JP2004301261A - Spherical belt-like seal body - Google Patents

Spherical belt-like seal body Download PDF

Info

Publication number
JP2004301261A
JP2004301261A JP2003095999A JP2003095999A JP2004301261A JP 2004301261 A JP2004301261 A JP 2004301261A JP 2003095999 A JP2003095999 A JP 2003095999A JP 2003095999 A JP2003095999 A JP 2003095999A JP 2004301261 A JP2004301261 A JP 2004301261A
Authority
JP
Japan
Prior art keywords
spherical
heat
weight
sheet material
seal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003095999A
Other languages
Japanese (ja)
Other versions
JP4487494B2 (en
Inventor
Toshihiko Shimura
俊彦 志村
Migaku Miyashita
磨 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2003095999A priority Critical patent/JP4487494B2/en
Publication of JP2004301261A publication Critical patent/JP2004301261A/en
Application granted granted Critical
Publication of JP4487494B2 publication Critical patent/JP4487494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/12Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
    • F16J15/121Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement
    • F16J15/126Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement consisting of additions, e.g. metallic fibres, metallic powders, randomly dispersed in the packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/02Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction
    • F16L27/04Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces
    • F16L27/06Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces with special sealing means between the engaging surfaces
    • F16L27/073Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces with special sealing means between the engaging surfaces one of the cooperating surfaces forming the sealing means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Exhaust Silencers (AREA)
  • Joints Allowing Movement (AREA)
  • Gasket Seals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical belt-like seal body causing no reduction in a sliding characteristic, and generating no abnormal friction sound even in long-term use needless to say the initial stage as a result of forming an outside surface superior in retentivity and durability in a seal body applicable even in the atmospheric temperature exceeding 500 °C. <P>SOLUTION: This spherical belt-like seal body 30 has a spherical belt-like base body 33 regulated by a cylindrical inner surface 28, a partial convex spherical surface-like surface 29, and large diameter side and small diameter side annular end surfaces 31 and 32 of the partial convex spherical surface-like surface 29, and an outer layer 34 integrally formed on the partial convex spherical surface-like surface 29 of the spherical belt-like base body 33. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車排気管の球面管継手に使用される球帯状シール体に関する。
【0002】
【従来の技術】
【特許文献1】
特開昭54−76759号公報
【特許文献2】
特開昭58−24620号公報
【0003】
従来の自動車用排気管の球面管継手に使用される球帯状シール体は、耐熱性を有し、相手材とのなじみ性に優れ、また衝撃強度も著しく改善されているという反面、乾燥摩擦条件下の摩擦においては往々にして異常摩擦音を発生するという欠点がある(特許文献1所載)。このシール体の欠点は、該シール体を形成する耐熱材料(膨張黒鉛など)の静止摩擦係数と動摩擦係数との差が大きいこと及びこの耐熱材料から成るシール体がすべり速度に対して負性抵抗を示すこと等に起因するものと考えられる。
【0004】
そこで、本出願人は上述した欠点を解消するべく、相手材との摺動において、異常摩擦音を発生させることなくシール性に優れた、シール体に要求される性能を満足させたシール体を提案した(特許文献2所載)。この特許文献2に開示されたシール体は、膨張黒鉛、雲母、石綿の1種又は2種以上を混合した耐熱材を、金属細線を織ったり、編んだりして得られる金網からなる補強材と一緒に造形して得られるシール体であって、該シール体の表面には四ふっ化エチレン樹脂又は四ふっ化エチレンと六ふっ化プロピレンとの共重合体からなる潤滑組成物が被着形成されたものである。このシール体は表面に被着形成された潤滑組成物が、摩擦係数の低減、母材を形成する耐熱材の相手材表面への移着防止、静止摩擦係数と動摩擦係数との差の縮小などの作用効果を発揮するほか、四ふっ化エチレン樹脂はすべり速度に対する摩擦抵抗が負性抵抗を示さないので、上述した効果と相俟って「付着−すべり」に基づく自励振動の発生を抑え、異常音の発生防止に貢献するという効果を有するものである。
【0005】
【発明が解決しようとする課題】
上述した特許文献2に開示されたシール体は、性能面で前記特許文献1に開示されたシール体の欠点を解消するものであったが、特許文献2に開示されたシール体の適用可能な雰囲気温度は表面に被着形成された潤滑組成物の耐熱性に委ねられ、自ずから300℃以下の雰囲気温度での使用に制限されるという問題がある。すなわち、自動車排気管の球面管継手に組込まれて300℃を超える雰囲気温度で使用された場合、排気管を流動する排気ガスの熱の作用により、シール体の表面に被着形成された潤滑組成物が溶融してシール体の表面から取除かれ、耐熱材と相手材との直接的な接触により摩擦トルクが上昇し、往々にして異常摩擦音を発生させるという問題である。
【0006】
本発明は前記諸点に鑑みてなされたもので、その目的とするところは、500℃を超える雰囲気温度においても適用可能なシール体であって、保持性に優れかつ耐久性に優れた外面とし得、その結果、初期はいうに及ばず長期の使用においても摺動特性の低下がなく、異常摩擦音の発生のない球帯状シール体を提供することにある。
【0007】
【課題を解決するための手段】
本発明の第一の態様の球帯状シール体は、円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状の端面とにより規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた、とくに排気管継手に用いられる球帯状シール体であって、ここで、球帯状基体は、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛及び五酸化燐を含む耐熱材とを有しており、外層は、窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方と四ふっ化エチレン樹脂とを含む潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、外層において外部に露出した部分凸球面状の外面は、潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり面となっており、円筒内面は、球帯状基体の金網からなる補強材が外部に露出した面からなっていることを特徴とする。
【0008】
第一の態様の球帯状シール体によれば、円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状の端面とにより規定された球帯状基体は、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛及び五酸化燐を含む耐熱材とを具備しているため、耐熱材の主体をなす膨張黒鉛の酸化消耗は、五酸化燐の酸化抑制作用により500℃を超える高温においても低減され、結果として球帯状シール体の耐熱性が向上する。
【0009】
また、外層は、窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方と四ふっ化エチレン樹脂とを含んでいる潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、外層の露出した部分凸球面状の外面は、潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり面が露出した平滑な面に形成されているので、潤滑組成物と混在一体化された補強材が部分凸球面状の外面と相手材との連続した直接的な接触を防ぎ、相手材との摩擦において低い摩擦トルクにより、上、下流側排気管の相対角変位を許容することができる。
【0010】
潤滑すべり面を形成する外層では、潤滑組成物の成分中の窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方とが低摩擦性を発揮する四ふっ化エチレン樹脂の溶融軟化点を見掛け上高めることと、アルミナ及びシリカのうちの少なくとも一方が球帯状基体の部分凸球面状面への外層の保持力を高めていることとにより、雰囲気温度の上昇に起因する部分凸球面状の外面の潤滑すべり面の溶融軟化が極力抑えられ、部分凸球面状面からの潤滑すべり面の脱落を生じさせることはない。
【0011】
更に、部分凸球面状の外面は潤滑組成物と金網からなる補強材とが混在一体となった平滑な潤滑すべり面であるが故に、換言すれば、金網からなる補強材が部分凸球面状の外面の一部を形成しているために、相手材の表面に潤滑組成物が過度に付着しても、これを部分凸球面状の外面の揺動とともに適度な薄い潤滑被膜を残して適度に掻き取る作用を発揮する結果、相手材表面に付着した潤滑組成物が相手材表面と部分凸球面状の外面との間の摺動面に堆積することを防ぐことができ、堆積した潤滑組成物の炭化等に起因する摺動性の劣化を防ぐことができる。
【0012】
また、円筒内面は、球帯状基体の金網からなる補強材の露出面からなっているので、球帯状シール体を排気管の外面に嵌合固定する際、円筒内面と排気管の外面との間の摩擦が高められ、結果として球帯状シール体が排気管の外面に強固に固定されることになる。したがって、排気管の外面に嵌合固定された球帯状シール体が排気管回りに回転することがなく、球帯状シール体の球帯状基体の大径側の環状端面と該環状端面が当接する排気管の外周面に形成されたフランジとの間での摺動に起因する摩擦異常音の発生はない。
【0013】
本発明の第二の態様の球帯状シール体では、第一の態様の球帯状シール体において、円筒内面は、球帯状基体の小径側の端部から大径側の端部に向かう方向において所定の幅を有した円筒面と、該円筒面の端部から大径側の端部に向かうに連れて漸次拡径すると共に該円筒面の端部から大径側の端部に向かう方向において所定の幅を有した截頭円錐面と、該截頭円錐面の端部から大径側の端部に向かう方向において所定の幅を有した拡径円筒面とを有している。
【0014】
第二の態様の球帯状シール体によれば、円筒内面は、所定の幅の円筒面と所定の幅の截頭円錐面と所定の幅の拡径円筒面とを有しており、拡径円筒面の内径が排気管の外径に相当するものであることから、排気管によって所定の幅の截頭円錐面と所定の幅の円筒面とにおいて球帯状基体が強圧、圧縮されるので、該円筒内面と排気管の外面との間により強固な固定が生じ、結果として球帯状シール体は排気管の外面により強固に固定される。したがって、球帯状シール体の排気管回りの回転は確実に防止され、球帯状シール体の球帯状基体の大径側の環状端面と該環状端面が当接する排気管の外周面に形成されたフランジとの間での摺動に起因する摩擦異常音の発生はない。
【0015】
本発明の第三の態様の球帯状シール体では、第一又は第二の態様の球帯状シール体において、両環状の端面のうちの少なくとも一方の端面には、球帯状基体の膨張黒鉛及び五酸化燐を含む耐熱材が外部に露出している。
【0016】
第三の態様の球帯状シール体によれば、五酸化燐の酸化抑制作用により、環状の端面の耐熱材の主体をなす膨張黒鉛の酸化消耗が低減され、結果として当該環状の端面の耐熱性が向上される。
【0017】
本発明の第四の態様の球帯状シール体は、第一から第三のいずれかの態様の球帯状シール体において、耐熱材は、膨張黒鉛95.0〜99.9重量%及び五酸化燐0.1〜5.0重量%を含んでいる。
【0018】
第四の態様の球帯状シール体によれば、耐熱材は、主体をなす膨張黒鉛に対する酸化抑制作用を好ましく発揮するに必要な五酸化燐を0.1〜5.0重量%の割合で含有しているので、膨張黒鉛の酸化消耗が好ましく低減され、膨張黒鉛の酸化消耗に起因する球帯状シール体の重量減少が好ましく低減される。
【0019】
五酸化燐の含有量が0.1重量%未満では膨張黒鉛に対する酸化抑制作用の効果が好ましく発揮されず、また5.0重量%を超えて含有しても酸化抑制作用のそれ以上の効果が好ましく発揮されない上に、耐熱材としての膨張黒鉛シートの可撓性を損う虞があり、シール体の製造工程における曲げ工程等において往々にして膨張黒鉛シートの折損等を生じる。
【0020】
本発明の第五の態様の球帯状シール体は、第一から第四のいずれかの態様の球帯状シール体において、潤滑組成物は、窒化ホウ素を50〜70重量%とアルミナ及びシリカのうちの少なくとも一方を5〜15重量%と四ふっ化エチレン樹脂を20〜40重量%とを含んでいる。
【0021】
第五の態様の球帯状シール体によれば、窒化ホウ素を50〜70重量%とアルミナ及びシリカのうちの少なくとも一方を5〜15重量%と四ふっ化エチレン樹脂を20〜40重量%とを含んでいる潤滑組成物の外層と、この外層に混在一体化された金網からなる補強材とが露出した平滑な面に形成されており、とくに相手材との初期の摺動においては四ふっ化エチレン樹脂の低摩擦性により円滑な摺動が行われ、摺動初期に往々にして生じる摺動摩擦異音の発生は防止される。また、300℃を超える高温域では窒化ホウ素の低摩擦性により円滑な摺動が行われ、結果として、常温から500℃を超える広範囲にわたり相手材との摩擦において低い摩擦トルクを発揮して上、下流側排気管の相対角変位を低摩擦抵抗をもって許容する。
【0022】
【発明の実施の形態】
本発明の実施の形態について詳細に説明する。
【0023】
本発明の球帯状シール体における構成材料及び球帯状シール体の製造方法について説明する。
【0024】
<耐熱材について>
濃度98%の濃硫酸を撹拌しながら、酸化剤として過酸化水素の60%水溶液を加え、これを反応液とする。この反応液を冷却して10℃の温度に保持し、粒度30〜80メッシュの鱗片状天然黒鉛粉末を反応液に添加し、30分間反応を行う。反応後、吸引濾過して酸処理黒鉛を分離し、酸処理黒鉛を水で10分間撹拌して吸引濾過するという洗浄作業を2回繰り返し、酸処理黒鉛から硫酸分を十分除去する。ついで、硫酸分を十分除去した酸処理黒鉛を110℃の温度に保持した乾燥炉で3時間乾燥し、これを酸処理黒鉛原料とする。
【0025】
酸処理黒鉛原料を攪拌しながら、該酸処理黒鉛原料に所定量の燐酸水溶液を配合し、均一に攪拌して混合物を得る。この混合物を、900〜1200℃の温度で5秒間加熱(膨張)処理を施して、分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張倍率200〜300倍程度の膨張黒鉛粒子を形成する。この膨張黒鉛粒子を双ローラー装置にてロール成形し、所望の厚さの膨張黒鉛シートを作製し、これを耐熱材とする。
【0026】
上記耐熱材の製造方法において、酸処理黒鉛原料に配合される燐酸としては、オルト燐酸(HPO)、メタ燐酸(HPO)、ポリ燐酸、具体的にはピロ燐酸(H)、トリポリ燐酸(H10)等の鎖状縮合燐酸、ポリメタ燐酸、具体的にはトリメタ燐酸、テトラメタ燐酸等の環状縮合燐酸から選択され、通常水溶液の形態で使用される。これら燐酸の950〜1200℃の温度での加熱(膨張)処理過程での脱水反応により膨張黒鉛粒子中に五酸化燐(P)が生成される。
【0027】
このようにして作製した耐熱材は、五酸化燐(P)0.1〜5.0重量%及び膨張黒鉛95.0〜99.9重量%を含む可撓性を有するシート材である。
【0028】
耐熱材中に分散含有された五酸化燐は、膨張黒鉛の500℃を超える高温領域における酸化消耗を抑制する作用を発揮するものであり、五酸化燐の含有量は0.1〜5.0重量%、好ましくは0.5〜2.0重量%である。五酸化燐の含有量の多寡はシート材とした場合の可撓性に影響を及ぼすものであり、その含有量が5.0重量%を超えるとシート材が硬く、脆くなる傾向を示す。したがって、後述する球帯状シール体の製造方法におけるシート材の曲げ加工等の加工性を阻害することになる。
【0029】
<補強材について>
補強材は、鉄系としてオーステナイト系のSUS304、SUS316、フェライト系のSUS430などのステンレス鋼線又は鉄線(JIS−G−3532)もしくは亜鉛メッキ鉄線(JIS−G−3547)、また銅系として銅−ニッケル合金(白銅)、銅−ニッケル−亜鉛合金(洋白)、黄銅、ベリリウム銅からなると共に、線径が0.10〜0.32mm程度の細線材を1本又は2本以上使用して織ったり、編んだりして形成された網目が3〜6mm程度の金網を好適なものとして使用できる。
【0030】
補強材としては、上述した金網の他に、ステンレス鋼薄板又は燐青銅薄板に切込みを入れると同時に切込みを拡開して規則正しい網目列が形成された、所謂エキスパンドメタルを使用することもできる。ステンレス鋼薄板又は燐青銅薄板の厚さが0.3〜0.5mm程度のもの、エキスパンドメタルは、その網目が3〜6mm程度のものが好適である。
【0031】
<潤滑組成物について>
窒化ホウ素を50〜70重量%とアルミナ及びシリカのうちの少なくとも一方を5〜15重量%と四ふっ化エチレン樹脂を20〜40重量%とを含む潤滑組成物であり、この潤滑組成物は、固形分として20〜50重量%分散含有した水性ディスパージョンの形態で使用される。
【0032】
上記潤滑組成物の水性ディスパージョンは、後述する製造方法において、耐熱シート材の表面に、刷毛塗り、ローラ塗り、スプレー等の手段によって適用され、耐熱シート材の表面を被覆して、耐熱シート材の表面に潤滑すべり層を形成するように用いられる。形成された潤滑すべり層は、最終の圧縮工程において均一かつ微小厚さ(10〜300μm)に展延されて球帯状シール体の外層を形成する。
【0033】
上記潤滑組成物中の窒化ホウ素は、とくに高温において優れた潤滑性を発揮するものであるが、窒化ホウ素単独では耐熱シートの表面への被着性、ひいては最終の圧縮工程における球帯状基体の部分凸球面状面への外層の被着性が劣り、部分凸球面状面から容易に剥離してしまうという欠点がある。この窒化ホウ素に対し一定量の割合でアルミナ及びシリカのうちの少なくとも一方を配合することにより、窒化ホウ素の欠点を解消し、耐熱シートの表面への被着性、ひいては最終の圧縮工程における球帯状基体の部分凸球面状面への外層の被着性を大幅に改善し、球帯状基体の部分凸球面状面での潤滑組成物からなる外層の保持性を高めることができ、結果として窒化ホウ素の高温領域での低摩擦性を充分発揮させるものである。窒化ホウ素の配合割合は、50〜70重量%が適当である。そして、上記窒化ホウ素に対するアルミナ及びシリカのうちの少なくとも一方の配合割合は、窒化ホウ素の具有する潤滑性を損うことなく、かつ被着性を改善するという観点から決定され、5〜15重量%の範囲が好ましい。
【0034】
四ふっ化エチレン樹脂は、それ自身低摩擦性を有するもので、窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方とに配合されることにより、とくに比較的低い温度領域、例えば室温から300℃での低摩擦性を向上させる作用と、圧縮成形時の潤滑組成物の展延性を高める作用をなす。そして、四ふっ化エチレン樹脂の配合割合は20〜40重量%の範囲が好適である。四ふっ化エチレン樹脂の配合割合の多寡は、潤滑組成物の低摩擦性、耐熱性及び溶融流動性に影響を及ぼすものであり、配合量が20重量%未満では潤滑組成物の低摩擦性及び潤滑組成物の展延性の向上に寄与せず、また40重量%を超えて配合すると潤滑組成物中に占める割合が多くなり、とくに300℃を超える高温領域において溶融軟化し、潤滑組成物の溶融流動性を惹起させる虞がある。
【0035】
次に、上述した構成材料からなる球帯状シール体の製造方法について図面に基づき説明する。
【0036】
<第一の製造方法>
(第一工程) 補強材として、図5に示すように、金属細線を円筒状に編んで形成された筒状金網1をローラ2及び3間に通して所定の幅Dの帯状金網4を作製し、帯状金網4を所定の長さLに切断した補強シート材5又は金属細線を織ったり、編んだりすることによって直接形成される帯状金網4を所定の幅Dと長さLとに切断した補強シート材5を準備する。
【0037】
(第二工程) 耐熱材として、図6に示すように、補強シート材5の幅Dに対して1.1×Dから2.1×Dの幅dを有すると共に、補強シート材5の長さLに対して1.30×Lから2.70×Lの長さlを有するように切断された五酸化燐0.1〜5.0重量%及び膨張黒鉛95.0〜99.9重量%を含む耐熱シート材7を準備する。
【0038】
(第三工程) 後述する球帯状シール体30(図1参照)において部分凸球面状面29の軸方向の少なくとも一方の端縁側の環状の端面である大径側の端面31に全体的に耐熱材が露出するようにするべく、図7に示すように、部分凸球面状面29の大径側の端面31となる補強シート材5の幅方向の少なくとも一方の端縁8から最大で0.1×Dから1.1×Dだけ耐熱シート材7が幅方向にはみ出すと共に、端縁8からの耐熱シート材7の幅方向のはみ出し量δ1が部分凸球面状面29の小径側の端面32となる補強シート材5の幅方向の他方の端縁9からのはみ出し量δ2よりも多くなるようにすると共に、補強シート材5の長さ方向の一方の端縁10から最大で0.30×Lから1.70×Lだけ耐熱シート材7が長さ方向にはみ出すと共に、補強シート材5の長さ方向の他方の端縁11と当該端縁11に対応する耐熱シート材7の長さ方向の端縁12とを実質的に一致させて、補強シート材5と耐熱シート材7との幅方向及び長さ方向を合致させて当該補強シート材5と耐熱シート材7とを互いに重ね合わせた重合体13を得る。
【0039】
(第四工程) 重合体13を図8に示すように補強シート材5を内側にしてうず巻き状であって耐熱シート材7が少なくとも1回多くなるように捲回して、内周側に補強シート材5が露出し、外周側に耐熱シート材7が露出した筒状母材14を形成する。耐熱シート材7としては、筒状母材14における耐熱シート材7の巻き回数が補強シート材5の巻き回数よりも多くなるように、補強シート材5の長さLに対して1.30×Lから2.70×Lの長さlを有したものが予め準備される。筒状母材14においては、図9に示すように、耐熱シート材7は、幅方向の一方の端縁側において補強シート材5の一方の端縁8から幅方向にδ1だけはみ出しおり、また耐熱シート材7の幅方向の他方の端縁側において補強シート材5の他方の端縁9から幅方向にδ2だけはみ出している。
【0040】
(第五工程) 前記耐熱シート材7と同様であるが、当該耐熱シート材7の幅dよりも小さく、幅Dと同じか又は幅Dよりも少し大きい幅dを有すると共に筒状母材14を1回巻きできる程度の長さlを有した図10に示すような耐熱シート材7を別途用意し、耐熱シート材7の一方の表面に、窒化ホウ素50〜60重量%とアルミナ及びシリカのうちの少なくとも一方5〜15重量%と四ふっ化エチレン樹脂30〜40重量%とを含有する潤滑組成物を固形分として20〜50重量%分散含有した水性ディスパージョンを刷毛塗り、ローラ塗り、スプレー等の手段で被覆し、これを乾燥させて図11に示すような潤滑組成物からなる潤滑すべり層15を形成する。
【0041】
(第六工程) 第一工程で説明した帯状金網4からなり、かつ潤滑すべり層15を備えた耐熱シート材7の幅dに対して1.05×dから1.09×dの幅を有するとともに該耐熱シート材7の長さlとほぼ同じ長さの補強シート材5を別に準備し、図12に示すように、帯状金網4内に、潤滑すべり層15を備えた耐熱シート材7を挿入すると共に、これらを図13に示すように、ローラ16及び17間に通して一体化させ、耐熱シート材7と耐熱シート材7の一方の表面に被着形成された潤滑組成物からなる潤滑すべり層15と潤滑すべり層15及び耐熱シート材7に配された金網からなる補強シート材5とからなる外層形成部材18を形成する。
【0042】
(第七工程) このようにして得た外層形成部材18を、潤滑すべり層15を外側にして筒状母材14の外周面に捲回し、図14に示すような予備円筒成形体19を作製する。
【0043】
(第八工程) 内面に円筒壁面20と円筒壁面20に連なる部分凹球面壁面21と部分凹球面壁面21に連なる貫通孔22とを備え、貫通孔22に段付きコア23を嵌挿することによって内部に中空円筒部24と中空円筒部24に連なる球帯状中空部25とが形成された図15に示すような金型26を準備し、金型26の段付きコア23に予備円筒成形体19を挿入する。
【0044】
金型26の中空円筒部24及び球帯状中空部25に位置せしめられた予備円筒成形体19をパンチPによりコア軸方向に1〜3トン/cmの圧力で圧縮成形し、図1及び図2に示すような、中央部に貫通孔27を有すると共に、円筒内面28と部分凸球面状面29と部分凸球面状面29の大径側及び小径側の環状の端面31及び32とにより規定された球帯状基体33と、球帯状基体33の部分凸球面状面29に一体的に形成された外層34とを備えた球帯状シール体30を作製する。
【0045】
この圧縮成形により、球帯状基体33は、耐熱シート材7と金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された五酸化燐及び膨張黒鉛を含む耐熱材とを有しており、外層34は、潤滑すべり層15と潤滑すべり層15に一体化された金網からなる補強シート5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、窒化ホウ素を50〜70重量%とアルミナ及びシリカのうちの少なくとも一方を5〜15重量%と四ふっ化エチレン樹脂を20〜40重量%とを有してなる潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、外層34において外部に露出した部分凸球面状の外面35は、前記の潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり層となり、貫通孔27を規定する円筒内面28は、球帯状基体33の圧縮された金網からなる補強材が外部に露出した面となり、環状の端面31及び32には、耐熱シート材7において補強シート材5から幅方向にはみ出した部分が曲折されかつ展延されて得られた、耐熱シート材7の素材であって圧縮された膨張黒鉛及び五酸化燐を含む耐熱材が外部に露出している。
【0046】
<第二の製造方法>
前記第一工程から第七工程まで同じ。
【0047】
(第八工程) 一方の端部に底部23aを有し、他方の端部に開口部23bを有する有底円筒状であって、該開口部23b側の外周面に端部から漸次拡径する截頭円錐面部23cを備えたキャップ23dを、一方の端部に着脱自在に被冠した段付きコア23を準備する。内面に円筒壁面20と円筒壁面20に連なる部分凹球面壁面21と部分凹球面壁面21に連なる貫通孔22とを備え、該貫通孔22に前記段付きコア23を嵌挿することによって内部に中空円筒部24と中空円筒部24に連なる略球帯状中空部25aとが形成された図16に示すような金型26aを準備し、金型26aの段付きコア23のキャップ23dの外周面に図17に示すように予備円筒成形体19を挿入する。
【0048】
金型26aの中空円筒部24及び略球帯状中空部25aに位置せしめられた予備円筒成形体19をパンチPによりコア軸方向に1〜3トン/cmの圧力で圧縮成形し、図3及び図4に示すような、中央部に貫通孔27を有すると共に、円筒内面28a、該円筒内面28aに連なる截頭円錐面28b及び該截頭円錐面28bに連なる拡径円筒内面28cを備えた円筒内面28と部分凸球面状面29と部分凸球面状面29の大径側及び小径側の環状の端面31及び32とにより規定された球帯状基体33と、球帯状基体33の部分凸球面状面29に一体的に形成された外層34とを備えた球帯状シール体30aを作製する。
【0049】
この圧縮成形により、球帯状基体33は、耐熱シート材7と金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された五酸化燐及び膨張黒鉛からなる耐熱材とを有しており、外層34は、潤滑すべり層15と潤滑すべり層15に一体化された金網からなる補強シート5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、窒化ホウ素を50〜70重量%とアルミナ及びシリカのうちの少なくとも一方を5〜15重量%と四ふっ化エチレン樹脂を20〜40重量%とを有してなる潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、外層34において外部に露出した部分凸球面状の外面35は、前記の潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり層となり、貫通孔27を規定する円筒内面28は、球帯状基体33の小径側の端部32から大径側の端部31に向かう方向において所定の幅を有した円筒内面28aと、該円筒内面28aの端部から球帯状基体33の大径側の端部31に向かうに連れて漸次拡径すると共に当該円筒内面28aの端部から大径側の端部31に向かう方向において所定の幅を有した截頭円錐面28bと、該截頭円錐面28bの端部から大径側の端部31に向かう方向において所定の幅を有した拡径円筒内面28cとを具備すると共に球帯状基体33の圧縮された金網からなる補強材が外部に露出した面となり、環状の端面31及び32には、耐熱シート材7において補強シート材5から幅方向にはみ出した部分が曲折されかつ展延されて得られた、耐熱シート材7の素材であって圧縮された膨張黒鉛及び五酸化燐を含む耐熱材が外部に露出している。
【0050】
球帯状シール体30又は30aは、例えば図18に示す排気管球面継手に組込まれて使用される。すなわち、エンジン側に連結された上流側排気管100の外周面には、管端部101を残してフランジ200が立設、固着されており、管端部101には、球帯状シール体30又は30aが貫通孔27を規定する円筒内面28において嵌合されており、大径側端面31において球帯状シール体30又は30aがフランジ200に当接されて着座せしめられている。上流側排気管100と相対峙してマフラー側に連結され、端部に凹球面部302と凹球面部302の開口部周縁にフランジ部303とを備えた径拡大部301が一体に形成された下流側排気管300が凹球面部302を球帯状シール体30又は30aの部分凸球面状の外面35に摺接させて配置されている。球帯状シール体30aの場合には、円筒内面28の拡径円筒面28cの内径が上流側排気管100の管端部101の外径に相当するようになっているために、上流側排気管の管端部101によって所定の幅の截頭円錐面28bと所定の幅の円筒面28aとにおいて球帯状基体33が強圧、圧縮される。
【0051】
図18に示す排気管球面継手において、一端がフランジ200に固定され、他端が径拡大部301のフランジ部303を挿通して配された一対のボルト400とボルト400の膨大頭部及びフランジ部303の間に配された一対のコイルバネ500とにより、下流側排気管300には、常時、上流側排気管100方向にバネ力が付勢されている。そして、排気管球面継手は、上、下流側排気管100、300に生じる相対角変位に対しては、球帯状シール体30又は30aの部分凸球面状の外面35と下流側排気管300の端部に形成された径拡大部301の凹球面部302との摺接でこれを許容するように構成されている。
【0052】
【実施例】
次に、本発明を実施例に基づき詳細に説明する。なお、本発明はこれらの実施例に何等限定されないのである。
【0053】
<耐熱シート材の作製>
濃度98%の濃硫酸300重量部を撹拌しながら、酸化剤として過酸化水素の60%水溶液5重量部を加え、これを反応液とした。この反応液を冷却して10℃の温度に保持するとともにこの反応液に粒度30〜80メッシュの鱗片状天然黒鉛粉末100重量部を添加し、30分間反応を行った。反応後、吸引濾過して酸処理黒鉛を分離し、酸処理黒鉛を300重量部の水で10分間撹拌して吸引濾過するという洗浄作業を2回繰り返し、酸処理黒鉛から硫酸分を十分除去した。ついで、硫酸分を十分除去した酸処理黒鉛を110℃の温度に保持した乾燥炉で3時間乾燥し、これを酸処理黒鉛原料とした。
【0054】
この酸処理黒鉛原料100重量部を攪拌しながら、該酸処理黒鉛原料に燐酸として濃度84%のオルト燐酸水溶液を▲1▼0.82重量部、▲2▼1.66重量部、▲3▼3.35重量部それぞれ配合し、均一に攪拌して湿潤性を有する3種類の混合物を得た。これら湿潤性を有する混合物をそれぞれ120℃の温度に保持した乾燥炉で2時間乾燥しそれぞれの混合物を得た。これらの混合物をそれぞれ1000℃の温度で5秒間処理して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張倍率240倍の膨張黒鉛粒子を得た。この膨張処理工程において、成分中のオルト燐酸は脱水反応を生じて五酸化燐を生成し、膨張黒鉛粒子中に含有される。この膨張黒鉛粒子を双ロールの圧延装置にてロール成形し、厚さ0.38mmの膨張黒鉛シートを作製し、これを耐熱シート材7とした。この3種類の耐熱シート材は、▲1▼五酸化燐0.5重量%及び膨張黒鉛99.5重量%、▲2▼五酸化燐1.0重量%及び膨張黒鉛99.0重量%、▲3▼五酸化燐2.0重量%及び膨張黒鉛98.0重量%を含んでいる。
【0055】
<補強シート材の作製>
金属細線として、線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を2本使用して網目4.0mmの筒状金網1を作製し、これをローラ2及び3間に通して帯状金網4とし、これを補強シート材5とした。
【0056】
実施例1〜4
幅52mm、長さ795mmに切断した五酸化燐0.5重量%及び膨張黒鉛99.5重量%とを含む耐熱シート材7と、幅38mm、長さ395mmに作製した帯状金網4からなる補強シート材5とを準備し、補強シート材5の幅方向の両端縁8、9から耐熱シート材7が幅方向にはみ出すと共に、補強シート材5の長さ方向の一方の端縁10から耐熱シート材7が長さ方向にはみ出すと共に、補強シート材5の長さ方向の他方の端縁11と当該端縁11に対応する耐熱シート材7の長さ方向の端縁12とを実質的に一致させて、当該補強シート材5と耐熱シート材7とを互いに重ね合わせた重合体13を得た。
【0057】
重合体13を補強シート材5を内側にしてうず巻き状であって耐熱シート材7が1回多くなるように捲回して、内周側に補強シート材5が露出し、外周側に耐熱シート材7が露出した筒状母材14を作製した。この筒状母材14においては、耐熱シート材7の両端部はそれぞれ補強シート材5の幅方向にはみ出している(図9参照)。
【0058】
上記の耐熱シート材7と同様であって幅48mm、長さ225mmに切断した耐熱シート材7を別途準備し、この耐熱シート材7の一方の表面に、平均粒径7μmの窒化ホウ素を80重量%と平均粒径0.6μmのアルミナ粉末を20重量%とを100重量部とし、これに平均粒径0.3μmの四ふっ化エチレン樹脂を45〜60重量部含有した潤滑組成物(窒化ホウ素50.0〜55.2重量%、アルミナ12.5〜13.8、四ふっ化エチレン樹脂31.0〜37.5重量%)を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素15.4〜16.6重量%、アルミナ3.9〜4.1重量%、四ふっ化エチレン樹脂9.3〜10.7重量%及び水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して潤滑組成物の潤滑すべり層15を形成した。
【0059】
金属細線として線径0.28mmのオーステナイト系ステンレス鋼線を1本使用して網目4.0mmの筒状金網1を作製したのち、これをローラ2及び3間に通して作製した幅52mm、長さ225mmの帯状金網4を別途準備し、帯状金網4内に前記潤滑すべり層15を備えた耐熱シート材7を挿入すると共にこれらをローラ16及び17間に通して一体化させ、一方の面に潤滑すべり層15と金網とが混在した外層形成部材18を作製した。
【0060】
筒状母材14の外周面に、外層形成部材18を潤滑すべり層15と金網とが混在した面を外側にして巻き付けて予備円筒成形体19を作製した。内面に円筒壁面20と円筒壁面20に連なる部分凹球面壁面21と部分凹球面壁面21に連なる貫通孔22とを備え、貫通孔22に段付きコア23を嵌挿することによって内部に中空円筒部24と中空円筒部24に連なる略球帯状中空部25とが形成された金型26を準備し、金型26の段付きコア23の外周面に予備円筒成形体19を挿入し、該予備円筒成形体19を金型26の中空部に位置させた。
【0061】
金型26の中空部に位置させた予備円筒成形体19をパンチPによりコア軸方向に3トン/cmの圧力で圧縮成形し、中央部に貫通孔27を有すると共に、円筒内面28と部分凸球面状面29と部分凸球面状面29の大径側及び小径側の環状の端面31及び32とにより規定された球帯状基体33と、球帯状基体33の部分凸球面状面29に一体的に形成された外層34とを備えた球帯状シール体30を作製した。
【0062】
この圧縮成形により、球帯状基体33は、耐熱シート材7と金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された五酸化燐及び膨張黒鉛を含む耐熱材とを有しており、外層34は、潤滑すべり層15と潤滑すべり層15に一体化された金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、窒化ホウ素51.6〜55.2重量%とアルミナ12.9〜13.8重量%と四ふっ化エチレン樹脂31.0〜35.8重量%とを有してなる潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、外層34において外部に露出した部分凸球面状の外面35は、前記の潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり面となり、貫通孔27を規定する円筒内面28は、球帯状基体33の圧縮された補強シート材5が外部に露出した面となり、環状端面31及び32には、耐熱シート材7において補強シート材5から幅方向にはみ出した部分が曲折されかつ展延されて得られた、耐熱シート材7の素材であって圧縮された膨張黒鉛及び五酸化燐を含む耐熱材が外部に露出している。
【0063】
実施例5〜8
幅52mm、長さ795mmに切断した五酸化燐1.0重量%及び膨張黒鉛99.0重量%とを含む耐熱シート材7を使用し、以下前記実施例1〜4と同様の方法で球帯状シール体30を作製した。
【0064】
実施例9〜12
幅52mm、長さ795mmに切断した五酸化燐2.0重量%及び膨張黒鉛98.0重量%とを含む耐熱シート材7を使用し、以下前記実施例と同様の方法で球帯状シール体30を作製した。
【0065】
実施例13〜16
前記実施例1〜4と同様の耐熱シート材7及び補強シート材5を使用して筒状母材14を作製した。耐熱材として前記実施例1〜4と同様の耐熱シート材7を別途用意し、該耐熱シート材7の一方の表面に、平均粒径7μmの窒化ホウ素を90重量%と平均粒径0.6μmのアルミナ粉末を10重量%とを100重量部とし、これに平均粒径0.3μmの四ふっ化エチレン樹脂を30〜60重量部含有した潤滑組成物(窒化ホウ素56.2〜69.2重量%、アルミナ6.3〜7.7、四ふっ化エチレン樹脂23.1〜37.5重量%)を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素16.9〜20.8重量%、アルミナ1.9〜2.3重量%、四ふっ化エチレン樹脂6.9〜11.2重量%及び水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して潤滑組成物の潤滑すべり層15を形成した。以下、前記実施例1〜4と同様の方法で球帯状シール体30を作製した。
【0066】
実施例17〜20
前記実施例5〜8と同様の耐熱シート材7及び補強シート材5を使用して筒状母材14を作製した。以下、前記実施例13〜16と同様の方法で球帯状シール体30を作製した。
【0067】
実施例21〜24
前記実施例9〜12と同様の耐熱シート材7及び補強シート材5を使用して筒状母材14を作製した。以下、前記実施例13〜16と同様の方法で球帯状シール体30を作製した。
【0068】
比較例1
耐熱シート材7として、幅52mm、長さ795mmに切断した膨張黒鉛シートを、補強シート材5として、幅38mm、長さ395mmに作製した帯状金網4をそれぞれ使用し、該耐熱シート材7をうず巻き状に一周分捲回したのち、該耐熱シート材7の内側に補強シート材5を重ね合わせ、うず巻き状に捲回して最外周に耐熱シート材7を位置させた筒状母材14を作製した。この筒状母材14においては、耐熱シート材7の幅方向の両端部はそれぞれ補強シート材5の両端部から幅方向に突出している。
【0069】
耐熱シート材7と同様であって幅48mm、長さ225mmに切断した耐熱シート材7を別途準備し、この耐熱シート材7の一方の表面に、平均粒径0.3μmの四ふっ化エチレン樹脂を固形分として30重量%分散含有した水性ディスパージョン(四ふっ化エチレン樹脂30重量%、水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して四ふっ化エチレン樹脂の潤滑すべり層15を形成し、これを外層形成部材18とした。
【0070】
筒状母材14の外周面に、この外層形成部材18を潤滑すべり層15が被着形成された面を外側にして巻き付けて予備円筒成形体19を作製した。内面に円筒壁面20と円筒壁面20に連なる部分凹球面壁面21と部分凹球面壁面21に連なる貫通孔22とを備え、貫通孔22に段付きコア23を嵌挿することによって内部に中空円筒部24と中空円筒部24に連なる球帯状中空部25とが形成された金型26を準備し、金型26の段付きコア23の外周面に予備円筒成形体19を挿入し、該予備円筒成形体19を金型26の中空部に位置させた。
【0071】
金型26の中空部に位置させた予備円筒成形体19をパンチPによりコア軸方向に3トン/cmの圧力で圧縮成形し、中央部に貫通孔27を有すると共に、円筒内面28と部分凸球面状面29と部分凸球面状面29の大径側及び小径側の環状の端面31及び32とにより規定された球帯状基体33と、球帯状基体33の部分凸球面状面29に一体的に形成された外層34とを備えた球帯状シール体30を作製した。この圧縮成形により、球帯状基体33は、耐熱シート材7と金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛からなる耐熱材とを有しており、外層34は、四ふっ化エチレン樹脂を有しており、外層34において外部に露出した部分凸球面状の外面35は、前記の四ふっ化エチレン樹脂の平滑な潤滑すべり面となり、貫通孔27を規定する円筒内面28には、球帯状基体33を形成する膨張黒鉛からなる耐熱材が露出する結果、当該円筒内面28は球帯状基体33の圧縮された耐熱材が露出した面となり、環状端面31及び32には、耐熱シート材7において補強シート材5から幅方向にはみ出した部分が曲折されかつ展延されて得られた、耐熱シート材7の素材であって圧縮された膨張黒鉛が外部に露出している。
【0072】
比較例2
上記比較例1と同様の筒状母材14を作製した。耐熱シート材7と同様であって幅48mm、長さ225mmに切断した耐熱シート材7を別途準備し、この耐熱シート材7の一方の表面に、平均粒径0.3μmの四ふっ化エチレン樹脂を固形分として30重量%分散含有した水性ディスパージョン(四ふっ化エチレン樹脂30重量%、水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して四ふっ化エチレン樹脂の潤滑すべり層15を形成した。前記実施例と同様の筒状金網1を作製したのち、これをローラ2及び3間に通して作製した帯状金網4を別途準備し、該帯状金網4内に、四ふっ化エチレン樹脂からなる潤滑すべり層15を備えた耐熱シート材7を挿入すると共にこれらをローラ16及び17間に通して一体化し、一方の面に四ふっ化エチレン樹脂からなる潤滑すべり層15と金網とが混在した外層形成部材18を作製した。
【0073】
該筒状母材14の外周面に、この外層形成部材18を潤滑すべり層15と金網とが混在した面を外側にして巻き付けて予備円筒成形体19を作製した。以下、比較例1と同様の方法で球帯状シール体30を作製した。この圧縮成形により、球帯状シール体30の球帯状基体33は、耐熱シート材7と金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛からなる耐熱材とを有しており、外層34は、四ふっ化エチレン樹脂からなる潤滑すべり層15と潤滑すべり層15に一体化された金網からなる補強材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、四ふっ化エチレン樹脂からなる潤滑すべり層15と、この潤滑すべり層15に混在一体化された金網からなる補強材とを有しており、斯かる外層34において外部に露出した部分凸球面状の外面35は、四ふっ化エチレン樹脂と補強材とが混在一体化された平滑な潤滑すべり面となり、貫通孔27を規定する円筒内面28には、球帯状基体33を形成する圧縮された膨張黒鉛からなる耐熱材が露出する結果、当該円筒内面28は球帯状基体33の圧縮された耐熱材が露出した面となり、環状端面31及び32には、耐熱シート材7において補強シート材5から幅方向にはみ出した部分が曲折されかつ展延されて得られた、耐熱シート材7の素材であって圧縮された膨張黒鉛が外部に露出している。
【0074】
次に、上述した各実施例からなる球帯状シール体30及び各比較例からなる球帯状シール体30について、図18に示す排気管球面継手を使用して、該球帯状シール体の1サイクル毎における摩擦トルク(N・m)、異常摩擦音の発生の有無及び球帯状シール体の重量(g)の酸化減量(重量減少)について試験した結果を説明する。
【0075】
<試験1:300℃耐久試験>
<試験条件>
コイルばねによる押圧力(スプリングセットフォース):706N
揺動角:±3°
揺動周波数:12ヘルツ(Hz)
雰囲気温度(図18に示す凹球面部302の外表面温度):300℃
【0076】
<試験2:600℃耐久試験>
<試験条件>
コイルばねによる押圧力(スプリングセットフォース):706N
揺動角:±3°
揺動周波数:12ヘルツ(Hz)
雰囲気温度(上記に同じ):600℃
【0077】
<試験方法(試験1、試験2とも)>
室温において12Hzの振動数で±3°の揺動運動を1回として45,000回行ったのち、該揺動運動を継続しながら雰囲気温度を300℃(試験1)、600℃(試験2)に昇温し(昇温中の揺動回数45,000回)、300℃(試験1)、600℃(試験2)の温度に到達した時点で115,000回の揺動運動を行い、ついで該揺動運動を継続しながら雰囲気温度を室温まで降温する(降温中の揺動回数45,000回)という全揺動回数250,000回を1サイクルとして4サイクル行う。
【0078】
異常摩擦音の発生の有無の評価は、試験1及び試験2とも次のようにして行った。
評価記号A:異常摩擦音の発生のないもの。
評価記号B:試験片に耳を近づけた状態で、かすかに異常摩擦音が聴こえるもの。
評価記号C:定位置(試験片から1.5m離れた位置)では生活環境音に掻き消され、一般には判別し難いが試験担当者には異常摩擦音として判別できるもの。
評価記号D:定位置で誰でも異常摩擦音(不快音)として識別できるもの。
【0079】
上記試験方法によって得られた実施例1から実施例4の球帯状シール体の試験1及び試験2の試験結果を表1に、実施例5から実施例8の球帯状シール体の試験1及び試験2の試験結果を表2に、実施例9から実施例12の球帯状シール体の試験1及び試験2の試験結果を表3に、実施例13から実施例16の球帯状シール体の試験1及び試験2の試験結果を表4に、実施例17から実施例20の球帯状シール体の試験1及び試験2の試験結果を表5に、実施例21から実施例24の球帯状シール体の試験1及び試験2の試験結果を表6に、比較例1及び比較例2の球帯状シール体の試験1及び試験2の試験結果を表7に示す。なお、表1から表7において、BNは窒化ホウ素を、Alはアルミナを、PTFEは四ふっ化エチレン樹脂をそれぞれ示す。
【0080】
【表1】

Figure 2004301261
【0081】
【表2】
Figure 2004301261
【0082】
【表3】
Figure 2004301261
【0083】
【表4】
Figure 2004301261
【0084】
【表5】
Figure 2004301261
【0085】
【表6】
Figure 2004301261
【0086】
【表7】
Figure 2004301261
【0087】
上表に示す試験結果から、試験1の条件では、実施例1から実施例5と比較例1及び比較例2との間に性能の差は認められず、異常摩擦音の発生も認められなかった。一方、試験2の条件では、比較例からなる球帯状シール体は異常摩擦音の発生が認められた。とくに比較例1の球帯状シール体は、試験2の条件では雰囲気温度が300℃を超えるとその外層の四ふっ化エチレン樹脂が溶融軟化し、その状態で継続する揺動運動により該四ふっ化エチレン樹脂が部分凸球面状の外面35から流動排出され、球帯状シール体30と相手材との摩擦が耐熱材(膨張黒鉛)との摩擦に移行し、異常摩擦音の発生を引き起こしたものである。また、比較例2の球帯状シール体は、その部分凸球面状の外面35が四ふっ化エチレン樹脂と金網からなる補強材とが混在したものであるため、比較例1の球帯状シール体30における外層34の四ふっ化エチレン樹脂が部分凸球面状の外面35から流動排出されるという現象は生じないが、雰囲気温度が500℃においては四ふっ化エチレン樹脂の具有する低摩擦性は消失し、球帯状シール体30と相手材との摩擦が補強材(金網)との金属同士の摩擦に移行し、異常摩擦音の発生を引き起こした。
【0088】
これに対し、実施例からなる球帯状シール体30は外層34の部分凸球面状の外面35を形成する潤滑組成物中に配合された窒化ホウ素及び黒鉛により、潤滑組成物、ひいては外層34の部分凸球面状の外面35の耐熱性及び耐久性が向上されていることから、500℃の雰囲気温度においても部分凸球面状の外面35の潤滑性は損われない。そして、球帯状シール体30と相手材との摩擦においては、相手材表面に部分凸球面状の外面35の潤滑組成物が移着されてそこに潤滑被膜が形成される結果、球帯状シール体30は、潤滑組成物と金網からなる補強材とが混在一体となった部分凸球面状の外面35においてこの移着形成された潤滑被膜と摺動するので、摩擦トルクが安定しており、異常摩擦音の発生は起こらない。
【0089】
以上の試験結果から、実施例の球帯状シール体30は、雰囲気温度が室温から500℃の広い範囲において、上、下流側排気管の相対角変位に対し安定した摩擦トルクで、かつ異常摩擦音の発生もなく許容することができるのに対し、比較例からなる球帯状シール体は、雰囲気温度が室温から300℃の範囲に限られ、自ずから使用条件、使用部位に制約を受けることになる。
【0090】
つぎに、図18に示す排気管球面継手において、上流側排気管100を固定し、下流側排気管300に該排気管軸線回りの捩り方向に加振し、上流側排気管100の外周面に配された球帯状シール体30又は30aの該排気管外周面への結合度合い(結合強度)について試験した結果について説明する。
【0091】
Figure 2004301261
【0092】
上記試験条件による試験結果を表8に示す。
【0093】
【表8】
Figure 2004301261
【0094】
表8において、評価は異常摩擦音の発生の有無の評価で、評価記号は前記試験と同様の評価記号で示した。また表8において、凸球面状外面は球帯状シール体の部分凸球面状の外面と下流側排気管の径拡大部との摺動部位を、大径側端面は、球帯状シール体の球帯状基体の大径側の環状の端面と上流側排気管の外周面に設けられたフランジとの当接面の摺動部位を示す。
【0095】
試験結果から、球帯状シール体の球帯状基体の貫通孔を規定する円筒内面に金網からなる補強材が露出した球帯状シール体は、該球帯状シール体と排気管との結合力(固定力)が高く、とくに供試体(2)の球帯状シール体においては、部分凸球面状の外面と下流側排気管の径拡大部との正規の摺動部位での摺動を示した。一方、供試体(3)の球帯状シール体においては、1サイクル終了と同時に球帯状シール体の球帯状基体の大径側の環状の端面と上流側排気管の外周面に設けられたフランジとの当接面での摺動に移行し、異常摩擦音の発生が確認された。この供試体(3)の球帯状シール体は、室温から400℃の熱履歴を受けることにより応力緩和が起こり、円筒内面に付与された組込み時の圧入力が次第に低下したためと、耐熱材の酸化消耗に起因する重量減少とが原因であると推察される。これに対し、円筒内面に補強材が露出した供試体(1)及び(2)の球帯状シール体においても室温から400℃の熱履歴を受けることにより応力緩和が同様に起こっているにも拘らず、3サイクル乃至それ以上の試験においても部分凸球面状の外面と下流側排気管の径拡大部との正規の摺動部位での摺動を示したのは、耐熱材の耐熱性が高められているためと、補強材が露出した円筒面面と排気管外周面との金属同志の結合により、円筒内面に付与された組込み時の圧入力の低下の度合いが低いためとであると推察される。
【0096】
【発明の効果】
本発明によれば、500℃を超える雰囲気温度においても適用可能なシール体であって、保持性に優れかつ耐久性に優れた外面とし得、その結果、初期はいうに及ばず長期の使用においても摺動特性の低下がなく、異常摩擦音の発生のない球帯状シール体を提供することができる。
【図面の簡単な説明】
【図1】本発明の球帯状シール体の縦断面図である。
【図2】図1に示す球帯状シール体の部分凸球面状の外面の部分拡大断面図である。
【図3】本発明の球帯状シール体の縦断面図である。
【図4】図3に示す球帯状シール体の部分拡大断面図である。
【図5】本発明の球帯状シール体の製造工程における金網からなる補強シート材の形成方法の説明図である。
【図6】本発明の球帯状シール体の製造工程における耐熱シート材の斜視図である。
【図7】本発明の球帯状シール体の製造工程における重合体の斜視図である。
【図8】本発明の球帯状シール体の製造工程における筒状母材の平面図である。
【図9】図8に示す筒状母材の縦断面図である。
【図10】本発明の球帯状シール体の製造工程における耐熱シート材の斜視図である。
【図11】本発明の球帯状シール体の製造工程における潤滑すべり層を形成した耐熱シート材の縦断面図である。
【図12】本発明の球帯状シール体の製造工程における外層形成部材の形成方法の説明図である。
【図13】本発明の球帯状シール体の製造工程における外層形成部材の形成方法の説明図である。
【図14】本発明の球帯状シール体の製造工程における予備円筒成形体の平面図である。
【図15】本発明の球帯状シール体の製造工程における金型中に予備円筒成形体を挿入した状態を示す縦断面図である。
【図16】本発明の球帯状シール体の製造工程における金型を示す縦断面図である。
【図17】図16に示す金型中に予備円筒成形体を挿入した状態を示す縦断面図である。
【図18】本発明の球帯状シール体を組込んだ排気管球面継手の縦断面図である。
【符号の説明】
27 貫通孔
28 円筒内面
29 部分凸球面状面
30 球帯状シール体
31、32 端面
33 球帯状基体
34 外層
35 外面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a spherical band-shaped seal used for a spherical joint of an automobile exhaust pipe.
[0002]
[Prior art]
[Patent Document 1]
JP-A-54-76759
[Patent Document 2]
JP-A-58-24620
[0003]
Spherical band seals used in conventional spherical joints for automotive exhaust pipes have heat resistance, excellent conformability with mating materials, and significantly improved impact strength, but on the other hand, dry friction conditions There is a drawback that the lower friction often generates an abnormal friction sound (Patent Document 1). Disadvantages of this seal are that the difference between the static friction coefficient and the dynamic friction coefficient of the heat-resistant material (expanded graphite or the like) forming the seal is large, and that the seal made of this heat-resistant material has a negative resistance to sliding speed. It is considered that this is due to the following.
[0004]
In order to solve the above-mentioned drawbacks, the present applicant has proposed a seal body which is excellent in sealing performance without generating abnormal friction noise in sliding with a counterpart material and which satisfies the performance required for the seal body. (Patent Document 2). The seal disclosed in Patent Document 2 is a reinforcing material made of a wire mesh obtained by weaving or knitting a heat-resistant material obtained by mixing one or more of expanded graphite, mica, and asbestos with a thin metal wire. A seal body obtained by molding together, wherein a lubricating composition comprising an ethylene tetrafluoride resin or a copolymer of ethylene tetrafluoride and propylene hexafluoride is formed on the surface of the seal body. It is a thing. In this seal, the lubricating composition deposited on the surface reduces the coefficient of friction, prevents the transfer of the heat-resistant material forming the base material to the surface of the mating material, reduces the difference between the static friction coefficient and the dynamic friction coefficient, etc. In addition to exhibiting the function and effect of ethylene tetrafluoride resin, the frictional resistance against the sliding speed does not show a negative resistance, so in combination with the above-mentioned effects, the generation of self-excited vibration based on "adhesion-slip" is suppressed. This has the effect of contributing to the prevention of occurrence of abnormal sounds.
[0005]
[Problems to be solved by the invention]
The seal disclosed in Patent Literature 2 described above solves the disadvantages of the seal disclosed in Patent Literature 1 in terms of performance. However, the seal disclosed in Patent Literature 2 is applicable. The ambient temperature depends on the heat resistance of the lubricating composition deposited on the surface, and there is a problem that the use of the lubricating composition at an ambient temperature of 300 ° C. or less is naturally restricted. That is, when incorporated in a spherical joint of an automobile exhaust pipe and used at an ambient temperature exceeding 300 ° C., the lubricating composition formed on the surface of the seal body by the action of heat of the exhaust gas flowing through the exhaust pipe. The problem is that the material is melted and removed from the surface of the seal body, and the frictional torque increases due to the direct contact between the heat-resistant material and the mating material, often causing abnormal frictional noise.
[0006]
The present invention has been made in view of the above points, and an object of the present invention is to provide a seal body which can be applied even at an ambient temperature exceeding 500 ° C. As a result, it is an object of the present invention to provide a spherical band-shaped seal body which does not deteriorate in sliding characteristics even in long-term use, not to mention the initial stage, and does not generate abnormal friction noise.
[0007]
[Means for Solving the Problems]
The spherical band-shaped seal body according to the first aspect of the present invention is a spherical band-shaped base defined by a cylindrical inner surface, a partially convex spherical surface, and a large-diameter side and a small-diameter side annular end surface of the partially convex spherical surface. A spherical band-shaped seal body having an outer layer integrally formed on a partially convex spherical surface of the spherical band-shaped substrate, particularly used for an exhaust pipe joint, wherein the spherical band-shaped substrate is formed from a compressed wire mesh. And a heat-resistant material containing expanded graphite and phosphorus pentoxide that fills the mesh of the wire mesh of the reinforcing material and is mixed and integrated with the reinforcing material. A lubricating composition containing at least one of boron, alumina, and silica and an ethylene tetrafluoride resin, and a reinforcing material made of a wire mesh mixed and integrated with the lubricating composition, and the outer layer has an outer layer. The exposed partially convex spherical outer surface is supplemented with the lubricating composition. It has a wood and is mixed integrated smooth lubrication sliding surface, a cylindrical inner surface, characterized in that the reinforcing material made of a wire mesh spherical annular base member is made of the surface exposed to the outside.
[0008]
According to the spherical band-shaped seal body of the first aspect, the spherical band-shaped base defined by the cylindrical inner surface, the partially convex spherical surface, and the annular end surfaces on the large diameter side and the small diameter side of the partially convex spherical surface is compressed. A reinforcing material made of a wire mesh, and a heat-resistant material containing expanded graphite and phosphorous pentoxide, which are filled with the reinforcing material mesh and are mixed and integrated with the reinforcing material. The oxidative consumption of the expanded graphite, which is the main heat-resistant material, is reduced even at a high temperature exceeding 500 ° C. by the action of suppressing the oxidation of phosphorus pentoxide, and as a result, the heat resistance of the spherical band-shaped seal body is improved.
[0009]
Further, the outer layer has a lubricating composition containing boron nitride, at least one of alumina and silica, and an ethylene tetrafluoride resin, and a reinforcing material made of a wire mesh mixed and integrated with the lubricating composition. Since the outer surface of the partially convex spherical surface where the outer layer is exposed is formed on the smooth surface where the smooth lubricating slip surface on which the lubricating composition and the reinforcing material are mixed and integrated is formed, the lubricating composition Reinforcement material that is mixed and integrated prevents continuous direct contact between the partially convex spherical outer surface and the mating material, and low friction torque in friction with the mating material, resulting in relative angular displacement of the upstream and downstream exhaust pipes Can be tolerated.
[0010]
In the outer layer forming the lubricating slip surface, at least one of boron nitride and alumina and silica in the components of the lubricating composition apparently increases the melting softening point of the ethylene tetrafluoride resin exhibiting low friction. , At least one of alumina and silica enhances the holding force of the outer layer on the partially convex spherical surface of the spherical belt-shaped substrate, so that the lubricated sliding surface of the partially convex spherical outer surface resulting from a rise in ambient temperature Of the lubricating slip surface from the partially convex spherical surface does not occur.
[0011]
Furthermore, since the outer surface of the partially convex spherical surface is a smooth lubricating slip surface in which the lubricating composition and the reinforcing material made of the wire mesh are mixed and integrated, in other words, the reinforcing material made of the wire mesh has a partially convex spherical shape. Because a part of the outer surface is formed, even if the lubricating composition excessively adheres to the surface of the mating material, the lubricating composition is moderately removed by shaking the partially convex spherical outer surface while leaving a moderately thin lubricating film. As a result of exerting a scraping action, it is possible to prevent the lubricating composition attached to the mating material surface from being deposited on the sliding surface between the mating material surface and the partially convex spherical outer surface, and the deposited lubricating composition Can be prevented from deteriorating slidability due to carbonization or the like.
[0012]
In addition, since the inner surface of the cylinder is formed by the exposed surface of the reinforcing member made of the wire mesh of the spherical band-shaped base, when the spherical band-shaped seal body is fitted and fixed to the outer surface of the exhaust pipe, a gap between the cylindrical inner surface and the outer surface of the exhaust pipe is formed. Is increased, and as a result, the spherical band-shaped seal body is firmly fixed to the outer surface of the exhaust pipe. Therefore, the spherical belt-shaped seal fitted and fixed to the outer surface of the exhaust pipe does not rotate around the exhaust pipe, and the large-diameter annular end face of the spherical base of the spherical belt-shaped seal comes into contact with the annular end face. There is no occurrence of abnormal friction noise caused by sliding with the flange formed on the outer peripheral surface of the pipe.
[0013]
In the spherical belt-shaped seal body according to the second aspect of the present invention, in the spherical belt-shaped seal body according to the first aspect, the inner surface of the cylinder is predetermined in a direction from the small-diameter end to the large-diameter end of the spherical belt-shaped base. A cylindrical surface having a width of, and gradually increasing in diameter from the end of the cylindrical surface toward the end on the large diameter side and a predetermined diameter in a direction from the end of the cylindrical surface to the end on the large diameter side. And a frustoconical surface having a predetermined width in a direction from an end of the frustoconical surface to an end on the larger diameter side.
[0014]
According to the spherical belt-shaped seal body of the second aspect, the inner surface of the cylinder has a cylindrical surface having a predetermined width, a truncated conical surface having a predetermined width, and an enlarged cylindrical surface having a predetermined width. Since the inner diameter of the cylindrical surface is equivalent to the outer diameter of the exhaust pipe, the spherical pipe-shaped substrate is strongly compressed and compressed by the exhaust pipe on the frustoconical surface of a predetermined width and the cylindrical surface of the predetermined width. A stronger fixation occurs between the inner surface of the cylinder and the outer surface of the exhaust pipe, and as a result, the spherical belt-shaped seal is more firmly fixed to the outer surface of the exhaust pipe. Therefore, rotation of the spherical belt-shaped seal body around the exhaust pipe is reliably prevented, and a flange formed on the outer peripheral surface of the exhaust pipe where the large-diameter annular end face of the spherical belt-shaped base of the spherical belt-shaped seal body abuts the annular end face. There is no occurrence of abnormal frictional noise due to sliding between.
[0015]
In the spherical band-shaped seal body of the third aspect of the present invention, in the spherical band-shaped seal body of the first or second aspect, at least one of the two annular end faces has expanded graphite of a spherical band-shaped base and five spherical end faces. A heat-resistant material containing phosphorus oxide is exposed to the outside.
[0016]
According to the spherical belt-shaped seal member of the third aspect, the oxidative consumption of the expanded graphite, which is the main heat-resistant material of the annular end face, is reduced by the oxidation suppressing action of phosphorus pentoxide, and as a result, the heat resistance of the annular end face is reduced. Is improved.
[0017]
The spherical band-shaped seal according to the fourth aspect of the present invention is the spherical band-shaped seal according to any of the first to third aspects, wherein the heat-resistant material comprises 95.0 to 99.9% by weight of expanded graphite and phosphorus pentoxide. 0.1 to 5.0% by weight.
[0018]
According to the spherical band-shaped seal member of the fourth aspect, the heat-resistant material contains phosphorus pentoxide in a proportion of 0.1 to 5.0% by weight, which is necessary for preferably exhibiting an oxidation-suppressing action on expanded graphite as a main component. Therefore, the oxidative consumption of the expanded graphite is preferably reduced, and the weight loss of the spherical belt-shaped seal body due to the oxidative consumption of the expanded graphite is preferably reduced.
[0019]
If the content of phosphorus pentoxide is less than 0.1% by weight, the effect of the antioxidant effect on expanded graphite is not preferably exhibited, and if the content exceeds 5.0% by weight, the further effect of the antioxidant effect is not exhibited. In addition to being unfavorable, there is a possibility that the flexibility of the expanded graphite sheet as a heat-resistant material may be impaired, and breakage of the expanded graphite sheet often occurs in a bending step or the like in a manufacturing process of the seal body.
[0020]
The spherical band-shaped seal according to the fifth aspect of the present invention is the spherical band-shaped seal according to any one of the first to fourth aspects, wherein the lubricating composition contains 50 to 70% by weight of boron nitride and alumina and silica. At least one of them is 5 to 15% by weight and the ethylene tetrafluoride resin is 20 to 40% by weight.
[0021]
According to the spherical belt-shaped seal of the fifth embodiment, boron nitride is 50 to 70% by weight, at least one of alumina and silica is 5 to 15% by weight, and ethylene tetrafluoride resin is 20 to 40% by weight. The outer layer of the lubricating composition contained therein and the reinforcing material made of a wire mesh mixed and integrated with the outer layer are formed on the exposed smooth surface, and particularly in the initial sliding with the mating material, it is tetrafluorinated. Smooth sliding is performed by the low friction property of the ethylene resin, and occurrence of abnormal sliding friction noise which is often generated at the initial stage of sliding is prevented. In addition, in a high temperature region exceeding 300 ° C., smooth sliding is performed due to the low friction property of boron nitride, and as a result, a low friction torque is exhibited in friction with a partner material over a wide range from normal temperature to 500 ° C. The relative angular displacement of the downstream exhaust pipe is allowed with low frictional resistance.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described in detail.
[0023]
The constituent material of the spherical band-shaped seal body of the present invention and the method of manufacturing the spherical band-shaped seal body will be described.
[0024]
<About heat resistant materials>
While stirring 98% concentrated sulfuric acid, a 60% aqueous solution of hydrogen peroxide was added as an oxidizing agent to obtain a reaction solution. The reaction solution is cooled and maintained at a temperature of 10 ° C., and flaky natural graphite powder having a particle size of 30 to 80 mesh is added to the reaction solution, and the reaction is performed for 30 minutes. After the reaction, the acid-treated graphite is separated by suction filtration, the washing operation of stirring the acid-treated graphite with water for 10 minutes and suction-filtrating is repeated twice to sufficiently remove sulfuric acid from the acid-treated graphite. Next, the acid-treated graphite from which the sulfuric acid content has been sufficiently removed is dried in a drying furnace maintained at a temperature of 110 ° C. for 3 hours to obtain an acid-treated graphite raw material.
[0025]
While stirring the acid-treated graphite raw material, a predetermined amount of a phosphoric acid aqueous solution is added to the acid-treated graphite raw material, and the mixture is stirred uniformly to obtain a mixture. The mixture is subjected to a heating (expansion) treatment at a temperature of 900 to 1200 ° C. for 5 seconds to generate a decomposition gas, and the gas pressure expands the graphite layer to expand the graphite particles having an expansion ratio of about 200 to 300 times. Form. The expanded graphite particles are roll-formed by a twin roller device to produce an expanded graphite sheet having a desired thickness, which is used as a heat-resistant material.
[0026]
In the method for manufacturing a heat-resistant material, orthophosphoric acid (H3PO4), Metaphosphoric acid (HPO3), Polyphosphoric acid, specifically pyrophosphoric acid (H4P2O7), Tripolyphosphoric acid (H5P8O10) And cyclic condensed phosphoric acids such as trimetaphosphoric acid and tetrametaphosphoric acid, and are usually used in the form of an aqueous solution. Due to the dehydration reaction of these phosphoric acids during the heating (expansion) treatment at a temperature of 950 to 1200 ° C., phosphorus pentoxide (P2O5) Is generated.
[0027]
The heat-resistant material produced in this manner is phosphorus pentoxide (P2O5) A flexible sheet material containing 0.1 to 5.0% by weight and 95.0 to 99.9% by weight of expanded graphite.
[0028]
The phosphorus pentoxide dispersedly contained in the heat-resistant material exhibits an effect of suppressing the oxidative consumption of the expanded graphite in a high temperature region exceeding 500 ° C., and the content of phosphorus pentoxide is 0.1 to 5.0. % By weight, preferably 0.5 to 2.0% by weight. The content of phosphorus pentoxide affects the flexibility of the sheet material, and if the content exceeds 5.0% by weight, the sheet material tends to be hard and brittle. Therefore, workability such as bending of a sheet material in a method for manufacturing a spherical belt-shaped seal body described later is impaired.
[0029]
<Reinforcing materials>
The reinforcing material is a stainless steel wire such as austenitic SUS304, SUS316, ferrite-based SUS430, or an iron wire (JIS-G-3532) or a galvanized iron wire (JIS-G-3547) as an iron-based material, and a copper-based copper-based material. It consists of nickel alloy (white copper), copper-nickel-zinc alloy (white), brass, and beryllium copper, and is woven using one or two or more thin wires having a wire diameter of about 0.10 to 0.32 mm. A wire mesh having a mesh of about 3 to 6 mm formed by knitting or knitting can be preferably used.
[0030]
As the reinforcing material, in addition to the above-described wire mesh, a so-called expanded metal in which a notch is formed in a stainless steel thin plate or a phosphor bronze thin plate and the notch is widened to form a regular mesh line can also be used. It is preferable that the thickness of the stainless steel thin plate or the phosphor bronze thin plate is about 0.3 to 0.5 mm, and that the expanded metal has a mesh of about 3 to 6 mm.
[0031]
<About lubricating composition>
A lubricating composition containing 50 to 70% by weight of boron nitride, 5 to 15% by weight of at least one of alumina and silica, and 20 to 40% by weight of an ethylene tetrafluoride resin. It is used in the form of an aqueous dispersion containing 20 to 50% by weight as a solid content.
[0032]
The aqueous dispersion of the lubricating composition is applied to the surface of the heat-resistant sheet material by means of brushing, roller coating, spraying, or the like in a manufacturing method described below, and coating the surface of the heat-resistant sheet material. It is used to form a lubricating slip layer on the surface of the substrate. The formed lubricating slip layer is spread to a uniform and minute thickness (10 to 300 μm) in the final compression step to form an outer layer of the spherical belt-shaped seal body.
[0033]
Boron nitride in the above lubricating composition exhibits excellent lubricity, especially at high temperatures, but boron nitride alone adheres to the surface of a heat-resistant sheet, and therefore, the portion of the spherical substrate in the final compression step. There is a disadvantage that the adhesion of the outer layer to the convex spherical surface is poor, and the outer layer is easily peeled off from the partially convex spherical surface. By blending at least one of alumina and silica at a fixed ratio with respect to this boron nitride, the disadvantage of boron nitride is eliminated, and the adherence to the surface of the heat-resistant sheet, and thus the spherical band in the final compression step The adhesion of the outer layer to the partially convex spherical surface of the base can be greatly improved, and the retention of the outer layer made of the lubricating composition on the partially convex spherical surface of the spherical base can be improved. The low friction property in the high temperature region is sufficiently exhibited. An appropriate mixing ratio of boron nitride is 50 to 70% by weight. The proportion of at least one of alumina and silica with respect to the boron nitride is determined from the viewpoint of improving the adherence without impairing the lubricity of the boron nitride, and is 5 to 15% by weight. Is preferable.
[0034]
The ethylene tetrafluoride resin has a low frictional property by itself, and is blended with boron nitride and at least one of alumina and silica to form a resin particularly in a relatively low temperature range, for example, from room temperature to 300 ° C. It has the effect of improving low friction and the effect of increasing the spreadability of the lubricating composition during compression molding. The proportion of the ethylene tetrafluoride resin is preferably in the range of 20 to 40% by weight. The mixing ratio of the ethylene tetrafluoride resin has an influence on the low friction property, heat resistance and melt fluidity of the lubricating composition. It does not contribute to the improvement of the spreadability of the lubricating composition, and if it exceeds 40% by weight, the proportion of the lubricating composition in the lubricating composition increases, especially melt-softening in a high temperature region exceeding 300 ° C. There is a risk of causing fluidity.
[0035]
Next, a method for manufacturing a spherical band-shaped seal body made of the above-described constituent materials will be described with reference to the drawings.
[0036]
<First manufacturing method>
(First Step) As shown in FIG. 5, as a reinforcing material, a cylindrical metal net 1 formed by knitting a thin metal wire into a cylindrical shape is passed between rollers 2 and 3 to form a band-shaped metal net 4 having a predetermined width D. Then, the band-shaped wire netting 4 formed directly by weaving or knitting the reinforcing sheet material 5 or the thin metal wire obtained by cutting the band-shaped wire net 4 into a predetermined length L was cut into a predetermined width D and a predetermined length L. A reinforcing sheet material 5 is prepared.
[0037]
(Second Step) As shown in FIG. 6, the heat-resistant material has a width d of 1.1 × D to 2.1 × D with respect to the width D of the reinforcing sheet material 5, and has a length of the reinforcing sheet material 5. 0.1 to 5.0% by weight of phosphorus pentoxide and 95.0 to 99.9% by weight of expanded graphite cut to have a length 1 of 1.30 × L to 2.70 × L with respect to the length L % Is prepared.
[0038]
(Third Step) In a spherical belt-shaped seal body 30 (see FIG. 1) described later, heat resistance is applied to the large-diameter end face 31 which is an annular end face on at least one edge side in the axial direction of the partially convex spherical surface 29. In order to expose the material, as shown in FIG. 7, at most 0.1 mm from at least one edge 8 in the width direction of the reinforcing sheet material 5 which becomes the large-diameter end surface 31 of the partially convex spherical surface 29. The heat-resistant sheet material 7 protrudes in the width direction from 1 × D to 1.1 × D, and the amount of protrusion δ 1 of the heat-resistant sheet material 7 in the width direction from the edge 8 is the end face 32 on the small diameter side of the partially convex spherical surface 29. The protrusion amount of the reinforcing sheet material 5 from the other edge 9 in the width direction is set to be larger than the protruding amount δ2, and at most 0.30 × from one edge 10 in the length direction of the reinforcing sheet material 5. When the heat-resistant sheet material 7 protrudes in the length direction by 1.70 × L from L The other edge 11 in the length direction of the reinforcing sheet material 5 and the edge 12 in the length direction of the heat-resistant sheet material 7 corresponding to the edge 11 substantially coincide with each other. The polymer 13 in which the reinforcing sheet material 5 and the heat-resistant sheet material 7 are overlapped with each other is obtained by matching the width direction and the length direction of the heat-resistant sheet material 7.
[0039]
(Fourth Step) As shown in FIG. 8, the polymer 13 is spirally wound with the reinforcing sheet material 5 inside and the heat-resistant sheet material 7 is increased at least once, and the reinforcing sheet is formed on the inner peripheral side. The tubular base material 14 is formed in which the material 5 is exposed and the heat-resistant sheet material 7 is exposed on the outer peripheral side. The heat-resistant sheet material 7 is 1.30 × with respect to the length L of the reinforcing sheet material 5 so that the number of windings of the heat-resistant sheet material 7 in the tubular base material 14 is larger than the number of windings of the reinforcing sheet material 5. A material having a length 1 from L to 2.70 × L is prepared in advance. In the tubular base material 14, as shown in FIG. 9, the heat-resistant sheet material 7 protrudes from one edge 8 of the reinforcing sheet material 5 in the width direction by δ1 on one edge side in the width direction. On the other edge side in the width direction of the sheet material 7, it protrudes from the other edge 9 of the reinforcing sheet material 5 by δ2 in the width direction.
[0040]
(Fifth Step) The same as the heat-resistant sheet material 7, but having a width d smaller than the width d of the heat-resistant sheet material 7 and equal to or slightly larger than the width D, and a cylindrical base material 14. A heat-resistant sheet material 7 as shown in FIG. 10 having a length l enough to be wound once is prepared separately, and 50 to 60% by weight of boron nitride and alumina and silica An aqueous dispersion containing 20 to 50% by weight of a lubricating composition containing at least one of 5 to 15% by weight and 30 to 40% by weight of a tetrafluoroethylene resin as a solid content is brush-coated, roller-coated, and sprayed. And the like and dried to form a lubricating slip layer 15 made of a lubricating composition as shown in FIG.
[0041]
(Sixth step) The width of the heat-resistant sheet material 7 made of the band-shaped wire mesh 4 described in the first step and having the lubricating sliding layer 15 is 1.05 × d to 1.09 × d. In addition, a reinforcing sheet material 5 having substantially the same length as the length 1 of the heat-resistant sheet material 7 is separately prepared, and as shown in FIG. 12, the heat-resistant sheet material 7 provided with the lubricating sliding layer 15 in the belt-shaped wire mesh 4 is provided. As shown in FIG. 13, these are inserted between rollers 16 and 17 to be integrated, and a lubricating material made of heat-resistant sheet material 7 and a lubricating composition adhered to one surface of heat-resistant sheet material 7 are formed. An outer layer forming member 18 composed of the sliding layer 15, the lubricating sliding layer 15, and the reinforcing sheet material 5 made of a wire mesh disposed on the heat-resistant sheet material 7 is formed.
[0042]
(Seventh Step) The outer layer forming member 18 obtained as described above is wound around the outer peripheral surface of the cylindrical base material 14 with the lubricating slide layer 15 on the outside, and a preliminary cylindrical molded body 19 as shown in FIG. I do.
[0043]
(Eighth Step) An inner surface is provided with a cylindrical wall surface 20, a partially concave spherical wall surface 21 continuous with the cylindrical wall surface 20, and a through hole 22 continuous with the partially concave spherical wall surface 21, and a stepped core 23 is inserted into the through hole 22. A mold 26 having a hollow cylindrical portion 24 and a spherical band-shaped hollow portion 25 connected to the hollow cylindrical portion 24 as shown in FIG. 15 is prepared, and a preliminary cylindrical molded body 19 is formed on a stepped core 23 of the mold 26. Insert
[0044]
The preliminary cylindrical molded body 19 positioned in the hollow cylindrical portion 24 and the spherical band-shaped hollow portion 25 of the mold 26 is pressed by a punch P in the axial direction of the core in the range of 1 to 3 ton / cm.2As shown in FIGS. 1 and 2, it has a through hole 27 in the center, and has a large diameter side and a small diameter of the cylindrical inner surface 28, the partially convex spherical surface 29, and the partially convex spherical surface 29. A spherical belt-shaped seal body 30 including a spherical belt-shaped base 33 defined by the side annular end faces 31 and 32 and an outer layer 34 integrally formed on a partially convex spherical surface 29 of the spherical belt-shaped base 33 is produced. I do.
[0045]
By this compression molding, the spherical band-shaped substrate 33 is configured such that the heat-resistant sheet material 7 and the reinforcing sheet material 5 made of a wire mesh are compressed and entangled with each other to have structural integrity, and the reinforcing material made of the compressed wire mesh is used. And a heat-resistant material containing phosphorus pentoxide and expanded graphite which are filled with the reinforcing material wire mesh and mixed and integrated with the reinforcing material, and the outer layer 34 is provided with a lubricating slip. The layer 15 and the reinforcing sheet 5 made of a wire mesh integrated with the lubricating sliding layer 15 are compressed and entangled with each other to have structural integrity, and 50 to 70% by weight of boron nitride, alumina and silica A lubricating composition comprising 5 to 15% by weight of at least one of them and 20 to 40% by weight of an ethylene tetrafluoride resin, and a reinforcing material comprising a wire mesh mixed and integrated with the lubricating composition. Has The partially convex spherical outer surface 35 exposed to the outside in the outer layer 34 becomes a smooth lubricating sliding layer in which the lubricating composition and the reinforcing material are mixed and integrated, and the cylindrical inner surface 28 defining the through hole 27 is The reinforcing material made of the compressed wire mesh of the spherical belt-like base 33 becomes a surface exposed to the outside, and the portion of the heat-resistant sheet material 7 protruding from the reinforcing sheet material 5 in the width direction is bent at the annular end faces 31 and 32. In addition, a heat-resistant material containing compressed expanded graphite and phosphorus pentoxide, which is a material of the heat-resistant sheet material 7 obtained by spreading, is exposed to the outside.
[0046]
<Second manufacturing method>
Same from the first step to the seventh step.
[0047]
(Eighth Step) A cylindrical shape having a bottom 23a at one end and an opening 23b at the other end, and the diameter gradually increases from the end to the outer peripheral surface on the side of the opening 23b. A stepped core 23 is prepared in which a cap 23d having a truncated conical surface 23c is removably covered at one end. An inner surface is provided with a cylindrical wall surface 20, a partially concave spherical wall surface 21 continuous with the cylindrical wall surface 20, and a through hole 22 continuous with the partially concave spherical wall surface 21, and the stepped core 23 is inserted into the through hole 22 to form a hollow inside. A mold 26a having a cylindrical portion 24 and a substantially spherical band-shaped hollow portion 25a connected to the hollow cylindrical portion 24 as shown in FIG. 16 is prepared, and a mold is formed on the outer peripheral surface of the cap 23d of the stepped core 23 of the mold 26a. As shown in FIG. 17, the preliminary cylindrical molded body 19 is inserted.
[0048]
The preliminary cylindrical molded body 19 positioned in the hollow cylindrical portion 24 and the substantially spherical band-shaped hollow portion 25a of the mold 26a is pressed with a punch P in the core axial direction by 1 to 3 ton / cm.2As shown in FIGS. 3 and 4, a compression hole is formed at a central portion, and a through hole 27 is provided at a central portion, a cylindrical inner surface 28a, a truncated conical surface 28b connected to the cylindrical inner surface 28a, and a truncated conical surface 28b. A spherical band-shaped base 33 defined by a cylindrical inner surface 28 having a continuous enlarged cylindrical inner surface 28c, a partially convex spherical surface 29, and annular end surfaces 31 and 32 on the large diameter side and the small diameter side of the partially convex spherical surface 29; Then, a spherical band-shaped seal body 30a including an outer layer 34 formed integrally with the partially convex spherical surface 29 of the spherical band-shaped base 33 is produced.
[0049]
By this compression molding, the spherical band-shaped substrate 33 is configured such that the heat-resistant sheet material 7 and the reinforcing sheet material 5 made of a wire mesh are compressed and entangled with each other to have structural integrity, and the reinforcing material made of the compressed wire mesh is used. And a heat-resistant material made of compressed phosphorus pentoxide and expanded graphite, which is filled with the reinforcing material wire mesh and mixed and integrated with the reinforcing material, and the outer layer 34 has a lubricating slip. The layer 15 and the reinforcing sheet 5 made of a wire mesh integrated with the lubricating sliding layer 15 are compressed and entangled with each other to have structural integrity, and 50 to 70% by weight of boron nitride, alumina and silica A lubricating composition comprising 5 to 15% by weight of at least one of them and 20 to 40% by weight of an ethylene tetrafluoride resin, and a reinforcing material comprising a wire mesh mixed and integrated with the lubricating composition. With The partially convex spherical outer surface 35 exposed to the outside in the outer layer 34 becomes a smooth lubricating sliding layer in which the lubricating composition and the reinforcing material are mixed and integrated, and the cylindrical inner surface 28 defining the through hole 27. Is a cylindrical inner surface 28a having a predetermined width in a direction from the small-diameter end 32 to the large-diameter end 31 of the spherical belt-shaped base 33, and the large diameter of the spherical belt-shaped base 33 from the end of the cylindrical inner surface 28a. A frusto-conical surface 28b having a predetermined width in a direction from the end of the cylindrical inner surface 28a toward the large-diameter end 31 and gradually increasing in diameter toward the radial end 31; A reinforcing member made of a compressed metal mesh of the spherical base 33, which has an inner surface 28c of an enlarged diameter having a predetermined width in a direction from the end of the conical surface 28b toward the end 31 on the large diameter side; Surface exposed to the Reference numerals 1 and 32 denote heat-resistant sheet material 7 obtained by bending and extending a portion of the heat-resistant sheet material 7 protruding from the reinforcing sheet material 5 in the width direction. A heat-resistant material containing phosphorus oxide is exposed to the outside.
[0050]
The spherical band-shaped seal body 30 or 30a is used, for example, by being incorporated in an exhaust pipe spherical joint shown in FIG. That is, on the outer peripheral surface of the upstream side exhaust pipe 100 connected to the engine side, the flange 200 is erected and fixed except for the pipe end 101, and the spherical end seal body 30 or 30a is fitted on the cylindrical inner surface 28 that defines the through hole 27, and the spherical band-shaped seal body 30 or 30a is seated on the large-diameter end surface 31 by abutting against the flange 200. A diameter-enlarging portion 301 which is connected to the muffler side facing the upstream side exhaust pipe 100 and integrally formed with a concave spherical portion 302 at an end and a flange portion 303 at the periphery of the opening of the concave spherical portion 302 is integrally formed. The downstream side exhaust pipe 300 is arranged such that the concave spherical portion 302 is in sliding contact with the partially convex spherical outer surface 35 of the spherical band-shaped seal body 30 or 30a. In the case of the spherical belt-shaped seal body 30 a, since the inner diameter of the enlarged diameter cylindrical surface 28 c of the cylindrical inner surface 28 corresponds to the outer diameter of the pipe end 101 of the upstream exhaust pipe 100, the upstream exhaust pipe The tube-shaped end 33 of the spherical band-shaped base 33 is strongly pressed and compressed by the frusto-conical surface 28b having a predetermined width and the cylindrical surface 28a having a predetermined width.
[0051]
In the exhaust pipe spherical joint shown in FIG. 18, one end is fixed to the flange 200, and the other end is a pair of bolts 400 arranged so as to pass through the flange 303 of the enlarged diameter portion 301, and the enlarged head and the flanges of the bolts 400. The downstream exhaust pipe 300 is constantly biased toward the upstream exhaust pipe 100 by a pair of coil springs 500 disposed between the exhaust pipes 303. In addition, the exhaust pipe spherical joint is configured such that a partial convex spherical outer surface 35 of the spherical belt-shaped seal body 30 or 30a and an end of the downstream exhaust pipe 300 are provided with respect to the relative angular displacement generated in the upper and downstream exhaust pipes 100 and 300. It is configured to allow this by sliding contact with the concave spherical portion 302 of the diameter enlarged portion 301 formed in the portion.
[0052]
【Example】
Next, the present invention will be described in detail based on examples. It should be noted that the present invention is not limited to these embodiments.
[0053]
<Preparation of heat-resistant sheet material>
While stirring 300 parts by weight of concentrated sulfuric acid having a concentration of 98%, 5 parts by weight of a 60% aqueous solution of hydrogen peroxide as an oxidizing agent was added to obtain a reaction solution. The reaction solution was cooled and maintained at a temperature of 10 ° C., and 100 parts by weight of flaky natural graphite powder having a particle size of 30 to 80 mesh was added to the reaction solution, and the reaction was carried out for 30 minutes. After the reaction, the acid-treated graphite was separated by suction filtration, and the washing operation of stirring the acid-treated graphite with 300 parts by weight of water for 10 minutes and performing suction filtration was repeated twice to sufficiently remove sulfuric acid from the acid-treated graphite. . Next, the acid-treated graphite from which sulfuric acid was sufficiently removed was dried in a drying furnace maintained at a temperature of 110 ° C. for 3 hours to obtain an acid-treated graphite raw material.
[0054]
While stirring 100 parts by weight of the acid-treated graphite material, (1) 0.82 parts by weight, (2) 1.66 parts by weight, (3) an orthophosphoric acid aqueous solution having a concentration of 84% as phosphoric acid was added to the acid-treated graphite material. 3.35 parts by weight were blended and uniformly stirred to obtain three types of wettable mixtures. Each of these wettable mixtures was dried in a drying furnace maintained at a temperature of 120 ° C. for 2 hours to obtain respective mixtures. Each of these mixtures was treated at a temperature of 1000 ° C. for 5 seconds to generate a decomposed gas, and the gas pressure expanded the graphite layer to obtain expanded graphite particles having an expansion ratio of 240 times. In this expansion treatment step, orthophosphoric acid in the component causes a dehydration reaction to produce phosphorus pentoxide, which is contained in the expanded graphite particles. The expanded graphite particles were roll-formed with a twin-roll rolling device to produce an expanded graphite sheet having a thickness of 0.38 mm. These three types of heat-resistant sheet materials are: (1) 0.5% by weight of phosphorus pentoxide and 99.5% by weight of expanded graphite; (2) 1.0% by weight of phosphorus pentoxide and 99.0% by weight of expanded graphite; 3) Contains 2.0% by weight of phosphorus pentoxide and 98.0% by weight of expanded graphite.
[0055]
<Preparation of reinforcing sheet material>
As a thin metal wire, two austenitic stainless steel wires (SUS304) having a wire diameter of 0.28 mm were used to produce a tubular wire mesh 1 having a mesh of 4.0 mm, and this was passed between the rollers 2 and 3 to form a wire mesh 4. This was used as a reinforcing sheet material 5.
[0056]
Examples 1-4
A reinforcing sheet comprising a heat-resistant sheet material 7 containing 0.5% by weight of phosphorus pentoxide and 99.5% by weight of expanded graphite cut to a width of 52 mm and a length of 795 mm, and a band-shaped wire net 4 made to a width of 38 mm and a length of 395 mm. The heat-resistant sheet material 7 is protruded in the width direction from both end edges 8 and 9 in the width direction of the reinforcement sheet material 5, and the heat-resistant sheet material is protruded from one end edge 10 in the length direction of the reinforcement sheet material 5. 7 protrudes in the longitudinal direction, and the other edge 11 in the longitudinal direction of the reinforcing sheet material 5 substantially coincides with the longitudinal edge 12 of the heat-resistant sheet material 7 corresponding to the edge 11. Thus, a polymer 13 in which the reinforcing sheet material 5 and the heat-resistant sheet material 7 were overlapped with each other was obtained.
[0057]
The polymer 13 is wound in a spiral shape with the reinforcing sheet material 5 inside, and the heat-resistant sheet material 7 is wound up one time so that the reinforcing sheet material 5 is exposed on the inner peripheral side and the heat-resistant sheet material on the outer peripheral side. A cylindrical base material 14 from which 7 was exposed was produced. In this tubular base material 14, both end portions of the heat-resistant sheet material 7 protrude in the width direction of the reinforcing sheet material 5 (see FIG. 9).
[0058]
A heat-resistant sheet material 7 which is the same as the above-mentioned heat-resistant sheet material 7 and is cut into a width of 48 mm and a length of 225 mm is separately prepared. On one surface of the heat-resistant sheet material 7, 80 wt. % And 20 parts by weight of alumina powder having an average particle diameter of 0.6 μm as 100 parts by weight, and a lubricating composition (boron nitride) containing 45 to 60 parts by weight of an ethylene tetrafluoride resin having an average particle diameter of 0.3 μm Aqueous dispersion (boron nitride) containing 300.0% by weight of solid content of 50.0-55.2% by weight, alumina 12.5-13.8, and ethylene tetrafluoride resin 31.0-37.5% by weight. (15.4 to 16.6% by weight, 3.9 to 4.1% by weight of alumina, 9.3 to 10.7% by weight of ethylene tetrafluoride resin, and 70% by weight of water) Repeat the operation three times To form the lubricating sliding layer 15 of the lubricating composition Te.
[0059]
Using a single austenitic stainless steel wire having a wire diameter of 0.28 mm as a thin metal wire, a tubular wire mesh 1 having a mesh of 4.0 mm was produced, and this was passed between rollers 2 and 3 to produce a width of 52 mm and a length of 52 mm. A 225 mm long band-shaped wire netting 4 is separately prepared, a heat-resistant sheet material 7 having the lubricating sliding layer 15 is inserted into the band-shaped wire netting 4, and these are passed through rollers 16 and 17 to be integrated. An outer layer forming member 18 in which the lubricating sliding layer 15 and the wire mesh were mixed was produced.
[0060]
A preliminary cylindrical molded body 19 was produced by winding the outer layer forming member 18 around the outer peripheral surface of the cylindrical base material 14 with the surface on which the lubricating sliding layer 15 and the wire mesh were mixed outside. An inner surface is provided with a cylindrical wall surface 20, a partially concave spherical wall surface 21 connected to the cylindrical wall surface 20, and a through hole 22 continuous with the partially concave spherical wall surface 21, and a stepped core 23 is fitted into the through hole 22 to form a hollow cylindrical portion therein. A mold 26 in which a substantially spherical band-shaped hollow portion 25 connected to the hollow cylindrical portion 24 is formed is prepared, and a preliminary cylindrical molded body 19 is inserted into the outer peripheral surface of the stepped core 23 of the mold 26, The molded body 19 was located in the hollow part of the mold 26.
[0061]
The preliminary cylindrical molded body 19 located in the hollow part of the mold 26 is punched by a punch P in the core axis direction at 3 ton / cm.2With a through-hole 27 at the center, and a cylindrical inner surface 28, a partially convex spherical surface 29, and annular end surfaces 31 and 32 on the large diameter side and the small diameter side of the partially convex spherical surface 29. A spherical band-shaped seal body 30 including a defined spherical band-shaped substrate 33 and an outer layer 34 integrally formed on the partially convex spherical surface 29 of the spherical band-shaped substrate 33 was produced.
[0062]
By this compression molding, the spherical band-shaped substrate 33 is configured such that the heat-resistant sheet material 7 and the reinforcing sheet material 5 made of a wire mesh are compressed and entangled with each other to have structural integrity, and the reinforcing material made of the compressed wire mesh is used. And a heat-resistant material containing phosphorus pentoxide and expanded graphite which are filled with the reinforcing material wire mesh and mixed and integrated with the reinforcing material, and the outer layer 34 is provided with a lubricating slip. The layer 15 and the reinforcing sheet material 5 composed of a wire mesh integrated with the lubricating sliding layer 15 are compressed and entangled with each other to have structural integrity, and boron nitride is formed in an amount of 51.6 to 55.2% by weight. And a lubricating composition comprising 12.9 to 13.8% by weight of alumina and 31.0 to 35.8% by weight of an ethylene tetrafluoride resin, and a wire mesh mixed and integrated with the lubricating composition. With reinforcements and outside The partially convex spherical outer surface 35 exposed to the outside at 34 becomes a smooth lubricating sliding surface in which the lubricating composition and the reinforcing material are mixed and integrated, and the cylindrical inner surface 28 defining the through hole 27 has a spherical belt-like shape. The compressed reinforcing sheet material 5 of the base 33 becomes a surface exposed to the outside, and the portions of the heat-resistant sheet material 7 protruding in the width direction from the reinforcing sheet material 5 are bent and extended on the annular end faces 31 and 32. The obtained heat-resistant material containing the expanded graphite and phosphorus pentoxide, which is a material of the heat-resistant sheet material 7, is exposed to the outside.
[0063]
Examples 5 to 8
Using a heat-resistant sheet material 7 containing 1.0% by weight of phosphorus pentoxide and 99.0% by weight of expanded graphite cut into a width of 52 mm and a length of 795 mm, a spherical strip was formed in the same manner as in Examples 1 to 4. A seal body 30 was produced.
[0064]
Examples 9 to 12
Using a heat-resistant sheet material 7 containing 2.0% by weight of phosphorus pentoxide and 98.0% by weight of expanded graphite cut into a width of 52 mm and a length of 795 mm, a spherical band-shaped seal body 30 is formed in the same manner as in the above embodiment. Was prepared.
[0065]
Examples 13 to 16
A tubular base material 14 was produced using the same heat-resistant sheet material 7 and reinforcing sheet material 5 as in Examples 1 to 4. A heat-resistant sheet material 7 similar to that of Examples 1 to 4 was separately prepared as a heat-resistant material, and 90% by weight of boron nitride having an average particle size of 7 μm and an average particle size of 0.6 μm were formed on one surface of the heat-resistant sheet material 7. A lubricating composition (boron nitride: 56.2 to 69.2 parts by weight) containing 10 to 100 parts by weight of alumina powder and 30 to 60 parts by weight of an ethylene tetrafluoride resin having an average particle diameter of 0.3 μm. %, Alumina 6.3 to 7.7, and ethylene tetrafluoride resin 23.1 to 37.5% by weight) as an aqueous dispersion containing 30% by weight as a solid content (boron nitride 16.9 to 20.8% by weight). %, Alumina 1.9 to 2.3% by weight, ethylene tetrafluoride resin 6.9 to 11.2% by weight and water 70% by weight), and the coating operation of drying and drying is repeated three times to obtain a lubricating composition. To form a lubricating sliding layer 15 . Hereinafter, a spherical band-shaped seal body 30 was produced in the same manner as in Examples 1 to 4.
[0066]
Examples 17 to 20
A tubular base material 14 was produced using the same heat-resistant sheet material 7 and reinforcing sheet material 5 as in Examples 5 to 8. Hereinafter, a spherical band-shaped seal body 30 was produced in the same manner as in Examples 13 to 16.
[0067]
Examples 21 to 24
A tubular base material 14 was produced using the same heat-resistant sheet material 7 and reinforcing sheet material 5 as in Examples 9 to 12. Hereinafter, a spherical band-shaped seal body 30 was produced in the same manner as in Examples 13 to 16.
[0068]
Comparative Example 1
An expanded graphite sheet cut to a width of 52 mm and a length of 795 mm is used as the heat-resistant sheet material 7, and a band-shaped wire netting 4 made to a width of 38 mm and a length of 395 mm is used as the reinforcing sheet material 5. After being wound around the heat-resistant sheet material 7 for one round, the reinforcing sheet material 5 is superimposed on the inside of the heat-resistant sheet material 7 and wound in a spiral shape to produce a cylindrical base material 14 in which the heat-resistant sheet material 7 is positioned at the outermost periphery. . In the tubular base material 14, both end portions in the width direction of the heat-resistant sheet material 7 protrude in the width direction from both end portions of the reinforcing sheet material 5, respectively.
[0069]
A heat-resistant sheet material 7 which is the same as the heat-resistant sheet material 7 and is cut into a width of 48 mm and a length of 225 mm is separately prepared, and one surface of the heat-resistant sheet material 7 is coated with an ethylene tetrafluoride resin having an average particle size of 0.3 μm. The coating operation of applying an aqueous dispersion (30% by weight of ethylene tetrafluoride resin, 70% by weight of water) containing 30% by weight as a solid content and then drying is repeated three times to lubricate the ethylene tetrafluoride resin. A slip layer 15 was formed, and this was used as an outer layer forming member 18.
[0070]
This outer layer forming member 18 was wound around the outer peripheral surface of the cylindrical base material 14 with the surface on which the lubricating sliding layer 15 was formed being formed outside, to produce a preliminary cylindrical molded body 19. An inner surface is provided with a cylindrical wall surface 20, a partially concave spherical wall surface 21 connected to the cylindrical wall surface 20, and a through hole 22 continuous with the partially concave spherical wall surface 21, and a stepped core 23 is fitted into the through hole 22 to form a hollow cylindrical portion therein. A mold 26 having a spherical band-shaped hollow portion 25 connected to the hollow cylindrical portion 24 is prepared, and a preliminary cylindrical molded body 19 is inserted into the outer peripheral surface of the stepped core 23 of the mold 26, and the preliminary cylindrical molding is performed. The body 19 was located in the hollow part of the mold 26.
[0071]
The preliminary cylindrical molded body 19 located in the hollow part of the mold 26 is punched by a punch P in the core axis direction at 3 ton / cm.2With a through-hole 27 at the center, and a cylindrical inner surface 28, a partially convex spherical surface 29, and annular end surfaces 31 and 32 on the large diameter side and the small diameter side of the partially convex spherical surface 29. A spherical band-shaped seal body 30 including a defined spherical band-shaped substrate 33 and an outer layer 34 integrally formed on the partially convex spherical surface 29 of the spherical band-shaped substrate 33 was produced. By this compression molding, the spherical band-shaped substrate 33 is configured such that the heat-resistant sheet material 7 and the reinforcing sheet material 5 made of a wire mesh are compressed and entangled with each other to have structural integrity, and the reinforcing material made of the compressed wire mesh is used. Material and a heat-resistant material made of expanded graphite that is filled with the reinforcing material wire mesh and is mixed and integrated with the reinforcing material, and the outer layer 34 is made of ethylene tetrafluoride resin. The partially convex spherical outer surface 35 exposed to the outside in the outer layer 34 becomes a smooth lubricated sliding surface of the above-mentioned ethylene tetrafluoride resin, and the cylindrical inner surface 28 defining the through hole 27 has a spherical belt-like shape. As a result of exposing the heat-resistant material made of expanded graphite forming the base 33, the cylindrical inner surface 28 becomes a surface where the compressed heat-resistant material of the spherical band-shaped base 33 is exposed, and the annular end surfaces 31 and 32 have the heat-resistant sheet material 7. Protruding from strong sheet material 5 in the width direction portions obtained by being be bent and spread, expanded graphite which is compressed to a material for the heat-resistant sheet member 7 is exposed to the outside.
[0072]
Comparative Example 2
A cylindrical base material 14 similar to that of Comparative Example 1 was produced. A heat-resistant sheet material 7 which is the same as the heat-resistant sheet material 7 and is cut into a width of 48 mm and a length of 225 mm is separately prepared, and one surface of the heat-resistant sheet material 7 is coated with an ethylene tetrafluoride resin having an average particle size of 0.3 μm. The coating operation of applying an aqueous dispersion (30% by weight of ethylene tetrafluoride resin, 70% by weight of water) containing 30% by weight as a solid content and then drying is repeated three times to lubricate the ethylene tetrafluoride resin. The slip layer 15 was formed. After producing the same cylindrical wire mesh 1 as in the above embodiment, a belt-shaped wire mesh 4 made by passing the same between rollers 2 and 3 is separately prepared, and a lubricating material made of ethylene tetrafluoride resin is provided in the belt-shaped wire mesh 4. The heat-resistant sheet material 7 having the slip layer 15 is inserted and passed between the rollers 16 and 17 to form an outer layer in which the lubricating slip layer 15 made of ethylene tetrafluoride resin and a wire mesh are mixed on one surface. The member 18 was produced.
[0073]
This outer layer forming member 18 was wound around the outer peripheral surface of the cylindrical base material 14 with the surface in which the lubricating sliding layer 15 and the wire mesh were mixed on the outer side to produce a preliminary cylindrical molded body 19. Hereinafter, a spherical band-shaped seal body 30 was produced in the same manner as in Comparative Example 1. By this compression molding, the spherical band-shaped base 33 of the spherical band-shaped seal body 30 is configured such that the heat-resistant sheet material 7 and the reinforcing sheet material 5 made of a wire mesh are compressed and entangled with each other to have structural integrity, and are compressed. A reinforcing material made of expanded metal mesh, and a heat-resistant material made of expanded graphite which is filled with the reinforcing material and meshed with the reinforcing material, and is mixed and integrated with the reinforcing material. The lubricating slip layer 15 made of ethylene tetrafluoride resin and the reinforcing material 5 made of a wire mesh integrated with the lubricating slip layer 15 are compressed and entangled with each other to have structural integrity. It has a lubricating sliding layer 15 made of ethylene resin and a reinforcing material made of a wire mesh mixed and integrated with the lubricating sliding layer 15, and has a partially convex spherical outer surface 35 exposed to the outside in the outer layer 34. And a smooth lubricated sliding surface in which the ethylene tetrafluoride resin and the reinforcing material are mixed and integrated, and the cylindrical inner surface 28 defining the through hole 27 is provided with a heat-resistant heat-resistant material formed of compressed expanded graphite forming a spherical base 33. As a result of the material being exposed, the cylindrical inner surface 28 becomes a surface where the compressed heat-resistant material of the spherical base 33 is exposed, and the annular end surfaces 31 and 32 protrude from the reinforcing sheet material 5 in the width direction of the heat-resistant sheet material 7. The expanded graphite which is the material of the heat-resistant sheet material 7 obtained by bending and expanding the portion is exposed to the outside.
[0074]
Next, the spherical band-shaped seal body 30 according to each of the above-described examples and the spherical band-shaped seal body 30 according to each of the comparative examples were used for each cycle of the spherical band-shaped seal body using the exhaust pipe spherical joint shown in FIG. The results of tests on the friction torque (N · m), the occurrence of abnormal friction noise, and the weight loss (weight reduction) of the spherical belt-shaped seal body by oxidation are described below.
[0075]
<Test 1: 300 ° C durability test>
<Test conditions>
Pressing force by spring (spring set force): 706N
Swing angle: ± 3 °
Swing frequency: 12 Hz (Hz)
Ambient temperature (outer surface temperature of concave spherical portion 302 shown in FIG. 18): 300 ° C.
[0076]
<Test 2: 600 ° C durability test>
<Test conditions>
Pressing force by spring (spring set force): 706N
Swing angle: ± 3 °
Swing frequency: 12 Hz (Hz)
Ambient temperature (same as above): 600 ° C
[0077]
<Test method (both Test 1 and Test 2)>
After performing 45,000 times at room temperature with a frequency of 12 Hz and a rocking motion of ± 3 ° as one time, the ambient temperature is kept at 300 ° C. (test 1) and 600 ° C. (test 2) while the rocking motion is continued. (The number of oscillations during the temperature increase was 45,000), and when the temperature reached 300 ° C. (test 1) and 600 ° C. (test 2), 115,000 oscillations were performed. While the rocking motion is continued, the ambient temperature is lowered to room temperature (the number of rocking during the cooling is 45,000).
[0078]
The evaluation of the occurrence of abnormal friction noise was performed for both Test 1 and Test 2 as follows.
Evaluation symbol A: No abnormal friction noise was generated.
Evaluation code B: An abnormal friction sound is faintly heard when the ear is brought close to the test piece.
Evaluation code C: A living environment sound at a fixed position (a position 1.5 m away from the test piece), which is generally difficult to determine, but can be recognized as an abnormal friction sound by test personnel.
Evaluation symbol D: Anyone at a fixed position can identify as an abnormal friction sound (unpleasant sound).
[0079]
Table 1 shows the test results of Tests 1 and 2 of the spherical seals of Examples 1 to 4 obtained by the above test method, and Tests 1 and 2 of the spherical seals of Examples 5 to 8. Table 2 shows the test results of Test No. 2 and Table 3 shows the test results of Tests 1 and 2 of the spherical belt-shaped seals of Examples 9 to 12, and Test 1 of Tests of the spherical belt-shaped seals of Examples 13 to 16. Table 4 shows the test results of Test 1 and Test 2, and Table 5 shows the test results of Tests 1 and 2 of the spherical seals of Examples 17 to 20. Table 6 shows the test results of Tests 1 and 2, and Table 7 shows the test results of Tests 1 and 2 of the spherical band-shaped seal bodies of Comparative Examples 1 and 2. In Tables 1 to 7, BN represents boron nitride, and Al represents Al.2O3Represents alumina, and PTFE represents ethylene tetrafluoride resin.
[0080]
[Table 1]
Figure 2004301261
[0081]
[Table 2]
Figure 2004301261
[0082]
[Table 3]
Figure 2004301261
[0083]
[Table 4]
Figure 2004301261
[0084]
[Table 5]
Figure 2004301261
[0085]
[Table 6]
Figure 2004301261
[0086]
[Table 7]
Figure 2004301261
[0087]
From the test results shown in the above table, under the conditions of Test 1, no difference in performance was observed between Examples 1 to 5 and Comparative Examples 1 and 2, and no generation of abnormal friction noise was observed. . On the other hand, under the conditions of Test 2, generation of abnormal friction noise was recognized in the spherical belt-shaped seal body of the comparative example. In particular, in the spherical belt-shaped seal body of Comparative Example 1, when the ambient temperature exceeded 300 ° C. under the conditions of Test 2, the outer layer of ethylene tetrafluoride resin melted and softened, and the oscillating motion continued in that state caused the tetrafluoride to undergo oscillating movement. The ethylene resin flows out from the partially convex spherical outer surface 35, and the friction between the spherical belt-shaped seal body 30 and the mating material shifts to the friction with the heat-resistant material (expanded graphite), causing the generation of abnormal friction noise. . In the spherical belt-shaped seal body of Comparative Example 2, the spherical convex seal body 30 of Comparative Example 1 is formed by mixing the partially convex spherical outer surface 35 with a reinforcing material made of tetrafluoroethylene resin and a wire mesh. Does not flow out from the partially convex spherical outer surface 35 of the outer layer 34, but the low friction property of the polytetrafluoroethylene resin is lost when the ambient temperature is 500 ° C. Then, the friction between the spherical belt-shaped seal body 30 and the mating material was transferred to the friction between the metal and the reinforcing material (wire mesh), causing the generation of abnormal friction noise.
[0088]
On the other hand, the spherical band-shaped seal body 30 according to the embodiment uses the boron nitride and the graphite blended in the lubricating composition forming the partially convex spherical outer surface 35 of the outer layer 34 to form the lubricating composition, and thus the outer layer 34 Since the heat resistance and durability of the convex spherical outer surface 35 are improved, the lubricity of the partially convex spherical outer surface 35 is not impaired even at an ambient temperature of 500 ° C. In the friction between the spherical belt-shaped seal body 30 and the mating material, the lubricating composition of the partially convex spherical outer surface 35 is transferred to the mating material surface, and a lubricating film is formed thereon. No. 30 slides with the transfer-formed lubricating film on the partially convex spherical outer surface 35 in which the lubricating composition and the reinforcing material made of wire mesh are mixed and integrated, so that the friction torque is stable and abnormal. No fricatives occur.
[0089]
From the above test results, the spherical belt-shaped seal body 30 of the embodiment has a stable friction torque with respect to the relative angular displacement of the upstream and downstream exhaust pipes and a noise of abnormal friction sound in a wide range of ambient temperature from room temperature to 500 ° C. While it can be tolerated without occurrence, the spherical belt-shaped seal body according to the comparative example has an ambient temperature limited to a range from room temperature to 300 ° C., and is naturally restricted by use conditions and use sites.
[0090]
Next, in the exhaust pipe spherical joint shown in FIG. 18, the upstream exhaust pipe 100 is fixed, and the downstream exhaust pipe 300 is vibrated in a torsional direction around the exhaust pipe axis. A description will be given of the result of a test on the degree of bonding (bonding strength) of the arranged spherical belt-shaped seal body 30 or 30a to the outer peripheral surface of the exhaust pipe.
[0091]
Figure 2004301261
[0092]
Table 8 shows the test results under the above test conditions.
[0093]
[Table 8]
Figure 2004301261
[0094]
In Table 8, the evaluation was an evaluation of the occurrence of abnormal friction noise, and the evaluation symbols were the same as those in the above test. In Table 8, the convex spherical outer surface indicates the sliding portion between the partially convex spherical outer surface of the spherical belt-shaped seal body and the enlarged diameter portion of the downstream exhaust pipe, and the large-diameter side end surface indicates the spherical belt-shaped seal body. 5 shows a sliding portion of a contact surface between a large-diameter annular end surface of a base and a flange provided on an outer peripheral surface of an upstream exhaust pipe.
[0095]
From the test results, it can be seen that the spherical belt-shaped seal body in which the reinforcing member made of a wire mesh is exposed on the inner surface of the cylinder defining the through hole of the spherical belt-shaped substrate of the spherical belt-shaped seal body has a bonding force (fixing force) between the spherical belt-shaped seal body and the exhaust pipe In particular, in the spherical band-shaped seal body of the test piece (2), the sliding at the regular sliding portion between the partially convex spherical outer surface and the enlarged diameter portion of the downstream side exhaust pipe was exhibited. On the other hand, in the spherical belt-shaped seal body of the specimen (3), at the end of one cycle, the annular end face on the large diameter side of the spherical belt-shaped base body of the spherical belt-shaped seal body and the flange provided on the outer peripheral surface of the upstream exhaust pipe are formed. , And the occurrence of abnormal friction noise was confirmed. In the spherical band-shaped seal body of this test piece (3), stress relaxation occurred due to the heat history from room temperature to 400 ° C., and the press-fitting force applied to the inner surface of the cylinder gradually decreased, and the heat-resistant material was oxidized. It is presumed that this is due to weight loss due to wear. On the other hand, in the test pieces (1) and (2) in which the reinforcing material was exposed on the inner surface of the cylinder, the stress relaxation was similarly caused by receiving the heat history from room temperature to 400 ° C. However, even in the test of 3 cycles or more, the sliding at the regular sliding portion between the partially convex spherical outer surface and the enlarged diameter portion of the downstream exhaust pipe showed that the heat resistance of the heat-resistant material was increased. It is presumed that the degree of reduction in the press-in force applied to the inner surface of the cylinder during assembly is low due to the joining of the metal between the cylindrical surface surface where the reinforcing material is exposed and the outer peripheral surface of the exhaust pipe. Is done.
[0096]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it is a sealing body which can be applied even at the atmospheric temperature exceeding 500 degreeC, and it can be set as the outer surface which was excellent in the holding property and the durability, and as a result, it is not only initial but also a long term use. In addition, it is possible to provide a spherical band-shaped seal body in which sliding characteristics are not reduced and abnormal friction noise is not generated.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a spherical band-shaped seal body of the present invention.
2 is a partially enlarged cross-sectional view of a partially convex spherical outer surface of the spherical belt-shaped seal shown in FIG. 1;
FIG. 3 is a vertical cross-sectional view of the spherical band-shaped sealing body of the present invention.
FIG. 4 is a partially enlarged cross-sectional view of the spherical band-shaped seal shown in FIG. 3;
FIG. 5 is an explanatory diagram of a method of forming a reinforcing sheet material made of a wire net in a process of manufacturing the spherical belt-shaped seal body of the present invention.
FIG. 6 is a perspective view of a heat-resistant sheet material in a manufacturing process of the spherical belt-shaped seal body of the present invention.
FIG. 7 is a perspective view of a polymer in a manufacturing process of the spherical belt-shaped seal body of the present invention.
FIG. 8 is a plan view of a cylindrical base material in a manufacturing process of the spherical belt-shaped seal body of the present invention.
FIG. 9 is a longitudinal sectional view of the tubular base material shown in FIG.
FIG. 10 is a perspective view of a heat-resistant sheet material in a manufacturing process of the spherical belt-shaped seal body of the present invention.
FIG. 11 is a longitudinal sectional view of a heat-resistant sheet material on which a lubricating sliding layer is formed in a production process of the spherical belt-shaped seal body of the present invention.
FIG. 12 is an explanatory diagram of a method of forming an outer layer forming member in a manufacturing process of the spherical band-shaped seal body of the present invention.
FIG. 13 is an explanatory diagram of a method for forming an outer layer forming member in a manufacturing process of the spherical belt-shaped seal body of the present invention.
FIG. 14 is a plan view of a preliminary cylindrical molded body in a manufacturing process of the spherical belt-shaped seal body of the present invention.
FIG. 15 is a longitudinal sectional view showing a state in which a preliminary cylindrical molded body is inserted into a mold in a manufacturing process of the spherical belt-shaped seal body of the present invention.
FIG. 16 is a longitudinal sectional view showing a mold in a manufacturing process of the spherical belt-shaped seal body of the present invention.
17 is a longitudinal sectional view showing a state where a preliminary cylindrical molded body is inserted into the mold shown in FIG.
FIG. 18 is a longitudinal sectional view of an exhaust pipe spherical joint incorporating the spherical band-shaped seal body of the present invention.
[Explanation of symbols]
27 Through hole
28 inner surface of cylinder
29 Partially convex spherical surface
30 spherical belt-shaped seal
31, 32 end face
33 spherical substrate
34 Outer layer
35 Outside

Claims (5)

円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状の端面とにより規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた、とくに排気管継手に用いられる球帯状シール体であって、球帯状基体は、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛及び五酸化燐を含む耐熱材とを有しており、外層は、窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方と四ふっ化エチレン樹脂とを含む潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、外層において外部に露出した部分凸球面状の外面は、潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり面となっており、円筒内面は、球帯状基体の金網からなる補強材が外部に露出した面からなっていることを特徴とする球帯状シール体。A spherical belt-shaped base defined by a cylindrical inner surface, a partially convex spherical surface, and a large-diameter side and a small-diameter side annular end surface of the partially convex spherical surface, and integrally formed on the partially convex spherical surface of the spherical belt-shaped substrate A spherical band-shaped seal body particularly used for an exhaust pipe joint, comprising a reinforcing member made of a compressed wire mesh, and a mesh of the wire mesh of the reinforcing material, and The reinforcing material has a heat-resistant material containing expanded graphite and phosphorus pentoxide mixed and integrated with the reinforcing material, and the outer layer has at least one of boron nitride, alumina and silica, and ethylene tetrafluoride resin. A lubricating composition comprising: and a reinforcing material comprising a wire mesh mixed and integrated with the lubricating composition, and a partially convex spherical outer surface exposed to the outside in the outer layer includes a lubricating composition and a reinforcing material. Has a smooth lubricated sliding surface And has a cylindrical inner surface, the spherical annular seal member, wherein a reinforcing material made of a wire mesh spherical annular base member is made of the surface exposed to the outside. 円筒内面は、球帯状基体の小径側の端部から大径側の端部に向かう方向において所定の幅を有した円筒面と、該円筒面の端部から大径側の端部に向かうに連れて漸次拡径すると共に該円筒面の端部から大径側の端部に向かう方向において所定の幅を有した截頭円錐面と、該截頭円錐面の端部から大径側の端部に向かう方向において所定の幅を有した拡径円筒面とを有している請求項1に記載の球帯状シール体。The cylindrical inner surface has a cylindrical surface having a predetermined width in a direction from the small-diameter end to the large-diameter end of the spherical belt-shaped base, and a cylindrical surface having a predetermined width from the cylindrical end to the large-diameter end. A frusto-conical surface having a predetermined width in a direction from the end of the cylindrical surface to the large-diameter end, and a large-diameter end from the end of the truncated conical surface. 2. The spherical belt-shaped seal member according to claim 1, wherein the seal member has an enlarged diameter cylindrical surface having a predetermined width in a direction toward the portion. 両環状の端面のうちの少なくとも一方の端面には、球帯状基体の膨張黒鉛及び五酸化燐を含む耐熱材が外部に露出している請求項1又は2に記載の球帯状シール体。3. The spherical belt-shaped seal body according to claim 1, wherein a heat-resistant material containing expanded graphite and phosphorus pentoxide of the spherical belt-shaped substrate is exposed to the outside on at least one of the two annular end surfaces. 耐熱材は、膨張黒鉛95.0〜99.9重量%及び五酸化燐0.1〜5.0重量%を含んでいる請求項1から3のいずれか一項に記載の球帯状シール体。The spherical belt-shaped seal according to any one of claims 1 to 3, wherein the heat-resistant material contains 95.0 to 99.9% by weight of expanded graphite and 0.1 to 5.0% by weight of phosphorus pentoxide. 潤滑組成物は、窒化ホウ素を50〜70重量%とアルミナ及びシリカのうちの少なくとも一方を5〜15重量%と四ふっ化エチレン樹脂を20〜40重量%とを含んでいる請求項1から4のいずれか一項に記載の球帯状シール体。The lubricating composition comprises 50 to 70% by weight of boron nitride, 5 to 15% by weight of at least one of alumina and silica, and 20 to 40% by weight of ethylene tetrafluoride resin. The spherical belt-shaped seal according to any one of the above.
JP2003095999A 2003-03-31 2003-03-31 Sphere seal Expired - Lifetime JP4487494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095999A JP4487494B2 (en) 2003-03-31 2003-03-31 Sphere seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095999A JP4487494B2 (en) 2003-03-31 2003-03-31 Sphere seal

Publications (2)

Publication Number Publication Date
JP2004301261A true JP2004301261A (en) 2004-10-28
JP4487494B2 JP4487494B2 (en) 2010-06-23

Family

ID=33408192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095999A Expired - Lifetime JP4487494B2 (en) 2003-03-31 2003-03-31 Sphere seal

Country Status (1)

Country Link
JP (1) JP4487494B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304477C (en) * 2005-09-14 2007-03-14 南京航空航天大学 Compound PTFE material with low friction and high wear resistance and its prepn process
EP2243987A1 (en) * 2007-12-17 2010-10-27 Oiles Corporation Spherical-zone seal body, and method of manufacturing the same
WO2012023244A1 (en) * 2010-08-19 2012-02-23 オイレス工業株式会社 Sphered-band sealing object
JP2012036916A (en) * 2010-08-03 2012-02-23 Nippon Pillar Packing Co Ltd Seal for pipe joint
WO2013105181A1 (en) * 2012-01-12 2013-07-18 オイレス工業株式会社 Spherical exhaust pipe joint
KR20150074112A (en) * 2012-11-21 2015-07-01 오일레스고교 가부시키가이샤 Spherical band seal
JP2016020742A (en) * 2015-08-18 2016-02-04 オイレス工業株式会社 Spherical belt-like seal body and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304477C (en) * 2005-09-14 2007-03-14 南京航空航天大学 Compound PTFE material with low friction and high wear resistance and its prepn process
EP2243987A1 (en) * 2007-12-17 2010-10-27 Oiles Corporation Spherical-zone seal body, and method of manufacturing the same
EP2243987A4 (en) * 2007-12-17 2013-07-17 Oiles Industry Co Ltd Spherical-zone seal body, and method of manufacturing the same
US8567793B2 (en) 2007-12-17 2013-10-29 Oiles Corporation Spherical annular seal member and method of manufacturing the same
JP2012036916A (en) * 2010-08-03 2012-02-23 Nippon Pillar Packing Co Ltd Seal for pipe joint
US9091381B2 (en) 2010-08-19 2015-07-28 Oiles Corporation Spherical annular seal member
WO2012023244A1 (en) * 2010-08-19 2012-02-23 オイレス工業株式会社 Sphered-band sealing object
JP2012063005A (en) * 2010-08-19 2012-03-29 Oiles Corp Sphered band-sealing object
WO2013105181A1 (en) * 2012-01-12 2013-07-18 オイレス工業株式会社 Spherical exhaust pipe joint
CN104040227A (en) * 2012-01-12 2014-09-10 奥依列斯工业株式会社 Spherical exhaust pipe joint
US9631543B2 (en) 2012-01-12 2017-04-25 Oiles Corporation Exhaust pipe spherical joint
KR20150074112A (en) * 2012-11-21 2015-07-01 오일레스고교 가부시키가이샤 Spherical band seal
KR101687738B1 (en) 2012-11-21 2016-12-19 오일레스고교 가부시키가이샤 Spherical annular seal member
JP2016020742A (en) * 2015-08-18 2016-02-04 オイレス工業株式会社 Spherical belt-like seal body and manufacturing method thereof

Also Published As

Publication number Publication date
JP4487494B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4617521B2 (en) Sphere-shaped sealing body and manufacturing method thereof
JP3812035B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP5095222B2 (en) Annular seal body for exhaust pipe spherical joint and manufacturing method thereof
JPH06123362A (en) Spherical zone seal body
US7717435B2 (en) Spherical annular seal member
JP3937473B2 (en) Composition for sliding member, sliding member comprising the composition, and ball-shaped seal body
US6129362A (en) Spherical annular seal member and method of manufacturing the same
JP5531885B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP2004301261A (en) Spherical belt-like seal body
US5997979A (en) Spherical annular seal member and method of manufacturing the same
JP3156967B2 (en) Seal body for exhaust pipe joint and method of manufacturing the same
JP4209632B2 (en) Ball-shaped seal body
JP4371349B2 (en) Ball-shaped seal body
WO2015146015A1 (en) Spherical band-shaped sealing body
JP4355129B2 (en) Ball-shaped seal body
JPH109397A (en) Spherical band seal body and its manufacture
JP2006322601A (en) Spherical zone seal body
JPH109396A (en) Spherical band seal body and its manufacture
JP4617658B2 (en) Sphere-like seal body and exhaust pipe joint device using the same
JP3812036B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP3812037B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP4626168B2 (en) Sphere seal
JP4626166B2 (en) Sphere seal
JP4626167B2 (en) Sphere seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4487494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term