JP2004328505A - Piezoelectric oscillator - Google Patents

Piezoelectric oscillator Download PDF

Info

Publication number
JP2004328505A
JP2004328505A JP2003122419A JP2003122419A JP2004328505A JP 2004328505 A JP2004328505 A JP 2004328505A JP 2003122419 A JP2003122419 A JP 2003122419A JP 2003122419 A JP2003122419 A JP 2003122419A JP 2004328505 A JP2004328505 A JP 2004328505A
Authority
JP
Japan
Prior art keywords
wiring board
oscillator
semiconductor chip
oscillation
piezoelectric vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003122419A
Other languages
Japanese (ja)
Other versions
JP2004328505A5 (en
JP4321104B2 (en
Inventor
Kyo Horie
協 堀江
Makoto Komai
誠 駒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003122419A priority Critical patent/JP4321104B2/en
Publication of JP2004328505A publication Critical patent/JP2004328505A/en
Publication of JP2004328505A5 publication Critical patent/JP2004328505A5/ja
Application granted granted Critical
Publication of JP4321104B2 publication Critical patent/JP4321104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a very low structure of a piezoelectric oscillator, and an inexpensive and high-quality production method. <P>SOLUTION: In the structure of the piezoelectric oscillator wherein only a piezoelectric vibrator 2 and a face-down bonding type semiconductor chip constituting at least an amplifier circuit for oscillation are packaged on an upper surface of a wiring board 1 and an external terminal electrode 12 is provided on a lower surface of the wiring board 1, the wiring board 1 includes a recess for internally housing the piezoelectric vibrator 2 in a portion on an upper surface of a plate-like insulating substrate, the recess is air-tightly sealed with a lid, and the semiconductor chip is packaged in a position adjacent to the recess on the wiring board 1. Then, the semiconductor chip and an exciting electrode of the piezoelectric vibrator 2 are, and the semiconductor chip and the external terminal electrode 12 are conducted by wiring provided on an inner layer or a top layer of the wiring board 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は圧電発振器の構造の改良に関し、特に発振回路を構成する発振用ICチップと圧電体とを有する圧電発振器のパッケージの小型化、低背化を目的とした改良に関する。
【0002】
【従来の技術】
現在、携帯電話機等の移動体通信機器の普及に伴う小型化の急激な進展により、これらの通信機器に使用される水晶発振器等の圧電発振器に対しても、小型化、低背化の要請が益々高まっている。このような要請に対しては、発振器を構成する水晶振動子以外の周波数調整回路や、周波数温度補償回路等を含む発振回路を集積化することで部品点数を削減し、(以下、この集積化した発振回路を発振用ICチップと称す。)更にパッケージの構造としても様々な工夫を凝らし対応している。以下に二つの例を挙げて説明する。
【0003】
まず第一の従来の圧電発振器の構造として、セラミック等からなるパッケージ本体の上面に形成された1つの凹陥部内に、圧電振動片と圧電振動子以外の発振回路部分を構成する発振用ICチップとを共に収納した状態で、その凹陥部開口を金属蓋により気密封止した構成のものが知られている。
【0004】
図10はこのような従来の水晶発振器の構造を示す縦断面図である。この水晶発振器は、パッケージ本体である4層構造のセラミック配線基板101の上面に形成した凹陥部102内に、水晶振動片103と発振用ICチップ104を収納した上で、その開口部を上端に設けたシールリング105と金属蓋106とを接合することで気密封止した構成を備えている。水晶振動片103は、凹陥部102内の段差107上に設けた搭載パッド108上に、導電性接着剤109によって一端を片持ち支持されている。そして搭載パッド108は内層配線110に導通している。
【0005】
また、発振用ICチップ104は各機能端子電極111とランドパターン112とを導通接続することで、内装配線110を通じて水晶振動片103の両主面に設けた図示しない励振電極に導通すると共に、内層配線を通じてセラミック配線基板101の下面に設けた外部端子113、すなわち接地端子、電源端子、外部制御端子、出力端子等にも夫々導通している。又発振用ICチップ104はモールド樹脂剤114によりセラミック配線基板101に固着されている。
【0006】
この様に凹陥部内に全ての構成部品を収納し一枚の蓋により封止した、所謂シングルシール構造タイプの発振器は、安価な点と、構成部品を上下位置関係に配置しているためにパッケージ本体の占有面積を小面積化できるという点とに利点を有する。
【0007】
ところがこのシングルシール構造タイプ発振器の製造工程においては、金属蓋により気密封止した後パッケージ内部に残存していた異物が水晶振動片の表面上に付着し、この異物によって周波数変動等の発振不良が発生するというDLD不良が問題となる場合がある。例えば金属蓋をパッケージの外枠上面に溶接する際における微小な金属粉が、内部に飛散して水晶振動片の表面に付着すること等がDLD不良の原因の一つである。DLD不良であるとみなされた発振器を改善する手法としては、水晶振動片の電極に大電流を流して水晶振動片を大きく振動させることにより、表面上の異物をはね飛ばすというオーバードライブ処理による方法が知られている。
【0008】
しかし図10に示した如く、水晶振動片と発振用ICチップを同じ凹陥部内に収納した構造にあっては、両者を電気的に切り離すことが困難である為、オーバードライブ処理時に発振用ICチップにも大電流が供給されてしまい発振用ICチップが破損してしまう。従ってシングルシール構造タイプの発振器にあっては、DLD不良品については破棄せざるを得なく、歩留率の低下に伴い発振器の低価格化には限界があった。
【0009】
また経年時特性に優れた水晶発振器を得る場合には一般に、水晶振動片をパッケージ内に収納した後高温加熱処理(アニール)する。しかしこの場合にも水晶振動片と発振用ICチップとが同一パッケージ内にあるので、発振用ICチップも同時に加熱され破損しかねず、高温加熱処理を行うことは困難であった。仮に発振用ICチップを破損せずに高温加熱処理を施せたとしても、発振用ICチップを固定するポッティング剤等から発生するアウトガスが影響を与える。よってこのシングルシール構造タイプの水晶発振器にあっては、周波数等における高い安定度の経年時特性を実現することも困難であった。
【0010】
一方、上記シングルシール構造タイプの欠点を解決した、第二の従来の圧電発振器のパッケージ構造としては図11に示すようなものがある。これは特開2002−335128号に開示されたものと同等の構造である。図11(A)は正面断面図であり、同図(B)は側面断面図である。ここで同図(A)は同図(B)中の点線A−A′における断面を表し、同図(B)は同図(A)中の点線B−B′における断面を表すものである。
【0011】
同図に示す水晶発振器は、水晶振動片122と、水晶振動子以外の発振器回路部分を構成する発振用ICチップ129と、これらを搭載するセラミック配線基板121とを備えた構造のものである。
そのセラミック配線基板121の上面には、水晶振動片122を内部に収納する第一の凹陥部123を設け、この第一の凹陥部123の上端に設けた環状メタライズ124(同図(B))を介して金属蓋125により気密封止されている。水晶振動片122は、導電性接着剤126により凹陥部部123底面部の搭載パッド127a 、127b(同図(A))に夫々導通接続されており、これにより水晶振動片122の両主面にある図示しない励振電極は、導電性接着剤126及び搭載パッド127を介して内層配線128(同図(B))に導通している。
【0012】
また、フェースダウンボンディングタイプの発振用ICチップ129は、第一の凹陥部123に隣接する第二の凹陥部130内に収納されており、発振用IC129の各機能端子電極131とランドパターン132とを導通接続することで、内装配線128を通じて水晶振動片122と、またセラミック配線基板121の下面に設けた外部端子電極133、すなわち接地端子、電源端子、外部制御端子、出力端子電極とに導通されている。そして、発振用IC129をポッティング剤133により覆い、これにより発振用ICチップ129を保護すると共に、セラミック配線基板121に固着されている。尚、ポッティング剤130の塗布時の流出は、第二の凹陥部130の側壁134により抑制される。
【0013】
このように水晶振動片と発振用ICチップとを、二つの領域に分離して設けられた凹陥部内に夫々配置することにより、水晶振動片を搭載した後で発振用ICチップを組み込むことが可能となり、発振用ICチップの搭載前にDLD処理及びアニール処理を夫々行うことが可能となる。又第一の凹陥部内にアウトガスの発生源となる樹脂物質の量が少ないので経年時特性も優れたものとなり、また当然のことながら発振用ICと水晶振動片が立体的に重なることがないので低背化が可能となる。
【0014】
【本発明が解決しようとする課題】
しかしながら前記第2の従来例の構造は、例えば0.6mm以下という発振器の低背化の要求に対して、基板の厚みを0.2mm以下そして発振用ICの高さを0.3mm以下とした場合、第二の凹陥部内の発振用IC上のポッティング剤は0.1mm以下の薄さで塗布することが必要となる。しかしポッティング剤の高さを高精度に制御することは量産性を考慮すると非常に困難である。その為第一の凹陥部の低背化、すなわち圧電振動片の実装技術が向上し圧電振動片の搭載後の高さをより低くすることが可能になったとしても、全体の高さは第二の凹陥部のポッティング剤の高さが支配的となり、更なる低背化においては大きな障害となっていた。
またこの構造は、第二の凹陥部にはポッティング剤の流出防止用の側壁があり、よって発振用ICチップを搭載する際に側壁との接触による破損を避ける為に、発振用ICチップと側壁との間には搭載精度に見合ったスペースを設ける必要がある。この側壁の厚みと搭載用のスペースとが、小面積化において大きな障害となっていた。
【0015】
本発明は上記に鑑みてなされたものであり、第一の従来例であるシングルシール構造タイプの欠点を克服するように圧電振動片と発振用ICとを異なった区画内に収納した上で、更に第二の従来例の構造における低背化及び小面積化の障害を克服した構造であり、その製造方法も簡略で特に低背化に適した圧電発振器のパッケージ構造とその製造方法とを提供することにある。
【0016】
【課題を解決するための手段】
上記課題を解決する為に本発明に係わる請求項1に記載の発明は、配線基板の上面に圧電振動片と少なくとも発振用増幅回路を構成したフェースダウンボンディングタイプの半導体チップのみを搭載し、一方該配線基板の下面に外部端子電極を設けた圧電発振器の構造であって、前記配線基板の上面の一部には前記圧電振動片を内部に収納する凹部を設け、該凹部は蓋により気密封止されており、前記半導体チップは、前記配線基板上面の前記凹部に隣接する位置に搭載され、該半導体チップと前記圧電振動片の該励振電極、又該半導体チップと前記配線基板の下面に設けた外部端子電極とは、前記配線基板の内層又は表層に設けた配線により夫々導通していることを特徴としている。
【0017】
請求項2に記載の発明は、配線基板の上面に、内部に圧電振動片を収納した凹状容器と、少なくとも発振用増幅回路を構成したフェースダウンボンディングタイプの半導体チップのみを配置し、一方該配線基板の下面に外部端子電極を設けた圧電発振器の構造であって、前記凹状容器は、前記圧電振動片を気密封止するよう前記配線基板の上面の一部に開口部を接合搭載されており、前記圧電振動片の両主面に設けた励振電極から引出した二つの電極は、前記凹状容器に設けた配線により、該凹状容器の開口部の端部に設けた二つの電極まで引出されていて、更に前記二つの電極は、前記配線基板に設けた二つのランドパターンを通じて前記配線基板の内層又は表層に設けた配線に夫々導通しており、前記半導体チップは、前記配線基板上面の前記凹状容器に隣接する位置に搭載され、アンダーフィル剤により前記配線基板に固着されており、該半導体チップと前記圧電振動片の該励振電極、又該半導体チップと前記配線基板の下面に設けた外部端子電極とは、前記配線基板の内層又は表層に設けた配線により夫々導通していることを特徴とした圧電発振器。
【0018】
請求項3に記載の発明は、フレキシブル配線基板の上面に、内部に圧電振動片を収納した凹状容器と、少なくとも発振用増幅回路を構成したフェースダウンボンディングタイプの半導体チップのみを配置し、一方該フレキシブル配線基板の下面に外部端子電極を設けた圧電発振器の構造であって、前記凹状容器は、前記圧電振動片を気密封止するよう前記フレキシブル配線基板の上面の一部に開口部を接合搭載されており、該開口部の少なくとも内側開口部分全面を塞ぐ前記フレキシブル配線基板の部分に金属箔等を設け、前記凹状容器と前記フレキシブル配線基板との接合による密封性をより確実にした構造であって、前記圧電振動片の両主面に設けた励振電極から引出した二つの電極は、前記凹状容器に設けた配線により、該凹状容器の開口部の端部に設けた二つの電極まで引出されていて、更に前記二つの電極は、前記フレキシブル配線基板に設けた二つのランドパターンを通じて前記フレキシブル配線基板の内層又は表層に設けた配線に夫々導通しており、前記半導体チップは、前記フレキシブル配線基板上面の前記凹状容器に隣接する位置に搭載され、アンダーフィル剤により前記フレキシブル配線基板に固着されており、該半導体チップと前記圧電振動片の該励振電極、又該半導体チップと前記フレキシブル配線基板の下面に設けた外部端子電極とは、前記フレキシブル配線基板の内層又は表層に設けた配線により夫々導通していることを特徴とした圧電発振器。
【0019】
請求項4に記載の発明は、請求項1又は2又は3のいずれかに記載の圧電発振器であって、前記蓋、又は前記凹状容器の底板部が、前記半導体チップの上部位置まで延出したことを特徴としている。
【0020】
請求項5に記載の発明は、請求項1又は2又は3のいずれかに記載の圧電発振器における製造方法であって、内層又は表層の配線により夫々の調整端子や外部端子を引出した構造をもつ多数の発振器を並べたシート状配線基板を使用し、夫々の発振器の調整後に個別の発振器に切断し完成する製造方法の中で、夫々の前記圧電振動片又は前記圧電振動片を内部に含む前記凹状容器を該シート状配線基板に搭載する工程の後に、該シート状配線基板より内層又は表層の配線により引出した任意の前記圧電振動片の両励振電極が、切り替えスイッチにより、基準となる発振回路とオーバードライブが可能な電源との間の接続切替えが可能な設備により、夫々の該圧電振動片のドライブレベル測定等の諸特性を測定し、前記圧電振動片のみの不適合品を検出する工程を経た後、前記発振用ICチップを搭載する工程を有することを特徴としている。
【0021】
請求項6に記載の発明は、フレキシブル配線基板を使用した発振器の製造方法であって、内層又は表層の配線により夫々の調整端子や外部端子を引出した構造をもつ多数の発振器を並べた、シート状配線基板を帯状にしたフレキシブル配線基板を用い、該帯状のフレキシブル配線基板を、リール送り穴を有するリール状搬送媒体に貼り合わせた状態で製造ラインを搬送し、組立、調整することを特徴としている。
【0022】
【本発明の実施の形態】
以下に本発明第一の実施例である水晶発振器について、図1〜図3を基に詳細に説明する。図1(A)は正面断面図であり、同図(B)は側面断面図である。ここで同図(A)は同図(B)中の点線A−A′における断面を表し、同図(B)は同図(A)中の点線B−B′における断面を表すものである。
【0023】
同図に示す水晶発振器は、水晶振動片2と、水晶振動子以外の発振回路部分を構成する発振用ICチップ8と、これらを搭載するセラミック配線基板1と、を備えた構造のものである。
このセラミック配線基板1は二層配線基板の底板部と上面に設けた凹陥部3の側壁部とからなる三層セラミック配線基板であり、上面の凹陥部3には水晶振動片2を内部に収納し、この凹陥部3の上端に設けた環状メタライズ4(同図(B))を介して金属蓋5により気密封止されている。水晶振動片2は、導電性接着剤6により凹陥部部3の内底面部に設けた搭載パッド7a 、b(同図(A))に夫々導通接続されており、これにより水晶振動片2の両主面にある図示しない励振電極は、導電性接着6及び搭載パッド7を介して内層配線11(同図(B))に導通されている。
【0024】
また、発振回路を構成するフェースダウンボンディングタイプの発振用ICチップ8が、凹陥部3に隣接する位置のセラミック配線基板1の上面に搭載されており、発振用ICチップ8の各機能端子電極9がランドパターン10に導通することで、内装配線11を通じて水晶振動片2と、更にセラミック配線基板1の下面に設けた外部端子電極12、すなわち接地端子、電源端子、外部制御端子、出力端子電極とに導通されている。
【0025】
またここで、発振用ICチップ8はアンダーフィル剤13によりセラミック配線基板1に固着されているが、この固着性を強化するために発振用ICチップ8の底面及び側面下方部分14がアンダーフィル剤13に接合している。このアンダーフィル剤による強固な固着形態を実現する製造方法について、その一例を図2、3を基に説明する。
【0026】
図2は通常の固着形態であり、セラミック配線基板1上面に発振用ICチップ8が搭載され、各端子電極9を介して導通すると共に、発振用ICチップ8の下面のみがアンダーフィル剤13によって固着されている。また図3(A)は、発振用ICチップ8と水晶振動子を収納した凹陥部3とで構成された発振器21を、複数密接に並べたシート状セラミック配線基板22を表し、同図(B)は同図(A)中の点線B−B′における側面断面図である。そして同図(C)は前述の強固な固着形態を示す図である。
【0027】
図3(A)の様に、複数の発振器にまたがるアンダーフィル剤13の流出防止用の側壁23により囲まれた領域に、比較的粘度の低いアンダーフィル剤13を多量に注入し固化させる。すると同図(B)の様に各発振用IC8は、側面下方部分14までアンダーフィル剤13と接合することが可能となる。そして図3(A)又は(B)中のa、b、c、dに示す部分をスライサー等により切断分離すれば、発振器単体において従来必要としていた流出防止用の側壁が無くても、図3(C)の様なアンダーフィル剤13による強固な固着形態が実現する。
【0028】
上述の様に、本発明第一の実施例は前記第二の従来例に比較して発振用ICチップの固着用ポッティング剤の代わりにアンダーフィル剤を用いるので、ポッティング剤流出防止用の側壁を発振器内部に必要とせず、またポッティング剤の塗布量による高さ方向のバラツキを防止することができるので、より小面積化及び低背化が可能となる。
なお、シート状のセラミック配線基板22に貫通スルーホールがあるとアンダーフィル剤が流出してしまう虞がある。よって例えばセラミック配線基板1の側面に外部端子電極12と導通したいわゆる側面電極を設ける祭に、このシート状基板の夫々の単体発振器の間に位置する部分に分割スルーホール等を設ける場合は、上面の発振用ICチップ搭載面まで貫通しないことが好ましい。
【0029】
以下に本発明第二の実施例である水晶発振器について、図4を基に詳細に説明する。図4(A)及び(C)は正面断面図であり、同図(B)及び(D)は側面断面図である。ここで、図4(A)は同図(B)中の点線A−A′における断面を表し、図4(C)は同図(B)中の点線C−C′における断面を表す。また図4(B)は同図(A)中の点線B−B′における断面を表し、図4(D)は同図(C)中の点線D−D′における断面を表す。
【0030】
図4に示す水晶発振器は、凹状容器31に収納された水晶振動片32と、水晶振動子以外の発振回路部分を構成する発振用ICチップ45と、これらを搭載するセラミック配線基板38とを備えた構造のものである。
同図(B)中の凹状容器31は底部と側壁部とからなる二層セラミック配線基板であり、水晶振動片32を収納している。そしてこの水晶振動片32の両主面に設けた図示しない励振電極は、導電性接着剤33a、33b(同図(A))により凹状容器31の内底面に設けた搭載パッド34a、34bに電気的、機械的に接合している。また搭載パッド34a、34bは凹状容器31の外面角部に設けた導電4分の1スルーホール35a、35b(同図(D))により凹状容器31の開口部の端部に設けた二つの電極36a、36b(同図(C、D))まで夫々引出されている。
【0031】
この凹状容器31の開口部の端部には、前記二つの電極36a、36b、及び環状導電層37を有しており(同図(C、D))、半田40a、40b、及び41(同図(B、C、D))によりセラミック配線基板38の上面に設けた搭載パッド42a、42b、及び環状パッド43(同図(D))に夫々同時に接合されている。電極36a、36bは搭載パッド42a、42b(同図(D))と夫々導通を目的とし、この搭載パッド42a、42bは夫々内装配線44に導通している。一方環状導電層37はセラミック配線基板38との密封性の確保を目的としている。
【0032】
また、発振回路を構成するフェースダウンボンディングタイプの発振用ICチップ45(同図(B))は、凹状容器31に隣接する位置のセラミック配線基板38の上面に搭載さており、発振用ICチップ45の各機能端子電極46とランドパターン47とを導通することで、内装配線44を通じて水晶振動片32の両主面に設けた図示しない励振電極と、またセラミック配線基板38の下面に設けた外部端子電極48、すなわち接地端子、電源端子、外部制御端子、出力端子電極とに夫々導通されている。
更にまた発振用ICチップ45は、アンダーフィル剤49によりセラミック配線基板38に固着されている。
また、アンダーフィル剤49による固着性を増加させる必要があれば、第一の実施例で説明した方法と同様な方法で、発振用ICチップ45の底面と側面下方部分50とをアンダーフィル剤49にて固着させれば良い。
【0033】
ここで、セラミック配線基板38上の環状パッド43と凹状容器31の端部に形成した環状導電層37との接合は、凹状容器31の内部を真空又は不活性ガス等の密封状態に保つ為のものであり、半田や導電性接着剤等以外の、導電性を有しない接着剤等によっても可能である。また量産性の都合によって可能ならばシーム封止やガラス封止、或いは異方性導電性接着剤等であっても構わない。その際は当然、環状導電層37及び環状パッド43の必要性は夫々の場合によって異なっても良い。
【0034】
よって前述の様に、凹状容器31の開口部の端部の搭載パッド36a、36bも含む全面(同図(C))を、導電性を有しない方法で配線基板38に接続し密封した場合、電極36a、36bと搭載パッド42a、42bとの電気的接合は、凹状容器31の外面の導電4分の1スルーホール部によるフィレットのみであっても構わない。
【0035】
また通常は、振動子の二つの励振電極をセラミック配線基板に夫々電気的に接続する導通体としては、凹状容器の側壁内部に導電スルーホールを設けるのが妥当である。しかしそれは凹状容器の小型化に伴う側壁部の薄型化により非常に困難となる為、今回の実施例では導電スルーホールを凹状容器の外面、更には角部に設けることにより、導電スルーホールを4分の1にカットした形態を例に挙げたのである。また更に発振器の中心側、つまり発振用ICに隣接する面の二つの角部に導通4分の1スルーホールを設けた理由としては、発振器外部との接触等による導電4分の1スルーホール部の破損を回避する為と、発振器の外部電極を配線基板下面の4角に配置した場合において、発振器搭載時の半田等による凹状容器角部の4分の1スルーホール部と発振器搭載パッドとの接触不具合を避ける為に有利であるからである。
【0036】
そもそも本発明第二の実施例は第一の実施例に比較して、凹状容器の搭載工程が増える為に発振器の製造工程が複雑化するが、振動子単体のDLD測定等の特性を事前に測定することが容易となり、高価な発振用ICチップを守ることによる発振器の歩留りの向上というメリットがある。
【0037】
以下に前記請求項3に記載の本発明第三の実施例である水晶発振器について、図5を基に詳細に説明するが、この第三の実施例の基本的な構造は第二の実施例と同様である為、異なる部分のみ説明する。
その異なる点とは、前記第二の実施例におけるセラミック配線基板にフレキシブル配線基板を用いていることと、フレキシブル配線基板上面において凹状容器の開口部に当たる部分の全面をフレキシブル配線基板上に設けた導体層で覆っていることである。
【0038】
図5(A)正面断面図であり、同図(B)及び(C)は側面断面図である。ここで、図5(A)は同図(B、C)中の点線A−A′における断面を表し、図5(B)は同図(A)中の点線B−B′、同図(C)は同図(A)中の点線C−C′における断面を表す。
図5(A)中のフレキシブル配線基板61は前記第二の実施例と同様に上面には発振用ICチップ62と水晶振動片を収納した凹状容器63とを搭載し、下面には外部端子64を設けていて、前述の本発明第二の実施例と同様に内層又は表層の配線にて夫々導通されている。
同図(A)中の凹状容器63は、開口部の端部に形成した環状導体65により前記フレキシブル配線基板61上面に設けた導体層66(同図(B))上に半田67(同図(C))により気密封止されている。凹状容器63の端部65と導電層66との接合は、凹状容器63の内部を真空又は不活性ガス等の密封状態を保つ為のものである為、その封止方法については前記第二の実施例で説明した内容と同様である。
【0039】
ここで前記フレキシブル配線基板についてであるが、その材料としてはポリイミド樹脂がもっとも有力な材料となる。このポリイミド樹脂は有機物の中で優れた耐熱性を有する特殊樹脂であり、例えば鉛フリーの半田づけ温度の260℃に迄耐えられる材料であるからでもある。更にまた有機高分子である為に非常に加工しやすいという特徴もある。
【0040】
ここで、この発振器の構造においてポリイミド樹脂からなるフレキシブル配線基板を用いて更なる低背化を行った場合、ポリイミド樹脂は高分子材料である為に多数の空孔を有し密封性の確保が困難となる。そこで前記凹状容器63の密封性を確実にする為に、前記開口部に当たる部分を導体層66で覆った構造としたものである。この基本的考えは、同出願者による特開2000−100982号の請求項3に開示された内容に基づいている。
【0041】
以下に本発明第四の実施例である水晶発振器について、図6を基に詳細に説明する。同図(A)は前記本発明第一の実施例における応用例にあたり、同図(B)は前記本発明第二、第三の実施例における応用例にあたる。
【0042】
図6(A)において、セラミック配線基板71上に設けた凹陥部72は、金属蓋73により内部を真空又は不活性ガス等により密封されていて、金属蓋72は凹陥部72に隣接する位置に搭載された発振用ICチップ74の上部を覆う位置まで延出されている。
【0043】
また同図(B)において、セラミック又はフレキシブル等の配線基板75上には、内部77を真空又は不活性ガス等により密封する様に凹状容器76が搭載されていて、凹状容器76の底面部は、発振用ICチップ78上部を覆う位置まで延出されている。
【0044】
これは発振用ICチップの上部位置を保護することにより、発振器の搭載ピックアップ時の上面の吸着有効面積を広げる効果があり、また発振用ICチップの上方向からの機械的保護性の向上にもつながる。
【0045】
ここで、前述の本発明第一乃至第四の実施例で説明した構造の圧電発振器の製造方法は、量産性の観点から多数の発振器の配線基板を並べたシート状配線基板を、夫々の発振器の調整後に個別の発振器に切断するという方法を採用する。その際に、発振器の組立完成後に不具合品を検出し廃棄するという方法では、振動片の良品率に全体の良品率が左右されてしまうであろう。そこで夫々の振動片のドライブレベル等の諸特性を測定し不適合品を廃棄した後で、発振用ICチップと組み合わせ完成するという方法について説明する。
【0046】
以下に本発明第五の実施例である前記圧電発振器の製造方法を図7、図8を基に詳細に説明する。これは、前記第一の実施例に記載の発振器の場合は、シート状配線基板に夫々の振動片を内部に搭載し蓋により封止した後の工程であって、また第二、第三の実施例に記載の発振器の場合は、内部に振動片を搭載した凹状容器をシート状配線基板に搭載した後の工程に、振動片のみの諸特性を測定し検査する工程を持ち、その後発振用ICチップを搭載するという製造方法である。
【0047】
これは外部制御型水晶発振器の例であり、図7は複数の発振器を含むシート状配線基板における調整用配線構成図を示すものである。同図中の81は発振器の一つ分の領域を示し、水晶振動片の搭載領域82と発振用ICチップの搭載領域83とを含む。また裏面に設けた夫々の外部端子は、電源端子(Vcc)84、外部制御端子(Vcont)85、接地端子(GND)86、出力端子(OUT)87とする。
【0048】
各発振器における前述のVcc、Vcont、GNDはこのシート状配線基板の内層又は表層配線により夫々の共通端子に引出されていて、夫々の発振器を共通に各電圧の印加や接地を行う。ここで、OUT端子のみは夫々の発振器の出力を個別に検出しながら調整する必要がある為、個別配線により夫々OUT1、OUT2、・・・、と内層又は表層配線により引出されている。またここで、発振器の調整時に電源や外部制御の値を発振器毎に個別に変動させて調整する必要があれば、Vcc、Vcont端子も個別配線により引出しても良い。
【0049】
また各発振用ICチップ83は調整端子S1、S2、S3、S4をもち、前述と同様に内層又は表層配線により夫々の共通端子に引出されていて、ここではS4のみが個別な信号を入力し調整する必要がある端子と仮定し、S4−1、S4−2・・・、と夫々個別配線により引出されている。また前述と同様に他の端子S1、S2、S3が個別な信号入出力による調整が必要な端子であれば夫々個別配線により引出せば良い。
【0050】
各振動片の両励振電極パッド88、及び89は、個別発振器の基板領域内を通じる図示しない内層又は表層配線によって、発振用ICチップの図示しない振動子の入出力電極に導通している。また、この各励振電極は、夫々同図中に点線で示す内層又は表層配線により外部に引出されていて、1つの発振器に対する1組の両励振電極はXtal+1、Xtal−1とし、以下夫々をXtal+2、Xtal−2、Xtal+3、Xtal−3、・・・、と示している。
【0051】
図8は振動子のドライブレベル特性等の諸特性の測定原理図である。同図中Xtal+X、Xtal−Xは前記図7中の任意の振動片Xから引出した両励振電極を表しており、スイッチ90により基準発振回路側端子91と高電圧電源側端子92とに接続切り替えが可能である。また基準発振回路には、少なくとも電源Vcc、外部制御Vcont、接地GNDと、周波数記録装置に接続された周波数カウンターとに接続されている。
【0052】
まず任意の振動素子のオーバードライブ測定についてであるが、図7において振動素子部分のみを搭載した後に、図8に示す様に、任意の振動素子の両励振電極Xtal+X、Xtal−Xは切替スイッチ90により基準発振回路側の端子85に接続され、発振周波数f1を測定し記録する。次に高電圧電源側端子92にスイッチ90により切り替え、オーバードライブ電圧を印加する。その後、再び基準発振回路側端子91にスイッチ90を切り替える事により、f2を測定し記録し、f1とf2との周波数差によりドライブレベル不適合品を検出する。
【0053】
この試験の結果不適合品とされた振動片又は振動片を収納した凹状容器は、適合品と交換し再実装するか又はバッドマーク等を付加することで、最も高価であろう発振用ICチップの無駄な搭載を防ぎ、良品率の向上に伴うローコスト化を実現することが出来る。
その後高温加熱処理工程を経て、良品とされた振動片の搭載された発振器基板のみに発振用ICチップを搭載して各発振器を調整し、スライサー等により個々の発振器より引出した内層又は表層の配線ごと切断分離して完成する。
【0054】
ここで、図8中の基準発振回路はインピーダンスアナライザーやスペクトラムアナライザー等の測定装置類に接続し、振動素子のみの不適合品検出に必要なCI値や容量比等の諸特性を測定することも可能となる。また各振動素子を搭載したシート状配線基板を恒温槽等に投入した状態で周波数を測定すれば、夫々の振動素子の周波数温度特性を測定することが可能で、その夫々の温度特性に適合する、例えばランク分けされた発振用ICチップを搭載するということも可能となる。
【0055】
前記従来技術の問題点でも説明したが、そもそも振動素子のドライブレベル特性測定を行う際に発振用ICチップを搭載しない理由としては、水晶振動片のオーバードライブ測定の際の高電圧から、又高温加熱処理工程から発振用ICチップを保護する為でもある。
【0056】
以下に圧電発振器の製造方法における本発明第六の実施例を図9、図10を基に詳細に説明する。これはフレキシブル配線基板を使用した発振器の製造方法であって、前記本発明第五の実施例における製造方法を含む一例として説明する。
【0057】
図9は、発振用ICチップと振動素子部からなる圧電発振器93を多数一列に並べた帯状フレキシブル配線基板94を、リール状搬送媒体95に並べて張り合わせた端部の上面拡大図である。リール状搬送媒体95は両側に送り穴96を有している。
【0058】
この帯状フレキシブル配線基板94の夫々の発振器を構成する部分の周辺には、図示しない内層又は表層の配線により、調整端子及び各発振器の外部端子が引出された電極が設けられている。一方、各発振器に個別の信号を入出力する必要がある端子、例えば各発振器の出力端子や、圧電振動片より引出した両励振電極、及び個別の信号入出力が必要な調整端子等は、各発振器に両脇の個別端子電極97に引出されている。他方、例えば電源や接地端子の様に共通化が可能な端子は帯状フレキシブル配線基板94の両端部分に設けた共通端子電極98に引出されている。
またこの帯状フレキシブル配線基板94には、前記本発明第一の実施例で説明したアンダーフィル剤の流出防止用の側壁99が設けられている。
【0059】
さて、多数の帯状のフレキシブル配線基板94を、チップ部品等の梱包によく使用される紙テープや樹脂材料によるエンボステープからなるリール状搬送媒体95に、各発振器の基板となる部分以外の周囲部分に接着剤等を塗布して並べて貼り合わせる。ここで電極表面の酸化防止や保護用に、図示しない透明ビニールテープ等を剥離が容易に可能な様に被せても良い。そしてリール状に巻いた状態で保存し管理する。
【0060】
次にインライン形態の調整ラインにリール毎に投入し、搬送送り穴を用いて搬送しながら、圧電振動片又は圧電振動片を収納した凹状容器を順に搭載接合し密封する。その後前記本発明第五の実施例で説明した様な方法にて圧電振動素子のみの不適合品を検出する。そこで不適合となった発振器の配線基板部分にはバッドマーク等を記すと共に、その位置情報を記録する。その後高温加熱処理工程を経た後、再度各圧電振動子の諸特性の検査を行い、前述同様にその不適合品の配線基板部分にバッドマーク等を記すと共に、その位置情報を記録する。その後適合品が搭載された各発振器基板にのみ発振用ICチップを搭載し、アンダーフィル剤を塗布し固着させて発振器の組立を完了させる。またその後、ある単位の数量毎に発振器の調整を完了させ、最後に発振器外部に引出した内層又は表層の配線ごと切断分離して完成となる。
【0061】
この形態は、従来のソケット等に格納する治具による組立、調整ライン内の搬送に比べ、発振器がより小型化することによりハンドリング工程が困難となる場合には最適な方法と言える。
またこの形態によれば温度特性の調整にも有利な点がある。従来の温度特性調整方法の一つに、熱容量が大きな治具へ装着し恒温槽ライン内を通して、ある設定温度の気体雰囲気中に一定時間放置することにより発振器の温度を一定に保ちながら調整するという方法がある。しかしこの形態によれば、リール状搬送媒体は非常に薄く熱伝導率が良くまた熱容量が小さいものの製作が可能であり、更に恒温槽ライン上に加熱プレート又は冷却プレート等を製作し、その上を当接しながら搬送する様に構築すれば、より効果的に発振器を所望の温度に一定に保ちながらの調整が可能となる。
【0062】
また最後に切断分離する際は発振器の外形形状が比較的大きい場合は回転刃によるスライサーや切断金型の使用も可能であるが、より小型化した発振器の微細な切断となる場合は、レーザーカット等を用いると良い。
【0063】
図10に前記帯状フレキシブル配線基板中の各発振器基板の間隔を広げた形態を示す。この様にすれば製造ラインの最終工程で発振器をレーザーカットにより切断分離した後、剥離可能なビニール等の保護テープにより封止することにより、そのままリール梱包による出荷形態とすることも可能となる。
【0064】
【発明の効果】
本発明請求項1に記載の発振器の構造は、前記第一の従来例、つまりシングルシール構造に比較して、発振用ICチップと圧電振動片とを分離して配置したので、発振用ICチップの搭載前にDLD処理及びアニール処理を夫々行うことが可能となり、高価な発振用ICチップを守ることによる発振器の歩留りの向上という効果がある。又圧電振動片を気密封止した領域にアウトガスの発生源となる樹脂物質の量が少ないので経年時特性も優れたものとなる。また当然のことながら発振用ICと圧電振動片が立体的に重なることがないので低背化が可能となる。また前記第二の従来例に比べて、発振用ICチップの固着用ポッティング剤を用いないので、ポッティング剤流出防止用の側壁を発振器内部に必要とせず、またポッティング剤の塗布量による高さ方向のバラツキを防止することができるので、より小面積化及び低背化が可能となる。
本発明請求項2に記載の発振器の構造は、前記請求項1に比べて、発振用ICチップと圧電振動片とを分離して配置するだけでなく、凹状容器に圧電振動片を収納することにより、製作工程をも容易に分離することが可能となるので、例えば本発明第五の実施例よる製造方法においては、DLD測定やアニール工程以外の、常温周波数、CI値、容量比といった基本特性のみ凹状容器に収納した半製品の状態で事前に評価し、良否判定をすることも可能となる。またこの事前に評価した値によってランク毎分けてシート状配線基板に搭載することも可能となる。
本発明請求項3に記載の発振器の構造は、密封性の確保をクリアしたフレキシブル基板を採用することにより、前記請求項2の構造による効果と共に更なる低背化を実現した。
本発明請求項4に記載の発振器の構造は、発振用ICチップの上部位置まで蓋又は凹状容器の底板を延出したことにより、発振用ICチップの保護、及び発振器の搭載ピックアップ時の上面の吸着有効面積を広げるという効果がある。
本発明請求項5に記載の発振器の製造方法は、請求項1及び、請求項2又は3における構造において、発振用ICを搭載する前に、振動片単体のDLD測定を行う方法を、現在容易に可能な方法として提案している。
本発明請求項6に記載の発振器の製造方法は、請求項3による構造の発振器において、請求項5による方法を用いることが可能な、具体的製造方法を提案している。これは、低背化、小型化するにあたって最大の問題となるハンドリングの問題をクリアーすると共に、製造コストの低価格化を実現した。
【図面の簡単な説明】
【図1】本発明の第一の実施例
【図2】本発明の第一の実施例の補足説明図
【図3】本発明の第一の実施例の補足説明図
【図4】本発明の第二の実施例
【図5】本発明の第三の実施例
【図6】本発明の第四の実施例
【図7】本発明の第五の実施例
【図8】本発明の第五の実施例の補足説明図
【図9】本発明の第六の実施例
【図10】第一の従来例
【図11】第二の従来例
【符号の説明】
1、38、61、101、121:配線基板、2、32、103、122:水晶振動片、3:凹陥部、4:環状メタライズ、5:金属蓋、8、45、62、104、129:発振用ICチップ、13、49:アンダーフィル剤、23、99:アンダーフィル剤流出防止用側壁、31、63:凹状容器、12、48、64、113:外部端子電極、94:フレキシブル配線基板、95:リール状搬送媒体、96:送り穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in the structure of a piezoelectric oscillator, and more particularly to an improvement aimed at reducing the size and height of a package of a piezoelectric oscillator having an oscillation IC chip and a piezoelectric body constituting an oscillation circuit.
[0002]
[Prior art]
Currently, with the rapid progress of miniaturization accompanying the spread of mobile communication devices such as mobile phones, there is a demand for miniaturization and reduction in height of piezoelectric oscillators such as crystal oscillators used in these communication devices. Increasingly. In response to such demands, the number of components has been reduced by integrating a frequency adjustment circuit other than the crystal oscillator that constitutes the oscillator, and an oscillation circuit including a frequency temperature compensation circuit and the like. The oscillation circuit thus formed is referred to as an oscillation IC chip.) Furthermore, various measures have been taken to cope with the package structure. The following describes two examples.
[0003]
First, as a structure of a first conventional piezoelectric oscillator, an oscillation IC chip constituting an oscillation circuit portion other than a piezoelectric vibrating reed and a piezoelectric vibrator is provided in one recess formed on the upper surface of a package body made of ceramic or the like. Are housed together, and the recess opening is hermetically sealed with a metal lid.
[0004]
FIG. 10 is a longitudinal sectional view showing the structure of such a conventional crystal oscillator. In this crystal oscillator, a crystal vibrating piece 103 and an oscillation IC chip 104 are housed in a concave portion 102 formed on an upper surface of a ceramic wiring board 101 having a four-layer structure, which is a package body. The seal ring 105 and the metal lid 106 provided are joined to each other to form a hermetic seal. One end of the crystal vibrating piece 103 is cantilevered by a conductive adhesive 109 on a mounting pad 108 provided on a step 107 in the concave portion 102. The mounting pad 108 is electrically connected to the inner wiring 110.
[0005]
In addition, the oscillation IC chip 104 electrically connects the functional terminal electrodes 111 and the land patterns 112 so that the oscillation IC chip 104 is electrically connected to the excitation electrodes (not shown) provided on both main surfaces of the crystal vibrating piece 103 through the internal wiring 110 and the inner layer. The external terminals 113 provided on the lower surface of the ceramic wiring substrate 101 through the wiring, that is, the ground terminal, the power terminal, the external control terminal, the output terminal, and the like are also electrically connected. Further, the oscillation IC chip 104 is fixed to the ceramic wiring board 101 by a molding resin 114.
[0006]
The so-called single seal type oscillator, in which all the components are housed in the recess and sealed with a single lid, is inexpensive, and the components are arranged in a vertical positional relationship. This is advantageous in that the area occupied by the main body can be reduced.
[0007]
However, in the manufacturing process of this single seal type oscillator, foreign matters remaining inside the package after being hermetically sealed with a metal lid adhere to the surface of the crystal vibrating piece, and this foreign matter causes oscillation failure such as frequency fluctuation. The occurrence of DLD failure may be a problem. For example, one of the causes of the DLD failure is that minute metal powder when the metal lid is welded to the upper surface of the outer frame of the package is scattered inside and adheres to the surface of the crystal vibrating piece. As a method for improving the oscillator considered to be defective in DLD, a large current is applied to the electrodes of the crystal vibrating reed to vibrate the crystal vibrating reed greatly, so that overdrive processing is performed to repel foreign substances on the surface. Methods are known.
[0008]
However, as shown in FIG. 10, in the structure in which the crystal resonator element and the oscillation IC chip are housed in the same recess, it is difficult to electrically separate the two from each other. Also, a large current is supplied, and the oscillation IC chip is damaged. Therefore, in the case of the oscillator of the single seal structure type, DLD defective products have to be discarded, and there is a limit to the cost reduction of the oscillator as the yield rate decreases.
[0009]
In order to obtain a crystal oscillator having excellent aging characteristics, high-temperature heating (annealing) is generally performed after the crystal resonator element is housed in a package. However, also in this case, since the crystal resonator element and the oscillation IC chip are in the same package, the oscillation IC chip may be heated and damaged at the same time, making it difficult to perform high-temperature heating. Even if the high-temperature heat treatment is performed without damaging the oscillation IC chip, outgas generated from a potting agent or the like that fixes the oscillation IC chip has an effect. Therefore, it has been difficult for the single-seal structure type crystal oscillator to achieve high stability over time in frequency and the like.
[0010]
On the other hand, as a package structure of a second conventional piezoelectric oscillator which has solved the above-mentioned disadvantages of the single seal structure type, there is one shown in FIG. This is a structure equivalent to that disclosed in JP-A-2002-335128. FIG. 11A is a front sectional view, and FIG. 11B is a side sectional view. Here, FIG. 7A shows a cross section taken along a dotted line AA ′ in FIG. 7B, and FIG. 7B shows a cross section taken along a dotted line BB ′ in FIG. .
[0011]
The crystal oscillator shown in the figure has a structure including a crystal resonator element 122, an oscillation IC chip 129 constituting an oscillator circuit portion other than the crystal resonator, and a ceramic wiring board 121 on which these are mounted.
On the upper surface of the ceramic wiring board 121, there is provided a first concave portion 123 for accommodating the crystal vibrating piece 122 therein, and an annular metallized 124 provided on the upper end of the first concave portion 123 (FIG. 2B). Is hermetically sealed by a metal lid 125. The quartz vibrating reed 122 is conductively connected to the mounting pads 127 a and 127 b (FIG. 10A) on the bottom surface of the recess 123 by a conductive adhesive 126, so that the two main surfaces of the quartz vibrating reed 122 are connected to each other. A certain excitation electrode (not shown) is electrically connected to the inner wiring 128 (FIG. 1B) via the conductive adhesive 126 and the mounting pad 127.
[0012]
Further, the face-down bonding type oscillation IC chip 129 is housed in the second recess 130 adjacent to the first recess 123, and each of the functional terminal electrodes 131 and the land pattern 132 of the oscillation IC 129 is formed. Are electrically connected to the crystal vibrating piece 122 through the internal wiring 128 and to the external terminal electrodes 133 provided on the lower surface of the ceramic wiring board 121, that is, the ground terminal, the power supply terminal, the external control terminal, and the output terminal electrode. ing. The oscillation IC 129 is covered with a potting agent 133, thereby protecting the oscillation IC chip 129 and being fixed to the ceramic wiring substrate 121. The outflow during application of the potting agent 130 is suppressed by the side wall 134 of the second recess 130.
[0013]
By arranging the crystal resonator element and the oscillation IC chip in the recesses provided separately in two regions in this way, it is possible to incorporate the oscillation IC chip after mounting the crystal resonator element. Thus, the DLD process and the annealing process can be performed before the oscillation IC chip is mounted. In addition, since the amount of resin material that is a source of outgas in the first recess is small, the aging characteristics are excellent, and of course, the oscillation IC and the crystal vibrating piece do not overlap three-dimensionally. The height can be reduced.
[0014]
[Problems to be solved by the present invention]
However, in the structure of the second conventional example, the thickness of the substrate is set to 0.2 mm or less and the height of the oscillation IC is set to 0.3 mm or less in response to a demand for reducing the height of the oscillator to 0.6 mm or less. In this case, the potting agent on the oscillation IC in the second recess needs to be applied with a thickness of 0.1 mm or less. However, it is very difficult to control the height of the potting agent with high precision in consideration of mass productivity. Therefore, even if the height of the first concave portion is reduced, that is, the mounting technology of the piezoelectric vibrating reed is improved and the height after mounting the piezoelectric vibrating reed can be further reduced, the overall height is the third height. The height of the potting agent in the second recess became dominant, and this was a major obstacle in further reducing the height.
Also, in this structure, the second recess has a side wall for preventing the outflow of the potting agent. Therefore, when mounting the oscillation IC chip, the oscillation IC chip and the side wall are prevented from being damaged by contact with the side wall. It is necessary to provide a space corresponding to the mounting accuracy between them. The thickness of the side wall and the space for mounting have been major obstacles in reducing the area.
[0015]
The present invention has been made in view of the above, and the piezoelectric vibrating reed and the oscillation IC are housed in different compartments so as to overcome the disadvantages of the single seal structure type of the first conventional example. Further, the present invention has a structure which overcomes the obstacles of reducing the height and area in the structure of the second conventional example, and provides a package structure of a piezoelectric oscillator which is simple in manufacturing method and is particularly suitable for reducing the height, and a method of manufacturing the same. Is to do.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention comprises mounting only a face-down bonding type semiconductor chip comprising a piezoelectric vibrating reed and at least an oscillation amplifier circuit on an upper surface of a wiring board. A structure of a piezoelectric oscillator in which external terminal electrodes are provided on a lower surface of the wiring substrate, wherein a concave portion for accommodating the piezoelectric vibrating piece is provided in a part of an upper surface of the wiring substrate, and the concave portion is hermetically sealed by a lid. And the semiconductor chip is mounted at a position adjacent to the concave portion on the upper surface of the wiring substrate, and is provided on the excitation electrodes of the semiconductor chip and the piezoelectric vibrating reed, and on the lower surfaces of the semiconductor chip and the wiring substrate. The external terminal electrodes are electrically connected to each other by wiring provided on an inner layer or a surface layer of the wiring board.
[0017]
According to a second aspect of the present invention, on the upper surface of the wiring board, only a concave container accommodating a piezoelectric vibrating piece therein and only a face-down bonding type semiconductor chip constituting at least an oscillation amplifier circuit are arranged. A structure of a piezoelectric oscillator in which external terminal electrodes are provided on a lower surface of a substrate, wherein the concave container has an opening bonded to a part of an upper surface of the wiring substrate so as to hermetically seal the piezoelectric vibrating reed. The two electrodes drawn out from the excitation electrodes provided on both main surfaces of the piezoelectric vibrating piece are drawn out to two electrodes provided at the end of the opening of the concave container by wiring provided in the concave container. Further, the two electrodes are electrically connected to wiring provided on an inner layer or a surface layer of the wiring board through two land patterns provided on the wiring board, respectively, and the semiconductor chip is provided on an upper surface of the wiring board. The semiconductor chip and the excitation electrode of the piezoelectric vibrating reed are mounted on a position adjacent to the concave container and fixed to the wiring substrate by an underfill agent, and are provided on the lower surfaces of the semiconductor chip and the wiring substrate. A piezoelectric oscillator, wherein the external terminal electrodes are electrically connected to each other by wiring provided on an inner layer or a surface layer of the wiring board.
[0018]
According to a third aspect of the present invention, on the upper surface of the flexible wiring board, only a concave container housing the piezoelectric vibrating reed therein, and only a face-down bonding type semiconductor chip constituting at least an amplifying circuit for oscillation are arranged. A structure of a piezoelectric oscillator having an external terminal electrode provided on a lower surface of a flexible wiring board, wherein the concave container has an opening portion bonded and mounted on a part of an upper surface of the flexible wiring board so as to hermetically seal the piezoelectric vibrating reed. A metal foil or the like is provided on a portion of the flexible wiring board that covers at least the entire inner opening portion of the opening, and the sealing performance by bonding the concave container and the flexible wiring board is further ensured. The two electrodes extracted from the excitation electrodes provided on both main surfaces of the piezoelectric vibrating piece are connected to the concave container by wiring provided in the concave container. Two electrodes provided at the end of the mouth are drawn out, and the two electrodes are further connected to wiring provided on an inner layer or a surface layer of the flexible wiring board through two land patterns provided on the flexible wiring board, respectively. Conducted, the semiconductor chip is mounted at a position adjacent to the concave container on the upper surface of the flexible wiring board, is fixed to the flexible wiring board by an underfill agent, and the semiconductor chip and the piezoelectric vibrating piece A piezoelectric oscillator, wherein the excitation electrode, the semiconductor chip, and an external terminal electrode provided on the lower surface of the flexible wiring board are electrically connected to each other by wiring provided on an inner layer or a surface layer of the flexible wiring board.
[0019]
The invention according to claim 4 is the piezoelectric oscillator according to any one of claims 1, 2, and 3, wherein the lid or the bottom plate of the concave container extends to an upper position of the semiconductor chip. It is characterized by:
[0020]
According to a fifth aspect of the present invention, there is provided a method for manufacturing a piezoelectric oscillator according to any one of the first, second, and third aspects, wherein each of the adjustment terminals and the external terminals is led out by an inner layer or a surface layer wiring. Using a sheet-shaped wiring board in which a number of oscillators are arranged, in a manufacturing method in which the individual oscillators are cut and completed after adjustment of each oscillator, the piezoelectric vibrating reeds or the piezoelectric vibrating reeds are included therein. After the step of mounting the concave container on the sheet-shaped wiring board, the two excitation electrodes of any of the piezoelectric vibrating reeds drawn out from the sheet-shaped wiring board by the inner layer or the surface layer wiring are switched by a changeover switch to a reference oscillation circuit. With the equipment that can switch the connection between the power supply and the overdrive-capable power supply, various characteristics such as the drive level measurement of each of the piezoelectric vibrating reeds are measured. After a step of detecting is characterized by having a step of mounting the oscillation IC chip.
[0021]
The invention according to claim 6 is a method for manufacturing an oscillator using a flexible wiring board, wherein a number of oscillators having a structure in which respective adjustment terminals and external terminals are led out by inner layer or surface wiring are arranged. Using a flexible wiring board with a strip-shaped wiring board, transporting the production line in a state where the strip-shaped flexible wiring board is bonded to a reel-shaped transport medium having a reel feed hole, and assembling and adjusting. I have.
[0022]
[Embodiment of the present invention]
Hereinafter, a crystal oscillator according to a first embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1A is a front sectional view, and FIG. 1B is a side sectional view. Here, FIG. 7A shows a cross section taken along a dotted line AA ′ in FIG. 7B, and FIG. 7B shows a cross section taken along a dotted line BB ′ in FIG. .
[0023]
The crystal oscillator shown in FIG. 1 has a structure including a crystal resonator element 2, an oscillation IC chip 8 constituting an oscillation circuit portion other than the crystal resonator, and a ceramic wiring board 1 on which these are mounted. .
This ceramic wiring board 1 is a three-layer ceramic wiring board comprising a bottom plate of a two-layer wiring board and a side wall of a recess 3 provided on the upper surface, and the quartz resonator blank 2 is housed in the recess 3 on the upper surface. The metal cover 5 is hermetically sealed via an annular metallized plate 4 (FIG. 2B) provided at the upper end of the concave portion 3. The quartz vibrating reed 2 is electrically connected to mounting pads 7a and 7b (FIG. 4A) provided on the inner bottom surface of the recessed portion 3 by a conductive adhesive 6, whereby the quartz vibrating reed 2 is Excitation electrodes (not shown) on both main surfaces are electrically connected to the inner layer wiring 11 (FIG. 1B) via the conductive adhesive 6 and the mounting pads 7.
[0024]
An oscillation IC chip 8 of a face-down bonding type constituting an oscillation circuit is mounted on the upper surface of the ceramic wiring board 1 at a position adjacent to the recess 3, and each functional terminal electrode 9 of the oscillation IC chip 8 is provided. Is electrically connected to the land pattern 10 so that the crystal vibrating reed 2 and the external terminal electrodes 12 provided on the lower surface of the ceramic wiring board 1 through the internal wiring 11, that is, the ground terminal, the power supply terminal, the external control terminal, and the output terminal electrode. Is conducted.
[0025]
Here, the oscillation IC chip 8 is fixed to the ceramic wiring substrate 1 by an underfill agent 13, but in order to enhance the adhesion, the bottom and side lower portions 14 of the oscillation IC chip 8 are underfilled. 13. An example of a manufacturing method for realizing a strong fixing form using the underfill agent will be described with reference to FIGS.
[0026]
FIG. 2 shows a normal fixing mode, in which an oscillating IC chip 8 is mounted on the upper surface of the ceramic wiring board 1, conducts through each terminal electrode 9, and only the lower surface of the oscillating IC chip 8 is filled with an underfill agent 13. It is fixed. FIG. 3A shows a sheet-shaped ceramic wiring board 22 in which a plurality of oscillators 21 each composed of an oscillation IC chip 8 and a recess 3 accommodating a quartz oscillator are closely arranged. () Is a side sectional view taken along a dotted line BB 'in FIG. FIG. 2C is a view showing the above-mentioned strong fixing mode.
[0027]
As shown in FIG. 3A, a large amount of the underfill agent 13 having a relatively low viscosity is injected into a region surrounded by the side wall 23 for preventing the underfill agent 13 from flowing out over a plurality of oscillators and solidified. Then, each oscillation IC 8 can be joined to the underfill agent 13 up to the side lower portion 14 as shown in FIG. Then, if the portions indicated by a, b, c, and d in FIG. 3A or 3B are cut and separated by a slicer or the like, even if there is no outflow prevention side wall conventionally required in the oscillator alone, FIG. A strong fixing form by the underfill agent 13 as shown in FIG.
[0028]
As described above, the first embodiment of the present invention uses an underfill agent instead of the potting agent for fixing the oscillation IC chip as compared with the second conventional example, so that the side wall for preventing the outflow of the potting agent is provided. It is not required inside the oscillator, and it is possible to prevent variations in the height direction due to the application amount of the potting agent, so that the area and the height can be further reduced.
If there is a through hole in the sheet-shaped ceramic wiring board 22, the underfill agent may flow out. Therefore, for example, when a so-called side electrode that is electrically connected to the external terminal electrode 12 is provided on the side surface of the ceramic wiring substrate 1 and divided through holes or the like are provided in portions of the sheet-shaped substrate located between the individual oscillators, It is preferable not to penetrate to the oscillation IC chip mounting surface.
[0029]
Hereinafter, a crystal oscillator according to a second embodiment of the present invention will be described in detail with reference to FIG. 4A and 4C are front sectional views, and FIGS. 4B and 4D are side sectional views. Here, FIG. 4A shows a cross section taken along a dotted line AA 'in FIG. 4B, and FIG. 4C shows a cross section taken along a dotted line CC' in FIG. 4B. FIG. 4B shows a cross section taken along a dotted line BB 'in FIG. 4A, and FIG. 4D shows a cross section taken along a dotted line DD' in FIG. 4C.
[0030]
The crystal oscillator shown in FIG. 4 includes a crystal vibrating piece 32 housed in a concave container 31, an oscillation IC chip 45 constituting an oscillation circuit portion other than the crystal oscillator, and a ceramic wiring board 38 on which these are mounted. It has a structure.
The concave container 31 in FIG. 3B is a two-layer ceramic wiring board having a bottom portion and a side wall portion, and accommodates a crystal resonator element 32. Excitation electrodes (not shown) provided on both main surfaces of the crystal vibrating piece 32 are electrically connected to mounting pads 34a and 34b provided on the inner bottom surface of the concave container 31 by conductive adhesives 33a and 33b (FIG. 3A). Mechanically and mechanically. Further, the mounting pads 34a and 34b are formed by two electrodes provided at the ends of the opening of the concave container 31 by conductive quarter through holes 35a and 35b (FIG. 3D) provided at the outer surface corners of the concave container 31. 36a and 36b (FIGS. (C, D)).
[0031]
At the end of the opening of the concave container 31, the two electrodes 36a and 36b and the annular conductive layer 37 are provided (FIGS. (C, D)), and the solders 40a, 40b, and 41 (FIG. (B, C, D), the mounting pads 42a and 42b provided on the upper surface of the ceramic wiring substrate 38 and the annular pad 43 (FIG. 3D) are simultaneously joined. The electrodes 36a and 36b are intended to be electrically connected to the mounting pads 42a and 42b (FIG. 2D), and the mounting pads 42a and 42b are electrically connected to the interior wiring 44, respectively. On the other hand, the annular conductive layer 37 is intended to ensure the sealing performance with the ceramic wiring board 38.
[0032]
The face-down bonding type oscillation IC chip 45 (FIG. 2B) constituting the oscillation circuit is mounted on the upper surface of the ceramic wiring board 38 at a position adjacent to the concave container 31. By electrically connecting the functional terminal electrodes 46 and the land patterns 47 to the excitation electrodes (not shown) provided on both main surfaces of the crystal vibrating piece 32 through the internal wiring 44, and the external terminals provided on the lower surface of the ceramic wiring board 38. The electrodes 48 are electrically connected to the ground terminal, the power supply terminal, the external control terminal, and the output terminal electrode, respectively.
Furthermore, the oscillation IC chip 45 is fixed to the ceramic wiring board 38 by an underfill agent 49.
If it is necessary to increase the adhesion of the underfill agent 49, the bottom surface of the oscillation IC chip 45 and the lower portion 50 of the side surface of the oscillation IC chip 45 are formed in the same manner as described in the first embodiment. It may be fixed by using.
[0033]
Here, the joining of the annular pad 43 on the ceramic wiring substrate 38 and the annular conductive layer 37 formed at the end of the concave container 31 is for maintaining the inside of the concave container 31 in a sealed state such as a vacuum or an inert gas. It is also possible to use a non-conductive adhesive other than solder or conductive adhesive. Further, if possible due to the convenience of mass production, seam sealing, glass sealing, or anisotropic conductive adhesive may be used. At that time, the necessity of the annular conductive layer 37 and the annular pad 43 may be different depending on each case.
[0034]
Therefore, as described above, when the entire surface including the mounting pads 36a and 36b at the end of the opening of the concave container 31 (FIG. 10C) is connected to the wiring board 38 by a method having no conductivity and sealed, The electrical connection between the electrodes 36a, 36b and the mounting pads 42a, 42b may be only a fillet formed by a conductive quarter through hole on the outer surface of the concave container 31.
[0035]
Usually, as a conductor for electrically connecting the two excitation electrodes of the vibrator to the ceramic wiring board, it is appropriate to provide a conductive through hole inside the side wall of the concave container. However, this becomes very difficult due to the thinning of the side wall portion accompanying the miniaturization of the concave container, and in this embodiment, the conductive through hole is provided on the outer surface of the concave container and further on the corners, so that the conductive through hole becomes 4 An example of a form cut in half is given as an example. Further, the reason why the conductive quarter through-hole is provided at the center side of the oscillator, that is, at two corners of the surface adjacent to the oscillation IC, is that the conductive quarter through-hole due to contact with the outside of the oscillator or the like. In order to avoid breakage of the oscillator and when the external electrodes of the oscillator are arranged at the four corners of the lower surface of the wiring board, when the oscillator is mounted, a quarter through-hole portion of the concave container corner formed by solder or the like and the oscillator mounting pad This is because it is advantageous to avoid a contact failure.
[0036]
In the first place, the second embodiment of the present invention complicates the manufacturing process of the oscillator due to an increase in the number of mounting steps of the concave container as compared with the first embodiment, but the characteristics such as DLD measurement of the vibrator alone are determined in advance. Measurement is facilitated, and there is an advantage that the yield of the oscillator is improved by protecting the expensive oscillation IC chip.
[0037]
Hereinafter, a crystal oscillator according to a third embodiment of the present invention will be described in detail with reference to FIG. 5. The basic structure of the third embodiment is the same as that of the second embodiment. Therefore, only different parts will be described.
The difference is that the flexible wiring board is used as the ceramic wiring board in the second embodiment, and the conductor provided on the flexible wiring board has the entire surface corresponding to the opening of the concave container on the upper surface of the flexible wiring board. It is covered with layers.
[0038]
FIG. 5A is a front sectional view, and FIGS. 5B and 5C are side sectional views. Here, FIG. 5A shows a cross section taken along a dotted line AA ′ in FIGS. 5B and 5C, and FIG. 5B shows a cross section taken along a dotted line BB ′ in FIG. (C) shows a cross section taken along a dotted line CC 'in FIG.
5A, an IC chip 62 for oscillation and a concave container 63 accommodating a crystal resonator element are mounted on the upper surface, and external terminals 64 are mounted on the lower surface, as in the second embodiment. Are provided, and are electrically connected to each other by the inner layer or the surface layer wiring as in the above-described second embodiment of the present invention.
The recessed container 63 in FIG. 6A has a solder 67 (FIG. 6B) on a conductor layer 66 (FIG. 6B) provided on the upper surface of the flexible wiring board 61 by an annular conductor 65 formed at the end of the opening. (C)) is hermetically sealed. The joining between the end portion 65 of the concave container 63 and the conductive layer 66 is for maintaining the inside of the concave container 63 in a sealed state such as a vacuum or an inert gas. This is the same as the content described in the embodiment.
[0039]
Here, regarding the flexible wiring board, polyimide resin is the most influential material. This polyimide resin is a special resin having excellent heat resistance among organic substances, and is a material that can withstand, for example, a lead-free soldering temperature of 260 ° C. Furthermore, since it is an organic polymer, it has a feature that it is very easy to process.
[0040]
Here, when the height of the oscillator is further reduced by using a flexible wiring board made of a polyimide resin in the structure of the oscillator, since the polyimide resin is a polymer material, it has a large number of pores, so that the sealing performance is secured. It will be difficult. Therefore, in order to ensure the hermeticity of the concave container 63, a structure corresponding to the opening is covered with a conductor layer 66. This basic idea is based on the content disclosed in claim 3 of Japanese Patent Application Laid-Open No. 2000-100982 by the same applicant.
[0041]
Hereinafter, a crystal oscillator according to a fourth embodiment of the present invention will be described in detail with reference to FIG. FIG. 7A shows an application example in the first embodiment of the present invention, and FIG. 7B shows an application example in the second and third embodiments of the present invention.
[0042]
In FIG. 6A, the recess 72 provided on the ceramic wiring board 71 is sealed by a metal cover 73 with a vacuum or an inert gas or the like, and the metal cover 72 is positioned adjacent to the recess 72. It extends to a position covering the upper part of the mounted oscillation IC chip 74.
[0043]
In FIG. 7B, a concave container 76 is mounted on a ceramic or flexible wiring substrate 75 so that the inside 77 is sealed with a vacuum or an inert gas or the like. , Extend to a position covering the upper part of the oscillation IC chip 78.
[0044]
This has the effect of protecting the upper position of the oscillation IC chip, thereby increasing the effective suction area of the upper surface when the oscillator is picked up and improving the mechanical protection of the oscillation IC chip from above. Connect.
[0045]
Here, the method of manufacturing the piezoelectric oscillator having the structure described in the above-described first to fourth embodiments of the present invention employs a sheet-like wiring board in which a large number of oscillator wiring boards are arranged from the viewpoint of mass productivity. After the adjustment, the oscillator is cut into individual oscillators. At that time, if a defective product is detected and discarded after the completion of assembling the oscillator, the non-defective product rate of the resonator element will depend on the overall non-defective product rate. Therefore, a method will be described in which various characteristics such as the drive level of each resonator element are measured, and nonconforming products are discarded, and then combined with an oscillation IC chip to complete the method.
[0046]
Hereinafter, a method for manufacturing the piezoelectric oscillator according to the fifth embodiment of the present invention will be described in detail with reference to FIGS. In the case of the oscillator according to the first embodiment, this is a step after the respective resonator elements are mounted inside the sheet-like wiring board and sealed with a lid, and the second and third In the case of the oscillator described in the embodiment, the process after mounting the concave container having the resonator element therein on the sheet-like wiring board includes a step of measuring and inspecting various characteristics of only the resonator element, and thereafter, This is a manufacturing method of mounting an IC chip.
[0047]
This is an example of an externally controlled crystal oscillator, and FIG. 7 is a diagram showing a wiring configuration for adjustment in a sheet-like wiring board including a plurality of oscillators. In the figure, reference numeral 81 denotes an area corresponding to one oscillator, and includes a mounting area 82 for a crystal resonator element and a mounting area 83 for an oscillation IC chip. The external terminals provided on the back surface are a power terminal (Vcc) 84, an external control terminal (Vcont) 85, a ground terminal (GND) 86, and an output terminal (OUT) 87.
[0048]
The above-mentioned Vcc, Vcont, and GND in each oscillator are led to respective common terminals by an inner layer or a surface layer wiring of the sheet-like wiring board, and apply and ground each voltage to each oscillator in common. Here, only the OUT terminal needs to be adjusted while individually detecting the output of each oscillator. Therefore, OUT1, OUT2,. In addition, if it is necessary to adjust the value of the power supply or external control individually for each oscillator when adjusting the oscillator, the Vcc and Vcont terminals may be drawn out by individual wiring.
[0049]
Each oscillation IC chip 83 has adjustment terminals S1, S2, S3, and S4, and is pulled out to each common terminal by an inner layer or a surface layer wiring as described above. Here, only S4 receives an individual signal. Assuming that the terminals need to be adjusted, S4-1, S4-2,... Are drawn out by individual wiring. As described above, if the other terminals S1, S2, and S3 need to be adjusted by individual signal input / output, they may be led out by individual wiring.
[0050]
The two excitation electrode pads 88 and 89 of each resonator element are electrically connected to the input / output electrodes of the oscillator (not shown) of the oscillation IC chip by an inner layer or a surface wiring (not shown) that passes through the substrate area of the individual oscillator. Further, each of the excitation electrodes is led out to the outside by an inner layer or a surface layer wiring indicated by a dotted line in the same figure. , Xtal-2, Xtal + 3, Xtal-3,...
[0051]
FIG. 8 is a diagram illustrating the measurement principle of various characteristics such as the drive level characteristics of the vibrator. 7, Xtal + X and Xtal-X represent dual excitation electrodes drawn out from the arbitrary vibrating piece X in FIG. 7, and are switched by a switch 90 between a reference oscillation circuit side terminal 91 and a high voltage power supply side terminal 92. Is possible. The reference oscillation circuit is connected to at least a power supply Vcc, an external control Vcont, a ground GND, and a frequency counter connected to a frequency recording device.
[0052]
First, regarding the overdrive measurement of an arbitrary vibration element, after mounting only the vibration element portion in FIG. 7, as shown in FIG. 8, both excitation electrodes Xtal + X and Xtal-X of the arbitrary vibration element are set to a changeover switch 90. Connected to the terminal 85 on the reference oscillation circuit side to measure and record the oscillation frequency f1. Next, the high voltage power supply side terminal 92 is switched by a switch 90 to apply an overdrive voltage. Then, by switching the switch 90 to the reference oscillation circuit side terminal 91 again, f2 is measured and recorded, and a drive level nonconforming product is detected based on the frequency difference between f1 and f2.
[0053]
The vibrating reed or the concave container containing the vibrating reed that was determined to be non-conforming as a result of this test can be replaced with a conforming product and re-mounted or by adding a bad mark, etc. Useless mounting can be prevented, and low cost can be realized due to an increase in the yield rate.
After the high-temperature heat treatment process, the oscillator IC chip is mounted only on the oscillator substrate on which the resonating piece is mounted as a non-defective product, and each oscillator is adjusted, and the inner layer or surface wiring drawn from each oscillator by a slicer or the like. Each is cut and separated to complete.
[0054]
Here, the reference oscillation circuit in Fig. 8 can be connected to measuring devices such as an impedance analyzer and a spectrum analyzer to measure various characteristics such as CI value and capacitance ratio necessary for detecting non-conforming products with only the vibrating element. It becomes. In addition, if the frequency is measured while the sheet-like wiring board on which each vibration element is mounted is placed in a constant temperature bath or the like, it is possible to measure the frequency-temperature characteristics of each vibration element and adapt to each temperature characteristic. For example, it is possible to mount a ranking oscillation IC chip.
[0055]
As described above in connection with the problem of the prior art, the reason why the oscillation IC chip is not mounted in the first place when measuring the drive level characteristics of the vibrating element is because of the high voltage at the time of measuring the overdrive of the crystal vibrating piece and the high temperature. This is also for protecting the oscillation IC chip from the heat treatment step.
[0056]
Hereinafter, a sixth embodiment of the present invention in a method of manufacturing a piezoelectric oscillator will be described in detail with reference to FIGS. This is a method for manufacturing an oscillator using a flexible wiring board, and will be described as an example including the manufacturing method in the fifth embodiment of the present invention.
[0057]
FIG. 9 is an enlarged top view of the end of a strip-shaped flexible wiring board 94 in which a number of piezoelectric oscillators 93 each composed of an oscillation IC chip and a vibrating element section are arranged in a line on a reel-shaped transport medium 95. The reel-shaped transport medium 95 has feed holes 96 on both sides.
[0058]
An electrode from which an adjustment terminal and an external terminal of each oscillator are drawn out by an inner layer or a surface layer wiring (not shown) is provided around a portion of each of the oscillators of the strip-shaped flexible wiring board 94. On the other hand, terminals that need to input and output individual signals to each oscillator, for example, output terminals of each oscillator, dual excitation electrodes extracted from the piezoelectric vibrating reed, and adjustment terminals that require individual signal input and output are The oscillator is led to individual terminal electrodes 97 on both sides. On the other hand, terminals that can be shared, such as a power supply and a ground terminal, are led out to common terminal electrodes 98 provided at both ends of the strip-shaped flexible wiring board 94.
The strip-shaped flexible wiring board 94 is provided with the side wall 99 for preventing the underfill agent from flowing out as described in the first embodiment of the present invention.
[0059]
Now, a large number of strip-shaped flexible wiring boards 94 are placed on a reel-shaped transport medium 95 made of a paper tape or an embossed tape made of a resin material, which is often used for packaging chip components, etc., on peripheral portions other than the portions serving as the substrates of the oscillators. An adhesive or the like is applied, and they are arranged and bonded. Here, in order to prevent oxidation and protection of the electrode surface, a transparent vinyl tape or the like (not shown) may be covered so as to be easily peeled off. Then, it is stored and managed in a state of being wound in a reel shape.
[0060]
Next, each of the reels is put into the in-line adjustment line, and the piezoelectric vibrating reed or the concave container containing the piezoelectric vibrating reed is sequentially mounted and bonded while being transported using the transporting feed hole, and sealed. Thereafter, a non-conforming product having only the piezoelectric vibrating element is detected by the method described in the fifth embodiment of the present invention. Therefore, a bad mark or the like is written on the wiring board portion of the oscillator that has become incompatible, and the position information is recorded. After the high-temperature heat treatment process, the characteristics of each piezoelectric vibrator are inspected again, and a bad mark or the like is written on the wiring board portion of the non-conforming product as described above, and the positional information is recorded. After that, an oscillation IC chip is mounted only on each oscillator substrate on which a compatible product is mounted, and an underfill agent is applied and fixed to complete the assembly of the oscillator. After that, the adjustment of the oscillator is completed for each unit quantity, and finally, the wiring of the inner layer or the surface layer drawn out of the oscillator is cut and separated to complete.
[0061]
This mode can be said to be the most suitable method when the handling process becomes difficult due to the downsizing of the oscillator, as compared with the conventional assembling using a jig stored in a socket or the like and transporting in an adjustment line.
According to this embodiment, there is also an advantage in adjusting the temperature characteristics. One of the conventional temperature characteristic adjustment methods is to adjust the oscillator temperature while keeping it constant by attaching it to a jig with a large heat capacity, passing it through a constant temperature bath line, and leaving it in a gas atmosphere at a certain temperature for a certain period of time. There is a way. However, according to this mode, it is possible to manufacture a reel-shaped transport medium that is very thin and has a good thermal conductivity and a small heat capacity.Furthermore, a heating plate or a cooling plate or the like is manufactured on a constant temperature bath line, and a If the oscillator is configured to be conveyed while being in contact with the oscillator, it is possible to more effectively adjust the oscillator while maintaining the oscillator at a desired temperature.
[0062]
When cutting and separating at the end, a slicer or a cutting die with a rotary blade can be used if the external shape of the oscillator is relatively large. It is good to use etc.
[0063]
FIG. 10 shows a form in which the interval between the oscillator boards in the strip-shaped flexible wiring board is widened. In this way, the oscillator can be cut and separated by laser cutting in the final step of the production line, and then sealed with a protective tape such as a releasable vinyl, so that it is possible to use a shipping form by reel packing as it is.
[0064]
【The invention's effect】
The structure of the oscillator according to claim 1 of the present invention is such that the oscillation IC chip and the piezoelectric vibrating reed are arranged separately as compared with the first conventional example, that is, the single seal structure. DLD processing and annealing processing can be respectively performed before mounting the semiconductor chip, and there is an effect that the yield of the oscillator is improved by protecting the expensive oscillation IC chip. In addition, since the amount of the resin substance serving as a source of outgas is small in a region where the piezoelectric vibrating piece is hermetically sealed, the aging characteristics are also excellent. Also, needless to say, the oscillation IC and the piezoelectric vibrating piece do not overlap three-dimensionally, so that the height can be reduced. Further, compared with the second conventional example, since the potting agent for fixing the oscillation IC chip is not used, a side wall for preventing the outflow of the potting agent is not required inside the oscillator, and the height direction due to the application amount of the potting agent is not required. Can be prevented, so that the area and the height can be further reduced.
The structure of the oscillator according to the second aspect of the present invention is different from that of the first aspect in that not only the oscillation IC chip and the piezoelectric vibrating reed are arranged separately but also the piezoelectric vibrating reed is housed in a concave container. As a result, the manufacturing process can be easily separated. For example, in the manufacturing method according to the fifth embodiment of the present invention, the basic characteristics such as the room temperature frequency, the CI value, and the capacitance ratio other than the DLD measurement and the annealing process are used. Only in the state of the semi-finished product stored in the concave container, it is possible to evaluate in advance and determine the quality. In addition, it is possible to mount on the sheet-like wiring board by dividing the rank according to the value evaluated in advance.
The structure of the oscillator according to claim 3 of the present invention realizes a further reduction in height as well as the effect of the structure of claim 2, by adopting a flexible substrate that has ensured sealing performance.
The structure of the oscillator according to claim 4 of the present invention is such that, by extending the lid or the bottom plate of the concave container to the upper position of the oscillation IC chip, the oscillation IC chip is protected, and the upper surface of the oscillator at the time of pickup is mounted. This has the effect of increasing the effective adsorption area.
The method for manufacturing an oscillator according to claim 5 of the present invention makes it easy to perform a method of performing DLD measurement of a resonator element alone before mounting an oscillation IC in the structure according to claim 1 or claim 2 or 3. As a possible method.
The method for manufacturing an oscillator according to claim 6 of the present invention proposes a specific manufacturing method in which the method according to claim 5 can be used in the oscillator having the structure according to claim 3. This has solved the problem of handling, which is the biggest problem in reducing the height and size, and has realized a reduction in manufacturing cost.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of the present invention.
FIG. 2 is a supplementary explanatory diagram of the first embodiment of the present invention.
FIG. 3 is a supplementary explanatory diagram of the first embodiment of the present invention.
FIG. 4 shows a second embodiment of the present invention.
FIG. 5 shows a third embodiment of the present invention.
FIG. 6 shows a fourth embodiment of the present invention.
FIG. 7 is a fifth embodiment of the present invention.
FIG. 8 is a supplementary explanatory diagram of the fifth embodiment of the present invention.
FIG. 9 shows a sixth embodiment of the present invention.
FIG. 10: First conventional example
FIG. 11 is a second conventional example.
[Explanation of symbols]
1, 38, 61, 101, 121: wiring board, 2, 32, 103, 122: quartz vibrating piece, 3: concave portion, 4: annular metallization, 5: metal cover, 8, 45, 62, 104, 129: Oscillation IC chip, 13, 49: underfill agent, 23, 99: underfill agent outflow prevention side wall, 31, 63: concave container, 12, 48, 64, 113: external terminal electrode, 94: flexible wiring board, 95: Reel-shaped transport medium, 96: Feed hole

Claims (6)

配線基板の上面に圧電振動片と、少なくとも発振用増幅回路を構成したフェースダウンボンディングタイプの半導体チップのみを搭載し、前記配線基板の下面に外部端子電極を設けた圧電発振器の構造であって、
前記配線基板が、平板状の絶縁基板の上面の一部に前記圧電振動片を内部に収納する凹部を設け、該凹部を蓋により気密封止し、
前記半導体チップを前記配線基板上の前記凹部に隣接する位置に搭載し、前記半導体チップと前記圧電振動片の励振電極、及び前記半導体チップと前記外部端子電極とを、前記配線基板の内層又は表層に設けた配線により夫々導通したことを特徴とする圧電発振器。
Piezoelectric vibrating reed on the upper surface of the wiring board, only the face-down bonding type semiconductor chip constituting at least the oscillation amplifier circuit is mounted, the structure of the piezoelectric oscillator provided with external terminal electrodes on the lower surface of the wiring board,
The wiring board is provided with a recess for accommodating the piezoelectric vibrating reed in a part of the upper surface of a flat insulating substrate, and the recess is hermetically sealed with a lid,
The semiconductor chip is mounted at a position adjacent to the concave portion on the wiring board, and the semiconductor chip and the excitation electrodes of the piezoelectric vibrating reed, and the semiconductor chip and the external terminal electrodes are connected to an inner layer or a surface layer of the wiring board. The piezoelectric oscillator is electrically connected to each other by wiring provided in the piezoelectric oscillator.
平板状の絶縁基板からなる配線基板の上面に、圧電振動片を収納する為の凹状容器と、少なくとも発振用増幅回路を構成したフェースダウンボンディングタイプの半導体チップのみを搭載し、前記線基板の下面に外部端子電極を設けた圧電発振器の構造であって、
前記凹状容器は、前記圧電振動片の両主面に設けた励振電極から引出した二つの電極が、前記凹状容器に設けた配線により該凹状容器の開口部の端部に設けた二つの電極まで引出された構造であって、前記凹状容器の開口部を前記配線基板の上面の一部に、前記圧電振動片を気密に封止するよう接合搭載しており、
前記開口部の端部に設けた二つの電極は、前記配線基板に設けた二つのランドパターンと導通接続することにより、前記配線基板の内層又は表層に設けた配線に夫々導通しており、
前記半導体チップを前記配線基板上の前記凹状容器に隣接する位置に搭載し、前記半導体チップと前記圧電振動片の励振電極、及び前記半導体チップと前記外部端子電極とを、前記配線基板の内層又は表層に設けた配線により夫々導通したことを特徴とする圧電発振器。
On the upper surface of a wiring board made of a flat insulating substrate, only a concave container for accommodating a piezoelectric vibrating reed and a face-down bonding type semiconductor chip constituting at least an amplifying circuit for oscillation are mounted. A piezoelectric oscillator structure provided with external terminal electrodes,
In the concave container, two electrodes pulled out from excitation electrodes provided on both main surfaces of the piezoelectric vibrating piece are connected to two electrodes provided at an end of an opening of the concave container by wiring provided in the concave container. In the drawn-out structure, the opening of the concave container is mounted on a part of the upper surface of the wiring board so as to be hermetically sealed with the piezoelectric vibrating reed,
The two electrodes provided at the end of the opening are electrically connected to the two land patterns provided on the wiring board, so that they are electrically connected to the wiring provided on the inner layer or the surface layer of the wiring board, respectively.
The semiconductor chip is mounted on the wiring board at a position adjacent to the concave container, and the semiconductor chip and the excitation electrodes of the piezoelectric vibrating reed, and the semiconductor chip and the external terminal electrodes, the inner layer of the wiring board or A piezoelectric oscillator characterized by being electrically connected by wiring provided on a surface layer.
平板状のフレキシブル配線基板の上面に、圧電振動片を収納する為の凹状容器と、少なくとも発振用増幅回路を構成したフェースダウンボンディングタイプの半導体チップのみを搭載し、前記線基板の下面に外部端子電極を設けた圧電発振器の構造であって、
前記凹状容器は、前記圧電振動片の両主面に設けた励振電極から引出した二つの電極が、前記凹状容器に設けた配線により該凹状容器の開口部の端部に設けた二つの電極まで引出された構造であって、前記凹状容器の開口部を前記フレキシブル配線基板の上面の一部に、前記圧電振動片を気密に封止するよう接合搭載しており、開口部の少なくとも内側開口部分全面を塞ぐ前記フレキシブル配線基板の部分に金属箔を設け、
前記開口部の端部に設けた二つの電極は、前記フレキシブル配線基板に設けた二つのランドパターンと導通接続することにより、前記フレキシブル配線基板の内層又は表層に設けた配線に夫々導通しており、
前記半導体チップを前記フレキシブル配線基板上の前記凹状容器に隣接する位置に搭載し、前記半導体チップと前記圧電振動片の励振電極、及び前記半導体チップと前記外部端子電極とを、前記フレキシブル配線基板の内層又は表層に設けた配線により夫々導通したことを特徴とする圧電発振器。
A concave container for accommodating a piezoelectric vibrating piece and only a face-down bonding type semiconductor chip constituting at least an oscillation amplifier circuit are mounted on an upper surface of a flat flexible wiring board, and external terminals are provided on a lower surface of the wire substrate. A structure of a piezoelectric oscillator provided with electrodes,
In the concave container, two electrodes pulled out from excitation electrodes provided on both main surfaces of the piezoelectric vibrating piece are connected to two electrodes provided at an end of an opening of the concave container by wiring provided in the concave container. In the drawn-out structure, an opening of the concave container is mounted on a part of an upper surface of the flexible wiring board so as to hermetically seal the piezoelectric vibrating reed, and at least an inner opening of the opening. A metal foil is provided on a portion of the flexible wiring board that covers the entire surface,
The two electrodes provided at the ends of the opening are electrically connected to the two land patterns provided on the flexible wiring board, thereby electrically connecting to the wiring provided on the inner layer or the surface layer of the flexible wiring board. ,
The semiconductor chip is mounted on the flexible wiring board at a position adjacent to the concave container, and the semiconductor chip and the excitation electrodes of the piezoelectric vibrating reed, and the semiconductor chip and the external terminal electrodes are connected to the flexible wiring board. A piezoelectric oscillator which is electrically connected to a wiring provided on an inner layer or a surface layer.
前記蓋、又は前記凹状容器の底板部が、前記半導体チップの上部位置まで延出したことを特徴とした、請求項1又は2又は3のいずれかに記載の圧電発振器。The piezoelectric oscillator according to claim 1, wherein the lid or the bottom plate of the concave container extends to an upper position of the semiconductor chip. 圧電発振器における製造方法であって、内層又は表層の配線により夫々の調整端子や外部端子を引出した構造をもつ多数の発振器を並べたシート状配線基板を使用し、夫々の発振器の調整後に個別の発振器に切断し完成する製造方法の中で、夫々の前記圧電振動片又は前記圧電振動片を内部に含む前記凹状容器を該シート状配線基板に搭載する工程の後に、該シート状配線基板より内層又は表層の配線により引出した任意の前記圧電振動片の両励振電極が、切り替えスイッチにより、基準となる発振回路とオーバードライブが可能な電源との間の接続切替えが可能な設備により、夫々の該圧電振動片のドライブレベル測定等の諸特性を測定し、前記圧電振動片のみの不適合品を検出する工程を経た後、前記発振用ICチップを搭載する工程を有することを特徴とした、請求項1又は2又は3のいずれかに記載の圧電発振器の製造方法。A method for manufacturing a piezoelectric oscillator, comprising using a sheet-like wiring board in which a number of oscillators having a structure in which respective adjustment terminals and external terminals are led out by wiring of an inner layer or a surface layer are arranged, and after adjustment of each oscillator, an individual In the manufacturing method of cutting and completing the oscillator, after the step of mounting each of the piezoelectric vibrating pieces or the concave container including the piezoelectric vibrating pieces therein to the sheet-like wiring board, an inner layer from the sheet-like wiring board is formed. Alternatively, the two excitation electrodes of any of the piezoelectric vibrating reeds drawn out by the surface wiring are connected to the respective oscillation circuits by a changeover switch so that the connection between a reference oscillation circuit and a power supply capable of overdrive can be switched. After measuring various characteristics such as drive level measurement of the piezoelectric vibrating reed and detecting a non-conforming product only of the piezoelectric vibrating reed, a step of mounting the oscillation IC chip is performed. It was characterized by the method for manufacturing a piezoelectric oscillator according to claim 1 or 2 or 3. フレキシブル配線基板を使用した発振器の製造方法であって、内層又は表層の配線により夫々の調整端子や外部端子を引出した構造をもつ多数の発振器を並べた、シート状配線基板を帯状にしたフレキシブル配線基板を用い、
該帯状のフレキシブル配線基板を、リール送り穴を有するリール状搬送媒体に貼り合わせた状態で製造ラインを搬送し、組立、調整することを特徴とした製造方法。
A method for manufacturing an oscillator using a flexible wiring board, wherein a sheet-like wiring board is formed into a strip-like flexible wiring in which a number of oscillators having a structure in which respective adjustment terminals and external terminals are drawn out by inner or surface wiring are arranged. Using a substrate,
A manufacturing method, wherein the strip-shaped flexible wiring substrate is attached to a reel-shaped transport medium having a reel feed hole, and is transported through a production line, and is assembled and adjusted.
JP2003122419A 2003-04-25 2003-04-25 Piezoelectric oscillator and method for manufacturing the same Expired - Fee Related JP4321104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122419A JP4321104B2 (en) 2003-04-25 2003-04-25 Piezoelectric oscillator and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122419A JP4321104B2 (en) 2003-04-25 2003-04-25 Piezoelectric oscillator and method for manufacturing the same

Publications (3)

Publication Number Publication Date
JP2004328505A true JP2004328505A (en) 2004-11-18
JP2004328505A5 JP2004328505A5 (en) 2006-06-08
JP4321104B2 JP4321104B2 (en) 2009-08-26

Family

ID=33500656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122419A Expired - Fee Related JP4321104B2 (en) 2003-04-25 2003-04-25 Piezoelectric oscillator and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4321104B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254427A (en) * 2005-02-10 2006-09-21 Seiko Instruments Inc Electronic apparatus equipped with piezo oscillator, its manufacturing, and piezo oscillator
JP2007243378A (en) * 2006-03-07 2007-09-20 Epson Toyocom Corp Piezoelectric vibrator and its manufacturing method
JP2008301196A (en) * 2007-05-31 2008-12-11 Kyocera Kinseki Corp Piezoelectric oscillator
JP2009027465A (en) * 2007-07-19 2009-02-05 Nippon Dempa Kogyo Co Ltd Surface-mounting type crystal oscillator
JP2009194725A (en) * 2008-02-15 2009-08-27 Nippon Dempa Kogyo Co Ltd Surface mount crystal oscillator
JP2010119057A (en) * 2008-11-14 2010-05-27 Nippon Dempa Kogyo Co Ltd Crystal oscillator for surface mounting
JP2010177981A (en) * 2009-01-29 2010-08-12 Nippon Dempa Kogyo Co Ltd Electronic card with crystal oscillator
JP2011199579A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Electronic device and method for manufacturing electronic device
JP2011199577A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Package, electronic device, and method for manufacturing electronic device
JP2011233977A (en) * 2010-04-23 2011-11-17 Daishinku Corp Piezoelectric oscillator
US9246469B2 (en) 2013-11-11 2016-01-26 Seiko Epson Corporation Manufacturing method of oscillator, manufacturing method of circuit device and the circuit device
US9312812B2 (en) 2013-10-30 2016-04-12 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
CN105846783A (en) * 2015-02-03 2016-08-10 精工爱普生株式会社 Method of manufacturing vibration device
US9438167B2 (en) 2013-10-30 2016-09-06 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9461585B2 (en) 2013-10-30 2016-10-04 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
JP2016178404A (en) * 2015-03-19 2016-10-06 セイコーエプソン株式会社 Manufacturing method for vibrator and manufacturing method for oscillator
US9628022B2 (en) 2013-10-30 2017-04-18 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
US9748920B2 (en) 2013-10-30 2017-08-29 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and moving object
US9863972B2 (en) 2013-03-28 2018-01-09 Seiko Epson Corporation Physical quantity sensor, electronic device, and moving object

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254427A (en) * 2005-02-10 2006-09-21 Seiko Instruments Inc Electronic apparatus equipped with piezo oscillator, its manufacturing, and piezo oscillator
JP2007243378A (en) * 2006-03-07 2007-09-20 Epson Toyocom Corp Piezoelectric vibrator and its manufacturing method
JP2008301196A (en) * 2007-05-31 2008-12-11 Kyocera Kinseki Corp Piezoelectric oscillator
JP2009027465A (en) * 2007-07-19 2009-02-05 Nippon Dempa Kogyo Co Ltd Surface-mounting type crystal oscillator
JP2009194725A (en) * 2008-02-15 2009-08-27 Nippon Dempa Kogyo Co Ltd Surface mount crystal oscillator
JP2010119057A (en) * 2008-11-14 2010-05-27 Nippon Dempa Kogyo Co Ltd Crystal oscillator for surface mounting
JP2010177981A (en) * 2009-01-29 2010-08-12 Nippon Dempa Kogyo Co Ltd Electronic card with crystal oscillator
JP2011199577A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Package, electronic device, and method for manufacturing electronic device
JP2011199579A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Electronic device and method for manufacturing electronic device
JP2011233977A (en) * 2010-04-23 2011-11-17 Daishinku Corp Piezoelectric oscillator
US9863972B2 (en) 2013-03-28 2018-01-09 Seiko Epson Corporation Physical quantity sensor, electronic device, and moving object
US9312812B2 (en) 2013-10-30 2016-04-12 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
US9438167B2 (en) 2013-10-30 2016-09-06 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9461585B2 (en) 2013-10-30 2016-10-04 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9628022B2 (en) 2013-10-30 2017-04-18 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
US9748920B2 (en) 2013-10-30 2017-08-29 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and moving object
US9246469B2 (en) 2013-11-11 2016-01-26 Seiko Epson Corporation Manufacturing method of oscillator, manufacturing method of circuit device and the circuit device
CN105846783A (en) * 2015-02-03 2016-08-10 精工爱普生株式会社 Method of manufacturing vibration device
JP2016178404A (en) * 2015-03-19 2016-10-06 セイコーエプソン株式会社 Manufacturing method for vibrator and manufacturing method for oscillator

Also Published As

Publication number Publication date
JP4321104B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4321104B2 (en) Piezoelectric oscillator and method for manufacturing the same
JP3841304B2 (en) Piezoelectric oscillator and manufacturing method thereof
US6587008B2 (en) Piezoelectric oscillator and a method for manufacturing the same
JP4600663B2 (en) Temperature compensated piezoelectric oscillator
US8031013B2 (en) Surface-mount type crystal oscillator
WO2001058007A1 (en) Vessel for oscillation circuits using piezoelectric vibrator, method of producing the same, and oscillator
US20070241830A1 (en) Surface mount crystal oscillator and method of manufacturing same
JP3895206B2 (en) Oscillator sheet substrate and surface mount crystal oscillator manufacturing method using the same
JP2008278227A (en) Manufacturing method of piezoelectric oscillator
JP3406852B2 (en) Crystal oscillator
JP4724518B2 (en) Piezoelectric oscillator
JP2005223640A (en) Package, surface mounted piezoelectric oscillator using the same, and frequency adjusting method therefor
JP5097929B2 (en) Manufacturing method of electronic parts
JP5100421B2 (en) Electronic card
JP4585908B2 (en) Method for manufacturing piezoelectric device
JP4167557B2 (en) Method for manufacturing piezoelectric oscillator
JP2003318653A (en) Piezoelectric vibrating device
JP4578231B2 (en) Piezoelectric oscillator and manufacturing method thereof
JP4472445B2 (en) Method for manufacturing piezoelectric oscillator
JP4284143B2 (en) Piezoelectric oscillator
JP2004260598A (en) Surface mount temperature compensation crystal oscillator
JP4113459B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP2006129303A (en) Manufacturing method of piezoelectric oscillator
JP2001036343A (en) Surface mounting type temperature compensated crystal oscillator
JP2005109576A (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060404

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Ref document number: 4321104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees