JP2004305905A - Anaerobic treatment tank and biological purification method for sewage - Google Patents

Anaerobic treatment tank and biological purification method for sewage Download PDF

Info

Publication number
JP2004305905A
JP2004305905A JP2003102793A JP2003102793A JP2004305905A JP 2004305905 A JP2004305905 A JP 2004305905A JP 2003102793 A JP2003102793 A JP 2003102793A JP 2003102793 A JP2003102793 A JP 2003102793A JP 2004305905 A JP2004305905 A JP 2004305905A
Authority
JP
Japan
Prior art keywords
sewage
anaerobic
treatment tank
anaerobic treatment
filter bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102793A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yamashita
信行 山下
Kazuyoshi Baba
一嘉 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003102793A priority Critical patent/JP2004305905A/en
Publication of JP2004305905A publication Critical patent/JP2004305905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anaerobic treatment tank which can improve a contact efficiency between a carrier body and sewage by eliminating the deflection of a sewage flow in a treatment tank and sufficiently educe the sewage purification capacity of anaerobes, and a biological purification method for sewage. <P>SOLUTION: The anaerobic treatment tank has a filter bed on which anaerobic bacteria are fixed, and when the sewage is brought into contact with the filter bed, the sewage flows accompanied with swirl flow. The biological purification method for the sewage preferably has an anaerobic treatment process by the anaerobic treatment tank and an aerobic treatment process by aerobic bacteria after the anaerobic treatment process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は都市廃水、工業廃水等を含む汚水の生物的浄化に関するものであり、特に生物処理する際に利用する生物膜と汚水との接触を十分に行うことで生物膜の働きをより発揮させるためのものである。
【0002】
【従来の技術】
汚水の生物処理は自然の浄化作用をコンパクトにしたもので、生物処理は好気性処理と嫌気性処理とに大別される。好気性処理は反応時間が短く、良好な処理水質が得られるため生物処理の主流を成しており、その代表例が標準活性汚泥法である。しかし好気性処理は常に酸素を供給しなければならず多大な動力費が必要となる。一方、嫌気性処理は反応速度が遅い、処理水質が悪い、悪臭を伴う等の問題があるため屎尿や汚泥処理の一部に使われるに過ぎない。しかし嫌気性処理は酸素の供給が不要で、従って著しく動力費が節減されるという特徴がある。また嫌気性処理では基質エネルギーの大部分がメタンガスとして放出されるため微生物体をつくる菌体収率が極めて小さく、除去された有機物あたりの汚泥発生量は好気性処理に比較して著しく少ない。さらに嫌気性処理では病原微生物や寄生虫卵が速やかに死滅する。このように多くの特徴を有する嫌気性処理を汚水処理に取り入れたものに嫌気・好気濾床法がある。これは嫌気性処理としての嫌気性濾床法(嫌気性生物膜法)と仕上げ処理としての好気性処理とりわけ好気性濾床法(好気性生物膜法)とを組み合わせたものである。
【0003】
図6は嫌気・好気濾床法の一例を示す処理フローシートである。まず汚水を沈砂池4に導入し比較的大きい沈降性の固形物を除去する。次に第1嫌気性処理槽1に導入する。第1嫌気性処理槽1はその底部に余剰汚泥を排出し易くするためのホッパー部1cを有し、内部に嫌気性濾床1aを有する。中央部には沈砂池4から流入する汚水を嫌気性濾床1aの下部まで案内するための導入管1bが垂設されている。嫌気性濾床1aは表面に嫌気性細菌を固定した担持体を有する。汚水は嫌気性濾床1a中を上向きに流れながらそこに固定された嫌気性細菌と接触して分解作用を受ける。その結果、汚水に含まれる有機物がメタンガスなどに分解される。第1嫌気性処理槽1で処理された汚水は第2嫌気性処理槽2に流入し、そこで更に嫌気性処理される。第2嫌気性処理槽2は嫌気性濾床2a、導入管2b、ホッパー部2c等を有し第1嫌気性処理槽1と基本的に同様の構成である。第2嫌気性処理槽2で処理された汚水は好気性処理槽3に流入し、そこで好気性処理される。好気性処理槽3は好気性濾床3a、曝気管3b等を有し、汚水は好気性濾床3aの中を下へ向かって流れ、そこに固定された好気性細菌により残留有機物がメタンガスなどにさらに分解される。好気性処理槽3で処理された汚水は逆洗用水槽5を経て消毒槽6で消毒されたのち処理水として河川等へ放流される。
【0004】
嫌気性濾床1a,2aは表面に嫌気性細菌を固定した担持体(濾材)からなる。担持体は微生物を強固に固定し、汚水と微生物とのより多くの接触の機会を提供し、かつできるだけ圧力損失を生じさせないことが要求される。図7に皿状の担持体の例(斜視図)を示す。図8は図7の担持体を組み上げたもので(図8はその一部)その表面に微生物を固着して濾床を形成する。図8で汚水が矢印方向に流れると皿状担持体の表面に渦流が生じ容易に浮遊性微生物を補足する。増殖速度の極めて小さい嫌気性微生物が洗いだされないように水理学的滞留時間を設定し、そのゆっくりした通水状態で皿状担持体に補足された微生物は嫌気性生物膜を形成し、皿状担持体の表面濃度が高まりメタン菌(嫌気性微生物)による有機性汚水の分解速度は高まる。
【0005】
【発明が解決しようとする課題】
上記の嫌気・好気濾床法では汚水の処理は主に嫌気性処理で行い、好気性処理はあくまで仕上げとして行うものであるから嫌気性処理(第1嫌気性処理槽1と第2嫌気性処理槽2)により有機物が十分にメタンガスなどに分解されていなければならない。嫌気性処理が不十分のまま汚水が好気性処理槽2に流入すると処理水の水質が低下する。また処理が不十分な汚水を好気性処理槽2で十分な水質まで処理しようとすると好気性処理槽2の負荷が大きくなり動力費が少ないという嫌気性処理を使ったシステムの利点が失われる。
【0006】
嫌気性処理による有機物の分解に影響を及ぼす因子の一つに嫌気性細菌を固定した担持体と汚水との接触時間が挙げられる。この時間が長い程有機物の分解が十分に行われるのであるが従来の汚水の流し方では流れに偏りが生じ易いため設計どおりに分解反応が進まない。流れの偏りとは処理槽(濾床)断面の各点における汚水の流速に分布が生じることである。処理槽(濾床)に対する汚水の供給が一箇所の供給口から行われる場合は汚水が断面方向に十分に分散されず流れに偏りが生じ易い。汚水の供給口を複数箇所設けても汚水が担持体(濾床)を通過する際の流れ抵抗は濾床各部でばらつきがあるために流れの偏りが生じてしまう。流れの偏りが生じると処理槽の有効体積が小さくなり、担持体と汚水との接触時間(処理槽有効体積m/汚水流量m/h)が設計値より短くなり有機物の分解が十分に行われない。矩形の断面を有する処理槽ではコーナー部での流れが悪いため流れの偏りが特に生じやすい。十分な嫌気性処理を行うには処理槽をより大きく設計すればよいが建設コストの増大を招く。
【0007】
本発明の目的は、処理槽における汚水の流れの偏りをなくすことにより担持体と汚水との接触効率を高め、嫌気性生物による汚水の浄化能力を十分に引き出すことのできる嫌気性処理槽および汚水の生物浄化方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明の特徴は、嫌気性細菌を固定した担持体を有する嫌気性処理槽中を汚水が旋回流を伴って流れることにある。軸方向の押し出し流れだけでは汚水は濾床抵抗の小さい流路を多く流れるため担持体との十分な接触が得られないが、これに旋回流が加わると線速度が大きくなるため流れの偏りが緩和されるのである。これにより担持体と汚水との接触効率を高めることが可能になる。本発明では濾床を形成する担持体の形状は限定されないが皿状、円筒状、波板状、粒状等が好適に使用できる。特に濾床が皿状担持体で形成される場合は旋回方向の流れ抵抗は軸方向の流れ抵抗に比べてかなり小さいので、容易に旋回流を発生させることができる。
【0009】
【発明の実施の形態】
以下、本発明の実施例について図面を参照して説明する。
【0010】
(比較例1)
図9は嫌気性処理槽である。濾床1aは皿状担持体を組んで成る濾材ブロックを少し隙間を空けて3段に重ねて形成される。汚水は濾床の下部に上向きに供給され上向き流となって濾床中を流れる。図9のC−C矢視が図10である。嫌気性処理槽は導入管1bを中心にビニール板により4つの槽に分割され各槽は濾材ブロックを27個重ねて形成される。前記4つの槽に汚水を均等に供給するため、導入管1bの先端は4分割され各先端1beは各槽のほぼ中心に位置する。この嫌気性処理槽を図6の嫌気・好気濾床法の嫌気性処理槽1と嫌気性処理槽2に使用した。
【0011】
汚水処理設備の仕様は表1の通りである。運転条件は表2に示す通りである。
【0012】
【表1】
【0013】
【表2】
【0014】
運転処理結果を表3に示す。有効容積率が1に近いほど槽内の流れに偏りがなく隅隅まで流れが行き渡っていることを示す。軸方向の流速に比べて旋回流の流速が速いほどこの有効容積率が1に近づく。表3に示すとおり有効容積率が1に比べて小さく槽内に流れの悪い空間が存在することがわかる。
【0015】
【表3】
【0016】
(実施例1)
図1は嫌気性処理槽1の導入管1bの先端1baを下向きとし、その手前に側面孔1bbを設けたものである。側面孔は各分割槽の中心と同心円の接線方向に向けられる。先端から出た汚水は分散板7により跳ね返される際に分散される。側面口から出た汚水は接線方向に向かい各分割槽で旋回流8をつくる。図1のA−A矢視図である図2に示すように汚水は嫌気性処理槽の各分割槽中を旋回流8を伴って濾床1aと接触しながら上昇する。導入管の先端部をこのように構成したことを除いて比較例1と同様に実験を行った。
【0017】
運転条件は表2に示す通りである。運転処理結果を表4に示す。表4に示すとおり有効容積率が改善されていることがわかる。
【0018】
【表4】
【0019】
(実施例2)
図3は嫌気性処理槽の導入管の先端1bcにエルボを取り付けて各分割槽の中心と同心円の接線方向に汚水を放出して旋回流8を発生させた。図2に示すように汚水は嫌気性処理槽の各分割槽中を旋回流8を伴って濾床1aと接触しながら上昇する。導入管の先端部をこのように構成したことを除いて比較例1と同様に実験を行った。
【0020】
運転条件は表2に示す通りである。運転処理結果を表5に示す。表5に示すとおり有効容積率が改善されていることがわかる。
【0021】
【表5】
【0022】
(実施例3)
図4は嫌気性処理槽の導入管の先端に底のない筒状体1bdを取り付けたものである。図5は筒状体を示し、図5(a)は正面図、図5(b)は図5(a)におけるB−B矢視図である。汚水を筒状体内壁に沿って接線方向に導入して筒状体内で旋回流をおこし、筒状体の下から汚水を旋回流の状態で嫌気性処理槽に放出する。図2に示すように汚水は嫌気性処理槽の各分割槽中を旋回流8を伴って濾床1aと接触しながら上昇する。導入管の先端部をこのように構成したことを除いて比較例1と同様に実験を行った。
【0023】
運転条件は表2に示す通りである。運転処理結果を表6に示す。表6に示すとおり有効容積率が改善されていることがわかる。
【0024】
【表6】
【0025】
【発明の効果】
本発明によれば、処理槽における汚水の流れの悪い箇所をなくし担持体と汚水との接触効率を高めることで嫌気性生物による汚水の浄化能力を十分に引き出すことができる。
【図面の簡単な説明】
【図1】本発明の嫌気性処理槽の一例(正面図)である。
【図2】旋回流を示す図1のA−A矢視図である。
【図3】本発明の嫌気性処理槽の別の一例である。
【図4】本発明の嫌気性処理槽の更に別の一例である。
【図5】図4の嫌気性処理槽の導入管先端部である。
【図6】嫌気・好気濾床法による汚水処理装置の一例である。
【図7】嫌気性菌を固定する皿状担持体の一例である。
【図8】図7の皿状担持体を組んで形成した濾床の一部である。
【図9】従来の嫌気性処理槽の一例(正面図)である。
【図10】図9のC−C矢視図である。
【符号の説明】
1・・・第1嫌気性処理槽
1a・・・嫌気性濾床
1b・・・導入管
1ba,1bc,1be・・・導入管先端
1bb・・・側面孔
8・・・旋回流
1bd・・・筒状体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the biological purification of sewage including municipal wastewater and industrial wastewater, and more particularly, the function of the biofilm is enhanced by sufficiently contacting the sewage with the biofilm used in biological treatment. It is for.
[0002]
[Prior art]
Biological treatment of sewage is a compaction of the natural purification action, and biological treatment is roughly divided into aerobic treatment and anaerobic treatment. Aerobic treatment is the mainstream of biological treatment because the reaction time is short and good treated water quality is obtained. A typical example is the standard activated sludge method. However, aerobic treatment always requires supply of oxygen and requires a large amount of power. On the other hand, anaerobic treatment has problems such as slow reaction speed, poor treatment water quality, and bad smell, and is used only for a part of human waste and sludge treatment. However, anaerobic treatment does not require the supply of oxygen, and is thus characterized by a significant reduction in power costs. Further, in anaerobic treatment, most of the substrate energy is released as methane gas, so that the yield of microbial cells that produce microorganisms is extremely small, and the amount of sludge generated per removed organic matter is significantly smaller than in aerobic treatment. Furthermore, anaerobic treatment quickly kills pathogenic microorganisms and parasite eggs. An anaerobic / aerobic filter bed method is one in which anaerobic treatment having many features is incorporated into sewage treatment. This is a combination of an anaerobic filter bed method (anaerobic biofilm method) as an anaerobic treatment and an aerobic treatment, particularly an aerobic filter bed method (aerobic biofilm method) as a finishing treatment.
[0003]
FIG. 6 is a processing flow sheet showing an example of the anaerobic / aerobic filter bed method. First, sewage is introduced into a sand basin 4 to remove relatively large settling solids. Next, it is introduced into the first anaerobic treatment tank 1. The first anaerobic treatment tank 1 has a hopper 1c at its bottom for facilitating discharge of excess sludge, and has an anaerobic filter bed 1a inside. An introduction pipe 1b for guiding sewage flowing from the sedimentation basin 4 to the lower part of the anaerobic filter bed 1a is provided vertically at the center. The anaerobic filter bed 1a has a carrier on which anaerobic bacteria are immobilized. The sewage is decomposed by flowing upward in the anaerobic filter bed 1a and coming into contact with the anaerobic bacteria fixed thereto. As a result, the organic matter contained in the sewage is decomposed into methane gas and the like. The sewage treated in the first anaerobic treatment tank 1 flows into the second anaerobic treatment tank 2 where it is further anaerobically treated. The second anaerobic treatment tank 2 has an anaerobic filter bed 2a, an inlet pipe 2b, a hopper 2c, and the like, and has basically the same configuration as the first anaerobic treatment tank 1. The sewage treated in the second anaerobic treatment tank 2 flows into the aerobic treatment tank 3, where it is subjected to aerobic treatment. The aerobic treatment tank 3 has an aerobic filter bed 3a, an aeration tube 3b, etc., and the sewage flows downward through the aerobic filter bed 3a, and residual organic substances are removed by aerobic bacteria fixed in the aerobic bacteria. Is further decomposed into The sewage treated in the aerobic treatment tank 3 passes through a backwash tank 5 and is disinfected in a disinfection tank 6 and then discharged to a river or the like as treated water.
[0004]
The anaerobic filter beds 1a and 2a are made of a carrier (filter material) having anaerobic bacteria immobilized on the surface. The carrier is required to firmly fix the microorganisms, to provide more opportunities for contact between the sewage and the microorganisms, and to generate as little pressure loss as possible. FIG. 7 shows an example (perspective view) of a dish-shaped carrier. FIG. 8 shows an assembly of the carrier shown in FIG. 7 (FIG. 8 is a part thereof), on which microorganisms are fixed to form a filter bed. In FIG. 8, when the sewage flows in the direction of the arrow, a vortex is generated on the surface of the dish-shaped carrier, and the floating microorganisms are easily captured. Hydraulic retention time is set so that anaerobic microorganisms with extremely low growth rate are not washed out, and the microorganisms trapped in the dish-shaped support form an anaerobic biofilm while the water slowly flows, and As the surface concentration of the carrier increases, the rate of decomposition of organic sewage by methane bacteria (anaerobic microorganisms) increases.
[0005]
[Problems to be solved by the invention]
In the anaerobic / aerobic filter bed method described above, sewage treatment is mainly performed by anaerobic treatment, and aerobic treatment is performed only as a finish, so anaerobic treatment (first anaerobic treatment tank 1 and second anaerobic treatment The organic matter must be sufficiently decomposed into methane gas or the like by the treatment tank 2). If the sewage flows into the aerobic treatment tank 2 while the anaerobic treatment is insufficient, the quality of the treated water deteriorates. In addition, if an attempt is made to treat sewage that is insufficiently treated to a sufficient water quality in the aerobic treatment tank 2, the load of the aerobic treatment tank 2 becomes large, and the advantage of the system using anaerobic treatment that the power cost is small is lost.
[0006]
One of the factors affecting the decomposition of organic matter by anaerobic treatment is the contact time between the carrier on which the anaerobic bacteria are fixed and the wastewater. The longer this time is, the more the organic matter is decomposed. However, in the conventional method of flowing wastewater, the flow tends to be biased, so that the decomposition reaction does not proceed as designed. The bias of the flow means that the flow rate of the sewage at each point of the cross section of the treatment tank (filter bed) has a distribution. When sewage is supplied to a treatment tank (filter bed) from one supply port, the sewage is not sufficiently dispersed in the cross-sectional direction, and the flow tends to be biased. Even if a plurality of supply ports for sewage are provided, the flow resistance when sewage passes through the carrier (filter bed) varies in each part of the filter bed, so that the flow is biased. When the flow deviation occurs, the effective volume of the treatment tank becomes small, and the contact time between the carrier and the wastewater (the effective volume of the treatment tank m 3 / sewage flow rate m 3 / h) becomes shorter than the design value, and the decomposition of the organic matter is sufficiently performed. Not done. In a processing tank having a rectangular cross-section, the flow is particularly poor at the corners, so that the flow is particularly likely to be biased. To perform sufficient anaerobic treatment, the treatment tank may be designed to be larger, but the construction cost is increased.
[0007]
An object of the present invention is to improve the contact efficiency between a carrier and sewage by eliminating bias in the flow of sewage in a treatment tank, and to provide an anaerobic treatment tank and sewage that can sufficiently draw out the ability to purify sewage by anaerobic organisms. A biological purification method.
[0008]
[Means for Solving the Problems]
A feature of the present invention resides in that wastewater flows with a swirling flow in an anaerobic treatment tank having a carrier on which anaerobic bacteria are immobilized. If the flow is only axial, the sewage does not flow through the flow path with low filter bed resistance, so that sufficient contact with the carrier cannot be obtained. It is alleviated. This makes it possible to increase the contact efficiency between the carrier and the wastewater. In the present invention, the shape of the carrier forming the filter bed is not limited, but a dish shape, a cylindrical shape, a corrugated shape, a granular shape and the like can be suitably used. In particular, when the filter bed is formed of a dish-shaped support, the swirling flow can be easily generated since the swirling flow resistance is considerably smaller than the axial flow resistance.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010]
(Comparative Example 1)
FIG. 9 shows an anaerobic treatment tank. The filter bed 1a is formed by stacking a filter medium block formed by assembling a dish-shaped carrier in three stages with a slight gap. The sewage is supplied upward to the lower part of the filter bed and flows upward through the filter bed as an upward flow. FIG. 10 is a view taken in the direction of arrows CC in FIG. 9. The anaerobic treatment tank is divided into four tanks by a vinyl plate around the introduction pipe 1b, and each tank is formed by stacking 27 filter material blocks. In order to evenly supply sewage to the four tanks, the leading end of the introduction pipe 1b is divided into four parts, and each leading end 1be is located substantially at the center of each tank. This anaerobic treatment tank was used for the anaerobic treatment tank 1 and the anaerobic treatment tank 2 of the anaerobic / aerobic filter bed method shown in FIG.
[0011]
Table 1 shows the specifications of the wastewater treatment facility. The operating conditions are as shown in Table 2.
[0012]
[Table 1]
[0013]
[Table 2]
[0014]
Table 3 shows the operation processing results. As the effective volume ratio is closer to 1, it indicates that the flow in the tank is not biased and the flow spreads to the corners. This effective volume ratio approaches 1 as the flow velocity of the swirling flow is higher than the flow velocity in the axial direction. As shown in Table 3, it is found that the effective volume ratio is smaller than 1 and there is a space with a poor flow in the tank.
[0015]
[Table 3]
[0016]
(Example 1)
FIG. 1 shows an anaerobic treatment tank 1 in which a front end 1ba of an introduction pipe 1b is directed downward, and a side hole 1bb is provided in front thereof. The side holes are oriented tangentially to the center of each of the divided tanks. The sewage discharged from the tip is dispersed when it is bounced off by the dispersion plate 7. The sewage discharged from the side port goes tangentially and forms a swirling flow 8 in each divided tank. As shown in FIG. 2, which is a view taken along the line AA in FIG. 1, the sewage rises in each of the divided tanks of the anaerobic treatment tank with the swirling flow 8 while contacting the filter bed 1a. An experiment was performed in the same manner as in Comparative Example 1 except that the distal end of the introduction tube was configured as described above.
[0017]
The operating conditions are as shown in Table 2. Table 4 shows the operation processing results. As shown in Table 4, the effective volume ratio is improved.
[0018]
[Table 4]
[0019]
(Example 2)
In FIG. 3, an elbow is attached to the leading end 1bc of the introduction pipe of the anaerobic treatment tank, and sewage is discharged in a tangential direction concentric with the center of each divided tank to generate a swirling flow 8. As shown in FIG. 2, the sewage rises in each divided tank of the anaerobic treatment tank with the swirling flow 8 while contacting the filter bed 1a. An experiment was performed in the same manner as in Comparative Example 1 except that the distal end of the introduction tube was configured as described above.
[0020]
The operating conditions are as shown in Table 2. Table 5 shows the operation processing results. As shown in Table 5, the effective volume ratio is improved.
[0021]
[Table 5]
[0022]
(Example 3)
FIG. 4 shows an anaerobic treatment tank in which a tubular body 1bd without a bottom is attached to the tip of the introduction pipe. FIG. 5 shows a cylindrical body, FIG. 5 (a) is a front view, and FIG. 5 (b) is a view taken in the direction of arrows BB in FIG. 5 (a). The sewage is introduced tangentially along the inner wall of the tubular body to generate a swirling flow in the tubular body, and the sewage is discharged from below the tubular body to the anaerobic treatment tank in a swirling flow state. As shown in FIG. 2, the sewage rises in each divided tank of the anaerobic treatment tank with the swirling flow 8 while contacting the filter bed 1a. An experiment was performed in the same manner as in Comparative Example 1 except that the distal end of the introduction tube was configured as described above.
[0023]
The operating conditions are as shown in Table 2. Table 6 shows the operation processing results. As shown in Table 6, it can be seen that the effective volume ratio is improved.
[0024]
[Table 6]
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the purification | cleaning capability of the sewage by anaerobic organisms can be fully drawn out by eliminating the place where the flow of the sewage in a treatment tank is bad, and improving the contact efficiency of a support and sewage.
[Brief description of the drawings]
FIG. 1 is an example (front view) of an anaerobic treatment tank of the present invention.
FIG. 2 is a diagram showing the swirling flow as viewed from the direction of arrows AA in FIG. 1;
FIG. 3 is another example of the anaerobic treatment tank of the present invention.
FIG. 4 is still another example of the anaerobic treatment tank of the present invention.
FIG. 5 is a leading end of an introduction pipe of the anaerobic treatment tank of FIG.
FIG. 6 is an example of a sewage treatment apparatus using an anaerobic / aerobic filter bed method.
FIG. 7 is an example of a dish-shaped support for fixing anaerobic bacteria.
8 is a part of a filter bed formed by assembling the dish-shaped carrier of FIG. 7;
FIG. 9 is an example (front view) of a conventional anaerobic treatment tank.
FIG. 10 is a view taken in the direction of the arrows CC in FIG. 9;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 1st anaerobic treatment tank 1a ... Anaerobic filter bed 1b ... Introductory pipe 1ba, 1bc, 1be ... Introductory pipe tip 1bb ... Side hole 8 ... Swirl flow 1bd ...・ Cylindrical body

Claims (2)

嫌気性菌を固定した濾床を有し、汚水が該濾床に接触する際に旋回流を伴って流れることを特徴とする嫌気性処理槽。An anaerobic treatment tank having a filter bed on which anaerobic bacteria are immobilized, wherein sewage flows with a swirling flow when coming into contact with the filter bed. 請求項1記載の嫌気性処理槽による嫌気性処理工程と、それより後に好気性菌による好気性処理工程とを有することを特徴とする汚水の生物浄化方法。A biological purification method for sewage, comprising: an anaerobic treatment step using the anaerobic treatment tank according to claim 1; and an aerobic treatment step using aerobic bacteria.
JP2003102793A 2003-04-07 2003-04-07 Anaerobic treatment tank and biological purification method for sewage Pending JP2004305905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102793A JP2004305905A (en) 2003-04-07 2003-04-07 Anaerobic treatment tank and biological purification method for sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102793A JP2004305905A (en) 2003-04-07 2003-04-07 Anaerobic treatment tank and biological purification method for sewage

Publications (1)

Publication Number Publication Date
JP2004305905A true JP2004305905A (en) 2004-11-04

Family

ID=33466124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102793A Pending JP2004305905A (en) 2003-04-07 2003-04-07 Anaerobic treatment tank and biological purification method for sewage

Country Status (1)

Country Link
JP (1) JP2004305905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121753A (en) * 2013-01-08 2013-05-29 北京工业大学 Back flush method of anaerobic ammoxidation biological filter
CN103435160A (en) * 2013-08-18 2013-12-11 北京工业大学 Continuous flow operation method for prompting continuous flow sewage treatment system to achieve short range nitration quickly
KR101948505B1 (en) 2019-01-15 2019-02-14 임정아 Anaerobic Digester in Circulating-Mix of Fluids with Screw is composed of Pipe Axial

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121753A (en) * 2013-01-08 2013-05-29 北京工业大学 Back flush method of anaerobic ammoxidation biological filter
CN103435160A (en) * 2013-08-18 2013-12-11 北京工业大学 Continuous flow operation method for prompting continuous flow sewage treatment system to achieve short range nitration quickly
KR101948505B1 (en) 2019-01-15 2019-02-14 임정아 Anaerobic Digester in Circulating-Mix of Fluids with Screw is composed of Pipe Axial

Similar Documents

Publication Publication Date Title
CN102225803B (en) Biomembrane reactor, waste water treating system and method for treating waste water
CN101468859A (en) Advanced purification treatment system for high concentrated organic wastewater
CN101318758A (en) Air-float and bio-filter combined water treatment process
JP2014097472A (en) Treatment method and treatment apparatus for organic waste water
JP2009279543A (en) Method of treating organic wastewater using aeration tank
CN101468862A (en) High purification treatment system for dyeing wastewater
CN107555600A (en) A kind of sewage disposal system
US8226828B2 (en) SAF system and method involving specific treatments at respective stages
CN202682873U (en) Efficient filtering device
CN208762361U (en) A kind of sewage treatment unit
CN102267785B (en) Renewable water treatment device and method by use of micro-polluted water bodies as sources
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
CN105585216A (en) Advanced water treatment method for micro-polluted water source
JP2004305905A (en) Anaerobic treatment tank and biological purification method for sewage
CN202148236U (en) Regenerated water treatment device serving micro-polluted water body as water source
CN104045206A (en) UV (ultraviolet)/O3+BAF (biological aerated filter) advanced oxidation sewage treatment facility
CN104355493B (en) A kind of integrated aerobic advanced treatment apparatus
CN210528675U (en) Municipal sewage treatment system
CN209797712U (en) Medium-high concentration comprehensive sewage nitrogen and phosphorus removal treatment system
CN110589964A (en) Internal circulation high-efficiency denitrification biological denitrification filter tank
CN206607128U (en) A kind of river sewage processing unit based on water treatment agent and ceramic membrane
CN101514051A (en) Self-demoulding biologic-carrier internal circulation filtering technology and a device thereof
CN201268654Y (en) Ozone disinfection and downflow type aerating biological filter integrated sewage treating device
CN105254129B (en) A kind of regeneration of urban sewage processing unit and its processing method
CN204211609U (en) A kind of integrated aerobic advanced treatment apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040915

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080206