electrophoresis method for purifying a liquid crystal, which is performed using the apparatus according to any one of claims 13 to 20. 前記方法が塩吸収方法と組み合わされて液晶を精製し得る請求項21〜23のいずれか1項記載の方法。   24. The method according to any one of claims 21 to 23, wherein said method is capable of purifying liquid crystals in combination with a salt absorption method.
JP2003324945A 2003-05-22 2003-09-17 High-performance purification method and apparatus for liquid crystal with high specific resistance Expired - Lifetime JP4288125B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW092113858A TWI297282B (en) 2003-05-22 2003-05-22 High performance purification process and device for high specific resistance liquid crystal

Publications (2)

Publication Number Publication Date
JP2004346295A true JP2004346295A (en) 2004-12-09
JP4288125B2 JP4288125B2 (en) 2009-07-01

Family

ID=33538458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324945A Expired - Lifetime JP4288125B2 (en) 2003-05-22 2003-09-17 High-performance purification method and apparatus for liquid crystal with high specific resistance

Country Status (3)

Country Link
JP (1) JP4288125B2 (en)
KR (1) KR100604399B1 (en)
TW (1) TWI297282B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399426B2 (en) * 2004-03-29 2008-07-15 Dai Nippon Printing Co., Ltd. Liquid crystalline organic semiconductor material and organic semiconductor structure using the same
US9366261B2 (en) 2012-01-18 2016-06-14 Thoratec Corporation Centrifugal pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399426B2 (en) * 2004-03-29 2008-07-15 Dai Nippon Printing Co., Ltd. Liquid crystalline organic semiconductor material and organic semiconductor structure using the same
US9366261B2 (en) 2012-01-18 2016-06-14 Thoratec Corporation Centrifugal pump device

Also Published As

Publication number Publication date
TW200425943A (en) 2004-12-01
TWI297282B (en) 2008-06-01
JP4288125B2 (en) 2009-07-01
KR100604399B1 (en) 2006-07-25
KR20040100815A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
EP0750334B1 (en) Method for cleaning semiconductor wafers
DE60004268T2 (en) DEVICE AND METHOD FOR TREATING WATER WITH OZONE PRODUCED BY ELECTROLYSIS
CN1178392A (en) Electrostatic chucks and method and apparatus for treating samples using the chucks
CN105271475A (en) Treatment liquid production device and treatment liquid production method
JP4288125B2 (en) High-performance purification method and apparatus for liquid crystal with high specific resistance
EP2045366B1 (en) Method for vacuum-compression micro-plasma oxidation and device for carrying out said method
CN214735066U (en) Device for removing sludge in sewage
CN206779150U (en) A kind of electrolytic cell of interchangeable electrode
TW201006541A (en) Method and device for recovering liquid crystal of waste panels
CN109013692A (en) Method for strengthening remediation of heavy metal contaminated soil and application
JP2013173934A (en) Nematic liquid-crystalline mixture having high specific resistance and method for purifying the same
CN101947529B (en) Liquid crystal display screen hollow cell cleaning process before crystal filling
JP2017021241A (en) Processing apparatus and processing method of liquid crystal material, method for manufacturing liquid crystal display panel, and liquid crystal display device
CN109319914A (en) A kind of device using plate plate gas-liquid discharge in water corona treatment sewage
CN206408035U (en) The water treatment system of waste liquid is cleaned in a kind of circuit board group piece installing
CN111575765A (en) Light-oriented deposition pool and use method thereof
CN114163086A (en) Treatment device and method for heavy metal polluted wastewater
KR20170075391A (en) Plasma processing apparatus for processing contaminated subject using rotating electrode
EP1696026A1 (en) Method of concentrating and purifying nucleic acid and apparatus therefor
JP7076782B2 (en) Pulse power application device and liquid processing method
TWI282359B (en) Purification process and purification devices for liquid crystal
CN207294398U (en) A kind of Full-automatic life waste water treating device
CN115889332B (en) Wafer cleaning system
JPS61220434A (en) Wafer washing apparatus
KR102267914B1 (en) Apparatus for suppying chemical, method for removing particle of chemical, nozzle unit and apparatus for treating substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4288125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term