JP2004322251A - Surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed cutting condition and its manufacturing method - Google Patents

Surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed cutting condition and its manufacturing method Download PDF

Info

Publication number
JP2004322251A
JP2004322251A JP2003119379A JP2003119379A JP2004322251A JP 2004322251 A JP2004322251 A JP 2004322251A JP 2003119379 A JP2003119379 A JP 2003119379A JP 2003119379 A JP2003119379 A JP 2003119379A JP 2004322251 A JP2004322251 A JP 2004322251A
Authority
JP
Japan
Prior art keywords
oxygen
nitrogen
alloy
content
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119379A
Other languages
Japanese (ja)
Other versions
JP4120456B2 (en
Inventor
Kazunori Sato
和則 佐藤
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003119379A priority Critical patent/JP4120456B2/en
Publication of JP2004322251A publication Critical patent/JP2004322251A/en
Application granted granted Critical
Publication of JP4120456B2 publication Critical patent/JP4120456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cemented carbide cutting tool having a hard coating layer exhibiting superior abrasion resistance under a high speed cutting condition, and its manufacturing method. <P>SOLUTION: This cutting tool is formed by physically depositing the hard coating layer composed of a composite oxynitride layer of Al, Ti, and Zr in the average layer thickness of 1 to 15 μm; is constituted so that the hard coating layer has a component concentration distribution structure that a maximum inclusion point of Al and oxygen and a maximum inclusion point of Ti and nitrogen alternately and repeatedly exist at a prescribed interval in the layer thickness direction, and an inclusion rate of Al and oxygen, and Ti and nitrogen changes respectively and continuously between both points; and is composed of the hard coating layer that the maximum inclusion point of Al and oxygen satisfies the specific composition ratio, and an interval between the maximum inclusion point of adjacent Al and oxygen and the maximum inclusion point of Ti and nitrogen is 0.01 to 0.1 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が一段とすぐれた高温硬さと耐熱性を有し、かつ高温強度にもすぐれ、したがって例えば粘性の高い各種のステンレス鋼や軟鋼などの難削材の切削加工を、特に高い発熱を伴う高速加工条件で行なった場合に、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)およびその製造方法に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金の超硬基体または炭窒化チタン(以下、TiCNで示す)基サーメットの超硬基体(以下、これらの超硬基体を総称して「超硬基体」という)の表面に、
組成式:[Ti1−(Y+Z)AlZr)N](ただし、原子比で、Yは0.35〜0.60、Zは0.01〜0.10を示す)を満足するTiとAlとZrの複合窒化物[以下、(Ti,Al,Zr)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が提案され、かかる被覆超硬工具が、硬質被覆層を構成する前記(Ti,Al,Zr)N層がAl成分による高温硬さと耐熱性、およびTi成分による高温強度を有し、さらにZr成分による一段の高温強度向上効果と相俟って、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられることも知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−Zr合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Zr)N層からなる硬質被覆層を蒸着することにより製造されることも良く知られるところである。(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平9−104966号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、一段と高速化した条件での切削加工を強いられる傾向にあるが、上記の従来被覆超硬工具においては、これを例えば粘性の高い各種のステンレス鋼や軟鋼などの難削材の切削加工を、特に高い発熱を伴う高速条件で行なうのに用いた場合、硬質被覆層である(Ti,Al,Zr)N層が、すぐれた高温強度を有するものの、十分な高温硬さおよび耐熱性を具備するものでないために、前記硬質被覆層の摩耗進行が一段と促進されるようになることから、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に上記の従来被覆超硬工具の硬質被覆層に着目し、特に粘性の高い各種のステンレス鋼や軟鋼などの難削材の高速切削で、すぐれた耐摩耗性を発揮する硬質被覆層を開発すべく、研究を行った結果、
(a)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造の物理蒸着装置に属するアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有割合の高いAl−Ti−Zr合金、他方側に相対的にTi含有割合の高いTi−Al−Zr合金をいずれもカソード電極(蒸発源)として対向配置し、さらにいずれも前記Al−Ti−Zr合金に比してAl含有割合が低く、かつ前記Ti−Al−Zr合金に比してTi含有割合が低い中間Al/Ti/Zr合金と中間Ti/Al/Zr合金を同じくカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、
この装置の前記回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して前記超硬基体を装着し、
この状態で装置内の反応雰囲気を酸素と窒素の混合雰囲気とするが、前記酸素と窒素の装置内への相対導入割合を上記超硬基体の回転移動位置に対応して調整して、前記超硬基体が上記の相対的にAl含有割合の高いAl−Ti−Zr合金のカソード電極に最も接近した時点での反応雰囲気を酸素導入割合が最も高く、窒素導入割合が最も低い、望ましくは酸素の相対導入割合が90〜97容量%で、残りが窒素からなる反応雰囲気とする一方、前記超硬基体が上記の相対的にTi含有割合の高いTi−Al−Zr合金のカソード電極に最も接近した時点での反応雰囲気を窒素導入割合が最も高く、酸素導入割合が最も低い、望ましくは窒素の相対導入割合が90〜97容量%で、残りが酸素からなる反応雰囲気とすると共に、前記超硬基体が前記Al−Ti−Zr合金のカソード電極最接近位置から上記中間Al/Ti/Zr合金のカソード電極最接近位置を経て前記Ti−Al−Zr合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、酸素の導入割合を連続的に減少させ、これに対応して窒素の導入割合を連続的に増加させる連続変化雰囲気とし、一方前記超硬基体が前記Ti−Al−Zr合金のカソード電極最接近位置から上記中間Ti/Al/Zr合金のカソード電極最接近位置を経て前記Al−Ti−Zr合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、窒素の導入割合を連続的に減少させ、これに対応して酸素の導入割合を連続的に増加させる連続変化雰囲気とし、
上記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で前記超硬基体自体も自転させながら、前記のそれぞれのカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させる条件で、
AlとTiとZrの複合酸窒化物(以下、Al−Ti−Zr酸窒化物という)層を形成すると、
上記超硬基体の表面には、回転テーブル上の中心軸から半径方向に離れた位置に偏心して配置された前記超硬基体が上記の一方側の相対的にAl含有量の高いAl−Ti−Zr合金のカソード電極(蒸発源)に最も接近した時点で層中にAlおよび酸素の最高含有点が形成され、また前記前記超硬基体が上記の他方側の相対的にTi含有量の高いTi−Al−Zr合金のカソード電極に最も接近した時点で層中にTiおよび窒素の最高含有点が形成されることから、上記回転テーブルの回転によって層中には厚さ方向にそって前記Alおよび酸素の最高含有点とTiおよび窒素の最高含有点が所定間隔をもって交互に繰り返し現れると共に、前記Alおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造をもったAl−Ti−Zr酸窒化物層からなる硬質被覆層が形成されるようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造のAl−Ti−Zr酸窒化物層の形成に際して、例えば対向配置のカソード電極(蒸発源)のそれぞれの組成、並びに装置内で連続変化する反応雰囲気の組成、すなわち酸素と窒素の相互導入割合を調製すると共に、超硬基体が装着されている回転テーブルの回転速度を制御して、
上記Alおよび酸素の最高含有点が、
組成式:(Al1−(X+Z)TiZr)O1−D(ただし、原子比で、Xは0.10〜0.25、Zは0.01〜0.10、Dは0.02〜0.10)、
上記Tiおよび窒素の最高含有点が、
組成式:(Ti1−(Y+Z)AlZr)N1−E(ただし、原子比で、Yは0.35〜0.60、Zは0.01〜0.10、Eは0.02〜0.10)、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔を、0.01〜0.1μmとすると、
上記Alおよび酸素の最高含有点部分では、高含有のAlと酸素の作用で、一段とすぐれた高温硬さと耐熱性を示し、一方上記Tiおよび窒素の最高含有点部分では、上記の従来(Ti,Al,Zr)N層におけるTiおよび窒素の含有割合と同等の相対的に高含有のTiおよび窒素含有となることから、Zr成分による高温強度向上効果と相俟って、前記従来(Ti,Al,Zr)N層の具備する高温強度と同等の相対的にすぐれた高温強度が確保され、かつこれらAlおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔をきわめて小さくしたことから、層全体の特性として一段とすぐれた高温硬さと耐熱性、さらにすぐれた高温強度も具備するようになり、また前記両点間でAlと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化(成分濃度分布構造)することにより、硬質被覆層内には層界面が存在しないことになり、したがって、かかる構成のAl−Ti−Zr酸窒化物層を硬質被覆層として形成してなる被覆超硬工具は、特に粘性の高い各種のステンレス鋼や軟鋼などの難削材の高い発熱を伴なう高速切削で、硬質被覆層がすぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、
(1)超硬基体の表面に、Al−Ti−Zr酸窒化物層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具にして、前記硬質被覆層が、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Alおよび酸素の最高含有点が、
組成式:(Al1−(X+Z)TiZr)O1−D(ただし、原子比で、Xは0.10〜0.25、Zは0.01〜0.10、Dは0.02〜0.10)、
上記Tiおよび窒素の最高含有点が、
組成式:(Ti1−(Y+Z)AlZr)N1−E(ただし、原子比で、Yは0.35〜0.60、Zは0.01〜0.10、Eは0.02〜0.10)、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔が、0.01〜0.1μmである、
高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具。
(2)(a)アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して超硬基体を自転自在に装着し、
(b)また、上記回転テーブルを挟んで、いずれもカソード電極(蒸発源)として、相対的にAl含有割合の高いAl−Ti−Zr合金と、相対的にTi含有割合の高いTi−Al−Zr合金を対向配置すると共に、それぞれ前記Al−Ti−Zr合金に比してAl含有割合が低く、かつ前記Ti−Al−Zr合金に比してTi含有割合が低い中間Al/Ti/Zr合金と中間Ti/Al/Zr合金を同じく対向配置し、
(c)上記回転テーブルを挟んで対向配置した上記のカソード電極と、前記カソード電極のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、
(d)上記アークイオンプレーティング装置内の反応雰囲気を酸素と窒素の混合雰囲気とするが、前記装置内への酸素と窒素の相対導入割合を上記超硬基体の回転移動位置に対応して調整して、前記超硬基体が上記の相対的にAl含有割合の高いAl−Ti−Zr合金のカソード電極に最も接近した時点での反応雰囲気を酸素導入割合が最も高く、窒素導入割合が最も低い反応雰囲気とする一方、前記超硬基体が上記の相対的にTi含有割合の高いTi−Al−Zr合金のカソード電極に最も接近した時点での反応雰囲気を窒素導入割合が最も高く、酸素導入割合が最も低い反応雰囲気とすると共に、前記超硬基体が前記Al−Ti−Zr合金のカソード電極最接近位置から上記中間Al/Ti/Zr合金のカソード電極最接近位置を経て前記Ti−Al−Zr合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、酸素導入割合が連続的に減少し、これに対応して窒素導入割合が連続的に増加する連続変化雰囲気とし、一方前記超硬基体が前記Ti−Al−Zr合金のカソード電極最接近位置から上記中間Ti/Al/Zr合金のカソード電極最接近位置を経て前記Al−Ti−Zr合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、窒素導入割合が連続的に減少し、これに対応して酸素導入割合が連続的に増加する連続変化雰囲気とし、もって、上記回転テーブル上で自転しながら偏心回転する上記超硬基体の表面に、Al−Ti−Zr酸窒化物層からなる硬質被覆層を物理蒸着すること、
以上(a)〜(e)の工程により高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を製造する方法。
以上(1)および(2)に特徴を有するものである。
【0010】
つぎに、この発明の被覆超硬工具において、硬質被覆層であるAl−Ti−Zr酸窒化物層の構成を上記の通りに限定した理由を説明する。
(a)Alおよび酸素の最高含有点
上記Al−Ti−Zr酸窒化物層において、Alおよび酸素の最高含有点部分では高含有のAlと酸素の作用で一段とすぐれた高温硬さと耐熱性を示し、一方Tiおよび窒素の最高含有点部分では、相対的に高い含有割合のTiと窒素の作用ですぐれた高温強度を示し、かつこの高温強度はZr成分の作用で一段の向上が図られ、したがってAlおよび酸素の最高含有点では、TiのAlおよびZrとの合量に占める含有割合を示すX値が、原子比で0.10未満になったり、窒素の酸素との合量に占める含有割合を示すD値が、同じく原子比で(以下、同じ)0.02未満になったりすると、Alや酸素の割合が多くなり過ぎて、すぐれた高温強度を有するTiと窒素の最高含有点が隣接して存在しても層自体の高温強度はきわめて低いものとなり、この結果チッピングなどが発生し易くなり、一方同X値が0.25を越えたり、同D値が0.10を越えたりすると、高温硬さおよび耐熱性が急激に低下し、摩耗促進の原因となり、またZr成分のAlとTiの合量に占める割合を示すZ値が0.01未満では所望の高温強度向上効果が得られず、同Z値が0.10を越えると高温硬さが低下するようになることから、Tiの含有割合を示すX値を0.10〜0.25、Zrの含有割合を示すZ値を0.01〜0.10、および窒素の含有割合を示すD値を0.02〜0.10と定めた。
【0011】
(b)Tiおよび窒素の最高含有点
上記の通りAlおよび酸素の最高含有点は相対的にすぐれた高温硬さと耐熱性を有するが、反面相対的に高温強度の低いものであるため、このAlおよび酸素の最高含有点の高温強度不足を補う目的で、相対的にすぐれた高温強度を有するTiおよび窒素の最高含有点を厚さ方向に交互に介在させるものである。しかし、AlのTiとZrの合量に占める含有割合を示すY値が0.35未満では、所望の高温硬さおよび耐熱性を確保することができず、この結果硬質被覆層の摩耗進行が一段と促進されるようになり、また同Y値が0.60を越えると、高温強度が急激に低下し、硬質被覆層にチッピングが発生し易くなり、一方酸素の窒素との合量に占める含有割合を示すE値が0.02未満になると、Tiおよび窒素の最高含有点の高温硬さおよび耐熱性が急激に低下し、これが摩耗促進の原因となり、また同E値が0.10を越えると、高温強度が急激に低下し、これがチッピング発生の原因となることから、Alの含有割合を示すY値を0.35〜0.60、酸素の含有割合を示すE値を0.02〜0.10と定めた。
また、Zr成分は上記のAlおよび酸素の最高含有点におけると同じく高温強度の一段の向上を図る目的で含有するものであり、したがって、その含有割合を示すZ値も同じ理由で0.01〜0.10と定めた。
【0012】
(c)Alおよび酸素の最高含有点とTiおよび窒素の最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温硬さおよび耐熱性、さらに高温強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAlおよび酸素の最高含有点であれば高温強度不足、Tiおよび窒素の最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃部にチッピングが発生し易くなったり、摩耗進行が一段と促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0013】
(d)硬質被覆層の平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具およびその製造方法を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで60時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1420℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施すことにより、ISO規格・CNMG120412のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。
【0015】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで60時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1520℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施すことにより、ISO規格・CNMG120412のチップ形状をもったTiCN系サーメット製の超硬基体B−1〜B−6を形成した。
【0016】
ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して自転自在に装着し、いずれもカソード電極(蒸発源)として、種々の成分組成をもったAlおよび酸素最高含有点形成用Al−Ti−Zr合金と、同じく種々の成分組成をもったTiおよび窒素最高含有点形成用Ti−Al−Zr合金を前記回転テーブルを挟んで対向配置し、さらにそれぞれ前記Al−Ti−Zr合金に比してAl含有割合が低く、かつ前記Ti−Al−Zr合金に比してTi含有割合が低い中間Al/Ti/Zr合金と中間Ti/Al/Zr合金を同じく対向配置し、またボンバート洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで、前記回転テーブル上で自転しながら回転する超硬基体に−30Vの直流バイアス電圧を印加し、かつそれぞれのカソード電極(前記Alおよび酸素最高含有点形成用Al−Ti−Zr合金、前記Tiおよび窒素最高含有点形成用Ti−Al−Zr合金、さらに前記中間Al/Ti/Zr合金および中間Ti/Al/Zr合金)とアノード電極との間に150Aの電流を流してアーク放電を発生させ、かつ装置内の反応雰囲気の圧力を3Paに保持しながら、前記超硬基体が上記の相対的にAl含有割合の高いAl−Ti−Zr合金のカソード電極(蒸発源)に最も接近した時点での反応雰囲気を酸素導入割合が最も高く、窒素導入割合が最も低い反応雰囲気とする一方、前記超硬基体が上記の相対的にTi含有割合の高いTi−Al−Zr合金のカソード電極に最も接近した時点での反応雰囲気を窒素導入割合が最も高く、酸素導入割合が最も低い反応雰囲気とすると共に、前記超硬基体が前記Al−Ti−Zr合金のカソード電極最接近位置から上記中間Al/Ti/Zr合金のカソード電極最接近位置を経て前記Ti−Al−Zr合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、酸素導入割合が連続的に減少し、これに対応して窒素導入割合が連続的に増加する連続変化雰囲気とし、一方前記超硬基体が前記Ti−Al−Zr合金のカソード電極最接近位置から上記中間Ti/Al/Zr合金のカソード電極最接近位置を経て前記Al−Ti−Zr合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、窒素導入割合が連続的に減少し、これに対応して酸素導入割合が連続的に増加する連続変化雰囲気とした条件で本発明法を実施し、もって前記超硬基体の表面に、厚さ方向に沿って表3,4に示される目標組成のAlおよび酸素最高含有点とTiおよび窒素最高含有点とが交互に、同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Alおよび酸素最高含有点から前記Tiおよび窒素最高含有点、前記Tiおよび窒素最高含有点から前記Alおよび酸素最高含有点へAlと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚の硬質被覆層を蒸着形成してなる本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0017】
また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al−Zr合金を装着し、さらにボンバード洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させて超硬基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、超硬基体に−100Vの直流バイアス電圧を印加し、前記カソード電極のTi−Al−Zr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させる条件で従来法を実施し、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al,Zr)N層からなる硬質被覆層を蒸着形成してなる従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0018】
つぎに、上記本発明法および従来法により得られた上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16を工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUS304の丸棒、
切削速度:240m/min.、
切り込み:1.5mm、
送り:0.15mm/rev.、
切削時間:10分、
の条件でのステンレス鋼の乾式連続高速切削加工試験、
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:0.12mm、
送り:0.20mm/rev.、
切削時間:5分、
の条件でのステンレス鋼の乾式断続高速切削加工試験、さらに、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:330m/min.、
切り込み:1.8mm、
送り:0.30mm/rev.、
切削時間:5分、
の条件での軟鋼の乾式断続高速切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0019】
【表1】

Figure 2004322251
【0020】
【表2】
Figure 2004322251
【0021】
【表3】
Figure 2004322251
【0022】
【表4】
Figure 2004322251
【0023】
【表5】
Figure 2004322251
【0024】
【表6】
Figure 2004322251
【0025】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で60時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエア形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
【0026】
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で本発明法を実施し、もって前記超硬基体(エンドミル)の表面に、厚さ方向に沿って表8に示される目標組成のAlおよび酸素最高含有点とTiおよび窒素最高含有点とが交互に、同じく表8に示される目標間隔で繰り返し存在し、かつ前記Alおよび酸素最高含有点から前記Tiおよび窒素最高含有点、前記Tiおよび窒素最高含有点から前記Alおよび酸素最高含有点へAlと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表8に示される目標層厚の硬質被覆層を蒸着形成してなる本発明被覆超硬工具としての本発明被覆超硬エンドミル1〜8を製造した。
【0027】
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で従来法を実施し、もって、表9に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al,Zr)N層からなる硬質被覆層を蒸着形成してなる従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0028】
つぎに、上記本発明法および従来法により得られた上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:100m/min.、
軸方向切り込み:6mm、
径方向切り込み:0.6mm、
テーブル送り:300mm/分、
の条件でのステンレス鋼の湿式高速側面切削加工試験、上記の本発明法および従来法により得られた本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:180m/min.、
軸方向切り込み:8mm、
径方向切り込み:1mm、
テーブル送り:540mm/分、
の条件での軟鋼の湿式高速側面切削加工試験、本発明法および従来法により得られた本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:90m/min.、
軸方向切り込み:15mm、
径方向切り込み:2mm、
テーブル送り:270mm/分、
の条件でのステンレス鋼の湿式高速側面切削加工試験をそれぞれ行い、いずれの湿式側面切削加工試験(水溶性切削油使用)でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削長を測定した。この測定結果を表8、9にそれぞれ示した。
【0029】
【表7】
Figure 2004322251
【0030】
【表8】
Figure 2004322251
【0031】
【表9】
Figure 2004322251
【0032】
(実施例3)
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
【0033】
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で本発明法を実施し、もって前記超硬基体(ドリル)の表面に、厚さ方向に沿って表10に示される目標組成のAlおよび酸素最高含有点とTiおよび窒素最高含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Alおよび酸素最高含有点から前記Tiおよび窒素最高含有点、前記Tiおよび窒素最高含有点から前記Alおよび酸素最高含有点へAlと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の硬質被覆層を蒸着形成してなる本発明被覆超硬工具としての本発明被覆超硬ドリル1〜8それぞれを製造した。
【0034】
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で従来法を実施し、もって、表11に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al,Zr)N層からなる硬質被覆層を蒸着形成してなる従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0035】
つぎに、上記本発明法および従来法により得られた上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250、厚さ:50mmのJIS・S15Cの板材、
切削速度:160m/min.、
送り:0.12mm/rev、
穴深さ:8mm、
の条件での軟鋼の湿式高速穴あけ切削加工試験、上記の本発明法および従来法により得られた本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:120m/min.、
送り:0.16mm/rev、
穴深さ:16mm、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験、本発明法および従来法により得られた本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:120m/min.、
送り:0.24mm/rev、
穴深さ:24mm、
の条件での軟鋼の湿式高速穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速高送り穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
【0036】
【表10】
Figure 2004322251
【0037】
【表11】
Figure 2004322251
【0038】
上記の本発明法で得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8、並びに従来法で得られた従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8を構成する硬質被覆層について、厚さ方向に沿ってAl、Ti、Zr、酸素、および窒素の含有割合ををオージェ分光分析装置を用いて測定したところ、前記本発明被覆超硬工具の硬質被覆層では、Alおよび酸素の最高含有点とTiおよび窒素の最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有することが確認され、さらに硬質被覆層の平均層厚も目標層厚と実質的に同じ値を示した。一方、前記従来被覆超硬工具の硬質被覆層では、目標組成と実質的に同じ組成および目標層厚と実質的に同じ平均層厚を示すものの、厚さ方向に沿った組成変化は見られず、層全体に亘って均質な組成を示すものであった。
【0039】
【発明の効果】
表3〜11に示される結果から、上記本発明法で得られた、硬質被覆層が層厚方向に、相対的に一段とすぐれた高温硬さと耐熱性を有するAlおよび酸素の最高含有点と相対的にすぐれた高温強度を有するTiおよび窒素の最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Alおよび酸素の最高含有点へAlとTiおよび酸素と窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有するAl−Ti−Zr酸窒化物層からなる被覆超硬工具は、いずれも粘性の高い各種のステンレス鋼や軟鋼などの難削材の切削加工を、特に高い発熱を伴う高速条件で行なった場合にも、すぐれた耐摩耗性を示すのに対して、上記従来法で得られた、硬質被覆層が層厚方向に沿って実質的に組成変化のない(Ti,Al,Zr)N層からなる従来被覆超硬工具においては、前記の高速重切削条件では、前記硬質被覆層の高温硬さおよび耐熱性不足が原因で、硬質被覆層の摩耗進行が一段と促進されるようになることから、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の方法によれば、通常の条件での切削加工は勿論のこと、特に各種のステンレス鋼や軟鋼などの難削材の切削加工を、特に高い発熱を伴う高速条件で行なった場合にも、長期に亘ってすぐれた耐摩耗性を示す被覆超硬工具を製造することができ、したがって、この結果の被覆超硬工具は切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応することができるものである。
【図面の簡単な説明】
【図1】この発明の被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来被覆超硬工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, the hard coating layer has excellent high-temperature hardness and heat resistance, and also has excellent high-temperature strength. Therefore, for example, cutting of difficult-to-cut materials such as various high-viscosity stainless steels and mild steels is particularly high. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) in which a hard coating layer exhibits excellent wear resistance when performed under high-speed machining conditions involving heat generation, and a method for producing the same.
[0002]
[Prior art]
In general, coated carbide tools include throw-away inserts, which are detachably attached to the tip of a cutting tool for turning or planing of various materials such as steel or cast iron, and drilling of the material. Drills and miniature drills used for processing and the like, there are solid type end mills and the like used for face machining and grooving, shoulder machining and the like of the work material, and the solid is provided by detachably attaching the throw-away tip. 2. Description of the Related Art A throw-away end mill tool or the like that performs a cutting process like a type end mill is known.
[0003]
Further, as a coated cemented carbide tool, a tungsten carbide (hereinafter, referred to as WC) -based cemented carbide substrate or a titanium carbonitride (hereinafter, referred to as TiCN) -based cermet-based cemented carbide (hereinafter, these cemented carbide substrates) Are collectively referred to as “super-hard substrate”).
Composition formula: [Ti 1- (Y + Z) Al Y Zr Z ) N] (however, in the atomic ratio, Y represents 0.35 to 0.60 and Z represents 0.01 to 0.10), and a composite nitride of Ti, Al, and Zr [hereinafter, (Ti, Al, Zr) N], a coated hard metal layer formed by physical vapor deposition of a hard coated layer having an average layer thickness of 1 to 15 μm, and the coated hard metal tool constitutes the hard coated layer. The (Ti, Al, Zr) N layer has high-temperature hardness and heat resistance due to the Al component and high-temperature strength due to the Ti component, and is further combined with a further high-temperature strength improving effect due to the Zr component. It is also known to be used for continuous cutting and intermittent cutting such as (for example, see Patent Document 1).
[0004]
Furthermore, the above-mentioned coated carbide tool is charged with the above-mentioned carbide substrate in an arc ion plating apparatus, which is a kind of physical vapor deposition apparatus shown schematically in FIG. 2, for example, and the inside of the apparatus is heated by a heater. For example, an arc discharge is generated between an anode electrode and a cathode electrode (evaporation source) on which a Ti-Al-Zr alloy having a predetermined composition is set, for example, at a current of 90 A while being heated to a temperature of 500 ° C. At the same time, a nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of, for example, 2 Pa. On the other hand, on the surface of the super-hard substrate, a bias voltage of, for example, -100 V is applied. It is also well known that it is manufactured by depositing a hard coating layer composed of the (Ti, Al, Zr) N layer. (For example, see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-9-104966
[0006]
[Problems to be solved by the invention]
In recent years, the performance of cutting equipment has been remarkably improved.On the other hand, there is a strong demand for labor-saving and energy-saving cutting, as well as low cost, and with this trend, there has been a tendency for cutting under increasingly higher speed conditions. However, in the above-mentioned conventional coated cemented carbide tool, when this is used for cutting of difficult-to-cut materials such as various high-viscosity stainless steels and mild steels, particularly in high-speed conditions with high heat generation, Although the (Ti, Al, Zr) N layer, which is a hard coating layer, has excellent high-temperature strength but does not have sufficient high-temperature hardness and heat resistance, the wear progress of the hard coating layer is further accelerated. At present, the service life is reached in a relatively short time.
[0007]
[Means for Solving the Problems]
Therefore, the present inventors have focused on the hard coating layer of the above-mentioned conventional coated carbide tool from the above-described viewpoints, and particularly in high-speed cutting of difficult-to-cut materials such as various high-viscosity stainless steels and mild steels. As a result of research to develop a hard coating layer that exhibits excellent wear resistance,
(A) For example, an arc ion plating apparatus belonging to a physical vapor deposition apparatus having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. A table is provided, and an Al-Ti-Zr alloy having a relatively high Al content is provided on one side, and a Ti-Al-Zr alloy having a relatively high Ti content is provided on the other side, with the rotary table interposed therebetween. The electrodes are disposed opposite to each other as electrodes (evaporation sources), and in each case, the intermediate Al / has a lower Al content ratio than the Al-Ti-Zr alloy and a lower Ti content ratio than the Ti-Al-Zr alloy. Using an arc ion plating apparatus in which a Ti / Zr alloy and an intermediate Ti / Al / Zr alloy are similarly arranged facing each other as a cathode electrode (evaporation source),
On the rotary table of this device, the carbide substrate is mounted eccentrically at a position radially away from the center axis of the rotary table,
In this state, the reaction atmosphere in the apparatus is a mixed atmosphere of oxygen and nitrogen, and the relative introduction ratio of the oxygen and nitrogen into the apparatus is adjusted in accordance with the rotational movement position of the cemented carbide substrate. The reaction atmosphere at the time when the hard substrate was closest to the cathode electrode of the Al-Ti-Zr alloy having a relatively high Al content was determined to have the highest oxygen introduction ratio and the lowest nitrogen introduction ratio, and preferably oxygen. While the relative introduction ratio was 90 to 97% by volume and the reaction atmosphere was composed of nitrogen as the remainder, the cemented carbide substrate was closest to the above-described cathode electrode of the Ti-Al-Zr alloy having a relatively high Ti content. The reaction atmosphere at the time is the reaction atmosphere in which the nitrogen introduction ratio is the highest and the oxygen introduction ratio is the lowest, desirably the relative introduction ratio of nitrogen is 90 to 97% by volume, and the rest is oxygen. Reaction during rotational movement from the Al-Ti-Zr alloy cathode electrode closest position to the Ti-Al-Zr alloy cathode electrode closest position via the intermediate Al / Ti / Zr alloy cathode electrode closest position The atmosphere is a continuously changing atmosphere in which the rate of introduction of oxygen is continuously reduced and the rate of introduction of nitrogen is correspondingly continuously increased, while the carbide substrate is a cathode electrode of the Ti-Al-Zr alloy. The reaction atmosphere during the rotational movement from the closest position through the intermediate Ti / Al / Zr alloy cathode electrode closest position to the Al-Ti-Zr alloy cathode electrode closest position is controlled by continuously introducing nitrogen. To a continuous change atmosphere in which the oxygen introduction ratio is continuously increased correspondingly.
While rotating the rotary table and rotating the superhard substrate itself for the purpose of equalizing the thickness of the hard coating layer formed by vapor deposition, the rotation between the cathode electrode (evaporation source) and the anode electrode is performed. Under the condition that an arc discharge occurs,
When a composite oxynitride of Al, Ti, and Zr (hereinafter, referred to as Al-Ti-Zr oxynitride) layer is formed,
On the surface of the cemented carbide substrate, the cemented carbide substrate eccentrically disposed at a position radially away from the center axis on the rotary table is provided on one side of the above-described Al-Ti- At the point closest to the cathode electrode (evaporation source) of the Zr alloy, the highest content point of Al and oxygen is formed in the layer. Since the highest content point of Ti and nitrogen is formed in the layer at the time of closest approach to the cathode electrode of the Al-Zr alloy, the rotation of the rotary table causes the Al and Z in the layer along the thickness direction. The highest oxygen content point and the highest Ti and nitrogen content points alternately and repeatedly appear at predetermined intervals, and the highest Ti and nitrogen content points and the highest Ti and nitrogen content from the highest Al and oxygen content points. A hard coating layer composed of an Al-Ti-Zr oxynitride layer having a component concentration distribution structure in which the content ratios of Al and oxygen and Ti and nitrogen respectively change continuously from the point to the highest content point of Al and oxygen. To be formed.
[0008]
(B) In the formation of the Al-Ti-Zr oxynitride layer having the repeated and continuously changing component concentration distribution structure of (a), for example, the respective compositions of the cathode electrodes (evaporation sources) arranged opposite to each other and the continuous change in the apparatus. The composition of the reaction atmosphere to be performed, that is, while adjusting the mutual introduction ratio of oxygen and nitrogen, and controlling the rotation speed of the rotary table on which the carbide substrate is mounted,
The highest content points of Al and oxygen are as follows:
Composition formula: (Al 1- (X + Z) Ti X Zr Z ) O 1-D N D (However, in atomic ratio, X is 0.10 to 0.25, Z is 0.01 to 0.10, and D is 0.02 to 0.10),
The maximum content of Ti and nitrogen is
Composition formula: (Ti 1- (Y + Z) Al Y Zr Z ) N 1-E O E (However, in atomic ratio, Y is 0.35 to 0.60, Z is 0.01 to 0.10, and E is 0.02 to 0.10),
And the interval between the adjacent highest content points of Al and oxygen and the highest content points of Ti and nitrogen is 0.01 to 0.1 μm,
The highest Al and oxygen content points show much higher high-temperature hardness and heat resistance due to the action of the higher Al and oxygen contents, while the highest Ti and nitrogen content points show the conventional (Ti, Al and Zr) N layers have relatively high contents of Ti and nitrogen equivalent to the contents of Ti and nitrogen in the layer. , Zr) N, a relatively excellent high-temperature strength equivalent to the high-temperature strength of the N layer is secured, and the interval between the highest content points of Al and oxygen and the highest content points of Ti and nitrogen is extremely small. As a result, the layer as a whole has excellent high-temperature hardness and heat resistance, as well as excellent high-temperature strength. By continuously changing (component concentration distribution structure), there is no layer interface in the hard coating layer, and therefore, the Al—Ti—Zr oxynitride layer having such a configuration is formed as a hard coating layer. Coated carbide tools will provide excellent wear resistance, especially in high-speed cutting with high heat generation of difficult-to-cut materials such as various highly viscous stainless steels and mild steels. thing.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made based on the above research results,
(1) On a surface of a super-hard substrate, a hard coating layer made of an Al-Ti-Zr oxynitride layer is physically vapor-deposited at an average layer thickness of 1 to 15 µm to form a coated carbide tool. The highest content points of Al and oxygen and the highest content points of Ti and nitrogen are alternately and repeatedly present at predetermined intervals along the layer thickness direction, and from the highest content points of Al and oxygen, Having a component concentration distribution structure in which the content ratios of Al and oxygen and Ti and nitrogen continuously change from the highest content point of Ti and nitrogen to the highest content point of Al and oxygen, respectively,
Further, the highest content points of Al and oxygen are as follows:
Composition formula: (Al 1- (X + Z) Ti X Zr Z ) O 1-D N D (However, in atomic ratio, X is 0.10 to 0.25, Z is 0.01 to 0.10, and D is 0.02 to 0.10),
The maximum content of Ti and nitrogen is
Composition formula: (Ti 1- (Y + Z) Al Y Zr Z ) N 1-E O E (However, in atomic ratio, Y is 0.35 to 0.60, Z is 0.01 to 0.10, and E is 0.02 to 0.10),
And the interval between the adjacent highest content points of Al and oxygen and the highest content points of Ti and nitrogen is 0.01 to 0.1 μm,
A coated carbide tool with a hard coating layer that exhibits excellent wear resistance under high-speed cutting conditions.
(2) (a) On a rotary table in an arc ion plating apparatus, a carbide substrate is eccentrically mounted at a position radially distant from a center axis of the rotary table, and is rotatably mounted on the rotary table.
(B) With the above rotary table interposed therebetween, as a cathode electrode (evaporation source), an Al—Ti—Zr alloy having a relatively high Al content and a Ti—Al— alloy having a relatively high Ti content are used. An intermediate Al / Ti / Zr alloy in which a Zr alloy is arranged to face each other, and an Al content is lower than the Al-Ti-Zr alloy, and a Ti content is lower than the Ti-Al-Zr alloy. And an intermediate Ti / Al / Zr alloy are also arranged facing each other,
(C) generating an arc discharge between the cathode electrode disposed opposite to the rotary table and the anode electrode arranged in parallel with each of the cathode electrodes;
(D) The reaction atmosphere in the arc ion plating apparatus is a mixed atmosphere of oxygen and nitrogen, and the relative introduction ratio of oxygen and nitrogen into the apparatus is adjusted according to the rotational movement position of the carbide substrate. The reaction atmosphere at the time when the cemented carbide substrate is closest to the cathode electrode of the Al-Ti-Zr alloy having a relatively high Al content is set to have the highest oxygen introduction ratio and the lowest nitrogen introduction ratio. On the other hand, the reaction atmosphere when the cemented carbide substrate was closest to the cathode electrode of the Ti-Al-Zr alloy having a relatively high Ti content was the reaction atmosphere in which the nitrogen introduction ratio was the highest and the oxygen introduction ratio was the highest. Is the lowest reaction atmosphere, and the cemented carbide substrate is moved from the Al-Ti-Zr alloy cathode electrode closest position to the intermediate Al / Ti / Zr alloy cathode electrode closest position. The reaction atmosphere during the rotational movement of the Ti-Al-Zr alloy to the closest position to the cathode electrode is a continuously changing atmosphere in which the oxygen introduction ratio continuously decreases and the nitrogen introduction ratio continuously increases correspondingly. On the other hand, the cemented carbide substrate moves from the closest electrode position of the Ti-Al-Zr alloy cathode electrode to the closest electrode position of the Al-Ti-Zr alloy through the intermediate Ti / Al / Zr alloy cathode electrode closest position. The reaction atmosphere during the rotational movement is a continuously changing atmosphere in which the nitrogen introduction ratio is continuously reduced and the oxygen introduction ratio is continuously increased correspondingly. Physically depositing a hard coating layer composed of an Al-Ti-Zr oxynitride layer on the surface of the rotating super-hard substrate,
A method for producing a coated cemented carbide tool in which the hard coating layer exhibits excellent wear resistance under high-speed cutting conditions by the steps (a) to (e).
The above features (1) and (2) are characteristic.
[0010]
Next, the reason why the configuration of the Al—Ti—Zr oxynitride layer as the hard coating layer in the coated carbide tool of the present invention is limited as described above will be described.
(A) Maximum content of Al and oxygen
In the Al-Ti-Zr oxynitride layer, at the highest content point of Al and oxygen, the action of the high content of Al and oxygen shows more excellent high-temperature hardness and heat resistance, while at the highest content point of Ti and nitrogen. Exhibits excellent high-temperature strength by the action of a relatively high content of Ti and nitrogen, and this high-temperature strength is further improved by the action of the Zr component. Therefore, at the highest Al and oxygen content points, Ti The X value indicating the content ratio of the total amount with Al and Zr is less than 0.10 in atomic ratio, or the D value indicating the content ratio in the total amount of nitrogen with oxygen is also the atomic ratio. If the value is less than 0.02, the ratio of Al and oxygen becomes too large, and even if the highest content points of Ti and nitrogen having excellent high-temperature strength are present adjacent to each other, the high temperature of the layer itself may be obtained. Very low strength When the X value exceeds 0.25 or the D value exceeds 0.10, high-temperature hardness and heat resistance rapidly decrease, and wear is accelerated. If the Z value, which indicates the ratio of the Zr component to the total amount of Al and Ti, is less than 0.01, the desired high-temperature strength improvement effect cannot be obtained. If the Z value exceeds 0.10, the high-temperature hardening effect cannot be obtained. Are reduced, the X value indicating the content ratio of Ti is set to 0.10 to 0.25, the Z value indicating the content ratio of Zr is set to 0.01 to 0.10, and the nitrogen content ratio is set to The indicated D value was determined to be 0.02 to 0.10.
[0011]
(B) Maximum content of Ti and nitrogen
As described above, the highest content points of Al and oxygen have relatively good high-temperature hardness and heat resistance, but have a relatively low high-temperature strength, so that the highest content points of Al and oxygen have insufficient high-temperature strength. In order to supplement the above, the highest content points of Ti and nitrogen having relatively excellent high-temperature strength are alternately interposed in the thickness direction. However, if the Y value indicating the content ratio of Al to the total amount of Ti and Zr is less than 0.35, the desired high-temperature hardness and heat resistance cannot be ensured, and as a result, the wear of the hard coating layer progresses. When the Y value exceeds 0.60, the high-temperature strength sharply decreases and chipping easily occurs in the hard coating layer, while the content of oxygen in the total amount with nitrogen is increased. When the E value indicating the ratio is less than 0.02, the high-temperature hardness and the heat resistance at the highest content points of Ti and nitrogen sharply decrease, which causes accelerated wear, and the E value exceeds 0.10. Since the high-temperature strength rapidly decreases and this causes chipping, the Y value indicating the Al content is 0.35 to 0.60, and the E value indicating the oxygen content is 0.02 to 0.02. It was determined to be 0.10.
Further, the Zr component is contained for the purpose of further improving the high-temperature strength as in the case of the above-mentioned highest content points of Al and oxygen, and therefore, the Z value indicating the content ratio is 0.01 to 0.01 for the same reason. It was determined to be 0.10.
[0012]
(C) Interval between the highest content points of Al and oxygen and the highest content points of Ti and nitrogen
If the interval is less than 0.01 μm, it is difficult to clearly form each point with the above composition, and as a result, it is possible to secure desired excellent high-temperature hardness and heat resistance and high-temperature strength in the layer. When the distance exceeds 0.1 μm, the disadvantages of the respective points, that is, the high-temperature strength is insufficient at the maximum content of Al and oxygen, and the high-temperature hardness and heat resistance are obtained at the maximum content of Ti and nitrogen. Insufficiency appears locally in the layer, and chipping is likely to occur in the cutting edge portion due to this, and wear progress is further promoted, so the interval is set to 0.01 to 0.1 μm. Was.
[0013]
(D) Average thickness of hard coating layer
If the layer thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur in the cutting edge portion. It was determined to be 1 to 15 μm.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated cemented carbide tool of the present invention and a method for manufacturing the same will be described in detail with reference to examples.
(Example 1)
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 A powder and a Co powder were prepared, and the raw material powders were blended in the composition shown in Table 1, wet-mixed in a ball mill for 60 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact is sintered in a vacuum of 6 Pa under a condition of holding at a temperature of 1420 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.03 to conform to ISO standard CNMG120412. Carbide substrates A-1 to A-10 made of a WC-based cemented carbide having a chip shape were formed.
[0015]
As raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder having an average particle diameter of 0.5 to 2 μm, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder are prepared, and these raw material powders are blended in the composition shown in Table 2, wet-mixed in a ball mill for 60 hours, and dried. Then, the green compact is press-molded at a pressure of 100 MPa, and the green compact is sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1520 ° C. for 1 hour. : Carbide bases B-1 to B-6 made of TiCN-based cermet having a chip shape conforming to ISO standard CNMG120412 by performing honing processing of 0.03.
[0016]
Next, each of the above-mentioned super-hard substrates A-1 to A-10 and B-1 to B-6 is subjected to ultrasonic cleaning in acetone, and dried, in an arc ion plating apparatus shown in FIG. Are mounted eccentrically at a position radially distant from the center axis of the rotary table and rotatably mounted on the rotary table. All of them have a maximum content of Al and oxygen having various component compositions as a cathode electrode (evaporation source). An Al-Ti-Zr alloy for forming a point and a Ti-Al-Zr alloy for forming a point having the highest content of Ti and nitrogen having the same various component compositions are arranged to face each other with the rotary table interposed therebetween, and further, each of the Al-Ti- An intermediate Al / Ti / Zr alloy and an intermediate Ti / Al / Zr alloy having a lower Al content ratio than that of the -Zr alloy and having a lower Ti content ratio than the Ti-Al-Zr alloy are also paired. After placing the metal Ti for bombarding cleaning, the inside of the apparatus was first evacuated and heated to 500 ° C. with a heater while maintaining the vacuum at 0.5 Pa or less, and then rotated on the rotary table. A DC bias voltage of -1000 V is applied to the rotating super-hard substrate, and a current of 100 A flows between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge. After bombarding, a DC bias voltage of -30 V is applied to the super-hard substrate rotating while rotating on the rotary table, and each of the cathode electrodes (the Al-Ti-Zr for forming the Al and oxygen maximum content points) is applied. Alloy, the Ti-Al-Zr alloy for forming the highest content point of Ti and nitrogen, the intermediate Al / Ti / Zr alloy and the intermediate Ti / Al / Zr While the current of 150 A flows between the gold) and the anode electrode to generate an arc discharge, and the pressure of the reaction atmosphere in the apparatus is maintained at 3 Pa, the cemented carbide substrate has a relatively low Al content. The reaction atmosphere at the time of closest approach to the high Al—Ti—Zr alloy cathode electrode (evaporation source) is the reaction atmosphere in which the oxygen introduction ratio is the highest and the nitrogen introduction ratio is the lowest. The reaction atmosphere at the time of closest approach to the cathode electrode of the Ti-Al-Zr alloy having a relatively high Ti content is the reaction atmosphere having the highest nitrogen introduction rate and the lowest oxygen introduction rate, and the cemented carbide substrate From the Al-Ti-Zr alloy cathode electrode closest position through the intermediate Al / Ti / Zr alloy cathode electrode closest position to the Ti-Al-Zr alloy cathode electrode closest position. The reaction atmosphere during the rotational movement to the position is a continuously changing atmosphere in which the oxygen introduction ratio is continuously reduced and the nitrogen introduction ratio is continuously increased correspondingly, while the carbide substrate is the Ti-Al The reaction atmosphere during the rotational movement from the cathode electrode closest position of the Zr alloy to the cathode electrode closest position of the Al—Ti—Zr alloy through the intermediate Ti / Al / Zr alloy electrode closest position is nitrogen. The rate of introduction is continuously reduced, and the method of the present invention is performed under the condition of a continuously changing atmosphere in which the rate of oxygen introduction is continuously increased. The Al and oxygen maximum content points and the Ti and nitrogen maximum content points of the target compositions shown in Tables 3 and 4 are alternately present along the target intervals also shown in Tables 3 and 4; The best It has a component concentration distribution structure in which the content ratios of Al and oxygen and Ti and nitrogen continuously change from a point to the highest point of Ti and nitrogen and from the highest point of Ti and nitrogen to the highest point of Al and oxygen, respectively. Also, a throw-away tip made of a surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention obtained by vapor-depositing a hard coating layer having a target layer thickness shown in Tables 3 and 4 (hereinafter referred to as a coated carbide of the present invention) 1 to 16).
[0017]
For the purpose of comparison, these super-hard substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, and the normal arc shown in FIG. It is charged into an ion plating apparatus, Ti-Al-Zr alloys having various component compositions are mounted as a cathode electrode (evaporation source), and metal Ti for bombarding is further mounted. After heating the inside of the apparatus to 500 ° C. with a heater while maintaining the vacuum at 0.5 Pa or less, a DC bias voltage of −1000 V is applied to the superhard substrate, and the metal Ti of the cathode electrode and the anode electrode are During this time, a current of 100 A is passed to generate arc discharge, the surface of the cemented carbide substrate is cleaned with Ti bombard, and then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa. A conventional method was performed under the condition that a DC bias voltage of -100 V was applied to the hard substrate, and a current of 100 A was caused to flow between the Ti-Al-Zr alloy of the cathode electrode and the anode electrode to generate an arc discharge. Each surface of the cemented carbide substrates A-1 to A-10 and B-1 to B-6 has a target composition and a target layer thickness shown in Table 5, and substantially along the layer thickness direction. A conventionally coated cemented carbide throw-away tip as a conventionally coated cemented carbide tool formed by depositing a hard coating layer composed of a (Ti, Al, Zr) N layer having no composition change (hereinafter referred to as a conventional coated cemented carbide tip) 1-16 were produced respectively.
[0018]
Next, the coated carbide tips 1-16 and the coated carbide tips 1-16 of the present invention obtained by the method of the present invention and the conventional method were screwed to the tip of a tool steel cutting tool with a fixing jig. In the state,
Work material: JIS / SUS304 round bar,
Cutting speed: 240 m / min. ,
Cut: 1.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of stainless steel under the conditions of
Work material: JIS SUS316, 4 longitudinally spaced round bars at regular intervals in the longitudinal direction,
Cutting speed: 200 m / min. ,
Cut: 0.12 mm,
Feed: 0.20 mm / rev. ,
Cutting time: 5 minutes,
Intermittent high-speed cutting test of stainless steel under the following conditions,
Work material: JIS S15C lengthwise round bar
Cutting speed: 330 m / min. ,
Notch: 1.8 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 5 minutes,
A dry intermittent high-speed cutting test of mild steel was performed under the following conditions, and the flank wear width of the cutting edge was measured in each cutting test. Table 6 shows the measurement results.
[0019]
[Table 1]
Figure 2004322251
[0020]
[Table 2]
Figure 2004322251
[0021]
[Table 3]
Figure 2004322251
[0022]
[Table 4]
Figure 2004322251
[0023]
[Table 5]
Figure 2004322251
[0024]
[Table 6]
Figure 2004322251
[0025]
(Example 2)
As raw material powder, medium coarse WC powder having an average particle size of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, and ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 Powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [TiC / WC = 50/50 by mass ratio] powder, and 1.8 μm Co powder were prepared. Each of the powders was blended into the blending composition shown in Table 7, and further added with wax, mixed in a ball mill in acetone for 60 hours, dried under reduced pressure, and then press-molded into various compacts of a predetermined shape at a pressure of 100 MPa. These green compacts were heated in a vacuum atmosphere of 6 Pa at a heating rate of 7 ° C./min to a predetermined temperature in the range of 1370 to 1470 ° C., and kept at this temperature for 1 hour, and then cooled in a furnace. To form three types of round bar sintered bodies for forming a cemented carbide substrate having a diameter of 8 mm, 13 mm, and 26 mm. From the above three types of round bar sintered bodies, by grinding, In the combinations shown in Table 7, the diameter × length of the cutting edge portion is 6 m × 13mm, 10mm × 22mm, and dimensions of 20 mm × 45 mm, as well as any twist angle: 30 degrees carbide substrate having a 4 flute square shape (end mills) C-1 through C-8 were prepared, respectively.
[0026]
Next, the surfaces of these super-hard substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone, dried, and charged into an arc ion plating apparatus also shown in FIG. The method of the present invention was carried out under the same conditions as in Example 1 above, and the Al and oxygen maximum content points of the target compositions shown in Table 8 and Ti were then placed on the surface of the cemented carbide substrate (end mill) along the thickness direction. And the nitrogen maximum content point alternately and repeatedly at the target intervals also shown in Table 8, and the Ti and nitrogen maximum content points from the Al and oxygen maximum content points, and the Al and nitrogen content from the Ti and nitrogen maximum content points And a hard coating layer having a target layer thickness also shown in Table 8 having a component concentration distribution structure in which the content ratios of Al and oxygen and Ti and nitrogen continuously change to the highest oxygen content point. The present invention coated cemented carbide end mills 1 to 8 as the present invention coated cemented carbide comprising Te was produced.
[0027]
For the purpose of comparison, the above-mentioned ultra-hard substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then a normal arc ion plating apparatus also shown in FIG. And the conventional method was carried out under the same conditions as in Example 1 above, and thus had the target composition and the target layer thickness shown in Table 9, and showed a substantial change in composition along the layer thickness direction. Conventional surface-coated cemented carbide end mills (hereinafter referred to as conventional coated cemented carbide end mills) 1-8 as conventional coated cemented carbide tools formed by depositing and forming a hard coating layer comprising a (Ti, Al, Zr) N layer. Was manufactured respectively.
[0028]
Next, among the coated carbide end mills 1 to 8 and the coated carbide end mills 1 to 8 obtained by the method of the present invention and the conventional method, the coated carbide end mills 1 to 3 and the coated carbide For end mills 1-3,
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm, JIS SUS304 plate,
Cutting speed: 100 m / min. ,
Axial cut: 6 mm
Radial cut: 0.6mm,
Table feed: 300 mm / min,
For the wet-type high-speed side cutting test of stainless steel under the following conditions, the coated carbide end mills 4 to 6 and the coated carbide end mills 4 to 6 obtained by the method of the present invention and the conventional method described above,
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm, JIS S15C plate material,
Cutting speed: 180 m / min. ,
Axial cut: 8mm
Radial cut: 1mm,
Table feed: 540 mm / min,
The wet-type high-speed side-cutting test of mild steel under the conditions described below, the coated carbide end mills 7 and 8 of the present invention obtained by the method of the present invention and the conventional method, and the conventional coated carbide end mills 7 and 8 of the present invention
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS SUS316 plate,
Cutting speed: 90 m / min. ,
Axial cut: 15 mm
Radial cut: 2mm,
Table feed: 270 mm / min,
Wet high-speed side cutting test of stainless steel under the following conditions, and in any wet side cutting test (using water-soluble cutting oil), the flank wear width of the outer peripheral edge of the cutting edge is used as a guide for the service life. The cutting length up to 0.1 mm was measured. The measurement results are shown in Tables 8 and 9, respectively.
[0029]
[Table 7]
Figure 2004322251
[0030]
[Table 8]
Figure 2004322251
[0031]
[Table 9]
Figure 2004322251
[0032]
(Example 3)
The diameters produced in Example 2 were 8 mm (for forming the super-hard substrates C-1 to C-3), 13 mm (for forming the super-hard substrates C-4 to C-6), and 26 mm (for the super-hard substrates C-). 7, for forming C-8), the diameter x length of the groove forming portion was 4 mm x 13 mm (by grinding) from the three types of round rod sintered bodies by grinding. Carbide substrates D-1 to D-3), dimensions of 8 mm x 22 mm (carbide substrates D-4 to D-6), and 16 mm x 45 mm (carbide substrates D-7 and D-8), and any of them Carbide substrates (drills) D-1 to D-8 each having a two-blade shape with a twist angle of 30 degrees were manufactured.
[0033]
Next, the cutting blades of the super hard substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and then the arc ion plating apparatus shown in FIG. , And the method of the present invention was carried out under the same conditions as in Example 1 described above. Then, Al and oxygen having the target compositions shown in Table 10 were placed on the surface of the carbide substrate (drill) along the thickness direction. The highest content point and the highest Ti and nitrogen content points are alternately repeated at the target intervals shown in Table 10, and the highest Ti and nitrogen content points, the highest Ti and nitrogen content from the highest Al and oxygen content points. From the point to the above-mentioned Al and oxygen maximum content point, the hard coating having the component concentration distribution structure in which the content ratios of Al and oxygen and Ti and nitrogen continuously change, respectively, and having the target layer thickness also shown in Table 10. Was prepared present invention coated cemented carbide drills 1-8 respectively as the present invention coated cemented carbide comprising depositing a layer.
[0034]
Also, for comparison purposes, the cutting edges of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and are also shown in FIG. The conventional method was loaded into a normal arc ion plating apparatus, and the conventional method was carried out under the same conditions as in Example 1 above, and thus had the target composition and the target layer thickness shown in Table 11, and along the layer thickness direction. A conventional surface-coated cemented carbide drill (hereinafter referred to as a conventional coated cemented carbide) as a conventionally coated cemented carbide tool formed by depositing a hard coating layer composed of a (Ti, Al, Zr) N layer having substantially no composition change. 1 to 8).
[0035]
Next, among the coated carbide drills 1 to 8 of the present invention and the conventional coated carbide drills 1 to 8 obtained by the method of the present invention and the conventional method, the coated carbide drills 1 to 3 of the present invention and the conventionally coated carbide For drills 1-3,
Work material: Plane dimensions: 100 mm x 250, thickness: 50 mm, JIS S15C plate material,
Cutting speed: 160 m / min. ,
Feed: 0.12 mm / rev,
Hole depth: 8mm,
For the wet high-speed drilling test of mild steel under the conditions described above, the coated carbide drills 4 to 6 and the coated carbide drills 4 to 6 of the present invention obtained by the above-described method of the present invention and the conventional method,
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm, JIS SUS304 plate,
Cutting speed: 120 m / min. ,
Feed: 0.16 mm / rev,
Hole depth: 16mm,
The wet-type high-speed drilling test of stainless steel under the following conditions, the coated carbide drills 7 and 8 obtained by the method of the present invention and the conventional method, and the conventional coated carbide drills 7 and 8 obtained by the conventional method
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm, JIS S15C plate material,
Cutting speed: 120 m / min. ,
Feed: 0.24 mm / rev,
Hole depth: 24mm,
Welding high-speed drilling cutting test of mild steel under the conditions described above, and the flank wear width of the tip cutting edge reaches 0.3 mm in any wet high-speed high-feed drilling cutting test (using water-soluble cutting oil). The number of drilling operations up to was measured. The measurement results are shown in Tables 10 and 11, respectively.
[0036]
[Table 10]
Figure 2004322251
[0037]
[Table 11]
Figure 2004322251
[0038]
The coated carbide tips 1-16, coated carbide end mills 1-8, coated carbide drills 1-8 of the present invention as coated carbide tools of the present invention obtained by the above-described method of the present invention, and conventional The thickness direction of the hard coating layers constituting the conventional coated carbide tips 1-16, the conventional coated carbide end mills 1-8, and the conventional coated carbide drills 1-8 as conventional coated carbide tools obtained by the method The contents of Al, Ti, Zr, oxygen, and nitrogen were measured using an Auger spectrometer along with the hard coating layer of the coated carbide tool of the present invention. The highest content points of Ti and nitrogen are alternately and repeatedly present at substantially the same composition and interval as the target value, respectively, and the highest content points of Ti and nitrogen from the highest content points of Al and oxygen, From the highest content point of element to the highest content point of Al and oxygen, it was confirmed that the content ratios of Al and oxygen, and Ti and nitrogen, respectively, continuously changed, and further, the average layer of the hard coating layer The thickness also showed substantially the same value as the target layer thickness. On the other hand, in the hard coating layer of the conventional coated carbide tool, although the composition is substantially the same as the target composition and the average layer thickness is substantially the same as the target layer thickness, no change in the composition along the thickness direction is observed. And a homogeneous composition throughout the layer.
[0039]
【The invention's effect】
From the results shown in Tables 3 to 11, the hard coating layer obtained by the above-described method of the present invention, in the layer thickness direction, has relatively higher high-temperature hardness and heat resistance. The highest content points of Ti and nitrogen having excellent high-temperature strength are alternately and repeatedly present at predetermined intervals, and the highest content points of Ti and nitrogen from the highest content points of Al and oxygen, A coating comprising an Al-Ti-Zr oxynitride layer having a component concentration distribution structure in which the contents of Al and Ti and the contents of oxygen and nitrogen continuously change from the highest content point of nitrogen to the highest content points of Al and oxygen, respectively. Carbide tools exhibit excellent wear resistance, even when cutting hard-to-cut materials such as various highly viscous stainless steels and mild steels, especially at high speeds with high heat generation. In the conventional coated cemented carbide tool obtained by the above-mentioned conventional method, wherein the hard coating layer is composed of a (Ti, Al, Zr) N layer having substantially no composition change along the layer thickness direction, Under the cutting conditions, due to the high-temperature hardness and insufficient heat resistance of the hard coating layer, the wear progress of the hard coating layer is further promoted, so that it is clear that the service life can be reached in a relatively short time. is there.
As described above, according to the method of the present invention, not only cutting under normal conditions, but also cutting of difficult-to-cut materials such as various kinds of stainless steel and mild steel, particularly under high-speed conditions with high heat generation. Even if it is performed, coated carbide tools exhibiting excellent wear resistance over a long period of time can be manufactured, so that the resulting coated carbide tools can save labor and energy in cutting, and further reduce cost. It can respond satisfactorily to chemical conversion.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used for forming a hard coating layer constituting a coated carbide tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a conventional arc ion plating apparatus used for forming a hard coating layer constituting a conventional coated carbide tool.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン系サーメットからなる超硬基体の表面に、AlとTiとZrの複合酸窒化物層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる表面被覆超硬合金製切削工具にして、前記硬質被覆層が、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Alおよび酸素の最高含有点が、
組成式:(Al1−(X+Z)TiZr)O1−D(ただし、原子比で、Xは0.10〜0.25、Zは0.01〜0.10、Dは0.02〜0.10)、
上記Tiおよび窒素の最高含有点が、
組成式:(Ti1−(Y+Z)AlZr)N1−E(ただし、原子比で、Yは0.35〜0.60、Zは0.01〜0.10、Eは0.02〜0.10)、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔が、0.01〜0.1μmであること、
を特徴とする高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
Physically vapor-depositing a hard coating layer composed of a composite oxynitride layer of Al, Ti and Zr on the surface of a cemented carbide substrate composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet with an average layer thickness of 1 to 15 μm. In the cutting tool made of a surface-coated cemented carbide, the hard coating layer has a maximum content point of Al and oxygen and a maximum content point of Ti and nitrogen alternately repeated at predetermined intervals along a layer thickness direction. From the highest content of Al and oxygen to the highest content of Ti and nitrogen, from the highest content of Ti and nitrogen to the highest content of Al and oxygen Have a continuously changing component concentration distribution structure,
Further, the highest content points of Al and oxygen are as follows:
Composition formula: (Al 1- (X + Z ) Ti X Zr Z) O 1-D N D ( However, in atomic ratio, X is 0.10 to 0.25, Z is 0.01 to 0.10, D is 0.02-0.10),
The maximum content of Ti and nitrogen is
Formula: (Ti 1- (Y + Z ) Al Y Zr Z) N 1-E O E ( However, in atomic ratio, Y is from 0.35 to 0.60, Z is 0.01 to 0.10, E is 0.02-0.10),
And the interval between the adjacent highest content points of Al and oxygen and the highest content points of Ti and nitrogen is 0.01 to 0.1 μm,
Surface coated cemented carbide cutting tool with a hard coating layer that exhibits excellent wear resistance under high speed cutting conditions.
(a)アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して炭化タングステン基超硬合金の超硬基体および/または炭窒化チタン系サーメットの超硬基体を自転自在に装着し、
(b)また、上記回転テーブルを挟んで、いずれもカソード電極(蒸発源)として、相対的にAl含有割合の高いAl−Ti−Zr合金と、相対的にTi含有割合の高いTi−Al−Zr合金を対向配置すると共に、それぞれ前記Al−Ti−Zr合金に比してAl含有割合が低く、かつ前記Ti−Al−Zr合金に比してTi含有割合が低い中間Al/Ti/Zr合金および中間Ti/Al/Zr合金を同じく対向配置し、
(c)上記回転テーブルを挟んで対向配置した上記のカソード電極と、前記カソード電極のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、
(d)上記アークイオンプレーティング装置内の反応雰囲気を酸素と窒素の混合雰囲気とするが、前記装置内への酸素と窒素の相対導入割合を上記超硬基体の回転移動位置に対応して調整して、前記超硬基体が上記の相対的にAl含有量の高いAl−Ti−Zr合金のカソード電極に最も接近した時点での反応雰囲気を酸素導入割合が最も高く、窒素導入割合が最も低い反応雰囲気とする一方、前記超硬基体が上記の相対的にTi含有量の高いTi−Al−Zr合金のカソード電極に最も接近した時点での反応雰囲気を窒素導入割合が最も高く、酸素導入割合が最も低い反応雰囲気とすると共に、前記超硬基体が前記Al−Ti−Zr合金のカソード電極最接近位置から上記中間Al/Ti/Zr合金のカソード電極最接近位置を経て前記Ti−Al−Zr合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、酸素導入割合が連続的に減少し、これに対応して窒素導入割合が連続的に増加する連続変化雰囲気とし、一方前記超硬基体が前記Ti−Al−Zr合金のカソード電極最接近位置から上記中間Ti/Al/Zr合金のカソード電極最接近位置を経て前記Al−Ti−Zr合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、窒素導入割合が連続的に減少し、これに対応して酸素導入割合が連続的に増加する連続変化雰囲気とし、
(e)もって、上記回転テーブル上で自転しながら偏心回転する上記超硬基体の表面に、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有するAlとTiとZrの複合酸窒化物層からなる硬質被覆層を物理蒸着すること、
以上(a)〜(e)からなることを特徴とする高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具の製造方法。
(A) On a rotary table in an arc ion plating apparatus, a tungsten carbide-based cemented carbide substrate and / or a titanium carbonitride-based cermet eccentrically eccentric to a position radially away from the center axis of the rotary table. Attach the carbide substrate to rotate freely,
(B) With the above rotary table interposed therebetween, as a cathode electrode (evaporation source), an Al—Ti—Zr alloy having a relatively high Al content and a Ti—Al— alloy having a relatively high Ti content are used. An intermediate Al / Ti / Zr alloy in which a Zr alloy is arranged to face each other, and an Al content is lower than the Al-Ti-Zr alloy, and a Ti content is lower than the Ti-Al-Zr alloy. And an intermediate Ti / Al / Zr alloy are also arranged facing each other,
(C) generating an arc discharge between the cathode electrode disposed opposite to the rotary table and the anode electrode arranged in parallel with each of the cathode electrodes;
(D) The reaction atmosphere in the arc ion plating apparatus is a mixed atmosphere of oxygen and nitrogen, and the relative introduction ratio of oxygen and nitrogen into the apparatus is adjusted according to the rotational movement position of the carbide substrate. Then, the reaction atmosphere at the time when the cemented carbide substrate is closest to the cathode electrode of the Al-Ti-Zr alloy having a relatively high Al content is set to have the highest oxygen introduction ratio and the lowest nitrogen introduction ratio. On the other hand, the reaction atmosphere when the cemented carbide substrate was closest to the cathode electrode of the Ti-Al-Zr alloy having a relatively high Ti content was set to have the highest nitrogen introduction rate and the oxygen introduction rate. Is the lowest reaction atmosphere, and the cemented carbide substrate moves from the Al-Ti-Zr alloy cathode electrode closest position through the intermediate Al / Ti / Zr alloy cathode electrode closest position to the T The reaction atmosphere during the rotational movement to the closest position of the cathode electrode of the Al-Zr alloy is a continuously changing atmosphere in which the oxygen introduction ratio is continuously reduced and the nitrogen introduction ratio is continuously increased correspondingly; On the other hand, the cemented carbide substrate is moved from the closest position of the cathode electrode of the Ti-Al-Zr alloy to the closest position of the cathode electrode of the Al-Ti-Zr alloy through the closest position of the cathode electrode of the intermediate Ti / Al / Zr alloy. The reaction atmosphere during the rotational movement is a continuously changing atmosphere in which the nitrogen introduction ratio is continuously reduced and the oxygen introduction ratio is continuously increased correspondingly,
(E) On the surface of the cemented carbide substrate which eccentrically rotates while rotating on the rotary table, the maximum content point of Al and oxygen and the maximum content point of Ti and nitrogen are arranged at predetermined intervals along the layer thickness direction. And the Al and oxygen from the highest content point of Al and oxygen to the highest content point of Ti and nitrogen, and the highest content point of Ti and nitrogen to the highest content point of Al and oxygen. Physical vapor deposition of a hard coating layer composed of a composite oxynitride layer of Al and Ti and Zr having a component concentration distribution structure in which the content ratios of Ti and nitrogen continuously change,
A method for producing a surface-coated cemented carbide cutting tool in which a hard coating layer exhibits excellent wear resistance under high-speed cutting conditions characterized by the above (a) to (e).
JP2003119379A 2003-04-24 2003-04-24 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same Expired - Fee Related JP4120456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119379A JP4120456B2 (en) 2003-04-24 2003-04-24 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119379A JP4120456B2 (en) 2003-04-24 2003-04-24 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004322251A true JP2004322251A (en) 2004-11-18
JP4120456B2 JP4120456B2 (en) 2008-07-16

Family

ID=33498614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119379A Expired - Fee Related JP4120456B2 (en) 2003-04-24 2003-04-24 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4120456B2 (en)

Also Published As

Publication number Publication date
JP4120456B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3928480B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4193111B2 (en) A method of forming a hard coating layer on the surface of a cutting tool that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4120467B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4150913B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed heavy cutting conditions and manufacturing method thereof
JP2004042170A (en) Surface-coated cemented carbide cutting tool having hard coating layer for exhibiting superior chipping resistance under high speed double cutting condition
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2004338058A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP4150914B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4120442B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4120458B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4120456B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP3962913B2 (en) A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP4379907B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP3969282B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed heavy cutting
JP4150915B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed heavy cutting conditions and manufacturing method thereof
JP4150916B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP3928498B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4379908B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2005028457A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed cutting of hard-to-cut material
JP3972294B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4029329B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees