JP2004308790A - Steel pipe having inner face coated with polyolefin resin - Google Patents

Steel pipe having inner face coated with polyolefin resin Download PDF

Info

Publication number
JP2004308790A
JP2004308790A JP2003103253A JP2003103253A JP2004308790A JP 2004308790 A JP2004308790 A JP 2004308790A JP 2003103253 A JP2003103253 A JP 2003103253A JP 2003103253 A JP2003103253 A JP 2003103253A JP 2004308790 A JP2004308790 A JP 2004308790A
Authority
JP
Japan
Prior art keywords
steel pipe
polyolefin resin
resin
manganese phosphate
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003103253A
Other languages
Japanese (ja)
Other versions
JP4158580B2 (en
Inventor
Takayuki Kamimura
隆之 上村
Katsu Takahashi
克 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003103253A priority Critical patent/JP4158580B2/en
Publication of JP2004308790A publication Critical patent/JP2004308790A/en
Application granted granted Critical
Publication of JP4158580B2 publication Critical patent/JP4158580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel pipe having an inner face coated with a polyolefin resin, capable of improving the adhesion durability. <P>SOLUTION: Two or more resin layers composed of a polyolefin resin layer 4 and an olefin adhesive resin layer 3 having the polarity is formed on the inner face of a main steel pipe 2 through a manganese phosphate coating 5 in a state that the innermost layer is the polyolefin resin layer 4, and the surface roughness Rz of the steel pipe inner face provided with the manganese phosphate coating 5 is 5-35 μm. The amount of deposition of the manganese phosphate coating is preferably 0.5-2.5 g/m<SP>2</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、給排水等に使われる配管用の鋼管に係り、特に、耐食性等の改善のために接着性ポリエチレン樹脂、ポリエチレン樹脂等を鋼管の内面にライニングした樹脂ライニング鋼管に関する。
【0002】
【従来の技術】
従来、給排水等の配管には、腐食による劣化を防止する観点から、内面を樹脂の粉体をライニングした樹脂ライニング鋼管が使用されている。樹脂ライニング鋼管としては、例えば、鋼管またはクロメート処理、亜鉛メッキ処理が施された鋼管の内面に、塩化ビニル樹脂、無水マレイン酸等で変性した接着性ポリエチレン樹脂、ポリエチレン樹脂等の粉体をライニングしたものが知られている。
【0003】
しかし、塩化ビニル樹脂を焼却するとダイオキシンが発生する可能性があるため、リサイクル時の環境問題の観点から、塩化ビニル樹脂を内面に被覆した鋼管の使用を可能な限り抑えようとする動きがある。また、無水マレイン酸等で変性した接着性ポリエチレン樹脂とポリエチレンの樹脂粉体を予熱した鋼管に粉体塗装することによりポリオレフィン被覆層を形成する方法では、樹脂膜の厚膜化が困難である。このような薄い樹脂膜では、製造時にピンホールが生成し易く、これを防止するためには多大な管理コストを要する。
【0004】
このような問題を解決するため、ポリエチレンの樹脂粉体を予熱した鋼管に粉体塗装する前に、下地処理として鋼管に化成処理やプライマー処理等を施した後、ポリオレフィン被覆層を形成する方法が提案されている。
【0005】
特許文献1には、被ライニング材表面をブラストまたは酸洗処理したのち、被ライニング材表面を300〜500℃に加熱し、Feを主体とする被膜を形成させ、次いでpHが4.5〜6.0であって、CrO 濃度が0.005〜0.05wt%のクロム酸水溶液に接触させたのち乾燥するポリエチレン粉体ライニングの下地処理方法が提案されている。
【0006】
特許文献2には、被ライニング材表面を脱脂洗浄し、水洗後、塩酸酸洗し、水洗したのち、苛性ソーダ、オルトリン酸ソーダ、亜硝酸ソーダからなる沸騰水溶液に浸漬し、該被ライニング材表面にFeを主体とする被膜を形成させ、次いで水洗後、pHが4.5〜6.0であって、CrO濃度が0.005〜0.05wt%のクロム酸水溶液に浸漬したのち乾燥させるポリエチレン粉体ライニングの下地処理方法が提案されている。
【0007】
特許文献3には、被ライニング材表面を塩酸で酸洗浄し、水洗後、リン酸亜鉛−カルシウム系溶液を用いて化成処理を行い、次いでpH4.5〜6.0であって、0.005〜0.05wt%クロム酸水溶液に液温50℃以下で接触させた後、乾燥させるポリエチレン粉体ライニングの下地処理方法が提案されている。
【0008】
特許文献4には、被ライニング材表面を脱脂洗浄し、水洗後、塩酸酸洗し、水洗したのち、苛性ソーダ、オルトリン酸ソーダ、亜硝酸ソーダからなる沸騰水溶液に浸漬し、該被ライニング材表面にFeを主体とする被膜を形成させ、次いで水洗後、pH4.5〜6.0の酸性水溶液で中和処理し、水洗後乾燥させるポリエチレン粉体ライニングの下地処理方法が提案されている。
【0009】
これらの方法は、接着耐久性の向上には効果があるものの、他段階プロセスであり、製造の長時間化やコストの上昇を招く。このため、粉体ライニングに変わるライニング方法として、例えば、特許文献5および特許文献6には、予めポリオレフィン樹脂の溶融温度未満の温度で縮径加工したポリオレフィン樹脂管を作製し、これをライニングすべき管に挿入した後、加熱してポリオレフィン樹脂管を回復拡管させて鋼管の内面に被覆する方法が提案されている。
【0010】
これらの方法によればポリオレフィン樹脂の膜厚を厚くできるため、上述した問題を解決できる点で優れているが、これらの方法では初期の密着力は確保できるものの、長期の耐久性(耐水密着耐久性)が未だ十分でない。このため、従来一般に用いられている下地処理であるリン酸亜鉛処理では、十分な接着耐久性が得られない。
【0011】
【特許文献1】
特開平5−301072号公報
【特許文献2】
特開平5−301073号公報
【特許文献3】
特開平5−301074号公報
【特許文献4】
特開平5−301075号公報
【特許文献5】
特開2002−67155号公報
【特許文献6】
特開2002−248707号公報
【0012】
【発明が解決しようとする課題】
本発明は、上記の問題を解決するためになされたものであり、長期の接着耐久性を実現することができるポリオレフィン樹脂内面被覆鋼管を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記の問題点を解決するために鋭意検討した結果、下記(a)〜(c)に示す知見を得た。
(a) 同種のポリオレフィン樹脂を同種の鋼管に被覆させても、樹脂の剥離度合いが異なる場合がある。これは、鋼管の表面粗さの違いに起因する。
(b) そこで、化成処理により鋼管内面の表面粗さを調整した後に、ポリオレフィン樹脂を被覆させることを考え、種々の実験を行った結果、リン酸亜鉛系、リン酸亜鉛カルシウム系、リン酸亜鉛マグネシウム系、リン酸亜鉛ニッケルマンガン系およびリン酸マンガン系の化成処理のうち、リン酸マンガン系処理がポリエチレン内面被覆の下地処理として最も有効であることが判明した。
(c) さらに、リン酸マンガン系の化成処理を施したポリオレフィン樹脂内面被覆鋼管の剥離性を調査した結果、ポリオレフィン樹脂の剥離性が飛躍的に向上する表面粗さの範囲および付着量の範囲が判明した。
【0014】
本発明は、上記の知見に基づいてなされたものであり、下記の(1)に示すポリオレフィン樹脂内面被覆鋼管を要旨とする。
【0015】
(1)鋼管の内面に、リン酸マンガン被膜を介して、ポリオレフィン樹脂層と極性を有するオレフィン系接着樹脂層からなる2層以上の樹脂層を、最内面層がポリオレフィン樹脂層となるように被覆してなる鋼管であって、リン酸マンガン被膜が形成された鋼管内面の表面粗さRzが5〜35μmであることを特徴とするポリオレフィン樹脂内面被覆鋼管。上記のリン酸マンガン被膜の付着量は0.5〜2.5g/mであることが望ましい。
【0016】
なお、「ポリオレフィン樹脂」としては、ポリエチレン、ポリプロピレン等、オレフィン炭化水素のうちの一種の重合体、またはそれら重合体の混合物、またはオレフィン炭化水素のうちの二種以上、例えばエチレンとプロピレンの重合体が使用できる。「極性を有するポリオレフィン系接着樹脂」(以下、「変性ポリオレフィン樹脂」とも呼ぶ。)としては、無水マレイン酸変性ポリオレフィン樹脂が特に高い接着性を示すので好ましいが、その他、アクリル酸またはカルボン酸変性ポリオレフィン樹脂や、エチレン共重合体(例えば、エチレンと酢酸ビニル共重合体)系の接着剤なども使用可能である。また、「Rz」は、JIS B 0601−1994で定義される10点平均粗さを意味する。
【0017】
【発明の実施の形態】
図1は、本発明のポリオレフィン樹脂内面被覆鋼管の例を示す断面図であり、図2は、図1中のA−A断面を拡大した図である。図1に示すように、本発明のポリオレフィン樹脂内面被覆鋼管1は、鋼管2の内面にポリオレフィン樹脂層4と極性を有するオレフィン系接着樹脂層3からなる2層以上の樹脂層を有し、最内面層がポリオレフィン樹脂層4である。そして、図2に示すように、鋼管2の内面にはリン酸マンガン被膜5が形成されている。
【0018】
1.下地処理膜の種類について
本発明のポリオレフィン樹脂内面被覆鋼管においては、下地処理膜としてリン酸マンガン被膜を用いる。これは、下記の理由による。
【0019】
化成処理後の鋼管表面を観察すると、表面に微細な結晶(リン酸塩)が観察され、この結晶が微細で、緻密であれば耐食性がよいと言われている。本発明者らは、様々な化成処理液を用いて研究を重ねた結果、リン酸マンガン処理により形成される被膜は、その結晶が平らであり、いわゆる鱗片形状の結晶〔(Mn1−x,Fe(PO・4HO〕になり、この結晶は鋼管表面に平面的に密着しており、結晶と結晶との間に小さな粒界が存在することを見出した。そして、このような鱗片形状の結晶および小さな粒界の存在が耐水二次密着性を向上させると推測される。また、極性を有するオレフィン系接着樹脂層の極性基(−OH)は、リン酸マンガン被膜の表面、粒界との接着性に優れるため、耐水二次接着性が優れると考えられる。更に、リン酸マンガン被膜中の結晶水の離脱温度が高いため、高温時における密着性にも優れることを見出した。このため、本発明においては、様々な種類の化成処理被膜のうち、リン酸マンガン被膜を用いることとした。
【0020】
2.下地処理膜の条件について
本発明のポリオレフィン樹脂内面被覆鋼管においては、鋼管の内面にはリン酸マンガン被膜が形成されており、この被膜が形成された鋼管内面の表面粗さ(リン酸マンガン処理後の鋼管内面の表面粗さ)Rzが5〜35μmである。
【0021】
リン酸マンガン被膜が形成された鋼管内面の表面粗さRzが5μm未満であると、物理的なアンカー効果が乏しくなり、更に、極性を有するオレフィン系接着樹脂と、リン酸マンガン被膜の鱗片形状の結晶や粒界との密着性が低下して、耐水密着力が著しく劣化する。一方、35μmを越える場合、リン酸マンガン処理後の鋼管自体の表面に大きな凹凸が発生し、山部と谷部とでリン酸マンガン被膜の付着量に差が生じる。このため、リン酸マンガン被膜の付着量が少ない部分、特に山部の先端で結晶形態を鱗片形状に維持することができず、密着力が低下する。
【0022】
リン酸マンガン被膜の付着量は、0.5〜2.5 g/mが好ましい。これは、付着量が0.5 g/m未満の場合には、リン酸マンガン被膜の結晶を鱗片形状に維持することができず、丸い結晶状態となるため耐水密着力が小さい。一方、2.5 g/mを越える場合には、結晶が粗大化するとともに、鋼管内面に形成した不溶性被膜の結晶が重なりあって被膜自体が凝集破壊するため、逆に耐水性が劣化する。リン酸マンガンの好ましい付着量は、0.8〜1.5 g/mである。
【0023】
なお、本発明のポリオレフィン樹脂内面被覆鋼管で用いるリン酸マンガン被膜は、公知のリン酸亜鉛をリン酸マンガン系化成処理に添加して形成させるのが望ましい。しかし、化成処理被膜内に多量のZnが存在すると耐水二次密着性が低下するため、リン酸マンガン被膜中に含まれるZnは、モル比率Zn/(Mn+Zn)×100 %で、25 %以下にすることが好ましい。
【0024】
2.リン酸マンガン被膜の形成方法について
本発明のポリオレフィン樹脂内面被覆鋼管において鋼管の内面にリン酸マンガン被膜を形成させる方法としては、リン酸マンガンおよび硝酸マンガンの混合水溶液、ならびに中和剤として一部炭酸マンガンを含有する水溶液を用いることができる。化成処理の条件は、付着量やライン速度等の条件で適宜決めることができるが、75〜85℃で10秒〜10分程度鋼管を浸漬するなどの方法で被膜を形成させることができる。生成した被膜は、一般的に(Mn1−x,Fe(PO・4HOで表される不溶性被膜となる。
【0025】
表面粗さはリン酸マンガン処理時の温度、さらには浸漬時間にも依存するため適切に制御する。
【0026】
なお、化成処理に先立ち、鋼管の内面をブラストや酸洗等により除錆しておくのがよい。また、これらの処理は、内面のみでなく外面の被覆の際にも適用できる。
【0027】
3.その他の下地処理について
化成処理後、内面にあらかじめ厚さ10μm以上のプライマーを塗布することも可能である。プライマーの厚さが10μm未満では接着耐久性が劣る。厚さの上限は特に限定されないが、厚すぎると経済的に不利になるので、100μm以下とするのが好ましい。
【0028】
プライマーには、ポリオレフィン樹脂被覆に用いられる汎用のプライマーを適用できる。通常は、エポキシプライマーを使用すればよい。プライマーの塗布方法としては、スプレー塗装等の慣用の方法を用いればよい。プライマーを塗布することにより変性ポリオレフィン樹脂の接着力向上効果を相乗的に、かつ飛躍的に向上させることができる。
【0029】
4.ポリオレフィン樹脂被膜について
ポリオレフィン樹脂の被覆は、予めポリオレフィン樹脂管を作製し、ポリオレフィン樹脂管を60℃以上でポリオレフィン樹脂の溶融温度未満の温度で縮径加工し、被覆しようとする鋼管に挿入した後、加熱膨径させて鋼管の内面に樹脂被覆層を形成させることが可能である。また、ポリオレフィン樹脂管としては、内層がポリオレフィン樹脂、外層が変性ポリオレフィン樹脂からなる二層ポリオレフィン樹脂管を用いることができる。この二層ポリオレフィン樹脂管は、例えば、二層押し出し機を用いて押し出し成形することにより製造することができる。
【0030】
内層のポリオレフィン樹脂を構成する単量体と外層の変性ポリオレフィン樹脂を構成する単量体とは、前記内層と外層の接着性を向上させるため同一であるのが好ましく、例えば、内層がポリエチレン樹脂であれば、外層は変性ポリエチレン樹脂とするのがよい。同じポリオレフィン樹脂であってもポリエチレン樹脂と変性ポリプロピレン樹脂、ポリプロピレン樹脂と変性ポリエチレン樹脂とでは接着しない場合がある。
【0031】
なお、ポリオレフィン樹脂および変性ポリオレフィン樹脂には、慣用の着色顔料、体質顔料、酸化防止剤等の各種添加剤が含まれていてもよい。前記の二層ポリオレフィン樹脂管の肉厚は特に限定されるものではないが、通常は、二層の合計で0.3〜 5mmの範囲内が好ましい。肉厚が0.3mm未満では、樹脂管の剛性が低くなり縮径加工が困難になるだけでなく、ライニング後の接着耐久性も劣ってくる。一方、肉厚が5mmを超えても防食効果は飽和するので、5mmを超える肉厚の樹脂管を用いるのは、経済的に不利である。また、外層の変性ポリオレフィン樹脂層の厚さは、0.1mm未満では長期の接着耐久性に劣り、0.5mmを超えると経済的に不利になるので、0.1〜 0.5mmの範囲内が好ましい。
【0032】
上記成形された二層ポリオレフィン樹脂管を60℃以上で前記ポリオレフィン樹脂の溶融温度未満の温度で縮径加工し、その形状のまま縮径加工温度より30℃以上低い温度に冷却することにより、その縮径形状が固定される。縮径加工温度が60℃未満では、縮径加工温度より30℃以上低い温度(例えば、室温)に冷却しても縮径形状の保持性に劣り、室温において徐々に形状の回復が進行して縮径加工前の外径に戻るからである。
【0033】
縮径加工は、例えば、複数個に分割された孔型ロールを備える孔型圧延機を用いて圧延することにより行うことができる。孔型圧延機としては、例えば4個の孔型ロールを組み合わせて、圧延後の断面が円形状になるように構成された孔型圧延ロールが複数段連接されたものを用い、樹脂管の径を絞りながら多段で圧延するのが好ましい。
【0034】
なお、樹脂管の縮径加工前の外径は、ライニングされる鋼管の内径の1〜1.25倍の範囲で大きくしておくことが好ましい。また、縮径加工後の外径は、前記鋼管の内径より5〜30%程度小さくなるようにするのが好ましい。縮径加工後の形状の固定は、最終孔型ロールとそれに続く最終孔型ロールと同一径の張力保持ロールの間で、前記のように縮径加工温度よりも30℃以上低くして行う。この温度が縮径加工温度よりも30℃低い温度より高くなると、縮径加工後の形状が十分に固定されず、張力保持ロール通過後に膨径するので好ましくない。
【0035】
冷却は樹脂管の外面から水冷する方法が簡便で最も効率の良い方法である。
【0036】
縮径加工した樹脂管を鋼管に挿入した後、加熱膨径させるが、加熱には、例えばV形炉を用いるのがよい。V形炉とは炉の入側から出側に向かってV字状に広がる平面形状を有する加熱炉で、炉の下部にヒーターが取り付けられている。炉内に装入された鋼管がその軸方向と垂直の方向に炉内を進行していくと、最初は鋼管の中心付近が加熱され、徐々に左右両端に向けて加熱される。このような加熱手段を採ると、樹脂管の膨径に際し、しわが生じたり、空気を噛み込んだりすることなくライニングすることができ、ピーリング接着力で50N/cm以上の接着力を得ることができる。
【0037】
鋼管の加熱温度は、縮径加工温度より10℃低い温度以上で、250℃以下とするのが好ましい。縮径加工温度より低いと、膨径に時間がかかるばかりでなく、十分な膨径が行われず接着力が低下するおそれがある。また250℃を超えると、プライマーやポリオレフィン樹脂が熱劣化し、接着耐久性を低下する場合がある。
【0038】
【実施例】
二層押し出し機によりポリエチレン樹脂(密度:0.940g/cm、融点127℃)とマレイン酸変性ポリエチレン樹脂を二層押し出しし、内層がポリエチレン樹脂、外層が変性ポリエチレン樹脂からなる外径600mmの二層ポリオレフィン樹脂管を得た。これらの樹脂管を、4個の孔型ロールを組み合わせた孔型圧延ロール(ロール孔径:52.5mm、45.5mm、39.6mmおよび34.5mm)を表1に示すように配置した多段の孔型圧延機を用いて、縮径加工温度90℃で径を絞りながら圧延した。
【0039】
【表1】

Figure 2004308790
【0040】
【表2】
Figure 2004308790
【0041】
なお、表2中の化成処理の「液種」において、「A」はリン酸マンガン処理(日本パーカライジング社製:バルホスM5)であり、「B」はリン酸亜鉛処理(日本パーカライジング社製:PB−3300)であり、「C」はリン酸亜鉛カルシウム処理(日本パーカライジング社製:パルボンド891)であり、「D」はリン酸亜鉛ニッケルマンガン処理(日本パーカーライジング社製:ボンデライトL3080)である。「A+B」は上記のAとB溶液中のモル比率Zn/(Zn+Mn)×100%が20%になるように化成処理液を調合した。この処理液で鋼管内面に形成されたリン酸マンガン被膜中のモル比率Zn/(Mn+Zn)×100 %は20%であった。
【0042】
これら樹脂管を、鋼管の内面をあらかじめ酸洗により除錆し、表2に示す化成処理を施した内径52.9mmの鋼管に挿入し、V形炉で加熱してライニング鋼管を得た。表面粗さおよび付着量は、鋼管内面を酸洗した後、表2に示す各液種を80℃に保持した状態で、浸漬時間を20秒〜150秒の範囲で変更して調整した。
【0043】
表面粗さの測定は、各種処理液で化成処理し、乾燥させた後の鋼管からのサンプルを採取し、それぞれのサンプルについてJIS B 0601−1994で定義される10点平均粗さを求めた。付着量の測定は、各種処理液で化成処理し、乾燥させた後の鋼管から20mm×20mm(表面積:400mm)のサンプルを採取し、化成処理の前後での鋼管の質量差を表面積で除して求めた。
【0044】
これらの樹脂被覆鋼管を長さ30 cmに切断し、50℃の3% NaCl水溶液に14日間浸漬し、端面からの剥離幅を測定した。その結果を表2に併せて示す。
【0045】
表2に示すように、本発明例No.1〜5および8〜10では、浸漬試験後の剥離幅は15mm以下と小さく、耐久性能が良好であった。特に、リン酸マンガン被膜の付着量も本発明で規定される範囲にあるNo.2〜4および8〜10では、浸漬試験後の剥離幅は10mm未満であり、更に耐久性能が良好であった。
【0046】
一方、リン酸マンガン被膜を形成させたが、被膜を形成した鋼管内面の表面粗さが本発明で規定される範囲を外れる比較例No.6および7では、浸漬試験後の剥離幅が20mm以上であり、耐久性能が不十分であった。リン酸マンガン以外の化成処理膜を形成させたNo.11〜16では、付着量および表面粗さが本発明で規定される範囲内にあっても、浸漬試験後の剥離幅が20mmを超え、耐久性能が不十分であった。
【0047】
【発明の効果】
本発明のポリオレフィン内面被覆鋼管は長期耐久性を有し、防食性に優れたポリオレフィン樹脂内面被覆鋼管を安価に製造することができる。この鋼管は、特に給水、給湯などの水輸送用配管に適している。
【図面の簡単な説明】
【図1】図1は、本発明のポリオレフィン樹脂内面被覆鋼管の例を示す断面図である。
【図2】図2は、図1中のA−A断面を拡大した図である。
【符号の説明】
1.ポリオレフィン樹脂内面被覆鋼管、2.鋼管、3.極性を有するオレフィン系接着樹脂層、4.ポリオレフィン樹脂層、5.リン酸マンガン被膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel pipe for piping used for water supply and drainage, and more particularly to a resin-lined steel pipe in which an adhesive polyethylene resin, a polyethylene resin, or the like is lined on the inner surface of the steel pipe to improve corrosion resistance and the like.
[0002]
[Prior art]
Conventionally, a resin-lined steel pipe having an inner surface lined with a resin powder has been used for piping for water supply and drainage from the viewpoint of preventing deterioration due to corrosion. As the resin-lined steel pipe, for example, a powder of an adhesive polyethylene resin modified with a vinyl chloride resin, a maleic anhydride or the like, or a powder of a polyethylene resin is lined on an inner surface of a steel pipe or a chromate-treated, galvanized steel pipe. Things are known.
[0003]
However, since dioxin may be generated when the vinyl chloride resin is incinerated, there is a movement to minimize the use of steel pipes coated on the inner surface with the vinyl chloride resin from the viewpoint of environmental problems during recycling. Further, it is difficult to increase the thickness of the resin film by a method of forming a polyolefin coating layer by powder coating an adhesive polyethylene resin modified with maleic anhydride or the like and a resin powder of polyethylene onto a preheated steel pipe. With such a thin resin film, pinholes are likely to be generated at the time of manufacturing, and a large management cost is required to prevent this.
[0004]
In order to solve such a problem, a method of forming a polyolefin coating layer after subjecting a steel pipe to a chemical conversion treatment, a primer treatment, or the like as a base treatment before powder coating a polyethylene resin powder on a preheated steel pipe. Proposed.
[0005]
Patent Document 1, after blasting or pickling treatment to be lining material surface to form a coating film by heating the lining material surface to 300 to 500 ° C., mainly comprising Fe 3 O 4, and then the pH is 4. There has been proposed an undercoating method for a polyethylene powder lining which is dried after being brought into contact with a chromic acid aqueous solution having a CrO 3 concentration of 0.005 to 6.0 wt%, which is 5 to 6.0.
[0006]
In Patent Document 2, the surface of the material to be lined is degreased and washed, washed with water, then pickled with hydrochloric acid, washed with water, and then immersed in a boiling aqueous solution composed of caustic soda, sodium orthophosphate, and sodium nitrite. After forming a coating mainly composed of Fe 3 O 4 and then washing with water, it is immersed in a chromic acid aqueous solution having a pH of 4.5 to 6.0 and a CrO 3 concentration of 0.005 to 0.05 wt%. There has been proposed a method for treating the surface of a polyethylene powder lining to be dried.
[0007]
In Patent Document 3, the surface of the lining material is acid-washed with hydrochloric acid, washed with water, and then subjected to a chemical conversion treatment using a zinc phosphate-calcium-based solution, and then has a pH of 4.5 to 6.0, and has a pH of 0.005. An undercoating method of a polyethylene powder lining that is brought into contact with an aqueous solution of chromic acid of about 0.05 wt% at a liquid temperature of 50 ° C. or lower and then dried is proposed.
[0008]
Patent Literature 4 discloses that the surface of the lining material is degreased and washed, washed with water, hydrochloric acid, and then washed with water, and then immersed in a boiling aqueous solution composed of caustic soda, sodium orthophosphate, and sodium nitrite. An undercoating method for polyethylene powder lining has been proposed in which a coating mainly composed of Fe 3 O 4 is formed, then washed with water, neutralized with an acidic aqueous solution having a pH of 4.5 to 6.0, washed with water, and dried. .
[0009]
Although these methods are effective in improving the adhesion durability, they are other-stage processes, and lead to prolonged production and increased costs. For this reason, as a lining method instead of the powder lining, for example, in Patent Document 5 and Patent Document 6, a polyolefin resin pipe which has been subjected to diameter reduction in advance at a temperature lower than the melting temperature of the polyolefin resin should be produced, and this should be lined. A method has been proposed in which after insertion into a pipe, the polyolefin resin pipe is heated and expanded by heating to coat the inner surface of the steel pipe.
[0010]
According to these methods, the thickness of the polyolefin resin can be increased, which is excellent in that the above-mentioned problems can be solved. However, these methods can secure the initial adhesion, but have a long-term durability (water-resistant adhesion durability). Sex) is not yet enough. For this reason, the zinc phosphate treatment, which is a base treatment generally used conventionally, does not provide sufficient adhesion durability.
[0011]
[Patent Document 1]
JP-A-5-301072 [Patent Document 2]
Japanese Patent Application Laid-Open No. Hei 5-301703 [Patent Document 3]
Japanese Patent Application Laid-Open No. Hei 5-301074 [Patent Document 4]
JP-A-5-301075 [Patent Document 5]
JP 2002-67155 A [Patent Document 6]
JP 2002-248707 A
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problem, and an object of the present invention is to provide a polyolefin resin inner surface coated steel pipe capable of realizing long-term adhesion durability.
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, obtained the following findings (a) to (c).
(A) Even if the same type of polyolefin resin is coated on the same type of steel pipe, the degree of peeling of the resin may be different. This is due to the difference in the surface roughness of the steel pipe.
(B) Therefore, after adjusting the surface roughness of the inner surface of the steel pipe by chemical conversion treatment, it was considered that the polyolefin resin was coated, and as a result of various experiments, zinc phosphate, zinc calcium phosphate, and zinc phosphate were obtained. Among the magnesium-based, zinc-nickel-manganese-based, and manganese-phosphate-based chemical conversion treatments, the manganese-phosphate-based treatment was found to be the most effective as a base treatment for the polyethylene inner surface coating.
(C) Further, as a result of investigating the releasability of the steel pipe coated on the inner surface of the polyolefin resin subjected to the chemical conversion treatment of manganese phosphate, the range of the surface roughness and the range of the adhesion amount at which the releasability of the polyolefin resin is remarkably improved is shown. found.
[0014]
The present invention has been made based on the above findings, and has a gist of a polyolefin resin inner surface coated steel pipe shown in the following (1).
[0015]
(1) Two or more resin layers composed of a polyolefin resin layer and a polar olefin-based adhesive resin layer are coated on the inner surface of a steel pipe via a manganese phosphate coating so that the innermost layer is a polyolefin resin layer. A steel pipe coated with a manganese phosphate coating, wherein the inner surface of the steel pipe on which the manganese phosphate coating is formed has a surface roughness Rz of 5 to 35 μm. It is desirable that the adhesion amount of the manganese phosphate coating is 0.5 to 2.5 g / m 2 .
[0016]
In addition, as the "polyolefin resin", polyethylene, polypropylene, etc., one kind of olefin hydrocarbon, or a mixture of such polymers, or two or more kinds of olefin hydrocarbon, for example, a polymer of ethylene and propylene Can be used. As the “polyolefin-based adhesive resin having polarity” (hereinafter, also referred to as “modified polyolefin resin”), maleic anhydride-modified polyolefin resin is particularly preferable because it exhibits high adhesiveness, but acrylic acid or carboxylic acid-modified polyolefin is also preferable. Resins and adhesives based on ethylene copolymer (for example, ethylene and vinyl acetate copolymer) can also be used. “Rz” means 10-point average roughness defined in JIS B 0601-1994.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a cross-sectional view showing an example of a steel pipe coated on the inner surface of a polyolefin resin of the present invention, and FIG. 2 is an enlarged view of a cross section taken along line AA in FIG. As shown in FIG. 1, a steel pipe 1 coated with a polyolefin resin inner surface of the present invention has two or more resin layers composed of a polyolefin resin layer 4 and a polar olefin-based adhesive resin layer 3 on the inner surface of a steel pipe 2. The inner layer is the polyolefin resin layer 4. As shown in FIG. 2, a manganese phosphate coating 5 is formed on the inner surface of the steel pipe 2.
[0018]
1. Regarding the type of base treatment film In the polyolefin resin inner surface coated steel pipe of the present invention, a manganese phosphate coating is used as the base treatment film. This is for the following reason.
[0019]
When the surface of the steel pipe after the chemical conversion treatment is observed, fine crystals (phosphate) are observed on the surface, and it is said that if the crystals are fine and dense, corrosion resistance is good. As a result of repeated studies using various chemical conversion treatment solutions, the present inventors have found that a film formed by the manganese phosphate treatment has a flat crystal and a so-called scale-shaped crystal [(Mn 1-x , F x ) 5 H 2 (PO 4 ) 4 .4H 4 O], and this crystal was planarly adhered to the steel pipe surface, and it was found that a small grain boundary exists between the crystals. . It is presumed that the presence of such scale-like crystals and small grain boundaries improves the water-resistant secondary adhesion. In addition, the polar group (-OH) of the olefin-based adhesive resin layer having polarity has excellent adhesion to the surface of the manganese phosphate coating and the grain boundaries, and thus is considered to have excellent secondary water resistance. Further, the inventors have found that since the desorption temperature of crystallization water in the manganese phosphate coating film is high, the adhesion at high temperatures is also excellent. For this reason, in the present invention, a manganese phosphate coating is used among various types of chemical conversion coatings.
[0020]
2. Regarding the condition of the base treatment film In the polyolefin resin inner surface coated steel pipe of the present invention, a manganese phosphate coating is formed on the inner surface of the steel pipe, and the surface roughness of the inner surface of the steel pipe on which the coating is formed (after the manganese phosphate treatment) (Surface roughness of the inner surface of the steel pipe) Rz is 5 to 35 μm.
[0021]
When the surface roughness Rz of the inner surface of the steel pipe on which the manganese phosphate coating is formed is less than 5 μm, the physical anchor effect becomes poor, and further, a polar olefin-based adhesive resin and a scale-shaped manganese phosphate coating are formed. Adhesion to crystals and grain boundaries is reduced, and water resistance is significantly deteriorated. On the other hand, if it exceeds 35 μm, large irregularities occur on the surface of the steel pipe itself after the manganese phosphate treatment, and a difference occurs in the amount of the manganese phosphate coating between the peaks and the valleys. For this reason, the crystal form cannot be maintained in a scale-like shape at the portion where the amount of the manganese phosphate coating is small, particularly at the tip of the mountain portion, and the adhesion decreases.
[0022]
Deposition of manganese phosphate coating is preferably 0.5~2.5 g / m 2. When the amount of adhesion is less than 0.5 g / m 2 , the crystals of the manganese phosphate coating cannot be maintained in the shape of a scale and have a round crystal state, so that the water-resistant adhesion is small. On the other hand, if it exceeds 2.5 g / m 2 , the crystals become coarse, and the crystals of the insoluble coating formed on the inner surface of the steel pipe overlap with each other to cause the coating itself to undergo cohesive failure. . The preferred amount of manganese phosphate is 0.8 to 1.5 g / m 2 .
[0023]
The manganese phosphate coating used in the polyolefin resin inner surface coated steel pipe of the present invention is desirably formed by adding known zinc phosphate to a manganese phosphate-based chemical conversion treatment. However, if a large amount of Zn is present in the chemical conversion coating, the water-resistant secondary adhesion is reduced. Therefore, the Zn contained in the manganese phosphate coating has a molar ratio of Zn / (Mn + Zn) × 100%, which is 25% or less. Is preferred.
[0024]
2. Regarding the method for forming the manganese phosphate coating The method for forming the manganese phosphate coating on the inner surface of the steel pipe of the polyolefin resin inner coating steel pipe of the present invention includes a mixed aqueous solution of manganese phosphate and manganese nitrate, and a partial carbonate as a neutralizing agent. An aqueous solution containing manganese can be used. The conditions of the chemical conversion treatment can be determined as appropriate depending on the conditions such as the amount of deposition and the line speed. However, the coating can be formed by a method such as immersing a steel pipe at 75 to 85 ° C. for about 10 seconds to 10 minutes. The resulting film is generally an insoluble film represented by (Mn 1-x , F x ) 5 H 2 (PO 4 ) 4 .4H 4 O.
[0025]
The surface roughness is appropriately controlled because it depends on the temperature at the time of the manganese phosphate treatment and also on the immersion time.
[0026]
Prior to the chemical conversion treatment, the inner surface of the steel pipe is preferably rust-removed by blasting or pickling. In addition, these treatments can be applied not only to the inner surface but also to the outer surface.
[0027]
3. As for the other base treatment, it is possible to apply a primer having a thickness of 10 μm or more on the inner surface after the chemical conversion treatment. If the thickness of the primer is less than 10 μm, the adhesion durability is poor. The upper limit of the thickness is not particularly limited. However, if the thickness is too large, it is economically disadvantageous.
[0028]
As the primer, a general-purpose primer used for coating a polyolefin resin can be used. Usually, an epoxy primer may be used. As a method for applying the primer, a conventional method such as spray coating may be used. By applying the primer, the effect of improving the adhesion of the modified polyolefin resin can be synergistically and dramatically improved.
[0029]
4. For the polyolefin resin coating, the coating of the polyolefin resin, a polyolefin resin tube is prepared in advance, the diameter of the polyolefin resin tube is reduced at a temperature of 60 ° C. or higher and lower than the melting temperature of the polyolefin resin, and after inserting the steel tube to be coated, It is possible to form a resin coating layer on the inner surface of the steel pipe by heating and expanding the diameter. As the polyolefin resin tube, a two-layer polyolefin resin tube whose inner layer is made of a polyolefin resin and whose outer layer is made of a modified polyolefin resin can be used. The two-layer polyolefin resin tube can be manufactured by, for example, extrusion molding using a two-layer extruder.
[0030]
The monomer constituting the polyolefin resin of the inner layer and the monomer constituting the modified polyolefin resin of the outer layer are preferably the same in order to improve the adhesion between the inner layer and the outer layer.For example, the inner layer is a polyethylene resin. If so, the outer layer is preferably a modified polyethylene resin. Even if the same polyolefin resin is used, the polyethylene resin and the modified polypropylene resin or the polypropylene resin and the modified polyethylene resin may not adhere to each other.
[0031]
The polyolefin resin and the modified polyolefin resin may contain various additives such as commonly used color pigments, extenders and antioxidants. Although the thickness of the two-layer polyolefin resin tube is not particularly limited, it is generally preferable that the total thickness of the two layers is in the range of 0.3 to 5 mm. When the wall thickness is less than 0.3 mm, the rigidity of the resin pipe is reduced, so that not only the diameter reduction processing becomes difficult, but also the adhesion durability after the lining becomes inferior. On the other hand, even if the thickness exceeds 5 mm, the anticorrosion effect is saturated, and therefore, it is economically disadvantageous to use a resin tube having a thickness exceeding 5 mm. When the thickness of the modified polyolefin resin layer of the outer layer is less than 0.1 mm, the long-term adhesion durability is inferior, and when it exceeds 0.5 mm, it is economically disadvantageous. Is preferred.
[0032]
The formed two-layer polyolefin resin tube is reduced in diameter at a temperature of 60 ° C. or higher and lower than the melting temperature of the polyolefin resin, and cooled to a temperature of 30 ° C. or more lower than the diameter-reducing processing temperature in its shape, The reduced diameter shape is fixed. When the diameter reduction processing temperature is lower than 60 ° C., even if the temperature is reduced to a temperature lower than the reduction diameter processing temperature by 30 ° C. or more (for example, room temperature), the reduced-diameter shape retainability is poor, and the shape recovery gradually proceeds at room temperature. This is because the outer diameter returns to the diameter before the diameter reduction processing.
[0033]
The diameter-reducing process can be performed, for example, by rolling using a grooved rolling mill having a plurality of divided grooved rolls. As the grooved rolling mill, for example, a combination of four grooved rolls, in which a plurality of grooved rolls configured so that the cross section after rolling is circular is used, and the diameter of the resin pipe is used. It is preferable to perform rolling in multiple stages while reducing the pressure.
[0034]
It is preferable that the outer diameter of the resin pipe before the diameter reduction processing is increased in a range of 1 to 1.25 times the inner diameter of the steel pipe to be lined. Further, it is preferable that the outer diameter after the diameter reduction processing is set to be about 5 to 30% smaller than the inner diameter of the steel pipe. The fixation of the shape after the diameter reduction is performed by lowering the diameter reduction temperature by 30 ° C. or more between the final roll and the subsequent tension holding roll having the same diameter as the final roll. If this temperature is higher than a temperature 30 ° C. lower than the diameter reduction processing temperature, the shape after the diameter reduction processing is not sufficiently fixed, and the diameter increases after passing through the tension holding roll, which is not preferable.
[0035]
For cooling, the method of cooling with water from the outer surface of the resin tube is the simplest and most efficient method.
[0036]
After the reduced diameter resin tube is inserted into the steel tube, the tube is heated and expanded. For heating, for example, a V-shaped furnace is preferably used. The V-shaped furnace is a heating furnace having a planar shape that spreads in a V shape from the entrance side to the exit side of the furnace, and a heater is attached to a lower part of the furnace. As the steel pipe charged into the furnace advances in the furnace in a direction perpendicular to the axial direction, the vicinity of the center of the steel pipe is first heated, and then gradually heated to the left and right ends. When such a heating means is employed, lining can be performed without causing wrinkles or air biting in the expansion of the resin tube, and an adhesive force of 50 N / cm or more can be obtained by peeling adhesive force. it can.
[0037]
The heating temperature of the steel pipe is preferably not lower than 10 ° C. lower than the diameter reduction processing temperature and not higher than 250 ° C. When the temperature is lower than the diameter reduction processing temperature, not only does it take time to expand the diameter, but also the expansion is not sufficiently performed, and the adhesive strength may be reduced. On the other hand, when the temperature exceeds 250 ° C., the primer and the polyolefin resin may be thermally degraded, and the adhesive durability may be reduced.
[0038]
【Example】
A two-layer extruder extrudes two layers of polyethylene resin (density: 0.940 g / cm 3 , melting point 127 ° C.) and maleic acid-modified polyethylene resin, and the inner layer is made of polyethylene resin and the outer layer is made of modified polyethylene resin having an outer diameter of 600 mm. A layered polyolefin resin tube was obtained. These resin pipes were multistage rolled rolls (roll hole diameters: 52.5 mm, 45.5 mm, 39.6 mm, and 34.5 mm) in which four grooved rolls were combined as shown in Table 1. Rolling was performed using a grooved rolling mill at a diameter reduction processing temperature of 90 ° C. while reducing the diameter.
[0039]
[Table 1]
Figure 2004308790
[0040]
[Table 2]
Figure 2004308790
[0041]
In the "liquid type" of the chemical conversion treatment in Table 2, "A" is a manganese phosphate treatment (manufactured by Nippon Parkerizing Co., Ltd .: Valphos M5), and "B" is a zinc phosphate treatment (Nippon Parkerizing Co., Ltd .: PB -3300), "C" is a treatment with zinc calcium phosphate (manufactured by Nippon Parkerizing Co., Ltd .: Palbond 891), and "D" is a treatment with zinc nickel manganese phosphate (manufactured by Nippon Parker Rising Co., Ltd .: bonderite L3080). For "A + B", a chemical conversion treatment liquid was prepared so that the molar ratio Zn / (Zn + Mn) × 100% in the above A and B solutions was 20%. The molar ratio Zn / (Mn + Zn) × 100% in the manganese phosphate coating formed on the inner surface of the steel pipe with this treatment liquid was 20%.
[0042]
These resin pipes were rust-removed in advance by pickling the inner surface of the steel pipe, inserted into a steel pipe having an inner diameter of 52.9 mm which had been subjected to a chemical treatment shown in Table 2, and heated in a V-shaped furnace to obtain a lining steel pipe. The surface roughness and the amount of adhesion were adjusted by pickling the inner surface of the steel pipe and then changing the immersion time in the range of 20 seconds to 150 seconds while maintaining each liquid type shown in Table 2 at 80 ° C.
[0043]
For the measurement of the surface roughness, samples were taken from steel pipes after chemical conversion treatment with various treatment liquids and dried, and a 10-point average roughness defined by JIS B 0601-1994 was obtained for each sample. The measurement of the amount of adhesion is performed by taking a sample of 20 mm × 20 mm (surface area: 400 mm 2 ) from the steel pipe after the chemical conversion treatment with various treatment liquids and drying, and dividing the mass difference of the steel pipe before and after the chemical conversion treatment by the surface area. I asked.
[0044]
These resin-coated steel pipes were cut into a length of 30 cm, immersed in a 3% aqueous NaCl solution at 50 ° C. for 14 days, and the peel width from the end face was measured. The results are shown in Table 2.
[0045]
As shown in Table 2, the present invention example No. In Examples 1 to 5 and 8 to 10, the peel width after the immersion test was as small as 15 mm or less, and the durability was good. In particular, the adhesion amount of the manganese phosphate coating was within the range specified in the present invention. In Nos. 2 to 4 and 8 to 10, the peel width after the immersion test was less than 10 mm, and the durability was further excellent.
[0046]
On the other hand, a manganese phosphate coating was formed, but the surface roughness of the inner surface of the steel pipe on which the coating was formed was out of the range specified in the present invention. In Nos. 6 and 7, the peel width after the immersion test was 20 mm or more, and the durability performance was insufficient. No. 3 in which a chemical conversion film other than manganese phosphate was formed. In Nos. 11 to 16, the peeling width after the immersion test exceeded 20 mm and the durability performance was insufficient even when the adhesion amount and the surface roughness were within the ranges specified in the present invention.
[0047]
【The invention's effect】
INDUSTRIAL APPLICABILITY The polyolefin inner-coated steel pipe of the present invention has a long-term durability and is capable of producing a polyolefin resin inner-coated steel pipe excellent in corrosion resistance at low cost. This steel pipe is particularly suitable for water transport piping such as water supply and hot water supply.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a steel pipe coated on the inner surface of a polyolefin resin of the present invention.
FIG. 2 is an enlarged view of an AA cross section in FIG. 1;
[Explanation of symbols]
1. 1. Polyolefin resin inner surface coated steel pipe; Steel pipe, 3. 3. a polar olefin-based adhesive resin layer; 4. polyolefin resin layer; Manganese phosphate coating

Claims (2)

鋼管の内面に、リン酸マンガン被膜を介して、ポリオレフィン樹脂層と極性を有するオレフィン系接着樹脂層からなる2層以上の樹脂層を、最内面層がポリオレフィン樹脂層となるように被覆してなる鋼管であって、リン酸マンガン被膜が形成された鋼管内面の表面粗さRzが5〜35μmであることを特徴とするポリオレフィン樹脂内面被覆鋼管。On the inner surface of the steel pipe, two or more resin layers composed of a polyolefin resin layer and a polar olefin-based adhesive resin layer are coated via a manganese phosphate coating so that the innermost surface layer is a polyolefin resin layer. A steel pipe coated with a polyolefin resin inner surface, wherein a surface roughness Rz of an inner surface of the steel pipe on which a manganese phosphate coating is formed is 5 to 35 μm. リン酸マンガン被膜の付着量が0.5〜2.5g/mであることを特徴とする請求項1に記載のポリオレフィン樹脂内面被覆鋼管。Polyolefin resin lined steel pipe according to claim 1, the amount of deposition of manganese phosphate coating is characterized by a 0.5 to 2.5 g / m 2.
JP2003103253A 2003-04-07 2003-04-07 Polyolefin resin inner surface coated steel pipe Expired - Fee Related JP4158580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103253A JP4158580B2 (en) 2003-04-07 2003-04-07 Polyolefin resin inner surface coated steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103253A JP4158580B2 (en) 2003-04-07 2003-04-07 Polyolefin resin inner surface coated steel pipe

Publications (2)

Publication Number Publication Date
JP2004308790A true JP2004308790A (en) 2004-11-04
JP4158580B2 JP4158580B2 (en) 2008-10-01

Family

ID=33466458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103253A Expired - Fee Related JP4158580B2 (en) 2003-04-07 2003-04-07 Polyolefin resin inner surface coated steel pipe

Country Status (1)

Country Link
JP (1) JP4158580B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893221B1 (en) 2008-10-27 2009-04-16 주식회사 시노코파이프 Sinokor high pressure gas pipe and manufacturing method of it
FR2933163A1 (en) * 2008-06-27 2010-01-01 Inst Francais Du Petrole Duct fabricating method for transporting e.g. petrol, involves polishing harden polymer material layer in manner to reduce maximum deformation height, measured at surface of layer, to value lower than thickness of viscous layer of fluid
JP2010196796A (en) * 2009-02-25 2010-09-09 Jfe Steel Corp Polyolefin powder lining steel pipe
JP2011202711A (en) * 2010-03-25 2011-10-13 Jfe Steel Corp Method for manufacturing inner surface coated steel pipe for water piping
JP2019044850A (en) * 2017-08-31 2019-03-22 新日鐵住金株式会社 Polyethylene coated steel pipe for gas piping and manufacturing method for polyethylene coated steel pipe for gas piping

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933163A1 (en) * 2008-06-27 2010-01-01 Inst Francais Du Petrole Duct fabricating method for transporting e.g. petrol, involves polishing harden polymer material layer in manner to reduce maximum deformation height, measured at surface of layer, to value lower than thickness of viscous layer of fluid
KR100893221B1 (en) 2008-10-27 2009-04-16 주식회사 시노코파이프 Sinokor high pressure gas pipe and manufacturing method of it
WO2010050645A1 (en) * 2008-10-27 2010-05-06 Sinokor Pipe Co., Ltd. A composite pipe for high-pressure gas and a manufacturing method of the same
JP2010196796A (en) * 2009-02-25 2010-09-09 Jfe Steel Corp Polyolefin powder lining steel pipe
JP2011202711A (en) * 2010-03-25 2011-10-13 Jfe Steel Corp Method for manufacturing inner surface coated steel pipe for water piping
JP2019044850A (en) * 2017-08-31 2019-03-22 新日鐵住金株式会社 Polyethylene coated steel pipe for gas piping and manufacturing method for polyethylene coated steel pipe for gas piping

Also Published As

Publication number Publication date
JP4158580B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP4295216B2 (en) Resin-lined steel pipe and manufacturing method thereof
US20050257848A1 (en) Plastic lined steel pipe with end corrosive protection core and method for producing same
JP4158580B2 (en) Polyolefin resin inner surface coated steel pipe
CN101655179A (en) Novel coating process of pipe anti-corrosion layer with three-layer structure
TWI298774B (en) Resin lining steel pipe and production method thereof
JP2009072768A (en) Method for manufacturing internal coated steel pipe
AU2016213296B2 (en) Method for producing coated metal strip
JP5928328B2 (en) Polyethylene powder-lined steel pipe with excellent threadability
JP4321262B2 (en) Production method of primer-coated resin-coated steel pipe with excellent corrosion resistance
JP2003294174A (en) Resin lining steel pipe and manufacture method
JP6246984B1 (en) Surface-treated steel strip and method for producing surface-treated steel strip
RU2559621C1 (en) Application of outer three-layer coating on header pipe
JP2002248707A (en) Steel pipe with inside surface lined with resin
JP2846592B2 (en) Resin-coated aluminum pipe for piping and method of manufacturing the same
JPH09144991A (en) Aluminum resin composite pipe and manufacture thereof
JP4501394B2 (en) Manufacturing method of resin-coated steel pipe with excellent corrosion resistance
JP3111908B2 (en) Polyethylene resin coated steel
JP2002067155A (en) Method for manufacturing steel pipe internally coated with polyolefinic resin
JP2006299350A (en) Steel sheet having excellent die galling resistance and corrosion resistance after coating
JPH09122580A (en) Primer steel sheet for fluororubber coating
JP3163908B2 (en) Polyolefin resin coated steel
JP2889141B2 (en) Resin-coated aluminum pipe for piping and method of manufacturing the same
JPS63143266A (en) Production of aluminum composite sheet for deep drawing
JP2999061B2 (en) Surface treatment method for polyethylene powder lining
JP2827816B2 (en) Polyolefin resin coated steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Ref document number: 4158580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees