JP2004320959A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2004320959A
JP2004320959A JP2003114707A JP2003114707A JP2004320959A JP 2004320959 A JP2004320959 A JP 2004320959A JP 2003114707 A JP2003114707 A JP 2003114707A JP 2003114707 A JP2003114707 A JP 2003114707A JP 2004320959 A JP2004320959 A JP 2004320959A
Authority
JP
Japan
Prior art keywords
armature
hall sensor
permanent magnet
linear motor
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003114707A
Other languages
Japanese (ja)
Other versions
JP4513116B2 (en
Inventor
Tetsuro Kanai
哲朗 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003114707A priority Critical patent/JP4513116B2/en
Publication of JP2004320959A publication Critical patent/JP2004320959A/en
Application granted granted Critical
Publication of JP4513116B2 publication Critical patent/JP4513116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motor in which the size can be reduced without sacrifice of the effective stroke of a moving member and erroneous operation of a Hall sensor can be prevented. <P>SOLUTION: In the linear motor with the Hall sensor, end part of the surface of a permanent magnet 1 facing an armature is inclined by a specified angle, and a Hall sensor 5 is placed in leakage flux entering from the end part of the permanent magnet 1 such that the leakage flux is spread outward of a magnetic circuit formed between the permanent magnet and the armature. Since the Hall sensor 5 is disposed perpendicularly to the permanent magnet 1 and not disposed in the moving direction of a moving element, effective stroke is not sacrificed. Furthermore, the Hall sensor can be disposed without sacrifice of a magnetic air gap because leakage flux from the end part of the permanent magnet spreads outward. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、工作機の送り機構や半導体製造装置の位置決め装置に用いられると共に、ホールセンサによる磁極検出機能を持ったリニアモータの構造に関する。
【0002】
【従来の技術】
従来、工作機の送り機構や半導体製造装置の位置決め装置に用いられると共に、ホールセンサによる磁極検出機能を持ったリニアモータが、第1従来技術、第2従来技術として開示されている。以下、従来技術を夫々図3、図4を用いて、説明する。なお、図ではリニアモータの固定子を構成する界磁の図示を省略し、可動子を構成する電機子のみを示している。
図4は第1従来技術を示すリニアモータ電機子の側面図であり、内部を透視したものである。なお、ここでは電機子を可動子として構成したものを例示する
図4において、11は電機子巻線、12は樹脂モールド、13は電機子ベース、14はホールセンサ、15はホールセンサ基板である。
電機子は空芯部を有し複数のコイル群よりなり、平板状に成形された電機子巻線11と、該電機子をテーブル等の他の装置へ取付けるための電機子ベース13より構成されており、該電機子巻線11は空芯部およびコイル群の周囲を樹脂モールド12により固着している。また、電機子のストローク端面には、図示しない固定子を構成する界磁から発生する磁束により磁極検出を行うためのホールセンサ14がホールセンサ基板15上に取付けられている。
図5は第2従来技術を示すリニアモータ電機子の側面図であり、内部を透視したものである。
第2従来技術が第1従来技術と異なる点は、磁極検出を行うホールセンサ14を電機子の外部に設置せずに、電機子巻線11の空芯部内に設けたものとなっている(例えば、特許文献1を参照)。
【0003】
【特許文献1】
実登録第2596793号
【0004】
【発明が解決しようとする課題】
しかしながら、従来の方法では以下の問題があった。
(1)第1従来技術は可動子のストローク方向にホールセンサユニットが突き出す構造となっているので、ホールセンサが突き出した分有効ストロークが犠牲になる。つまり、ストローク方向に可動子の長さあるいはモータ体格に制限がある、例えばボンダ機器などに搭載されるリニアモータの用途には適用ができず、小型化に不向きであった。
(2)また、第2従来技術のように電機子巻線の空芯部にホールセンサを設置する構造、ホールセンサが電機子巻線の直近に配置されているため、電機子巻線に流れる電流により、交流磁界が発生し、この交流磁界の影響でホールセンサが誤動作する。
【0005】
本発明は上記課題を解決するためになされたものであって、可動子の有効ストロークを犠牲にすることなく、小型化が可能で、ホールセンサの誤動作を防止することができるリニアモータを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題を解決するために、請求項1に記載の本発明は、複数の永久磁石を交互に極性が異なるように直線状に並べて配置した界磁と、前記界磁と磁気的空隙を介して対向配置されると共に複数のコイル群よりなる電機子巻線を有する電機子と、前記電機子に配置した磁極検出機能を有するホールセンサを備え、前記界磁と前記電機子の何れか一方を固定子に、他方を可動子として相対的に走行するようにしたリニアモータにおいて、前記永久磁石の電機子との対向面の端部を、所定の角度だけ傾斜させてあり、前記永久磁石の端部から入射する漏れ磁束を該永久磁石と該電機子との間に形成される磁気回路の外側に広げるように、前記漏れ磁束中に前記ホールセンサを設置したものである、
また、請求項2記載の本発明は、請求項1記載のリニアモータにおいて、前記ホールセンサを前記永久磁石に対して垂直方向に設けたものである。
また、請求項3記載の本発明は、請求項1または2に記載のリニアモータにおいて、前記電機子に対象物を搬送するテーブルを取付けるための電機子ベースを設け、前期ホールセンサを前記電機子ベースの内部に設けたものである。
上記手段により、永久磁石の電機子との対向面の端部を、所定の角度だけ傾斜させるように加工を施し、また、ホールセンサを平板状の永久磁石に対して垂直方向に設置すると、電機子巻線に対しても垂直に設置されることになるため、通電された電機子巻線より発生する交流磁界の影響を低減することができる。このため、有効ストロークを犠牲にせずホールセンサを設置することができ、また、ホールセンサの誤動作を防止することができる。
【0007】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。
(第1実施例)
図1は本発明の第1実施例を示すリニアモータの側面図、図2は図1のA−A線に沿うリニアモータの正断面図で、ホールセンサ取付部を示したものである。ある。
図において、1は永久磁石、2Aは外ヨーク、2Bは内ヨーク、2Cはヨーク固定版、3は電機子巻線、4は電機子取付用ブロック、5はホールセンサ、6はホールセンサ基板、7は樹脂モールドである。
本発明の特徴は以下のとおりである。
リニアモータは、可動子を構成する電機子と該電機子と磁気的空隙を介して配置される界磁により構成したムービングコイル形のものであり、一方の界磁は図1に示すごとく、側面から見たヨークの形状が日の字形となっている。詳述すると、界磁は平板状の二つの外ヨーク2A、外ヨーク2Aの間に配置された内ヨーク2B、および外ヨーク2Aと内ヨーク2Bの夫々の両端を接続するヨーク固定板2Cより成る界磁ヨークと、外ヨーク2A上に交互に極性が異なるように直線状に並べて配置した複数の平板状の永久磁石1で構成される。
他方の電機子は空芯部を有する複数のコイル群よりなる電機子巻線3と、電機子巻線3の両側に設けられた電機子取付用ブロック4より構成されており、いわゆるロの字形の形状に形成されている。また、該電機子は電機子巻線3の空芯部を内ヨーク2Bが貫通し、電機子巻線3の外側の上端および下端を外ヨーク2Aで挟み込み構造となっている。そして、電機子巻線3および電機子取付用ブロック4の間を樹脂モールド7により固着している。
そして、注目すべき点は永久磁石1の電機子との対向面の端部を、所定の角度だけ傾斜させてあり、永久磁石1の端部から入射する漏れ磁束を、該永久磁石と該電機子との間に形成される磁気回路の外側に広げるように、該漏れ磁束中となる電機子取付用ブロック7の端部に設けたホールセンサ基板6にホールセンサ5を設置した点である。ここで、ホールセンサ5は永久磁石1に対して垂直方向に設けられている。
なお、可動子である電機子は、図示しないスライダとガイドレールからなるリニアガイド等によって支持されている。
【0008】
次に動作を説明する。
リニアモータは、電機子と界磁の電気的相対位置に応じた所定の電流を電機子巻線に流すことにより、永久磁石の作る磁界と作用して電機子に推力が発生し、電機子は進行方向に移動することとなる。この際、電機子との対向面の端部が所定の角度に傾斜させた面を有する永久磁石とホールセンサにより、磁石端部から入射する漏れ磁束は、永久磁石と電機子との間に形成される磁気回路の外側に広がる。
【0009】
このように本発明の第1実施例に係るリニアモータは、永久磁石1の電機子との対向面の端部を、所定の角度だけ傾斜させ、永久磁石1の端部から入射する漏れ磁束を、該永久磁石と該電機子との間に形成される磁気回路の外側に広げるように、該漏れ磁束中にホールセンサ5を設置し、また、ホールセンサ5を永久磁石1に対して垂直方向に設ける構成にしたので、ホールセンサを可動子移動方向に設置しない構成となるため、有効ストロークを犠牲にすることがなくなる。また、永久磁石端部からの漏れ磁束が外側に広がる為、磁気的空隙を犠牲にすること無くホールセンサを設置できる。
【0010】
(第2実施例)
次に、本発明の第2実施例を説明する。
図3は本発明の第2実施例を示すリニアモータの断面図である。なお、リニアモータは電機子の両側に界磁を配置した磁束貫通型のものとなっており、第1実施例と同じくムービングコイル形となっている。第2実施例の構成要素が従来技術、第1実施例と同じものについては説明を省略する。
図3において、8は永久磁石、9はヨーク、10はホールセンサである。
第2実施例が従来技術および第1実施例と異なる点は、電機子が複数のコイル群よりなる平板状に成形された電機子巻線11と、対象物を搬送するテーブル等の他の装置を電機子に取付けるための電機子ベース13より構成されており、また、ホールセンサ10が電機子ベース13の内部に設けられた点である。
本発明の第2実施例はこのように構成したので、電機子と界磁との間の磁気的空隙を犠牲にすることがなくなり、リニアモータの小型化に寄与することができる。
【0011】
なお、以上の実施例では、固定子を界磁、可動子を電機子とした構造のリニアモータで説明したが、固定子を電機子、可動子を界磁とした構造としても良い。
また、電機子の形状を口の字形としたが、凹形や片側に永久磁石を並べるだけの構造としても、本発明が成り立つことは言うまでもない。
【0012】
【発明の効果】
以上述べたように、本発明は次のような効果がある。
(1)永久磁石の電機子との対向面の端部を、所定の角度だけ傾斜させ、永久磁石の端部から入射する漏れ磁束を、該永久磁石と該電機子との間に形成される磁気回路の外側に広げるように、該漏れ磁束中にホールセンサを設置し、また、ホールセンサを永久磁石に対して垂直方向に設ける構成にしたので、ホールセンサを可動子移動方向に設置しない構成となるため、有効ストロークを犠牲にすることがなくなる。また、永久磁石端部からの漏れ磁束が外側に広がる為、磁気的空隙を犠牲にすること無くホールセンサを設置することができる。
(2)ホールセンサが電機子巻線に対し垂直に設置されているため、電機子巻線に流れる電流により発生する交流磁界の影響を低減でき、ホールセンサの誤動作を防止することができる。
(3)ホールセンサを電機子ベースの内部に設ける構成にしたので、電機子と界磁との間の磁気的空隙を犠牲にすることがなくなり、リニアモータの小型化に寄与することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示すリニアモータの側面図である。
【図2】図1のA−A線に沿うリニアモータの正断面図で、ホールセンサ取付部を示したものである。
【図3】本発明の第2実施例を示すリニアモータの断面図である。
【図4】第1従来技術を示すリニアモータ電機子の側面図である。
【図5】第2従来技術を示すリニアモータ電機子の側面図である。
【符号の説明】
1、8 永久磁石
2A 外ヨーク
2B 内ヨーク
2C ヨーク固定版
3、11 電機子巻線
4 電機子取付用ブロック
5、10 ホールセンサ
6 ホールセンサ基板
7 12 樹脂モールド
9 ヨーク
13 電機子ベース
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of a linear motor used for a feed mechanism of a machine tool or a positioning device of a semiconductor manufacturing apparatus and having a magnetic pole detection function using a Hall sensor.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, linear motors that are used in a feed mechanism of a machine tool or a positioning device of a semiconductor manufacturing apparatus and have a magnetic pole detection function using a Hall sensor have been disclosed as first and second prior arts. Hereinafter, the prior art will be described with reference to FIGS. 3 and 4, respectively. In the drawing, the field constituting the stator of the linear motor is not shown, and only the armature constituting the mover is shown.
FIG. 4 is a side view of a linear motor armature showing the first prior art, and is a perspective view of the inside. Here, in FIG. 4 exemplifying an armature configured as a mover, 11 is an armature winding, 12 is a resin mold, 13 is an armature base, 14 is a Hall sensor, and 15 is a Hall sensor substrate. .
The armature has an air core portion and is composed of a plurality of coil groups, and includes an armature winding 11 formed in a flat plate shape, and an armature base 13 for attaching the armature to another device such as a table. The armature winding 11 is fixed with a resin mold 12 around the air core and the coil group. Further, a Hall sensor 14 for detecting a magnetic pole by a magnetic flux generated from a field constituting a stator (not shown) is mounted on a Hall sensor substrate 15 on a stroke end surface of the armature.
FIG. 5 is a side view of a linear motor armature showing a second prior art, and the inside is seen through.
The second prior art differs from the first prior art in that the Hall sensor 14 for detecting the magnetic pole is not provided outside the armature, but is provided in the air core portion of the armature winding 11 ( For example, see Patent Document 1).
[0003]
[Patent Document 1]
Real Registration No. 2596793 [0004]
[Problems to be solved by the invention]
However, the conventional method has the following problems.
(1) In the first prior art, since the Hall sensor unit projects in the stroke direction of the mover, the effective stroke is sacrificed by the projection of the Hall sensor. In other words, the length of the mover or the size of the motor in the stroke direction is limited. For example, it cannot be applied to the use of a linear motor mounted on a bonder or the like, and is not suitable for miniaturization.
(2) Further, as in the second prior art, a structure in which a Hall sensor is installed in an air core portion of an armature winding. Since the Hall sensor is disposed immediately adjacent to the armature winding, the Hall sensor flows through the armature winding. An AC magnetic field is generated by the current, and the Hall sensor malfunctions under the influence of the AC magnetic field.
[0005]
The present invention has been made to solve the above problems, and provides a linear motor that can be miniaturized without sacrificing an effective stroke of a mover and that can prevent a malfunction of a Hall sensor. The purpose is to:
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention according to claim 1 has a plurality of permanent magnets arranged alternately in a line so as to have different polarities, and a magnetic field and a magnetic gap. An armature having an armature winding composed of a plurality of coil groups disposed opposite to each other, and a Hall sensor having a magnetic pole detection function disposed on the armature, wherein one of the field and the armature is fixed. In the linear motor, the other end of the surface facing the armature of the permanent magnet is inclined by a predetermined angle, and the end of the permanent magnet The Hall sensor is installed in the leakage magnetic flux so as to spread the leakage magnetic flux incident from outside the magnetic circuit formed between the permanent magnet and the armature.
According to a second aspect of the present invention, in the linear motor according to the first aspect, the Hall sensor is provided in a direction perpendicular to the permanent magnet.
According to a third aspect of the present invention, in the linear motor according to the first or second aspect, an armature base for mounting a table for conveying an object to the armature is provided, and the Hall sensor is mounted on the armature. It is provided inside the base.
By the above means, the end of the surface of the permanent magnet facing the armature is processed so as to be inclined by a predetermined angle, and when the Hall sensor is installed in a direction perpendicular to the flat permanent magnet, Since the armature winding is also installed perpendicularly, the influence of the AC magnetic field generated from the energized armature winding can be reduced. Therefore, the Hall sensor can be installed without sacrificing the effective stroke, and malfunction of the Hall sensor can be prevented.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a side view of a linear motor showing a first embodiment of the present invention, and FIG. 2 is a front sectional view of the linear motor taken along line AA in FIG. 1, showing a Hall sensor mounting portion. is there.
In the figure, 1 is a permanent magnet, 2A is an outer yoke, 2B is an inner yoke, 2C is a fixed yoke plate, 3 is an armature winding, 4 is an armature mounting block, 5 is a Hall sensor, 6 is a Hall sensor board, Reference numeral 7 denotes a resin mold.
The features of the present invention are as follows.
The linear motor is of a moving coil type constituted by an armature forming a mover and a field arranged via the armature and a magnetic gap, and one field is a side surface as shown in FIG. The shape of the yoke as seen from is the shape of the sun. More specifically, the field includes two flat outer yokes 2A, an inner yoke 2B arranged between the outer yokes 2A, and a yoke fixing plate 2C connecting both ends of the outer yokes 2A and the inner yokes 2B. It is composed of a field yoke and a plurality of flat permanent magnets 1 arranged linearly on the outer yoke 2A so as to alternately have different polarities.
The other armature is composed of an armature winding 3 composed of a plurality of coil groups having an air core, and an armature mounting block 4 provided on both sides of the armature winding 3. It is formed in the shape of. The armature has a structure in which the inner yoke 2B penetrates the air core portion of the armature winding 3 and the outer upper and lower ends of the armature winding 3 are sandwiched by the outer yoke 2A. The armature winding 3 and the armature mounting block 4 are fixed with a resin mold 7.
It should be noted that the end of the surface of the permanent magnet 1 facing the armature is inclined by a predetermined angle, and the leakage magnetic flux incident from the end of the permanent magnet 1 is transmitted to the permanent magnet and the electric motor. The point is that the Hall sensor 5 is installed on the Hall sensor substrate 6 provided at the end of the armature mounting block 7 in which the leakage magnetic flux is spread so as to spread outside the magnetic circuit formed between the Hall sensor 5 and the armature. Here, the Hall sensor 5 is provided in a direction perpendicular to the permanent magnet 1.
Note that the armature, which is a mover, is supported by a linear guide or the like including a slider and a guide rail, not shown.
[0008]
Next, the operation will be described.
In a linear motor, a predetermined current corresponding to the electrical relative position of the armature and the field is caused to flow through the armature winding to act on the magnetic field created by the permanent magnet to generate thrust on the armature. It will move in the traveling direction. At this time, the leakage magnetic flux incident from the magnet end is formed between the permanent magnet and the armature by the permanent magnet and the Hall sensor having the end of the surface facing the armature inclined at a predetermined angle. Spread outside of the magnetic circuit.
[0009]
As described above, in the linear motor according to the first embodiment of the present invention, the end of the surface of the permanent magnet 1 facing the armature is inclined by a predetermined angle, and the leakage magnetic flux incident from the end of the permanent magnet 1 is reduced. A Hall sensor 5 is installed in the leakage magnetic flux so as to extend outside a magnetic circuit formed between the permanent magnet and the armature, and the Hall sensor 5 is disposed in a direction perpendicular to the permanent magnet 1. Since the Hall sensor is not provided in the moving direction of the mover, the effective stroke is not sacrificed. Further, since the leakage magnetic flux from the end of the permanent magnet spreads outward, the Hall sensor can be installed without sacrificing the magnetic air gap.
[0010]
(Second embodiment)
Next, a second embodiment of the present invention will be described.
FIG. 3 is a sectional view of a linear motor showing a second embodiment of the present invention. The linear motor is of a magnetic flux penetrating type in which fields are arranged on both sides of the armature, and is a moving coil type as in the first embodiment. The description of the components of the second embodiment which are the same as those of the prior art and the first embodiment will be omitted.
In FIG. 3, 8 is a permanent magnet, 9 is a yoke, and 10 is a Hall sensor.
The second embodiment is different from the prior art and the first embodiment in that the armature winding 11 is formed in a plate shape in which the armature is composed of a plurality of coil groups, and another device such as a table for transporting an object. And the armature base 13 for attaching the armature to the armature, and the hall sensor 10 is provided inside the armature base 13.
Since the second embodiment of the present invention is configured as described above, the magnetic air gap between the armature and the field is not sacrificed, and the linear motor can be reduced in size.
[0011]
In the above embodiments, the linear motor having the structure in which the stator is the field and the mover is the armature has been described. However, the structure may be such that the stator is the armature and the mover is the field.
In addition, although the shape of the armature is a mouth shape, it goes without saying that the present invention is also applicable to a concave shape or a structure in which permanent magnets are simply arranged on one side.
[0012]
【The invention's effect】
As described above, the present invention has the following effects.
(1) The end of the surface of the permanent magnet facing the armature is inclined by a predetermined angle, and leakage magnetic flux incident from the end of the permanent magnet is formed between the permanent magnet and the armature. A Hall sensor is installed in the leakage magnetic flux so as to extend outside the magnetic circuit, and the Hall sensor is provided in a direction perpendicular to the permanent magnet, so that the Hall sensor is not installed in the moving direction of the mover. Therefore, the effective stroke is not sacrificed. Further, since the leakage magnetic flux from the end of the permanent magnet spreads outward, the Hall sensor can be installed without sacrificing the magnetic air gap.
(2) Since the Hall sensor is installed perpendicular to the armature winding, the effect of the AC magnetic field generated by the current flowing through the armature winding can be reduced, and malfunction of the Hall sensor can be prevented.
(3) Since the Hall sensor is provided inside the armature base, the magnetic air gap between the armature and the magnetic field is not sacrificed, and the linear motor can be reduced in size.
[Brief description of the drawings]
FIG. 1 is a side view of a linear motor according to a first embodiment of the present invention.
FIG. 2 is a front sectional view of the linear motor taken along the line AA in FIG. 1, showing a Hall sensor mounting portion.
FIG. 3 is a sectional view of a linear motor showing a second embodiment of the present invention.
FIG. 4 is a side view of a linear motor armature showing a first related art.
FIG. 5 is a side view of a linear motor armature showing a second related art.
[Explanation of symbols]
1, 8 permanent magnet 2A outer yoke 2B inner yoke 2C yoke fixed plate 3, 11 armature winding 4 armature mounting block 5, 10 hall sensor 6 hall sensor board 7 12 resin mold 9 yoke 13 armature base

Claims (3)

複数の永久磁石を交互に極性が異なるように直線状に並べて配置した界磁と、前記界磁と磁気的空隙を介して対向配置されると共に複数のコイル群よりなる電機子巻線を有する電機子と、前記電機子に配置した磁極検出機能を有するホールセンサを備え、前記界磁と前記電機子の何れか一方を固定子に、他方を可動子として相対的に走行するようにしたリニアモータにおいて、
前記永久磁石の電機子との対向面の端部を、所定の角度だけ傾斜させてあり、
前記永久磁石の端部から入射する漏れ磁束を該永久磁石と該電機子との間に形成される磁気回路の外側に広げるように、前記漏れ磁束中に前記ホールセンサを設置したことを特徴とするリニアモータ。
An electric machine having a field in which a plurality of permanent magnets are alternately arranged linearly so as to have different polarities, and an armature winding composed of a plurality of coil groups and opposed to the field with a magnetic gap therebetween. Armature and a Hall sensor having a magnetic pole detection function disposed on the armature, wherein one of the field and the armature runs as a stator and the other moves relative to a mover. At
The end of the surface of the permanent magnet facing the armature is inclined by a predetermined angle,
The Hall sensor is provided in the leakage magnetic flux so that a leakage magnetic flux incident from an end of the permanent magnet is spread outside a magnetic circuit formed between the permanent magnet and the armature. Linear motor.
前記ホールセンサを前記永久磁石に対して垂直方向に設けたことを特徴とする請求項1記載のリニアモータ。The linear motor according to claim 1, wherein the Hall sensor is provided in a direction perpendicular to the permanent magnet. 前記電機子に対象物を搬送するテーブルを取付けるための電機子ベースを設け、前期ホールセンサを前記電機子ベースの内部に設けたことを特徴とする請求項1または2に記載のリニアモータ。3. The linear motor according to claim 1, wherein an armature base for mounting a table for transporting an object to the armature is provided, and the Hall sensor is provided inside the armature base.
JP2003114707A 2003-04-18 2003-04-18 Linear motor Expired - Fee Related JP4513116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114707A JP4513116B2 (en) 2003-04-18 2003-04-18 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114707A JP4513116B2 (en) 2003-04-18 2003-04-18 Linear motor

Publications (2)

Publication Number Publication Date
JP2004320959A true JP2004320959A (en) 2004-11-11
JP4513116B2 JP4513116B2 (en) 2010-07-28

Family

ID=33474200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114707A Expired - Fee Related JP4513116B2 (en) 2003-04-18 2003-04-18 Linear motor

Country Status (1)

Country Link
JP (1) JP4513116B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271753A (en) * 2007-04-24 2008-11-06 Yaskawa Electric Corp Armature for cylindrical linear motor, and the cylindrical linear motor
JP2012100423A (en) * 2010-11-01 2012-05-24 Yaskawa Electric Corp Linear motor
RU2530536C2 (en) * 2011-08-03 2014-10-10 Кабусики Кайся Яскава Денки Linear motor armature and linear motor
CN108880181A (en) * 2018-06-13 2018-11-23 深圳市歌尔泰克科技有限公司 A kind of linear motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913081U (en) * 1982-07-14 1984-01-26 株式会社東芝 brushless motor
JPH08168232A (en) * 1994-12-08 1996-06-25 Fanuc Ltd Linear encoder device
JPH1066328A (en) * 1996-08-23 1998-03-06 Yamaha Motor Co Ltd Linear motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913081U (en) * 1982-07-14 1984-01-26 株式会社東芝 brushless motor
JPH08168232A (en) * 1994-12-08 1996-06-25 Fanuc Ltd Linear encoder device
JPH1066328A (en) * 1996-08-23 1998-03-06 Yamaha Motor Co Ltd Linear motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271753A (en) * 2007-04-24 2008-11-06 Yaskawa Electric Corp Armature for cylindrical linear motor, and the cylindrical linear motor
JP2012100423A (en) * 2010-11-01 2012-05-24 Yaskawa Electric Corp Linear motor
RU2530536C2 (en) * 2011-08-03 2014-10-10 Кабусики Кайся Яскава Денки Linear motor armature and linear motor
CN108880181A (en) * 2018-06-13 2018-11-23 深圳市歌尔泰克科技有限公司 A kind of linear motor
WO2019237917A1 (en) * 2018-06-13 2019-12-19 歌尔股份有限公司 Linear motor

Also Published As

Publication number Publication date
JP4513116B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP5240543B2 (en) Assembly method of moving coil type linear motor
US8008814B2 (en) Sliding system with onboard moving-coil linear motor
US6800966B2 (en) Linear brushless DC motor with ironless armature assembly
JP2001218444A (en) High thrust linear motor and method of manufacturing the same
JP2005210775A (en) Coreless linear motor and canned linear motor
US10411527B2 (en) Linear motor
JP2011155757A (en) Linear motor
JP4513116B2 (en) Linear motor
JP2004242381A (en) Rectilinear drive, control method therefor, and xy table
JP2002354779A (en) Linear motor
JP4600858B2 (en) Linear motor
TW201935819A (en) Linear motor and method for manufacturing linear motor
JPH11313475A (en) Linear motor
JP2657192B2 (en) Linear DC brushless motor
TWI278163B (en) Driving device and XY stage using the same
JP2004336842A (en) Linear motor
JP2004350419A (en) Linear motor
JP2002281728A (en) Linear actuator
JP4175076B2 (en) Coreless linear motor
JPH06165474A (en) Moving-magnet type linear dc motor
JP3824061B2 (en) Linear motor
JP3817724B2 (en) XY table device
JP2004064874A (en) High acceleration type linear motor
JP2657191B2 (en) Linear DC motor
JP2006014391A (en) Linear motor armature, linear motor and flat surface motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees