JP2004332613A - Air bypass valve control device for internal combustion engine with supercharger - Google Patents

Air bypass valve control device for internal combustion engine with supercharger Download PDF

Info

Publication number
JP2004332613A
JP2004332613A JP2003129160A JP2003129160A JP2004332613A JP 2004332613 A JP2004332613 A JP 2004332613A JP 2003129160 A JP2003129160 A JP 2003129160A JP 2003129160 A JP2003129160 A JP 2003129160A JP 2004332613 A JP2004332613 A JP 2004332613A
Authority
JP
Japan
Prior art keywords
air bypass
valve
supercharger
passage
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003129160A
Other languages
Japanese (ja)
Other versions
JP3856228B2 (en
Inventor
Ryuji Kono
龍治 河野
Takashi Furuhashi
貴志 古橋
Takenori Tsuji
剛典 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003129160A priority Critical patent/JP3856228B2/en
Publication of JP2004332613A publication Critical patent/JP2004332613A/en
Application granted granted Critical
Publication of JP3856228B2 publication Critical patent/JP3856228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air bypass valve control device for an internal combustion engine with a supercharger, for controlling an air bypass valve provided therein to properly handle a waist gate valve driving mechanism, when malfunctioned. <P>SOLUTION: The internal combustion engine with the supercharger has the supercharger 10 consisting of a turbine arranged in an exhaust passage and a compressor arranged in an intake passage, the waist gate valve 21 mounted in a bypass line 20 for bypassing the turbine of the supercharger in the exhaust passage, and the waist gate valve driving mechanism 23 for driving the waist gate valve 21. The air bypass valve control device for the internal combustion engine with the supercharger comprises an air bypass valve mechanism 31 for communicating/shutting off an air bypass line 30 bypassing the compressor of the supercharger 10 in the intake passage and a control means 50 for controlling the air bypass valve mechanism 31. When determining that the waist gate valve driving mechanism 23 is malfunctioned, the control means 50 controls the air bypass valve mechanism 31 to put the air bypass line 30 into a communicated condition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、過給機付き内燃機関におけるエアバイパスバルブ制御装置に関する。
【0002】
【従来の技術】
過給機付き内燃機関において、吸気通路に過給圧センサを備え、同過給圧センサの測定過給圧に基づいてウエストゲートの開度をフィードバック制御する例が提案されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−345851号公報
【0004】
前記特許文献1においては、過給圧センサが故障と判定されると、測定過給圧を使用しない追従制御により過給圧制御が行われることが開示されている。
【0005】
【発明が解決しようとする課題】
しかしウエストゲートの駆動機構に異常が生じたときの対処については、開示されていない。
【0006】
本発明は、かかる点に鑑みなされたもので、その目的とする処は、エアバイパスバルブを備え、ウエストゲートバルブ駆動機構に異常が生じたときに、エアバイパスバルブを制御して適切に対処できる過給機付き内燃機関のエアバイパスバルブ制御装置を供する点にある。
【0007】
【課題を解決するための手段及び作用効果】
上記目的を達成するために、本請求項1記載の発明は、排気通路に配したタービンと吸気通路に配したコンプレッサとからなる過給機と、排気通路における前記過給機のタービンを迂回するバイパス通路に介装されたウエストゲートバルブと、前記ウエストゲートバルブを駆動するウエストゲートバルブ駆動機構とを備えた過給機付き内燃機関において、吸気通路の前記過給機のコンプレッサを迂回するエアバイパス通路を連通・遮断するエアバイパスバルブ機構と、前記エアバイパスバルブ機構を制御する制御手段とを備え、前記制御手段は、前記ウエストゲートバルブ駆動機構が異常であると判断すると、前記エアバイパス通路を連通可能状態とするよう前記エアバイパスバルブ機構を制御する過給機付き内燃機関のエアバイパスバルブ制御装置とした。
【0008】
ウエストゲートバルブ駆動機構に異常が生じているときに、エアバイパス通路を連通可能状態とし、所定圧以上の過給圧に対してエアバイパス通路を連通して、所定圧以下に制御し、減速時等のサージ音を低減し、吸気系配管のはずれおよび過給圧のオーバシュートを防止することができる。
【0009】
【発明の実施の形態】
以下本発明に係る一実施の形態について図1ないし図3に基づき説明する。
本実施の形態に係る過給機付き内燃機関およびウエストゲートバルブ制御装置の概略構成図を図1に示す。
【0010】
内燃機関1は、ピストン3が往復動するシリンダ2内の燃焼室から吸気のための吸気通路4と排気のための排気通路5が延出しており、排気通路5に配設されたタービン11と吸気通路4に配設されたコンプレッサ12が一体となって過給機10が構成されている。
【0011】
吸気通路4の前記コンプレッサ12より上流側端部にエアクリーナ6が設けられており、コンプレッサ12より下流側にはインタクーラ7およびスロットルバルブ8が順に配設されている。
【0012】
排気通路5において過給機10のタービン11を迂回してタービン11の上流側と下流側を連通する排気バイパス通路20が設けられ、同排気バイパス通路20にウエストゲートバルブ21が介装され、ウエストゲートバルブ21により排気バイパス通路20の開閉が行われる。
【0013】
ウエストゲートバルブ21は、ダイヤフラム式アクチュエータ24の圧力室24bと連通してダイヤフラム式アクチュエータ24により開閉駆動される。
ダイヤフラム式アクチュエータ24のダイヤフラム室24aは導圧通路25を介してコンプレッサ12より上流側の吸気通路4と連通している。
【0014】
導圧通路25の途中にウエストゲートソレノイドバルブ26が介装され、ウエストゲートソレノイドバルブ26は、ウエストゲートソレノイド27により開閉駆動する。
【0015】
なお導圧通路25は、ウエストゲートソレノイドバルブ26の下流側で枝通路25aが分岐してコンプレッサ12の下流側の吸気通路4に連通し、枝通路25aにはオリフィス28が形成されている。
【0016】
以上のようにダイヤフラム式アクチュエータ24およびウエストゲートソレノイド27等によりウエストゲートバルブ駆動機構23が構成される。
【0017】
ウエストゲートバルブ駆動機構23は、ウエストゲートソレノイド27への通電によりウエストゲートソレノイドバルブ26が導圧通路25を開き、吸気圧をダイヤフラム式アクチュエータ24のダイヤフラム室24aに導入し、圧力室24bの昇圧によりウエストゲートバルブ21が排気バイパス通路20を閉じる。
【0018】
ウエストゲートソレノイド27への通電をカットすると、ダイヤフラム式アクチュエータ24のダイヤフラム室24aの圧力が抜け、圧力室24bの減圧によりウエストゲートバルブ21が排気バイパス通路20を開く。
【0019】
ウエストゲートソレノイド27への通電は、デューティ比制御されたパルス駆動信号により行われ、デューティ比によりウエストゲートバルブ21によるウエストゲートの開度が制御され、開度が狭いほど排気が過給機10のタービン11の方を流れて過給が促進される。
【0020】
したがってウエストゲートソレノイド27への通電がオフしてウエストゲートバルブ21が排気バイパス通路20を全開状態とすると、排気は殆ど排気バイパス通路20を流れて過給機10による過給圧は小さい所定圧以下に抑えられる。
【0021】
また吸気通路4には、コンプレッサ12を迂回してインタクーラ7の下流側とコンプレッサ12の上流側とを連通するエアバイパス通路30が設けられており、同エアバイパス通路30にリリーフバルブ32が介装されている。
【0022】
リリーフバルブ32は、ダイヤフラム式のバルブで、バルブ本体32a内が弁体32bの取り付けられたダイヤフラム32cによりダイヤフラム室32dと連通室32eに分割され、弁体32bの移動でエアバイパス通路30の開閉を行っている。
弁体32bはスプリング32fにより閉方向に付勢されている。
【0023】
連通室32e内の圧力がダイヤフラム室32d内の圧力より所定圧以上に高くなると、弁体32bが開いてエアバイパス通路30を連通し、コンプレッサ12の下流側の過給圧を上流側に還流してリリーフする。
【0024】
ダイヤフラム室32dは、3ポート電磁弁であるエアバイパスバルブ35の出力ポート35cに連通しており、エアバイパスバルブ35の入力ポート35bはスロットルバルブ8の下流側と連通し、もう1つの入力ポート35aはスロットルバルブ8の上流側と連通している。
【0025】
以上のようにエアバイパスバルブ機構31は構成されており、エアバイパスソレノイド36の消磁状態で、入力ポート35bが閉じられ入力ポート35aが開かれることによりスロットルバルブ8の下流側の吸気負圧が出力ポート35cを介してリリーフバルブ32のダイヤフラム室32dに作用し、リリーフバルブ32は開弁可能状態とする。
【0026】
エアバイパスソレノイド36が励磁されると入力ポート35aが閉じ入力ポート35bが開かれることによりスロットルバルブ8の上流側の吸気圧が出力ポート35cを介してリリーフバルブ32のダイヤフラム室32dに作用し、よって連通室32eと同圧となってスプリング32の付勢力によりリリーフバルブ32は閉弁状態が維持されることになる。
【0027】
したがってエアバイパスソレノイド36への通電がオフされると、リリーフバルブ32は開弁可能状態となって過給機10の過給圧が所定圧以上になれば、リリーフバルブ32が開いてエアバイパス通路30が連通して減圧することになる。
【0028】
本内燃機関1の種々の制御は、ECU(電子制御ユニット)50により行われており、ECU50には内燃機関1の運転状態を示す各種センサからの信号、例えば機関回転数Ne,スロットル開度Th,吸気負圧Pb,大気圧Pa,吸気温度T等が入力され、処理されて種々の制御がなされ、前記ウエストゲートバルブ駆動機構23の制御およびエアバイパスバルブ機構31のエアバイパスソレノイド36の制御もECU50により行われる。
【0029】
概ね以上のような過給機付き内燃機関1においてECU50によるウエストゲートバルブ駆動機構23の異常の判定と、異常の有無に応じたエアバイパスバルブ機構31の制御を図2および図3のフローチャートに基づいて説明する。
【0030】
図2にはウエストゲートバルブ駆動機構23の異常を判定する手順が示されており、まずウエストゲートソレノイドバルブ26を駆動するウエストゲートソレノイド27に印加されるIG1電圧が所定電圧以下か否かを判定し(ステップ1)、所定電圧以下ならば異常判定を行わず、ステップ5に飛んで異常状態タイマーを初期化(タイマーをセットしスタートさせる)し、正常状態タイマーを初期化する(ステップ6)。
【0031】
IG1電圧が所定電圧を越えていれば、ステップ2に進みウエストゲートソレノイド27への出力のデューティ比が所定デューティ比(例えば90%)以上か否かを判別し、ステップ3でウエストゲートソレノイド27への出力のデューティ比が所定デューティ比(例えば10%)以下か否かを判別し、デューティ比が過度に大きいか小さいときは、不安定で正確に異常を検知できないので、ステップ5に飛んで異常判定を行わない。
【0032】
また次のステップ4ではバッテリが所定電圧以上か否かを判別しており、所定電圧未満であっても正確な異常判定を行えないので、ステップ5に飛んで異常判定を行わない。
【0033】
ステップ4でバッテリが所定電圧以上と判定されたとき、ステップ7に進みウエストゲートソレノイド信号を検出(リターン)してデューティ信号が存在するか否かを判別する。
【0034】
デューティ信号が存在すればウエストゲートソレノイド信号は正常であり、ステップ8に進み異常状態タイマーを初期化し、正常状態が所定時間経過したか否かを正常状態タイマーにより判別し(ステップ9)、所定時間が経過したときにステップ10に進んで正常状態を確定し、異常フラグFw=0とする。
【0035】
ステップ7でウエストゲートソレノイド信号を検出(リターン)してデューティ信号が存在しないと判別したときは、正常ではなく、ステップ11に飛んで異常状態が所定時間経過したか否かを異常状態タイマーにより判別し、所定時間が経過したときにステップ12に進んで異常状態を確定し、異常フラグFwに「1」を立てる。
そして正常状態タイマーを初期化する(ステップ13)。
【0036】
以上のようにウエストゲートソレノイド信号からウエストゲートバルブ駆動機構23の異常を判定し、判定した結果である異常フラグFwに基づいてエアバイパスバルブ機構31の制御がなされる。
エアバイパスバルブ機構31の制御手順を図3に示すフローチャートに従って説明する。
【0037】
まずステップ21で、内燃機関1の運転状態を示すスロットル開度Th,吸気負圧Pb等および前記異常フラグFwのデータを入力する。
そして次のステップ22で異常フラグFwに「1」が立っているか否かを判別し、「1」が立ってウエストゲートバルブ駆動機構23に異常があると判別されたときは、ステップ33に飛んでエアバイパスソレノイド36への通電をオフする。
【0038】
エアバイパスソレノイド36への通電をオフすると、エアバイパスバルブ35は入力ポート35bが閉じられ入力ポート35aが開かれることによりスロットルバルブ8の下流側の吸気負圧が出力ポート35cを介してリリーフバルブ32のダイヤフラム室32dに作用し、リリーフバルブ32は開弁可能状態(過給圧が所定圧以上でリリーフする状態)とする。
【0039】
したがってウエストゲートバルブ駆動機構23に異常が生じているときに、過給機10による過給がウエストゲートで制御されないまま上昇してもリリーフバルブ32は開弁可能状態にあるので、過給圧が所定圧以上であるとリリーフバルブ32が開いてエアバイパス通路30が連通されて過給圧が減圧される。
【0040】
このようにウエストゲートバルブ駆動機構23に異常が生じているとき、エアバイパスバルブ機構31が過給圧を所定圧以下に抑制するので、減速時等のサージ音を低減し、吸気系配管のはずれおよび過給圧のオーバシュートを防止することができる。
【0041】
なおステップ22でウエストゲートソレノイド信号異常がない(Fw=0)と判別されると、ステップ23に進み内燃機関1の始動後一定時間が経過しているか否かを判別し、一定時間が経過していないで内燃機関1の安定した駆動が保証されない間はステップ34に飛んでエアバイパスソレノイド36への通電をオンし、リリーフバルブ32を閉弁状態に維持し、過給機10による過給を抑制することなく行える状態とする。
【0042】
ステップ23で内燃機関1の始動後一定時間が経過して安定した駆動に入ったと判断したときは、ステップ24に進みエアバイパスソレノイド36への通電がオフ状態か否かを判別し、オフ状態ならステップ25に進むがオフ状態でない(オン状態)ならステップ27に飛ぶ。
【0043】
機関始動後の当初であればオン状態なので、ステップ27に飛び機関回転数Neに基づきエアバイパスソレノイド36への通電をオン制御する吸気負圧Ponを検索する。
機関回転数Neに対する通電オン制御する上限吸気負圧Ponは、予め決定されてマップとして用意されている。
【0044】
そして次のステップ28で、上記検索された通電オン制御する上限吸気負圧Ponと先に入力された現在の吸気負圧Pbが比較され、上限吸気負圧Pon未満であればステップ34に飛んでエアバイパスソレノイド36への通電をオン制御し過給を続行し、上限吸気負圧Pon以上のときはステップ31に飛ぶ。
【0045】
ステップ31では、内燃機関の1回転当りの吸気負圧Pbの負圧変動ΔPbが所定値ΔP以上か否かを判別し、所定値ΔP未満ならばステップ34に飛んでエアバイパスソレノイド36への通電をオン制御し過給を続行し、負圧変動ΔPbが大きく所定値ΔP以上であればステップ32に進みABVオフ中タイマーを初期化し、エアバイパスソレノイド36への通電をオフし(ステップ33)、リリーフバルブ32は開弁可能状態すなわち過給圧のリリーフ可能状態とする。
【0046】
先のステップ24でエアバイパスソレノイド36への通電がオフ状態と判別されたときは、ステップ25に進みスロットル開度Thが所定開度Th1を越えているか否かを判別し、所定開度Th1を越えているときはステップ34に飛んでエアバイパスソレノイド36への通電をオン制御し過給圧をリリーフされることなく過給することができるようにする。
【0047】
ステップ25でスロットル開度Thが所定開度Th1以下であると、ステップ26に進み前記ABVオフ中タイマーが所定時間を計時したか否かを判別し、所定時間が経過するまではステップ33に飛んでエアバイパスソレノイド36への通電のオフ状態を継続し、所定時間が経過するとステップ29に進み機関回転数Neに基づき予め用意されたマップからエアバイパスソレノイド36への通電をオフ制御する吸気負圧Poffを検索する。
【0048】
そして次のステップ30で、上記のように検索された通電オフ制御する上限吸気負圧Poffと現在の吸気負圧Pbが比較され、上限吸気負圧Poff未満であればステップ34に飛んでエアバイパスソレノイド36への通電をオフからオンに制御して過給圧のリリーフなしに過給を行うようにする。
【0049】
吸気負圧Pbが上限吸気負圧Poff以上であっても、前記したステップ31に進み、負圧変動ΔPbが所定値ΔP以上か否かを判別して、所定値ΔP未満ならばステップ34に飛んでエアバイパスソレノイド36への通電をオン制御する。
【0050】
そして負圧変動ΔPbが大きく所定値ΔP以上であればステップ32に進みABVオフ中タイマーを初期化(タイマーをセットしスタートさせる)し、エアバイパスソレノイド36への通電のオフ状態を維持し(ステップ33)、過給圧のリリーフ可能状態を維持する。
【0051】
エアバイパスバルブ機構31は、以上のように制御される。
前記したようにエアバイパスバルブ機構31は、データ入力後のステップ22で異常フラグFwに「1」が立ってウエストゲートバルブ駆動機構23の異常を示したときには、直接ステップ33に飛んでエアバイパスソレノイド36への通電をオフし過給圧が所定圧以上でリリーフする状態とし、減速時等のサージ音を低減し、吸気系配管のはずれおよび過給圧のオーバシュートを防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る過給機付き内燃機関およびウエストゲートバルブ制御装置の概略構成図である。
【図2】ノックセンサの異常を判定する手順を示すフローチャートである。
【図3】ウエストゲートバルブ駆動機構の制御手順を示すフローチャートである。
【符号の説明】
1…内燃機関、2…シリンダ、3…ピストン、4…吸気通路、5…排気通路、6…エアクリーナ、7…インタクーラ、8…スロットルバルブ、
10…過給機、11…タービン、12…コンプレッサ、
20…排気バイパス通路、21…ウエストゲートバルブ、23…ウエストゲートバルブ駆動機構、24…ダイヤフラム式アクチュエータ、25…導圧通路、26…ウエストゲートソレノイドバルブ、27…ウエストゲートソレノイド、28…オリフィス、
30…エアバイパス通路、31…エアバイパスバルブ機構、32…リリーフバルブ、35…エアバイパスバルブ、36…エアバイパスソレノイド、
50…ECU。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air bypass valve control device for a supercharged internal combustion engine.
[0002]
[Prior art]
In an internal combustion engine with a supercharger, there has been proposed an example in which a supercharging pressure sensor is provided in an intake passage, and the opening degree of a wastegate is feedback-controlled based on a supercharging pressure measured by the supercharging pressure sensor (for example, see Patent Reference 1).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-345851
Patent Literature 1 discloses that when a supercharging pressure sensor is determined to be faulty, supercharging pressure control is performed by follow-up control that does not use a measured supercharging pressure.
[0005]
[Problems to be solved by the invention]
However, it does not disclose how to deal with an abnormality in the drive mechanism of the wastegate.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide an air bypass valve, and when an abnormality occurs in a wastegate valve driving mechanism, control the air bypass valve to appropriately cope with the problem. The present invention provides an air bypass valve control device for an internal combustion engine with a supercharger.
[0007]
Means for Solving the Problems and Functions and Effects
In order to achieve the above object, the invention according to claim 1 of the present invention bypasses a turbocharger including a turbine disposed in an exhaust passage and a compressor disposed in an intake passage, and a turbine of the supercharger in the exhaust passage. In an internal combustion engine with a supercharger having a wastegate valve interposed in a bypass passage and a wastegate valve driving mechanism for driving the wastegate valve, an air bypass bypassing a compressor of the supercharger in an intake passage An air bypass valve mechanism for communicating and blocking the passage, and control means for controlling the air bypass valve mechanism, wherein the control means, when it is determined that the wastegate valve drive mechanism is abnormal, the air bypass passage An air bypass valve for a supercharged internal combustion engine that controls the air bypass valve mechanism so as to enable communication. And a control device.
[0008]
When an abnormality occurs in the wastegate valve driving mechanism, the air bypass passage is made communicable, and the air bypass passage is communicated with a supercharging pressure equal to or higher than a predetermined pressure so that the pressure is controlled to a predetermined pressure or less. It is possible to reduce surge noise such as the above, and prevent disconnection of the intake system piping and overshoot of the supercharging pressure.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described below with reference to FIGS.
FIG. 1 is a schematic configuration diagram of an internal combustion engine with a supercharger and a wastegate valve control device according to the present embodiment.
[0010]
In the internal combustion engine 1, an intake passage 4 for intake and an exhaust passage 5 for exhaust extend from a combustion chamber in a cylinder 2 in which a piston 3 reciprocates, and a turbine 11 provided in the exhaust passage 5 The compressor 12 provided in the intake passage 4 is integrated with the turbocharger 10.
[0011]
An air cleaner 6 is provided at an end of the intake passage 4 upstream of the compressor 12, and an intercooler 7 and a throttle valve 8 are sequentially provided downstream of the compressor 12.
[0012]
An exhaust bypass passage 20 is provided in the exhaust passage 5 to bypass the turbine 11 of the supercharger 10 and communicate between the upstream side and the downstream side of the turbine 11. A waste gate valve 21 is interposed in the exhaust bypass passage 20, The gate valve 21 opens and closes the exhaust bypass passage 20.
[0013]
The waste gate valve 21 is opened and closed by the diaphragm actuator 24 in communication with the pressure chamber 24b of the diaphragm actuator 24.
The diaphragm chamber 24a of the diaphragm type actuator 24 communicates with the intake passage 4 upstream of the compressor 12 via the pressure guiding passage 25.
[0014]
A waste gate solenoid valve 26 is interposed in the middle of the pressure guiding passage 25, and the waste gate solenoid valve 26 is driven to open and close by a waste gate solenoid 27.
[0015]
In the pressure guiding passage 25, a branch passage 25a is branched downstream of the waste gate solenoid valve 26 and communicates with the intake passage 4 downstream of the compressor 12, and an orifice 28 is formed in the branch passage 25a.
[0016]
As described above, the wastegate valve driving mechanism 23 is configured by the diaphragm type actuator 24 and the wastegate solenoid 27 and the like.
[0017]
The waste gate valve driving mechanism 23 is configured such that the waste gate solenoid valve 26 opens the pressure guiding passage 25 by energizing the waste gate solenoid 27, and introduces the intake pressure into the diaphragm chamber 24a of the diaphragm type actuator 24, and increases the pressure in the pressure chamber 24b. The wastegate valve 21 closes the exhaust bypass passage 20.
[0018]
When the power supply to the waste gate solenoid 27 is cut off, the pressure in the diaphragm chamber 24a of the diaphragm type actuator 24 is released, and the pressure in the pressure chamber 24b is reduced, so that the waste gate valve 21 opens the exhaust bypass passage 20.
[0019]
The energization of the wastegate solenoid 27 is performed by a pulse drive signal whose duty ratio is controlled, and the opening of the wastegate by the wastegate valve 21 is controlled by the duty ratio. Supercharging is promoted by flowing toward the turbine 11.
[0020]
Therefore, when the power supply to the wastegate solenoid 27 is turned off and the wastegate valve 21 fully opens the exhaust bypass passage 20, almost all of the exhaust gas flows through the exhaust bypass passage 20, and the supercharging pressure by the supercharger 10 is smaller than a predetermined pressure. Can be suppressed.
[0021]
The intake passage 4 is provided with an air bypass passage 30 that bypasses the compressor 12 and connects the downstream side of the intercooler 7 and the upstream side of the compressor 12, and a relief valve 32 is interposed in the air bypass passage 30. Have been.
[0022]
The relief valve 32 is a diaphragm-type valve. The inside of a valve body 32a is divided into a diaphragm chamber 32d and a communication chamber 32e by a diaphragm 32c to which a valve body 32b is attached, and the opening and closing of the air bypass passage 30 by movement of the valve body 32b. Is going.
The valve element 32b is urged in the closing direction by a spring 32f.
[0023]
When the pressure in the communication chamber 32e becomes higher than the pressure in the diaphragm chamber 32d by a predetermined pressure or more, the valve body 32b opens to communicate with the air bypass passage 30, and recirculates the supercharging pressure on the downstream side of the compressor 12 to the upstream side. To relieve.
[0024]
The diaphragm chamber 32d communicates with an output port 35c of an air bypass valve 35, which is a three-port solenoid valve. An input port 35b of the air bypass valve 35 communicates with the downstream side of the throttle valve 8, and another input port 35a. Communicates with the upstream side of the throttle valve 8.
[0025]
The air bypass valve mechanism 31 is configured as described above. When the input port 35b is closed and the input port 35a is opened in the demagnetized state of the air bypass solenoid 36, the intake negative pressure on the downstream side of the throttle valve 8 is output. It acts on the diaphragm chamber 32d of the relief valve 32 via the port 35c, so that the relief valve 32 can be opened.
[0026]
When the air bypass solenoid 36 is excited, the input port 35a is closed and the input port 35b is opened, so that the intake pressure on the upstream side of the throttle valve 8 acts on the diaphragm chamber 32d of the relief valve 32 via the output port 35c. With the same pressure as the communication chamber 32e, the relief valve 32 is kept closed by the urging force of the spring 32.
[0027]
Therefore, when the power supply to the air bypass solenoid 36 is turned off, the relief valve 32 is opened, and when the supercharging pressure of the supercharger 10 becomes higher than a predetermined pressure, the relief valve 32 is opened to open the air bypass passage. 30 communicates and the pressure is reduced.
[0028]
Various controls of the internal combustion engine 1 are performed by an ECU (Electronic Control Unit) 50. The ECU 50 provides signals from various sensors indicating the operating state of the internal combustion engine 1, for example, the engine speed Ne and the throttle opening Th. , The intake negative pressure Pb, the atmospheric pressure Pa, the intake temperature T, and the like are input and processed to perform various controls. The control of the wastegate valve driving mechanism 23 and the control of the air bypass solenoid 36 of the air bypass valve mechanism 31 are also performed. This is performed by the ECU 50.
[0029]
In the internal combustion engine 1 with the supercharger described above, the ECU 50 determines whether the wastegate valve driving mechanism 23 is abnormal and controls the air bypass valve mechanism 31 according to the abnormality based on the flowcharts of FIGS. 2 and 3. Will be explained.
[0030]
FIG. 2 shows a procedure for determining an abnormality of the wastegate valve driving mechanism 23. First, it is determined whether the IG1 voltage applied to the wastegate solenoid 27 that drives the wastegate solenoid valve 26 is equal to or lower than a predetermined voltage. Then, if the voltage is equal to or lower than the predetermined voltage, the abnormality determination is not performed, and the process jumps to step 5 to initialize the abnormal state timer (set and start the timer) and initialize the normal state timer (step 6).
[0031]
If the IG1 voltage exceeds the predetermined voltage, the process proceeds to step 2 to determine whether or not the duty ratio of the output to the wastegate solenoid 27 is equal to or more than a predetermined duty ratio (for example, 90%). It is determined whether the output duty ratio is equal to or less than a predetermined duty ratio (for example, 10%). If the duty ratio is excessively large or small, the abnormality is unstable and cannot be accurately detected. No judgment is made.
[0032]
Further, in the next step 4, it is determined whether or not the battery voltage is equal to or higher than a predetermined voltage. Even if the battery voltage is lower than the predetermined voltage, accurate abnormality determination cannot be performed.
[0033]
If it is determined in step 4 that the battery voltage is equal to or higher than the predetermined voltage, the process proceeds to step 7 where a wastegate solenoid signal is detected (returned) to determine whether a duty signal is present.
[0034]
If the duty signal is present, the wastegate solenoid signal is normal, the process proceeds to step 8, the abnormal state timer is initialized, and it is determined whether the normal state has passed a predetermined time by the normal state timer (step 9), and the predetermined time is determined. When the time elapses, the process proceeds to step 10 to determine the normal state, and sets the abnormal flag Fw = 0.
[0035]
If the wastegate solenoid signal is detected (returned) in step 7 and it is determined that the duty signal does not exist, it is not normal, and the process jumps to step 11 to determine whether or not the abnormal state has passed for a predetermined time by the abnormal state timer. Then, when a predetermined time has elapsed, the process proceeds to step 12 to determine the abnormal state, and sets “1” to the abnormal flag Fw.
Then, the normal state timer is initialized (step 13).
[0036]
As described above, the abnormality of the wastegate valve driving mechanism 23 is determined from the wastegate solenoid signal, and the air bypass valve mechanism 31 is controlled based on the abnormality flag Fw that is the result of the determination.
The control procedure of the air bypass valve mechanism 31 will be described with reference to the flowchart shown in FIG.
[0037]
First, in step 21, data of the throttle opening Th indicating the operating state of the internal combustion engine 1, the intake negative pressure Pb, and the like and the abnormal flag Fw are input.
In the next step 22, it is determined whether or not "1" is set in the abnormality flag Fw. If it is determined that "1" is set and the wastegate valve driving mechanism 23 is abnormal, the process jumps to step 33. The power supply to the air bypass solenoid 36 is turned off.
[0038]
When the power supply to the air bypass solenoid 36 is turned off, the air bypass valve 35 closes the input port 35b and opens the input port 35a, so that the intake negative pressure downstream of the throttle valve 8 is reduced via the output port 35c to the relief valve 32. The relief valve 32 is brought into a valve openable state (a state in which the supercharging pressure is relieved at a predetermined pressure or higher).
[0039]
Therefore, when an abnormality occurs in the wastegate valve driving mechanism 23, even if the supercharging by the supercharger 10 rises without being controlled by the wastegate, the relief valve 32 is in a valve openable state. When the pressure is equal to or higher than the predetermined pressure, the relief valve 32 is opened, the air bypass passage 30 is communicated, and the supercharging pressure is reduced.
[0040]
As described above, when the waste gate valve driving mechanism 23 has an abnormality, the air bypass valve mechanism 31 suppresses the supercharging pressure to a predetermined pressure or less. In addition, it is possible to prevent an overshoot of the supercharging pressure.
[0041]
If it is determined in step 22 that there is no wastegate solenoid signal abnormality (Fw = 0), the process proceeds to step 23, where it is determined whether or not a fixed time has elapsed since the start of the internal combustion engine 1, and the fixed time has elapsed. If it is not possible to ensure stable driving of the internal combustion engine 1, the process jumps to step 34 to turn on the power supply to the air bypass solenoid 36, keeps the relief valve 32 closed, and stops the supercharging by the supercharger 10. It can be done without suppression.
[0042]
If it is determined in step 23 that a certain period of time has elapsed after the start of the internal combustion engine 1 and stable driving has been started, the process proceeds to step 24, where it is determined whether or not energization of the air bypass solenoid 36 is off. Proceed to step 25, but if not in the off state (on state), jump to step 27.
[0043]
Since it is in the ON state at the beginning after the engine is started, the routine jumps to step 27 to search for the intake negative pressure Pon for controlling the energization of the air bypass solenoid 36 based on the engine speed Ne.
The upper limit intake negative pressure Pon for controlling the energization on the engine speed Ne is determined in advance and prepared as a map.
[0044]
Then, in the next step 28, the searched upper limit intake negative pressure Pon to be controlled to be energized is compared with the current intake negative pressure Pb previously input, and if it is less than the upper limit intake negative pressure Pon, the routine jumps to step 34. The energization of the air bypass solenoid 36 is controlled to be ON, and the supercharging is continued.
[0045]
In step 31, it is determined whether or not the negative pressure fluctuation ΔPb of the intake negative pressure Pb per one rotation of the internal combustion engine is equal to or more than a predetermined value ΔP. If less than the predetermined value ΔP, the process jumps to step 34 to energize the air bypass solenoid 36. Is turned on to continue the supercharging. If the negative pressure fluctuation ΔPb is large and is equal to or more than the predetermined value ΔP, the routine proceeds to step 32, the ABV off timer is initialized, and the energization to the air bypass solenoid 36 is turned off (step 33). The relief valve 32 is brought into a valve openable state, that is, a state in which the supercharging pressure can be released.
[0046]
If it is determined in step 24 that the energization of the air bypass solenoid 36 is off, the process proceeds to step 25, where it is determined whether or not the throttle opening Th exceeds a predetermined opening Th1, and the predetermined opening Th1 is determined. If it exceeds, the routine jumps to step 34 to turn on the energization of the air bypass solenoid 36 so that the supercharging pressure can be supercharged without being relieved.
[0047]
If the throttle opening Th is equal to or less than the predetermined opening Th1 in step 25, the process proceeds to step 26, where it is determined whether or not the ABV off timer has counted a predetermined time, and the process skips to step 33 until the predetermined time has elapsed. To continue the off state of energization of the air bypass solenoid 36, and when a predetermined time elapses, the routine proceeds to step 29, where the intake negative pressure for controlling the energization of the air bypass solenoid 36 to be off from a map prepared in advance based on the engine speed Ne. Search for Poff.
[0048]
Then, in the next step 30, the upper limit intake negative pressure Poff for conducting power-off control searched as described above is compared with the current intake negative pressure Pb. The energization of the solenoid 36 is controlled from off to on to perform supercharging without relief of the supercharging pressure.
[0049]
Even if the intake negative pressure Pb is equal to or higher than the upper limit intake negative pressure Poff, the process proceeds to step 31 to determine whether the negative pressure variation ΔPb is equal to or higher than the predetermined value ΔP. To turn on the power supply to the air bypass solenoid 36.
[0050]
If the negative pressure fluctuation ΔPb is large and equal to or greater than the predetermined value ΔP, the process proceeds to step 32, where the ABV off timer is initialized (the timer is set and started), and the off state of energization to the air bypass solenoid 36 is maintained (step 33), maintaining a state in which the supercharging pressure can be relieved.
[0051]
The air bypass valve mechanism 31 is controlled as described above.
As described above, when “1” is set in the abnormality flag Fw in step 22 after the data is input to indicate the abnormality of the wastegate valve driving mechanism 23, the air bypass valve mechanism 31 directly jumps to step 33 to perform the air bypass solenoid operation. The power supply to 36 is turned off, and the supercharging pressure is relieved when the supercharging pressure is equal to or higher than a predetermined pressure. Thus, a surge noise at the time of deceleration can be reduced, and disconnection of the intake system piping and overshoot of the supercharging pressure can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an internal combustion engine with a supercharger and a wastegate valve control device according to an embodiment of the present invention.
FIG. 2 is a flowchart illustrating a procedure for determining an abnormality of a knock sensor.
FIG. 3 is a flowchart showing a control procedure of a wastegate valve driving mechanism.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Cylinder, 3 ... Piston, 4 ... Intake passage, 5 ... Exhaust passage, 6 ... Air cleaner, 7 ... Intercooler, 8 ... Throttle valve,
10: supercharger, 11: turbine, 12: compressor,
20 ... exhaust bypass passage, 21 ... waste gate valve, 23 ... waste gate valve driving mechanism, 24 ... diaphragm type actuator, 25 ... pressure guide passage, 26 ... waste gate solenoid valve, 27 ... waste gate solenoid, 28 ... orifice,
30 ... air bypass passage, 31 ... air bypass valve mechanism, 32 ... relief valve, 35 ... air bypass valve, 36 ... air bypass solenoid,
50 ... ECU.

Claims (1)

排気通路に配したタービンと吸気通路に配したコンプレッサとからなる過給機と、排気通路における前記過給機のタービンを迂回するバイパス通路に介装されたウエストゲートバルブと、前記ウエストゲートバルブを駆動するウエストゲートバルブ駆動機構とを備えた過給機付き内燃機関において、
吸気通路の前記過給機のコンプレッサを迂回するエアバイパス通路を連通・遮断するエアバイパスバルブ機構と、
前記エアバイパスバルブ機構を制御する制御手段とを備え、
前記制御手段は、前記ウエストゲートバルブ駆動機構が異常であると判断すると、前記エアバイパス通路を連通可能状態とするよう前記エアバイパスバルブ機構を制御することを特徴とする過給機付き内燃機関のエアバイパスバルブ制御装置。
A supercharger including a turbine disposed in an exhaust passage and a compressor disposed in an intake passage, a wastegate valve interposed in a bypass passage bypassing the turbine of the supercharger in the exhaust passage, and the wastegate valve. In the internal combustion engine with a supercharger equipped with a wastegate valve drive mechanism to drive,
An air bypass valve mechanism for communicating and blocking an air bypass passage that bypasses a compressor of the supercharger in the intake passage;
Control means for controlling the air bypass valve mechanism,
When the wastegate valve drive mechanism is determined to be abnormal, the control means controls the air bypass valve mechanism so as to make the air bypass passage communicable. Air bypass valve control device.
JP2003129160A 2003-05-07 2003-05-07 Air bypass valve control device for an internal combustion engine with a supercharger Expired - Fee Related JP3856228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129160A JP3856228B2 (en) 2003-05-07 2003-05-07 Air bypass valve control device for an internal combustion engine with a supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129160A JP3856228B2 (en) 2003-05-07 2003-05-07 Air bypass valve control device for an internal combustion engine with a supercharger

Publications (2)

Publication Number Publication Date
JP2004332613A true JP2004332613A (en) 2004-11-25
JP3856228B2 JP3856228B2 (en) 2006-12-13

Family

ID=33505096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129160A Expired - Fee Related JP3856228B2 (en) 2003-05-07 2003-05-07 Air bypass valve control device for an internal combustion engine with a supercharger

Country Status (1)

Country Link
JP (1) JP3856228B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002775A (en) * 2005-06-24 2007-01-11 Daihatsu Motor Co Ltd Supercharge pressure control device for internal combustion engine with supercharger
JP2008151006A (en) * 2006-12-15 2008-07-03 Toyota Motor Corp Control device of turbocharger
US7677227B2 (en) 2005-07-04 2010-03-16 Denso Corporation Apparatus and method of abnormality diagnosis for supercharging pressure control system
WO2011077517A1 (en) * 2009-12-22 2011-06-30 トヨタ自動車株式会社 Control device for internal combustion engine
JPWO2016152963A1 (en) * 2015-03-26 2017-09-28 株式会社ケーヒン Valve control device and valve system
US20180112592A1 (en) * 2015-03-26 2018-04-26 Keihin Corporation Valve control device and valve system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002775A (en) * 2005-06-24 2007-01-11 Daihatsu Motor Co Ltd Supercharge pressure control device for internal combustion engine with supercharger
JP4533808B2 (en) * 2005-06-24 2010-09-01 ダイハツ工業株式会社 Supercharging pressure control device for an internal combustion engine with a supercharger
US7677227B2 (en) 2005-07-04 2010-03-16 Denso Corporation Apparatus and method of abnormality diagnosis for supercharging pressure control system
JP2008151006A (en) * 2006-12-15 2008-07-03 Toyota Motor Corp Control device of turbocharger
WO2011077517A1 (en) * 2009-12-22 2011-06-30 トヨタ自動車株式会社 Control device for internal combustion engine
JPWO2011077517A1 (en) * 2009-12-22 2013-05-02 トヨタ自動車株式会社 Control device for internal combustion engine
JP5196036B2 (en) * 2009-12-22 2013-05-15 トヨタ自動車株式会社 Control device for internal combustion engine
US9115672B2 (en) 2009-12-22 2015-08-25 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JPWO2016152963A1 (en) * 2015-03-26 2017-09-28 株式会社ケーヒン Valve control device and valve system
US20180112592A1 (en) * 2015-03-26 2018-04-26 Keihin Corporation Valve control device and valve system
US10280834B2 (en) 2015-03-26 2019-05-07 Keihin Corporation Valve control device and valve system
US10544729B2 (en) 2015-03-26 2020-01-28 Keihin Corporation Abnormality determining valve control device and system

Also Published As

Publication number Publication date
JP3856228B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US7677227B2 (en) Apparatus and method of abnormality diagnosis for supercharging pressure control system
US10174672B2 (en) Electric waste gate valve control device
JP4872896B2 (en) Control device for an internal combustion engine with a supercharger
JP3856228B2 (en) Air bypass valve control device for an internal combustion engine with a supercharger
JP4906848B2 (en) Control method for internal combustion engine
JP3942556B2 (en) Wastegate valve control device for an internal combustion engine with a supercharger
JP2001280144A (en) Control device for air bypass valve
JPH06257449A (en) Controller of engine with mechanical supercharger
JP4390790B2 (en) Wastegate valve control device for an internal combustion engine with a supercharger
US10648401B2 (en) Engine system and method for controlling same
JPH07119475A (en) Control unit of internal combustion engine
JP2013174219A (en) Internal combustion engine
JPH0329547Y2 (en)
JPH03281932A (en) Supercharging pressure controller of two-stage supercharging internal combustion engine
JPH08218946A (en) Exhaust gas recirculation controller for diesel engine
JP2012097678A (en) Open and close control device of waste gate valve
JP2978962B2 (en) Electromagnetic drive valve control device for internal combustion engine
JPS60237153A (en) Egr apparatus for engine associated with supercharger
JPH0338414Y2 (en)
JP3289308B2 (en) Supercharging pressure control device for supercharged engine
JP3082407B2 (en) Engine intake system
JPS62195417A (en) Supercharging pressure control device of internal combustion engine
JPS61291728A (en) 2-step type supercharging device
JPS61167127A (en) Supercharging pressure control device
JPH0310348Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060906

R150 Certificate of patent or registration of utility model

Ref document number: 3856228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees