JP2004314823A - Contacting resistance measuring method for grounding brush - Google Patents

Contacting resistance measuring method for grounding brush Download PDF

Info

Publication number
JP2004314823A
JP2004314823A JP2003112657A JP2003112657A JP2004314823A JP 2004314823 A JP2004314823 A JP 2004314823A JP 2003112657 A JP2003112657 A JP 2003112657A JP 2003112657 A JP2003112657 A JP 2003112657A JP 2004314823 A JP2004314823 A JP 2004314823A
Authority
JP
Japan
Prior art keywords
ground
brushes
brush
grounding
axle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003112657A
Other languages
Japanese (ja)
Other versions
JP4036781B2 (en
Inventor
Minoru Osada
実 長田
Hiroya Terada
泰也 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2003112657A priority Critical patent/JP4036781B2/en
Publication of JP2004314823A publication Critical patent/JP2004314823A/en
Application granted granted Critical
Publication of JP4036781B2 publication Critical patent/JP4036781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method to continuously measure the contacting resistance of a grounding brush when a railroad car is running which is equipped with a trucks of wheel independent drive type or with an inter-track variable trucks. <P>SOLUTION: According to the contacting resistance measuring method, the ground line between a terminal table and the grounding brush G is opened and a certain voltage is impressed between the grounding brushes Ga and Gb when the railroad car runs. The resistance between the grounding brushes is determined by measuring the voltage and current between the grounding brushes Ga and Gb. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一体的に構成された車輪を有し、軸受或いは摺動面を介して車軸部に支持された回転部に摺動接触する接地ブラシが複数設けられた台車を具備した鉄道車両の走行時における接地ブラシの接触抵抗測定方法に関する。
【0002】
【発明の背景】
日本国内で一般的に使用されている鉄道車両の台車は、車輪と車軸とが一体構造となったものである。また、車輪と車軸とは共に鉄等の良導体の金属から成る。このため、軌道短絡回路を構成する際の車軸のインピーダンスはほぼ一定と見なされるのが通常である。
【0003】
図4は、車輪と車軸とが一体構造となった従来の台車の車軸インピーダンスを説明するための図である。図4において点線は軌道短絡電流の流路を示す。軌道短絡は、レール/車輪間の接触抵抗Z1,Z2と、車軸インピーダンスZjとを介して行われる。しかし、レール/車輪間の接触抵抗Z1,Z2は、走行時の天候(例えば晴天か雨天か)や、レールの状態(例えば錆や、落ち葉などの介在物の有無等)、走行場所(例えばカーブ時の内軌側か外軌側か、分岐用レール上か)等によって変化し、固定値を取らない。このため、通常は停止時の車軸インピーダンスZjと走行時の軌道回路状態から短絡状態が決まる。ここで、車輪と車軸とは良導体の金属から成る一体構造であるため、車軸のインピーダンスZjは通常ほぼ一定と見なされる。
【0004】
ところで、現在開発されている台車として、各輪独立駆動方式の車輪一体形主電動機を搭載した台車や、軌間の異なる線路を走行するための軌間可変電車の台車等がある。
【0005】
このような各輪独立駆動方式の車輪一体形電動機を搭載した台車や軌間可変電車の台車においては、車輪と車軸とが一体構造となったものではなく、車輪が軸受等を介して回転可能に車軸に支持される構造となっている。このため、例えば、アウターロータ形各輪駆動方式の独立車輪方式によれば、車軸に固定された固定子に対して、車輪が回転子と一体となって回転自在となる反面、車輪と車軸とが電気的に接続されていないため、左右の車輪と車軸とを一体の良導体とみなすことはできない。
【0006】
図5は各輪独立駆動方式の台車における車軸インピーダンスに係る要部概略図である。左右の車輪W1,W2は、軸受(不図示)及びロック機構(不図示)を介して回転可能に車軸SHに支持される。また、左右の車輪W1,W2にはそれぞれ集電環S1,S2が一体的に構成され、集電環S1,S2の外周面には接地ブラシG1,G2が当接される。車輪W1,W2、及び集電環S1,S2は回転部であるが、接地ブラシG1,G2は集電環S1,S2の回転に伴ってその外周面を摺動する固定部である。接地ブラシG1,G2は、それぞれ接地ラインL1,L2によって端子台Tに接続される。尚、端子台Tを介さずに、接地ブラシG1,G2間を、直接、ライン(電線)によって接続するものもある。
【0007】
車輪W1,W2、集電環S1,S2、接地ブラシG1,G2、接地ラインL1,L2、及び端子台Tは、次の主要機能と副次的機能とを有する。すなわち、主要機能は、パンタグラフを介して主電動機等に供給される給電電力をレールに戻す(接地する)ための接地回路を構成する機能である。副次的機能は軌道短絡回路を構成する機能である。
【0008】
図5中、軌道短絡電流の流路を点線で示す。図5における車軸インピーダンスZjにおいて、車輪W1,W2と集電環S1,S2とは共に金属であり、一体的に構成されているため、インピーダンスはほぼ一定の値である。また、接地ラインL1,L2及び端子台Tを介した接地ブラシG1と接地ブラシG2間のインピーダンスは走行中であっても固定値である。このため、走行時に変動する可能性があるものは、接地ブラシG1,G2と、集電環S1,S2との間の接触抵抗Zg1,Zg2である(本明細書において、この接触抵抗を「接地ブラシの接触抵抗」という。)。
【0009】
なお、上述の各輪独立駆動方式の問題は、軌間可変台車においても同様である。すなわち、軌間可変台車は、車軸に対して車輪を車軸方向に摺動させる必要があり、この摺動面に軸受がある場合は勿論のこと、摺動面には円滑な摺動を促すために油が塗布され、走行中は絶縁に近い状態になっているのが通常である。このため、上述した各輪独立駆動方式と同様、車軸インピーダンスには、走行時に変動する可能性のある接地ブラシの接触抵抗が含まれる。
【0010】
ところで、各輪独立駆動方式の台車や軌間可変台車を装備した鉄道車両を実用化するためには、実際に運用されている軌道上を走行させる走行試験を行う必要がある。軌道回路を用いた信号の試験は最も重要な試験の1つである。このため、車軸インピーダンスZjにより、確実に軌道短絡が為されるかどうかが問題となる。すなわち、走行試験においては、接地ブラシと集電環間の接触抵抗のみならず、レール/車輪間の接触抵抗や、走行中の衝撃等による接地ブラシの接触・当接状態の変化が加味される。ここで、車輪踏面の形状が同一であれば、レール/車輪間の接触抵抗は、従来のものと基本的には変わらないため、走行中の車軸インピーダンスZjを決定付ける最大要因は、接地ブラシの接触抵抗がどの程度のものかという点となる。
【0011】
しかしながら、各輪独立駆動方式の台車や軌間可変電車の台車は、研究・開発段階であって実用化に至っていない。このため、列車走行中の接地ブラシの接触抵抗を連続的に測定する方法が案出されていないのが現状である。
なお、現車走行時の接地ブラシの接触抵抗を測定する方法について、記載すべき文献公知発明はない。
【0012】
【発明が解決しようとする課題】
本発明の課題は、各輪独立駆動方式の台車や軌間可変台車を装備した鉄道車両の走行時における接地ブラシの接触抵抗を連続的に測定する方法を実現することである。
【0013】
【課題を解決するための手段】
以上の課題を解決するため、請求項1記載の発明は、
一体的に構成された車輪を有し、軸受或いは摺動面を介して車軸部(例えば図2の車軸SH)に支持された回転部(例えば図2の集電環S)に摺動接触する接地ブラシ(例えば図2の接地ブラシGa,Gb)が複数設けられた台車を具備した鉄道車両の走行時における接地ブラシの接触抵抗測定方法であって、
前記接地ブラシに接続されている接地ライン(例えば図1の接地ラインL1)を開放する開放工程と、
鉄道車両走行時に、前記開放した接地ブラシのうち2つの接地ブラシ間に所定電圧を印加する印加工程(例えば図2の交流電源Pによる電圧印加)と、
前記所定電圧を印加した接地ブラシ間の電圧及び電流を測定する測定工程(例えば図2の電流計A及び電圧計V)と、
を含み、前記測定した電圧及び電流により当該接地ブラシの接触抵抗を求めることを特徴とする接地ブラシの接触抵抗測定方法。
【0014】
この請求項1に記載の発明によれば、鉄道車両の走行中に、連続的に、接地ブラシの接触抵抗を求めることができる。従って、走行時の天候や走行したレールの状態、走行場所等に係わらず、車軸インピーダンスを求めることができる。また、集電環に対する接地ブラシの付勢力(押しつけ力)や、接地ブラシの接触面積等について、具体的な設計・調整を図ることができる。
【0015】
また、請求項2に記載の発明のように、請求項1に記載の接地ブラシの接触抵抗測定方法において、
前記複数の接地ブラシには、少なくとも前記回転部(例えば図2の集電環S)に対する摺動軌跡が同一の接地ブラシが2つ含まれ、
前記印加工程は、前記摺動軌跡が同一な接地ブラシ間に前記所定電圧を印加する工程である、こととしてもよい。
【0016】
この請求項2に記載の発明によれば、所定電圧を印加する2つの接地ブラシの摺動軌跡が同一であるため、一方の接地ブラシと回転部間の接触抵抗と、他方の接地ブラシと回転部間の接触抵抗とは略同一とみなすことができる。従って、1つの接地ブラシに関する接触抵抗を簡単に求めることができる。
【0017】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を説明する。
尚、実施の形態として、各輪独立駆動方式の台車を例に挙げて説明するが、本発明が適用可能なものは、車輪一体形電動機を搭載した台車である必要はなく、軌間可変台車などの車輪(回転部)と車軸とが一体構造となっていない台車であれば何れの台車に対しても本発明を適用できる。
【0018】
図1は、各輪独立駆動方式の台車のうち、1つの軸の車軸インピーダンスに係る要部概略図であり、従来の図5と同一の部分には同一の符号を付している。図2は、接地ブラシの接触抵抗測定用の試験回路(以下、単に「試験回路」という。)の構成を示す図であり、集電環Sと車軸SHとを縦断面で示す。なお、説明の簡明のために、図2中の集電環Sと車軸SH間に軸受等を図示していないが、実際には例えば円すいころ軸受等の軸受を介設して車軸SHが集電環Wを支持するための摺動面が形成される。
また、以下説明においては、図1中左側の接地ブラシG1(G)の接触抵抗を測定する場合について説明する。
【0019】
図1中の左側の接地ブラシG1は、図2に示す通り2つ1組(以下、2つ1組の接地ブラシを示す場合には「接地ブラシ組」という。)で構成されており、通常走行時においては、何れの接地ブラシも接地ケーブルLによって端子台Tに電気的に短絡接続されている(尚、図1中の右側の接地ブラシG2も同様の構成である。)。
【0020】
接地ブラシ組Gを構成する接地ブラシGa,Gbは、車軸方向における同一位置であって、集電環Sの外周面上を所定距離離れた位置に配設される。従って、接地ブラシGa,Gbは、車輪Wと一体となって回転する集電環Sの外周面上を摺動し、その摺動軌跡が同一の軌跡となる。すなわち、接地ブラシGa,Gbそれぞれが接触する集電環Sの部分は同一であるため、接地ブラシGaと集電環S間の接触抵抗と、接地ブラシGbと集電環S間の接触抵抗とは略同一とみなすことができる。
【0021】
次に、接地ブラシの接触抵抗測定方法について説明する。まず、測定対象とする接地ブラシ組Gと、端子台Tとの間の導電路を開放する。具体的には、例えば図1に示すように、接地ケーブルL1を端子台Tから外すことにより実施する。次に、所定の交流電源Pを、電流制限抵抗Rを介して接地ブラシGa,Gb間に接続する。これにより、電源P→接地ブラシGa→集電環S→接地ブラシGb→電流制限抵抗R→電源Pへの電流路が形成され、試験回路が構成される。次いで、列車走行中(試験走行中)に、交流電源Pによって所定の交流電圧を印加する。印加する交流の周波数や電圧は適宜変更するとしてよい。交流電源Pによる交流電圧が印加された後、この試験回路に流れる電流、及び接地ブラシGa,Gb間の電圧を、それぞれ電流計A及び電圧計Vで測定する。
【0022】
そして、測定した電流及び電圧に基づいて接地ブラシと集電環間の接触抵抗を求める。また、接地ブラシGa,Gbそれぞれと集電環Sとの接触抵抗は略同一とみなすことができるため、接地ブラシGa及び接地ブラシGbの一方についての、集電環Sとの接触抵抗も求めることができる。
【0023】
この試験回路を鉄道車両の試験走行中に構成することにより、連続的に、接地ブラシの接触抵抗を求めることができる。そして、走行時の天候や走行したレールの状態、走行場所等に係わらず車軸インピーダンスを求めることができる。また、集電環に対する接地ブラシの付勢力(押しつけ力)を変化させたり、接地ブラシの接触面積を変化させる等の、当該鉄道車両の運用実用化に向けた具体的な設計・調整をすることができる。
【0024】
以上、実施の形態について説明したが、本発明は、上記実施の形態の内容に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。例えば、接地ブラシ組Gは、2つの接地ブラシによって構成されるとして説明したが、3以上であってもよい。その場合には、摺動軌跡が同一の軌跡となる任意の2つの接地ブラシ間に試験回路を構成することにより上述した実施の形態と同様の作用・効果を得ることができる。
【0025】
また、図3に示すように、接地ブラシGa,Gbが、それぞれバネ(不図示)等が内設された金属製のブラシホルダHa,Hbによって集電環Sに押圧され、さらにブラシホルダHaとブラシホルダHbとが円弧状の金属体によって接続されている場合がある。接地ブラシGa,Gb及びブラシホルダHa,Hbを電気的に一体(短絡)とみなし、少しでも抵抗を少なくして接地ブラシの主要機能としての役割を全うするための構造である。しかし、試験回路を構成する上においては、接地ブラシGa→集電環S→接地ブラシGbへの電流路を形成する必要がある。このため、少なくとも試験走行時においては、接地ブラシGa,Gbと、ブラシホルダHa,Hbとを絶縁する工程が必要となる。具体的にはブラシホルダHa,Hbの内面に絶縁性のゴムを敷設する等により実現できる。
【0026】
【発明の効果】
本発明によれば、鉄道車両の走行中に、連続的に、接地ブラシの接触抵抗を求めることができる。従って、走行時の天候や走行したレールの状態、走行場所等に係わらず車軸インピーダンスを求めることができる。また、集電環に対する接地ブラシの付勢力(押しつけ力)や、接地ブラシの接触面積等、具体的な設計・調整を図ることができる。
【図面の簡単な説明】
【図1】各輪独立駆動方式の台車のうち、1つの軸の車軸インピーダンスに係る要部概略図。
【図2】接地ブラシの接触抵抗測定用の試験回路の構成を示す図。
【図3】ブラシホルダが円弧状の金属体によって接続されている状態を説明するための図。
【図4】車輪と車軸とが一体構造となった従来の台車の車軸インピーダンスを説明するための図。
【図5】各輪独立駆動方式の台車における車軸インピーダンスに係る要部概略図。
【符号の説明】
T 端子台
L 接地ライン
G 接地ライン組
Ga 接地ライン
Gb 接地ライン
S 集電環
P 交流電源
A 電流計
V 電圧計
R 電流制限抵抗
SH 車軸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a railway vehicle including a bogie having integrally formed wheels and a plurality of grounding brushes provided in sliding contact with a rotating portion supported on an axle portion via a bearing or a sliding surface. The present invention relates to a method for measuring the contact resistance of a ground brush during running.
[0002]
BACKGROUND OF THE INVENTION
A bogie of a railway vehicle generally used in Japan has a structure in which wheels and axles are integrated. Both the wheel and the axle are made of a good conductor metal such as iron. For this reason, the impedance of the axle when configuring the track short circuit is generally regarded as substantially constant.
[0003]
FIG. 4 is a diagram for explaining axle impedance of a conventional bogie in which wheels and an axle are integrated. In FIG. 4, the dotted line indicates the path of the track short-circuit current. The track short circuit is performed via the contact resistances Z1 and Z2 between the rail and the wheel, and the axle impedance Zj. However, the contact resistances Z1 and Z2 between the rails and wheels are determined by the weather during traveling (for example, whether it is sunny or rainy), the state of the rails (for example, the presence or absence of inclusions such as rust and fallen leaves, etc.), It changes depending on the inner rail side or outer rail side, or on the branching rail at the time) and does not take a fixed value. For this reason, the short circuit state is usually determined from the axle impedance Zj at the time of stop and the track circuit state at the time of traveling. Here, since the wheel and the axle have an integral structure made of a good conductor metal, the impedance Zj of the axle is generally regarded as substantially constant.
[0004]
By the way, as the bogies currently being developed, there are bogies equipped with a wheel-integrated main motor of each wheel independent drive system, bogies of a variable gauge train for traveling on tracks with different gauges, and the like.
[0005]
In a bogie equipped with such a wheel-independent electric motor of each wheel independent type or a bogie of a variable rail-to-rail train, the wheel and axle are not integrated, but the wheel is rotatable via a bearing or the like. The structure is supported by the axle. For this reason, for example, according to the independent wheel system of the outer rotor type each wheel drive system, with respect to the stator fixed to the axle, the wheel is rotatable integrally with the rotor, while the wheel and the axle are Are not electrically connected, the right and left wheels and the axle cannot be regarded as an integral good conductor.
[0006]
FIG. 5 is a schematic view of a main part relating to axle impedance of a bogie of a wheel independent drive system. The left and right wheels W1, W2 are rotatably supported by the axle SH via bearings (not shown) and lock mechanisms (not shown). In addition, current collecting rings S1 and S2 are integrally formed on the left and right wheels W1 and W2, respectively, and ground brushes G1 and G2 abut on outer peripheral surfaces of the current collecting rings S1 and S2. The wheels W1 and W2 and the current collecting rings S1 and S2 are rotating parts, whereas the ground brushes G1 and G2 are fixed parts that slide on the outer peripheral surface as the current collecting rings S1 and S2 rotate. The ground brushes G1, G2 are connected to the terminal block T by ground lines L1, L2, respectively. In some cases, the ground brushes G1 and G2 are directly connected by a line (electric wire) without using the terminal block T.
[0007]
The wheels W1 and W2, the current collecting rings S1 and S2, the ground brushes G1 and G2, the ground lines L1 and L2, and the terminal block T have the following main functions and sub functions. That is, the main function is to configure a grounding circuit for returning (grounding) power supplied to the main motor and the like via the pantograph to the rail. A secondary function is a function that constitutes a track short circuit.
[0008]
In FIG. 5, the path of the track short-circuit current is indicated by a dotted line. In the axle impedance Zj in FIG. 5, the wheels W1, W2 and the current collecting rings S1, S2 are both metal and are integrally formed, so that the impedance is a substantially constant value. The impedance between the ground brushes G1 and G2 via the ground lines L1 and L2 and the terminal block T is a fixed value even during traveling. For this reason, what may fluctuate during traveling are the contact resistances Zg1 and Zg2 between the grounding brushes G1 and G2 and the current collecting rings S1 and S2 (in this specification, the contact resistances are referred to as “grounding resistance”. Brush contact resistance ").
[0009]
In addition, the above-mentioned problem of each wheel independent drive method is the same also in the variable gauge truck. In other words, in the case of a variable-gauge trolley, it is necessary to slide the wheels in the axle direction with respect to the axle, and in order to facilitate smooth sliding on the sliding surface, as well as bearings on this sliding surface. Normally, oil is applied and the vehicle is almost insulated during running. For this reason, similarly to the above-described wheel-independent drive system, the axle impedance includes the contact resistance of the ground brush that may vary during traveling.
[0010]
By the way, in order to put into practical use a railway vehicle equipped with a bogie of each wheel independent drive system or a variable bogie between rails, it is necessary to perform a running test for running on a track actually used. Testing signals using track circuits is one of the most important tests. For this reason, it is a problem whether or not the track short-circuit is reliably performed by the axle impedance Zj. That is, in the running test, not only the contact resistance between the ground brush and the current collecting ring, but also the contact resistance between the rail and the wheel, and the change in the contact / contact state of the ground brush due to an impact during running are taken into account. . Here, if the shape of the wheel tread is the same, the contact resistance between the rail and the wheel is basically the same as the conventional one. Therefore, the largest factor that determines the axle impedance Zj during running is the ground brush. The point is how much the contact resistance is.
[0011]
However, the trolley of each wheel independent drive system and the trolley of the variable gauge between rails are in the research and development stage and have not been put to practical use. For this reason, at present, a method of continuously measuring the contact resistance of the grounding brush during running of the train has not been proposed.
It should be noted that there is no documented invention to be described which describes the method for measuring the contact resistance of the grounding brush when the vehicle is currently running.
[0012]
[Problems to be solved by the invention]
It is an object of the present invention to realize a method for continuously measuring the contact resistance of a ground brush during traveling of a railway vehicle equipped with a bogie of a wheel-independent drive type or a variable bogie between rails.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the invention described in claim 1 is
It has wheels integrally formed, and comes into sliding contact with a rotating part (for example, the current collecting ring S in FIG. 2) supported by an axle (for example, the axle SH in FIG. 2) via a bearing or a sliding surface. A method for measuring the contact resistance of a ground brush when a railway vehicle including a bogie provided with a plurality of ground brushes (for example, ground brushes Ga and Gb in FIG. 2) is running,
An opening step of opening a ground line (for example, the ground line L1 in FIG. 1) connected to the ground brush;
An application step of applying a predetermined voltage between two ground brushes among the open ground brushes (for example, voltage application by the AC power supply P in FIG. 2) during running of the railway vehicle;
A measuring step of measuring a voltage and a current between the ground brushes to which the predetermined voltage is applied (for example, an ammeter A and a voltmeter V in FIG. 2);
And determining the contact resistance of the ground brush from the measured voltage and current.
[0014]
According to the first aspect of the present invention, the contact resistance of the grounding brush can be continuously obtained while the railway vehicle is running. Therefore, the axle impedance can be obtained regardless of the weather at the time of traveling, the state of the traveling rail, the traveling place, and the like. Further, it is possible to specifically design and adjust the urging force (pressing force) of the ground brush against the collector ring, the contact area of the ground brush, and the like.
[0015]
According to a second aspect of the present invention, in the method for measuring a contact resistance of a ground brush according to the first aspect,
The plurality of ground brushes include at least two ground brushes having the same sliding locus with respect to the rotating part (for example, the current collecting ring S in FIG. 2),
The applying step may be a step of applying the predetermined voltage between ground brushes having the same sliding locus.
[0016]
According to the second aspect of the present invention, since the sliding locus of the two ground brushes for applying the predetermined voltage is the same, the contact resistance between one ground brush and the rotating part and the other ground brush and the rotating ground are different. The contact resistance between the parts can be regarded as substantially the same. Therefore, the contact resistance for one ground brush can be easily obtained.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Note that, as an embodiment, a description will be given by taking a truck of each wheel independent drive system as an example, but the present invention is not necessarily required to be a truck equipped with an integrated wheel type electric motor, such as a variable gauge between trucks. The present invention can be applied to any bogie as long as it is a bogie in which the wheel (rotating part) and the axle are not integrated.
[0018]
FIG. 1 is a schematic view of a main part relating to axle impedance of one shaft of a bogie of each wheel independent drive system, and the same parts as those in FIG. 5 of the related art are denoted by the same reference numerals. FIG. 2 is a diagram illustrating a configuration of a test circuit (hereinafter, simply referred to as a “test circuit”) for measuring the contact resistance of the ground brush, and illustrates a current collector ring S and an axle SH in a longitudinal section. For the sake of simplicity, bearings and the like are not shown between the current collecting ring S and the axle SH in FIG. 2, but in actuality, the axle SH is collected by interposing a bearing such as a tapered roller bearing. A sliding surface for supporting the electric ring W is formed.
In the following description, a case where the contact resistance of the ground brush G1 (G) on the left side in FIG. 1 is measured will be described.
[0019]
The grounding brush G1 on the left side in FIG. 1 is composed of a pair of grounding brushes (hereinafter, referred to as a “grounding brush set” when a pair of grounding brushes is shown) as shown in FIG. During traveling, each ground brush is electrically short-circuited to the terminal block T by the ground cable L (the ground brush G2 on the right side in FIG. 1 has the same configuration).
[0020]
The grounding brushes Ga and Gb constituting the grounding brush set G are arranged at the same position in the axle direction and at a predetermined distance on the outer peripheral surface of the current collecting ring S. Therefore, the ground brushes Ga and Gb slide on the outer peripheral surface of the current collecting ring S which rotates integrally with the wheel W, and the sliding locus thereof becomes the same locus. That is, since the portion of the current collecting ring S with which the ground brushes Ga and Gb are in contact is the same, the contact resistance between the ground brush Ga and the current collecting ring S and the contact resistance between the ground brush Gb and the current collecting ring S are reduced. Can be regarded as substantially the same.
[0021]
Next, a method of measuring the contact resistance of the ground brush will be described. First, the conductive path between the ground brush set G to be measured and the terminal block T is opened. Specifically, for example, as shown in FIG. 1, the process is performed by removing the ground cable L1 from the terminal block T. Next, a predetermined AC power source P is connected between the ground brushes Ga and Gb via a current limiting resistor R. As a result, a current path from the power supply P → ground brush Ga → collector ring S → ground brush Gb → current limiting resistor R → power supply P is formed, and a test circuit is configured. Next, a predetermined AC voltage is applied by the AC power supply P during running of the train (during test running). The frequency and voltage of the alternating current to be applied may be changed as appropriate. After the AC voltage is applied by the AC power supply P, the current flowing through the test circuit and the voltage between the ground brushes Ga and Gb are measured by the ammeter A and the voltmeter V, respectively.
[0022]
Then, the contact resistance between the ground brush and the current collecting ring is obtained based on the measured current and voltage. In addition, since the contact resistance between each of the ground brushes Ga and Gb and the collector ring S can be regarded as substantially the same, the contact resistance between the collector brush S and one of the ground brush Ga and the ground brush Gb should also be determined. Can be.
[0023]
By configuring this test circuit during a test run of a railway vehicle, the contact resistance of the ground brush can be determined continuously. Then, the axle impedance can be obtained regardless of the weather at the time of traveling, the state of the traveling rail, the traveling place, and the like. Also, make specific designs and adjustments for practical use of the railway vehicle, such as changing the urging force (pressing force) of the ground brush against the collector ring or changing the contact area of the ground brush. Can be.
[0024]
Although the embodiments have been described above, the present invention is not limited to the contents of the above embodiments, and can be appropriately changed without departing from the gist of the present invention. For example, the grounding brush set G has been described as being configured by two grounding brushes, but may be three or more. In this case, the same operation and effect as those of the above-described embodiment can be obtained by configuring a test circuit between any two ground brushes having the same sliding locus.
[0025]
As shown in FIG. 3, the ground brushes Ga and Gb are pressed against the current collecting ring S by metal brush holders Ha and Hb in which springs (not shown) and the like are provided, respectively. The brush holder Hb may be connected by an arc-shaped metal body. The ground brushes Ga and Gb and the brush holders Ha and Hb are electrically integrated (short-circuited), and the resistance is reduced as much as possible to fulfill the role of the main function of the ground brush. However, in configuring the test circuit, it is necessary to form a current path from the ground brush Ga → the current collecting ring S → the ground brush Gb. For this reason, at least at the time of a test run, a step of insulating the ground brushes Ga and Gb from the brush holders Ha and Hb is required. Specifically, it can be realized by laying an insulating rubber on the inner surfaces of the brush holders Ha and Hb.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the contact resistance of a grounding brush can be calculated | required continuously during running of a railroad vehicle. Therefore, the axle impedance can be obtained regardless of the weather at the time of traveling, the state of the traveling rail, the traveling place, and the like. Further, specific design and adjustment of the urging force (pressing force) of the ground brush against the collector ring and the contact area of the ground brush can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a main part relating to axle impedance of one axle of a bogie of a wheel independent drive system.
FIG. 2 is a diagram showing a configuration of a test circuit for measuring contact resistance of a ground brush.
FIG. 3 is a view for explaining a state in which the brush holder is connected by an arc-shaped metal body.
FIG. 4 is a diagram for explaining axle impedance of a conventional bogie having a wheel and an axle integrated with each other.
FIG. 5 is a schematic diagram of a main part relating to axle impedance in a bogie of a wheel independent drive system.
[Explanation of symbols]
T Terminal block L Ground line G Ground line group Ga Ground line Gb Ground line S Collector ring P AC power supply A Ammeter V Voltmeter R Current limiting resistor SH Axle

Claims (2)

一体的に構成された車輪を有し、軸受或いは摺動面を介して車軸部に支持された回転部に摺動接触する接地ブラシが複数設けられた台車を具備した鉄道車両の走行時における接地ブラシの接触抵抗測定方法であって、
前記接地ブラシに接続されている接地ラインを開放する開放工程と、
鉄道車両走行時に、前記開放した接地ブラシのうち2つの接地ブラシ間に所定電圧を印加する印加工程と、
前記所定電圧を印加した接地ブラシ間の電圧及び電流を測定する測定工程と、
を含み、前記測定した電圧及び電流により当該接地ブラシの接触抵抗を求めることを特徴とする接地ブラシの接触抵抗測定方法。
Grounding at the time of traveling of a railway vehicle equipped with a bogie provided with a plurality of grounding brushes having wheels integrally formed and having a plurality of grounding brushes slidably contacting a rotating portion supported on an axle portion via a bearing or a sliding surface. A method for measuring the contact resistance of a brush,
An opening step of opening a ground line connected to the ground brush,
An application step of applying a predetermined voltage between two ground brushes of the open ground brushes during running of the railway vehicle;
A measuring step of measuring a voltage and a current between the ground brushes to which the predetermined voltage is applied,
And determining the contact resistance of the ground brush from the measured voltage and current.
前記複数の接地ブラシには、少なくとも前記回転部に対する摺動軌跡が同一の接地ブラシが2つ含まれ、
前記印加工程は、前記摺動軌跡が同一な接地ブラシ間に前記所定電圧を印加する工程である、ことを特徴とする請求項1に記載の接地ブラシの接触抵抗測定方法。
The plurality of ground brushes include at least two ground brushes having the same sliding locus with respect to the rotating unit,
The method according to claim 1, wherein the applying step is a step of applying the predetermined voltage between ground brushes having the same sliding locus.
JP2003112657A 2003-04-17 2003-04-17 Method for measuring contact resistance of ground brush Expired - Fee Related JP4036781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112657A JP4036781B2 (en) 2003-04-17 2003-04-17 Method for measuring contact resistance of ground brush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112657A JP4036781B2 (en) 2003-04-17 2003-04-17 Method for measuring contact resistance of ground brush

Publications (2)

Publication Number Publication Date
JP2004314823A true JP2004314823A (en) 2004-11-11
JP4036781B2 JP4036781B2 (en) 2008-01-23

Family

ID=33472797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112657A Expired - Fee Related JP4036781B2 (en) 2003-04-17 2003-04-17 Method for measuring contact resistance of ground brush

Country Status (1)

Country Link
JP (1) JP4036781B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569608A (en) * 2014-12-12 2015-04-29 国家电网公司 Method for measuring impact grounding impedance on site based on large impact current
EP2944503A3 (en) * 2014-05-07 2016-02-17 MAN Truck & Bus AG Electrical performance interface of a vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944503A3 (en) * 2014-05-07 2016-02-17 MAN Truck & Bus AG Electrical performance interface of a vehicle
CN104569608A (en) * 2014-12-12 2015-04-29 国家电网公司 Method for measuring impact grounding impedance on site based on large impact current

Also Published As

Publication number Publication date
JP4036781B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP4036781B2 (en) Method for measuring contact resistance of ground brush
CN207156868U (en) A kind of transmission system of combined tractor
FR2562668A1 (en) DEVICE FOR TRACKING DEFECTS OF RAILWAY RAILS BY EDGE CURRENTS, CAPABLE OF DISCRIMINATING DEFECTS OF CERTAIN DISCONTINUITIES IN RAIL CONSTRUCTION
JP2009273239A (en) Contact resistance reduction method, car for rolling stock and railroad maintenance machine
RU189696U1 (en) POWER ELECTRICAL DIAGRAM OF ELECTRIC TRAINS OF DOUBLE FOOD
JP2007068242A (en) Rooftop current collector of low-floor lrv
JP4098641B2 (en) Railway vehicle short circuit device
RU186451U1 (en) POWER ELECTRIC CIRCUIT OF DC ELECTRIC TRAIN WITH EXHAUST FILTER OF HIGH-FREQUENCY INTERFERENCE
JP3717827B2 (en) Pantograph current collection test equipment
JP2003274501A (en) Measuring method of dc pantograph arc
US1588505A (en) Testing apparatus or course
JPH09301172A (en) Vehicle shaft short-circuit sensitivity improving device and rolling stock
US445144A (en) Rudolph m
JP2566350Y2 (en) Track contactor
US2084257A (en) Track shoe and shunting circuit
JP4727686B2 (en) Short circuit support device and short circuit support method
US20230018186A1 (en) Pantograph carriage for collection of electricity from a flexible cable
JP2000001102A (en) Insulated wheel for maintenance vehicle
JP2001030897A (en) Wheel machining device for railway rolling stock and method thereof
CN216467854U (en) Railway rail flaw detection device
JPS5981251A (en) Method of inspecting and measuring electric-car line
JP2010208000A (en) Wheel tread state improving device and method of controlling the device
US455342A (en) knight
JP2004224075A (en) Short circuit support device
US413604A (en) Rudolph m

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20071030

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101109

LAPS Cancellation because of no payment of annual fees