JP2004292544A - Method for producing polymer particle - Google Patents

Method for producing polymer particle Download PDF

Info

Publication number
JP2004292544A
JP2004292544A JP2003084768A JP2003084768A JP2004292544A JP 2004292544 A JP2004292544 A JP 2004292544A JP 2003084768 A JP2003084768 A JP 2003084768A JP 2003084768 A JP2003084768 A JP 2003084768A JP 2004292544 A JP2004292544 A JP 2004292544A
Authority
JP
Japan
Prior art keywords
polymer
solution
poor solvent
temperature
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084768A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takei
豪志 武井
Kazuhiko Imaooji
和彦 今大路
Nobuo Oi
伸夫 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003084768A priority Critical patent/JP2004292544A/en
Publication of JP2004292544A publication Critical patent/JP2004292544A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing polymer particles, which can give a polymer slurry excellent in withdrawability and filterability. <P>SOLUTION: This method produces the polymer particles having the highest crystalline melting peak temperature of 30 to 70°C as determined with a differential scanning calorimeter and comprises mixing a solution of the polymer with a poor solvent for the polymer under the following conditions (a) to (c): (a) the polymer concentration of the polymer solution is 5 to 40 wt.% based on the polymer solution, (b) the ratio of the poor solvent to the polymer solution is 0.5 or higher by volume, and (c) the temperature of a mixed solution comprising the polymer solution and the poor solvent is lower than the highest crystalline melting temperature of the polymer by at least 40°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、ポリマー粒子の製造方法に関するものである。
【0002】
【従来の技術】
ポリマーの有機溶媒溶液から該ポリマーの粒子を製造する方法としては、これまで種々提案されている。例えば、ポリマー溶液に、該ポリマーの貧溶媒を該ポリマーの溶解度限界の直近まで添加したあと、該ポリマー溶液を貧溶媒中へ添加し、ポリマー粒子を析出させる方法が提案されている(例えば、特許文献1参照。)。また、ポリマー溶液に、該ポリマーの貧溶媒をポリマーが析出しない程度添加したあと、該ポリマー溶液を溶媒の沸点以上にして溶媒を蒸発させることにより、ポリマー粒子を析出させる方法が提案されている(例えば、特許文献2参照。)。
【0003】
【特許文献1】
特開平6−256529号公報
【特許文献2】
特開平7−48456号公報
【0004】
【発明が解決しようとする課題】
しかしながら、従来の方法では、軟質性ポリマーの粒子を製造する場合、ポリマー粒子が析出した溶液(以下、ポリマースラリーと称する。)をポリマー析出槽から抜き出せないことがあり、また得られたポリマースラリーをポリマー粒子と溶液とに濾別するのに時間がかかることがあった。
かかる状況のもと、本発明が解決しようとする課題は、抜き出し性、濾過性に優れたポリマースラリーが得られるポリマー粒子の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
すなわち本発明は、示差走査熱量測定装置で測定される結晶融解ピークの最高温度が30〜70℃であるポリマー(A)を該ポリマー(A)の良溶媒に溶解してなる溶液(X)と、該ポリマー(A)に対する貧溶媒(Y)とを、下記(a)〜(c)の条件で混合するポリマー粒子の製造方法にかかるものである。
(a):溶液(X)中のポリマー(A)の濃度が、5〜40重量%であること。ただし、溶液(X)を100重量%とする。
(b):貧溶媒(Y)と溶液(X)の体積比(貧溶媒(Y)の体積/溶液(X)の体積)が、0.5以上であること。
(c):溶液(X)と貧溶媒(Y)との混合溶液の温度が、ポリマー(A)の結晶融解ピークの最高温度よりも40℃以上低い温度であること。
【0006】
【発明の実施の形態】
本発明に用いられるポリマー(以下、ポリマー(A)と称する。)は、示差走査熱量測定装置で測定される結晶融解ピークの最高温度(温度が最大である融解ピーク温度であり、以下、最高融点と称する。)が30〜70℃であるポリマーであれば特に制限はない。
【0007】
本発明に用いられるポリマー(A)としては、例えば、オレフィンから誘導される繰り返し単位を含有するオレフィン系ポリマーなどがあげられ、該オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテンなどがあげられる。オレフィン系ポリマーは、オレフィン以外の単量体から誘導される繰り返し単位を含有していてもよく、該単量体としては、ノルボルネン、ジメタノオクタヒドロナフタレン、スチレン、ビニルシクロヘキサン、ビニルナフタレン等があげられる。
【0008】
かかるオレフィン系ポリマーとしては、エチレン−ノルボルネン共重合体、エチレン−スチレン共重合体、エチレン−ビニルシクロヘキサン共重合体、プロピレン−ノルボルネン共重合体、プロピレン−スチレン共重合体、プロピレン−ビニルシクロヘキサン共重合体などをあげることができる。
【0009】
本発明の溶液(X)とは、上記ポリマー(A)を該ポリマー(A)の良溶媒に溶解した溶液である。溶液(X)中のポリマー(A)の濃度は、5〜40重量%であり、好ましくは10〜20重量%である。該濃度が低すぎると、ポリマースラリーからポリマー粒子を濾別する際の濾過性が劣ることがある。また、該濃度が高すぎると、ポリマースラリーの抜き出し性が劣ることがある。なお、溶液(X)中のポリマー(A)の濃度は、溶解したポリマー(A)の重量と良溶媒の重量の合計を100重量%とする。
【0010】
本発明のポリマー粒子の製造において、溶液(X)中のポリマー(A)に対する貧溶媒(Y)と該溶液(X)との混合割合としては、貧溶媒(Y)量/溶液(X)量(体積比)は、濾過性の観点から0.5以上であり、好ましくは1以上である。また、貧溶媒(Y)量/溶液(X)量(体積比)は、抜き出し性の観点から、3以下であり、好ましくは2以下である。
【0011】
溶液(X)と貧溶媒(Y)との混合において、溶液(X)と貧溶媒(Y)との混合溶液の温度は、ポリマー(A)の最高融点が30〜70℃である場合、ポリマー(A)の最高融点よりも40℃以上低い温度であり、好ましくは、ポリマー(A)の最高融点よりも50℃以上低い温度である。該混合溶液の温度が高すぎると、抜き出し性が劣ることがある。また、該混合溶液の温度は、経済的観点から、ポリマー(A)の最高融点よりも350℃低い温度までを下限とすることが好ましい。
【0012】
本発明の溶媒としては、例えば、トルエン、キシレン等の芳香族系化合物;ヘキサンやヘプタン等の脂肪族系化合物;アセトンやメタノール等の含酸素有機化合物;塩化メチレン、クロロホルム等の含塩素有機化合物等が挙げられ、これらを単独又は2種以上で用いることが出来る。
【0013】
本発明の良溶媒とは、ポリマー(A)を溶解し得る溶媒のことをいい、各溶媒は単独又は2種以上用いられる。例えば、エチレン−プロピレン−ジエン共重合体の良溶媒としては、トルエン、ヘプタンなどが挙げられ、ポリカーボネートの良溶媒としては、塩化メチレンなどが挙げられる。また、良溶媒としては、ポリマー重合の原料となるモノマー(例えば、ジエン、スチレン、ノルボルネンなど)を用いることもできる。
【0014】
本発明の貧溶媒(Y)とは溶液(X)からポリマー(A)を析出し得る溶媒をいい、各溶媒は単独又は2種以上用いられる。例えば、エチレン−プロピレン−ジエン共重合体の貧溶媒としては、メタノール、アセトン等が挙げられ、ポリカーボネートの貧溶媒としては、ヘプタン等が挙げられる。
【0015】
本発明のポリマー粒子の製造における溶液(X)と貧溶媒(Y)との混合方法としては、溶液(X)と貧溶媒(Y)とが均一に混合されるのであれば特に制限はないが、溶液(X)と貧溶媒(Y)の混合液が乱流状態となっていることが好ましい。具体的には、攪拌している溶液(X)に貧溶媒(Y)を添加する方法、攪拌している貧溶媒(Y)に溶液(X)を添加する方法、ミキサー等で攪拌している槽に溶液(X)と貧溶媒(Y)を同時に供給する方法などがあげられる。より好ましくは、溶液(X)に貧溶媒(Y)を添加する方法である。
【0016】
【実施例】
以下、実施例および比較例により本発明を説明する。
実施例中における物性測定は、下記の方法により行った。
(1)極限粘度[η]
ウベローデ型粘度計を用い、テトラリンを溶媒として135℃で測定した。
(2)最高融点およびガラス転移温度
示差走査熱量測定装置(セイコー電子工業社製 SSC−5200)を用いて、以下の条件で測定した。
状態調整:20℃から200℃まで20℃/分で昇温後、200℃で10分間保持し、次に、200℃から−50℃まで20℃/分で降温後、−50℃で10分間保持した。
融点およびガラス転移点測定:状態調整後、直ちに−50℃から400℃まで20℃/分で昇温した。
(3)ポリマー組成
13C−NMR測定により、下記の条件で求めた。
13C−NMR装置:BRUKER社製 DRX600
測定溶媒:オルトジクロロベンゼンとオルトジクロロベンゼン−d4の4:1(容積比)混合液
測定温度:135℃
【0017】
(4)抜き出し性
析出槽の排出口からのポリマースラリーの抜き出し性を、下記の通り評価した。
○:ポリマースラリーの抜き出しができた。
×:ポリマー粒子の凝集物が排出口に詰まり、ポリマースラリーの抜き出しができなかった。
(5)濾過性
ポリマースラリー1000mlを、目開き1.0μm、直径47mmのテフロン(登録商標)製メンブランフィルタ(アドバンテック東洋(株)社製)により濾過し、濾過にかかった時間を求めた。なお、濾過は、アスピレータ(東京理化器械(株)製、形式A−3S)を用い、吸引濾過を行った。
【0018】
[実施例1]
(ポリマーの合成)
アルゴンで置換した400mlのオートクレーブ中に、ビニルシクロヘキサン22ml、脱水トルエン174mlを投入した。オートクレーブ内を50℃に昇温した後、エチレンを0.8MPa仕込んだ。続いて、メチルアルモキサンのトルエン溶液[東ソー・アクゾ(株)製MMAO、Al原子換算濃度 6wt%]2.4mlを仕込み、イソプロピリデンビス(インデニル)ジルコニウムジクロリド 0.9mgを脱水トルエン 1.7mlに溶解したものを仕込み、1時間重合反応を行った。重合後、重合反応液を室温にてメタノール500ml中に投入し、エチレン−ビニルシクロヘキサン共重合体 29.5gを得た。得られたエチレン−ビニルシクロヘキサン共重合体(以下、重合体aと称する。)の[η]は0.64dl/g、ガラス転移温度は−20℃、最高融点は56℃、ビニルシクロヘキサン単位は16mol%であった。
【0019】
(ポリマー粒子の製造)
重合体aを良溶媒であるトルエンに溶解し、重合体aの濃度が10.3重量%であるポリマー溶液を調製した。析出槽として、有効容積が約1リットルであり、底に内容物の排出口を備え、二羽根パドル翼の攪拌装置を有し、冷媒による温調用ジャケットを備えたセパラブルフラスコを用意した。この析出槽に上記で調製したポリマー溶液400mlを投入し、攪拌翼の回転速度600rpmで攪拌しながらポリマー溶液の温度が2℃になるよう冷却した。次に、貧溶媒であるメタノール600mlを5ml/minの速度でポリマー溶液に滴下した。なお、滴下する位置は、攪拌軸と析出槽内壁の中央付近とし、ポリマー溶液とメタノールの混合液の温度が2℃となるように析出槽の温度を調整した。メタノールの滴下により、ポリマー溶液中にポリマー粒子が生成し、ポリマースラリーを得た。得られたポリマースラリーの評価結果を表1に示す。
【0020】
[実施例2]
実施例1のポリマー粒子の製造において、ポリマー溶液の温度を0℃とし、ポリマー溶液とメタノールの混合液の温度が0℃となるように析出槽の温度を調整した以外は、実施例1と同様な方法で実施した。得られたポリマースラリーの評価結果を表1に示す。
【0021】
[実施例3]
実施例2のポリマー粒子の製造において、重合体aの濃度が6.5重量%であるポリマー溶液とした以外は、実施例2と同様な方法で実施した。得られたポリマースラリーの評価結果を表1に示す。
【0022】
[比較例1]
実施例1のポリマー粒子の製造において、重合体aの濃度が2.8重量%であるポリマー溶液とした以外は、実施例1と同様な方法で実施した。得られたポリマースラリーの評価結果を表1に示す。
【0023】
[比較例2]
実施例1のポリマー粒子の製造において、ポリマー溶液の温度を26℃とし、ポリマー溶液とメタノールの混合液の温度が26℃となるように析出槽の温度を調整した以外は、実施例1と同様な方法で実施した。得られたポリマースラリーの評価結果を表1に示す。
【0024】
[比較例3]
実施例1のポリマー粒子の製造において、重合体aの濃度が2.8重量%であるポリマー溶液とし、ポリマー溶液の温度を26℃とし、ポリマー溶液とメタノールの混合液の温度が26℃となるように析出槽の温度を調整した以外は、実施例1と同様な方法で実施した。得られたポリマースラリーの評価結果を表1に示す。
【0025】
【表1】

Figure 2004292544
【0026】
【発明の効果】
以上、本発明により、抜き出し性、濾過性に優れたポリマースラリーが得られるポリマー粒子の製造方法を提供することができた。
【図面の簡単な説明】
【図1】本発明の実施例に用いた析出槽装置の模式図である。
【符号の説明】
11:1リットルセパラブルフラスコ
12:排出口
13:二枚羽パドル翼形攪拌機
14:温調ジャケット
15:冷媒
16:温度計(ポリマー溶液と貧溶媒の混合液温度測定用)
17:ポリマー溶液
18:貧溶媒滴下ノズル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing polymer particles.
[0002]
[Prior art]
Various methods have been proposed for producing particles of the polymer from a solution of the polymer in an organic solvent. For example, a method has been proposed in which a poor solvent for the polymer is added to a polymer solution to a point near the solubility limit of the polymer, and then the polymer solution is added to the poor solvent to precipitate polymer particles (eg, Patent Reference 1). Further, a method has been proposed in which a poor solvent for the polymer is added to the polymer solution to such an extent that the polymer does not precipitate, and then the polymer solution is heated to the boiling point of the solvent to evaporate the solvent to precipitate polymer particles ( For example, see Patent Document 2.)
[0003]
[Patent Document 1]
JP-A-6-256529 [Patent Document 2]
JP-A-7-48456
[Problems to be solved by the invention]
However, in the conventional method, when producing particles of a soft polymer, a solution in which the polymer particles are precipitated (hereinafter, referred to as a polymer slurry) may not be able to be extracted from the polymer precipitation tank, and the obtained polymer slurry may not be removed. It sometimes took time to separate the polymer particles and the solution by filtration.
Under such circumstances, an object to be solved by the present invention is to provide a method for producing polymer particles from which a polymer slurry having excellent withdrawability and filterability can be obtained.
[0005]
[Means for Solving the Problems]
That is, the present invention relates to a solution (X) obtained by dissolving a polymer (A) having a maximum temperature of a crystal melting peak of 30 to 70 ° C. measured by a differential scanning calorimeter in a good solvent of the polymer (A). And a poor solvent (Y) for the polymer (A) under the following conditions (a) to (c).
(A): The concentration of the polymer (A) in the solution (X) is 5 to 40% by weight. However, the solution (X) is 100% by weight.
(B): The volume ratio of the poor solvent (Y) to the solution (X) (volume of the poor solvent (Y) / volume of the solution (X)) is 0.5 or more.
(C): The temperature of the mixed solution of the solution (X) and the poor solvent (Y) is at least 40 ° C. lower than the maximum temperature of the crystal melting peak of the polymer (A).
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The polymer used in the present invention (hereinafter, referred to as polymer (A)) is the maximum temperature of the crystal melting peak measured by a differential scanning calorimeter (the melting peak temperature at which the temperature is the maximum, hereinafter, the maximum melting point). ) Is a polymer having a temperature of 30 to 70 ° C.
[0007]
Examples of the polymer (A) used in the present invention include an olefin-based polymer containing a repeating unit derived from an olefin. Examples of the olefin include ethylene, propylene, 1-butene, 1-hexene and 1-hexene. -Octene and the like. The olefin-based polymer may contain a repeating unit derived from a monomer other than the olefin, and examples of the monomer include norbornene, dimethanooctahydronaphthalene, styrene, vinylcyclohexane, and vinylnaphthalene. Can be
[0008]
Such olefin polymers include ethylene-norbornene copolymer, ethylene-styrene copolymer, ethylene-vinylcyclohexane copolymer, propylene-norbornene copolymer, propylene-styrene copolymer, propylene-vinylcyclohexane copolymer And so on.
[0009]
The solution (X) of the present invention is a solution obtained by dissolving the polymer (A) in a good solvent for the polymer (A). The concentration of the polymer (A) in the solution (X) is 5 to 40% by weight, preferably 10 to 20% by weight. If the concentration is too low, the filterability when filtering the polymer particles from the polymer slurry may be poor. On the other hand, if the concentration is too high, the withdrawability of the polymer slurry may be poor. In addition, the concentration of the polymer (A) in the solution (X) is defined as 100 wt% of the total of the weight of the dissolved polymer (A) and the weight of the good solvent.
[0010]
In the production of the polymer particles of the present invention, the mixing ratio of the poor solvent (Y) and the solution (X) with respect to the polymer (A) in the solution (X) is such that the amount of the poor solvent (Y) / the amount of the solution (X) (Volume ratio) is 0.5 or more, preferably 1 or more from the viewpoint of filterability. In addition, the ratio of the amount of the poor solvent (Y) / the amount of the solution (X) (volume ratio) is 3 or less, and preferably 2 or less, from the viewpoint of extraction performance.
[0011]
In the mixing of the solution (X) and the poor solvent (Y), the temperature of the mixed solution of the solution (X) and the poor solvent (Y) is determined when the maximum melting point of the polymer (A) is 30 to 70 ° C. The temperature is 40 ° C. or lower than the highest melting point of (A), and preferably 50 ° C. or lower than the highest melting point of the polymer (A). If the temperature of the mixed solution is too high, the withdrawability may be poor. Further, it is preferable that the lower limit of the temperature of the mixed solution be 350 ° C. lower than the highest melting point of the polymer (A) from an economic viewpoint.
[0012]
Examples of the solvent of the present invention include aromatic compounds such as toluene and xylene; aliphatic compounds such as hexane and heptane; oxygen-containing organic compounds such as acetone and methanol; and chlorine-containing organic compounds such as methylene chloride and chloroform. And these can be used alone or in combination of two or more.
[0013]
The good solvent of the present invention refers to a solvent that can dissolve the polymer (A), and each solvent is used alone or in combination of two or more. For example, good solvents for the ethylene-propylene-diene copolymer include toluene and heptane, and good solvents for the polycarbonate include methylene chloride. In addition, as the good solvent, a monomer (eg, diene, styrene, norbornene, etc.) serving as a raw material for polymer polymerization can also be used.
[0014]
The poor solvent (Y) of the present invention refers to a solvent that can precipitate the polymer (A) from the solution (X), and each solvent is used alone or in combination of two or more. For example, examples of the poor solvent for the ethylene-propylene-diene copolymer include methanol and acetone, and examples of the poor solvent for the polycarbonate include heptane.
[0015]
The method for mixing the solution (X) and the poor solvent (Y) in the production of the polymer particles of the present invention is not particularly limited as long as the solution (X) and the poor solvent (Y) are uniformly mixed. Preferably, the mixture of the solution (X) and the poor solvent (Y) is in a turbulent state. Specifically, a method of adding the poor solvent (Y) to the stirring solution (X), a method of adding the solution (X) to the stirring poor solvent (Y), and stirring with a mixer or the like. A method of simultaneously supplying the solution (X) and the poor solvent (Y) to the tank may be used. More preferably, the method is to add a poor solvent (Y) to the solution (X).
[0016]
【Example】
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
Physical properties in the examples were measured by the following methods.
(1) Intrinsic viscosity [η]
It measured at 135 degreeC using tetralin as a solvent using the Ubbelohde viscometer.
(2) The maximum melting point and the glass transition temperature were measured using a differential scanning calorimeter (SSC-5200, manufactured by Seiko Instruments Inc.) under the following conditions.
Conditioning: After raising the temperature from 20 ° C. to 200 ° C. at 20 ° C./min, holding at 200 ° C. for 10 minutes, then lowering the temperature from 200 ° C. to −50 ° C. at 20 ° C./min, and then at −50 ° C. for 10 minutes Held.
Melting point and glass transition point measurement: Immediately after conditioning, the temperature was raised from -50 ° C to 400 ° C at a rate of 20 ° C / min.
(3) Polymer composition
It was determined under the following conditions by 13 C-NMR measurement.
13 C-NMR apparatus: DRX600 manufactured by BRUKER
Measurement solvent: Ortho-dichlorobenzene and ortho-dichlorobenzene-d4 4: 1 (volume ratio) mixed solution Measurement temperature: 135 ° C
[0017]
(4) Extractability The extractability of the polymer slurry from the outlet of the precipitation tank was evaluated as follows.
:: The polymer slurry could be extracted.
×: Aggregates of polymer particles were clogged in the outlet, and the polymer slurry could not be extracted.
(5) Filterable polymer slurry (1000 ml) was filtered through a Teflon (registered trademark) membrane filter (manufactured by Advantech Toyo Co., Ltd.) having a mesh size of 1.0 μm and a diameter of 47 mm, and the time required for filtration was determined. The filtration was performed by suction filtration using an aspirator (manufactured by Tokyo Rikakiki Co., Ltd., Model A-3S).
[0018]
[Example 1]
(Synthesis of polymer)
In a 400 ml autoclave replaced with argon, 22 ml of vinylcyclohexane and 174 ml of dehydrated toluene were charged. After the temperature inside the autoclave was raised to 50 ° C., 0.8 MPa of ethylene was charged. Subsequently, 2.4 ml of a toluene solution of methylalumoxane [MMAO manufactured by Tosoh Akzo Co., Ltd., concentration in terms of Al atom: 6 wt%] was charged, and 0.9 mg of isopropylidenebis (indenyl) zirconium dichloride was added to 1.7 ml of dehydrated toluene. The solution was charged and a polymerization reaction was performed for 1 hour. After the polymerization, the polymerization reaction solution was poured into 500 ml of methanol at room temperature to obtain 29.5 g of an ethylene-vinylcyclohexane copolymer. [Η] of the obtained ethylene-vinylcyclohexane copolymer (hereinafter, referred to as polymer a) is 0.64 dl / g, the glass transition temperature is -20 ° C, the maximum melting point is 56 ° C, and the vinylcyclohexane unit is 16 mol. %Met.
[0019]
(Production of polymer particles)
The polymer a was dissolved in toluene, which is a good solvent, to prepare a polymer solution in which the concentration of the polymer a was 10.3% by weight. As a precipitation tank, a separable flask having an effective volume of about 1 liter, a bottom with a discharge port for contents, a stirring device with two blade paddle blades, and a jacket for controlling the temperature with a refrigerant was prepared. 400 ml of the above-prepared polymer solution was put into the precipitation tank, and the temperature of the polymer solution was cooled to 2 ° C. while stirring at a rotation speed of a stirring blade of 600 rpm. Next, 600 ml of methanol as a poor solvent was dropped into the polymer solution at a rate of 5 ml / min. The dropping position was near the center of the stirring shaft and the inner wall of the precipitation tank, and the temperature of the precipitation tank was adjusted so that the temperature of the mixed solution of the polymer solution and methanol was 2 ° C. By the dropwise addition of methanol, polymer particles were generated in the polymer solution, and a polymer slurry was obtained. Table 1 shows the evaluation results of the obtained polymer slurries.
[0020]
[Example 2]
In the production of the polymer particles of Example 1, the same as Example 1 except that the temperature of the polymer solution was 0 ° C. and the temperature of the precipitation tank was adjusted so that the temperature of the mixture of the polymer solution and methanol was 0 ° C. Was carried out in an appropriate manner. Table 1 shows the evaluation results of the obtained polymer slurries.
[0021]
[Example 3]
Example 2 was carried out in the same manner as in Example 2 except that a polymer solution in which the concentration of the polymer a was 6.5% by weight was used in the production of the polymer particles of Example 2. Table 1 shows the evaluation results of the obtained polymer slurries.
[0022]
[Comparative Example 1]
Example 1 was carried out in the same manner as in Example 1 except that a polymer solution in which the concentration of the polymer a was 2.8% by weight was used in the production of the polymer particles of Example 1. Table 1 shows the evaluation results of the obtained polymer slurries.
[0023]
[Comparative Example 2]
In the production of the polymer particles of Example 1, the same as Example 1 except that the temperature of the polymer solution was 26 ° C. and the temperature of the precipitation tank was adjusted so that the temperature of the mixture of the polymer solution and methanol was 26 ° C. Was carried out in an appropriate manner. Table 1 shows the evaluation results of the obtained polymer slurries.
[0024]
[Comparative Example 3]
In the production of the polymer particles of Example 1, a polymer solution having a concentration of the polymer a of 2.8% by weight was used, the temperature of the polymer solution was 26 ° C., and the temperature of the mixture of the polymer solution and methanol was 26 ° C. The procedure was performed in the same manner as in Example 1 except that the temperature of the precipitation tank was adjusted as described above. Table 1 shows the evaluation results of the obtained polymer slurries.
[0025]
[Table 1]
Figure 2004292544
[0026]
【The invention's effect】
As described above, according to the present invention, it was possible to provide a method for producing polymer particles from which a polymer slurry having excellent withdrawability and filterability was obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view of a deposition tank apparatus used in an embodiment of the present invention.
[Explanation of symbols]
11: 1 liter separable flask 12: outlet 13: two-bladed paddle impeller stirrer 14: temperature control jacket 15: refrigerant 16: thermometer (for measuring the temperature of a mixed solution of a polymer solution and a poor solvent)
17: Polymer solution 18: Poor solvent dripping nozzle

Claims (2)

示差走査熱量測定装置で測定される結晶融解ピークの最高温度が30〜70℃であるポリマー(A)を該ポリマー(A)の良溶媒に溶解してなる溶液(X)と、該ポリマー(A)に対する貧溶媒(Y)とを、下記(a)〜(c)の条件で混合するポリマー粒子の製造方法。
(a):溶液(X)中のポリマー(A)の濃度が、5〜40重量%であること。ただし、溶液(X)を100重量%とする。
(b):貧溶媒(Y)と溶液(X)との体積比(貧溶媒(Y)の体積/溶液(X)の体積)が、0.5以上であること。
(c):溶液(X)と貧溶媒(Y)の混合溶液の温度が、ポリマー(A)の結晶融解ピークの最高温度よりも40℃以上低い温度であること。
A solution (X) obtained by dissolving a polymer (A) having a maximum crystal melting peak temperature of 30 to 70 ° C. measured by a differential scanning calorimeter in a good solvent for the polymer (A); A) a method of producing polymer particles, wherein the poor solvent (Y) is mixed under the following conditions (a) to (c).
(A): The concentration of the polymer (A) in the solution (X) is 5 to 40% by weight. However, the solution (X) is 100% by weight.
(B): The volume ratio of the poor solvent (Y) to the solution (X) (volume of the poor solvent (Y) / volume of the solution (X)) is 0.5 or more.
(C): The temperature of the mixed solution of the solution (X) and the poor solvent (Y) is at least 40 ° C. lower than the maximum temperature of the crystal melting peak of the polymer (A).
更に下記(d)の条件で溶液(X)と貧溶媒(Y)とを混合する請求項1に記載のポリマー粒子の製造方法。
(d):溶液(X)に貧溶媒(Y)を添加する方法
The method for producing polymer particles according to claim 1, wherein the solution (X) and the poor solvent (Y) are further mixed under the following condition (d).
(D): a method of adding a poor solvent (Y) to the solution (X)
JP2003084768A 2003-03-26 2003-03-26 Method for producing polymer particle Pending JP2004292544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084768A JP2004292544A (en) 2003-03-26 2003-03-26 Method for producing polymer particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084768A JP2004292544A (en) 2003-03-26 2003-03-26 Method for producing polymer particle

Publications (1)

Publication Number Publication Date
JP2004292544A true JP2004292544A (en) 2004-10-21

Family

ID=33399858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084768A Pending JP2004292544A (en) 2003-03-26 2003-03-26 Method for producing polymer particle

Country Status (1)

Country Link
JP (1) JP2004292544A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993052B2 (en) 2006-09-28 2011-08-09 Nof Corporation Agitation mixer and feed pipe structure
CN109749099A (en) * 2019-02-27 2019-05-14 北京波米科技有限公司 System and serialization separation method is precipitated in a kind of polymer solution solid powdering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993052B2 (en) 2006-09-28 2011-08-09 Nof Corporation Agitation mixer and feed pipe structure
CN109749099A (en) * 2019-02-27 2019-05-14 北京波米科技有限公司 System and serialization separation method is precipitated in a kind of polymer solution solid powdering
CN109749099B (en) * 2019-02-27 2022-01-25 北京波米科技有限公司 Solid powder precipitation system and continuous precipitation method for polymer solution

Similar Documents

Publication Publication Date Title
CN104321367B (en) The preparation method of the poly- MAO composition of small particle size solid shape
FI112234B (en) Catalytic compositions and processes for preparing polyolefins
EP3450467A1 (en) Hybrid supported metallocene catalyst, and polyolefin resin having excellent processability and using same
US8404880B2 (en) Solid polymethylaluminoxane composition and method for manufacturing same
CN1117101C (en) Process for preparing catalyst supports and supported polyolefin catalysts and also their use for preparation of polyolefins
CN112088174B (en) Polyethylene and chlorinated polyethylene thereof
CN1037106C (en) Polymetallic catalysts, method of preparing and polymers produced thereby
JP7001382B2 (en) Polyethylene powder
PL165028B1 (en) Method of obtaining polymers or copolymers of ethylenic hydrocarbons
US6613850B1 (en) Method for feeding boron compounds, fine particles of boron compounds, catalyst components for the polymerization of olefins comprising them, and processes for the production of the particles
JPH06501050A (en) Catalysts for the polymerization and copolymerization of olefins
JP6159049B1 (en) Solid MAO composition containing Al2O3 and method for producing the same
JP2004292544A (en) Method for producing polymer particle
JP2010132728A (en) Method of producing polymer particle
JP6608030B2 (en) Ultra high molecular weight polyethylene powder and ultra high molecular weight polyethylene powder fiber
Abd-El-Aziz et al. Hyperbranched polymers containing cyclopentadienyliron complexes
JP2004292545A (en) Method for purifying copolymer
JP2011137101A (en) Method for producing non-aqueous pigment dispersion for color filter
CN1337413A (en) Carrier catalyst of high productivity and greatly reducing fouling for producing meta-styrene polymers
CN109312026A (en) Catalyst composition
Lai et al. Nanostructured polymers with embedded self-assembled networks: Reversibly tunable phase behaviors and physical properties
JP4056843B2 (en) Method for producing isobutylene polymer
Mohajery et al. Synthesis and properties of poly (ethylene oxide)‐grafted polyethylene copolymer and terpolymer
JPH0770235A (en) Preparation of elastic polypropylene
JP2006514156A (en) Method for producing cyclic olefin polymer having high bulk density and cyclic olefin polymer produced thereby