JP2004290733A - Method for recovering valuable matter from gasified residue - Google Patents

Method for recovering valuable matter from gasified residue Download PDF

Info

Publication number
JP2004290733A
JP2004290733A JP2003083169A JP2003083169A JP2004290733A JP 2004290733 A JP2004290733 A JP 2004290733A JP 2003083169 A JP2003083169 A JP 2003083169A JP 2003083169 A JP2003083169 A JP 2003083169A JP 2004290733 A JP2004290733 A JP 2004290733A
Authority
JP
Japan
Prior art keywords
waste
residue
sorting
valuable
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003083169A
Other languages
Japanese (ja)
Inventor
Nobutoshi Tanaka
信壽 田中
Shinseki Itaya
真積 板谷
Gentaro Takasuka
玄太郎 高須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003083169A priority Critical patent/JP2004290733A/en
Publication of JP2004290733A publication Critical patent/JP2004290733A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently recover a valuable metal such as Cu, Pb, Zn or the like from gasified residue obtained by pyrolyzing waste (coarse waste refuse, non-combustible waste refuse, industrial waste or the like). <P>SOLUTION: This method for recovering the valuable matter from gasified residue includes a crushing process (S1) for crushing waste into a size of 50-150 mm, a sorting process (S2) for sorting iron and aluminum, a pyrolyzing process (S3) for pyrolyzing the waste at about 450°C to obtain the gasified residue, a cooling process (S4) for the gasified residue, a primary sorting process (S5) for sorting the gasified residue (mainly pyrolyzed carbon) with a particle size of 1 mm or below and a secondary sorting process (S6) for sorting the gasified residue with a particle size of 1-6 mm. Since valuable matters such as copper, zinc, lead and the like are unevenly distributed in the gasified residue with a particle size of 1-6 mm, these valuable matters can be recovered efficiently. As a secondary sorting means, there is a vibration sieve, a rotary sieve or a wind force classifying means employing wind force fitted to individual valuable matters to sort target heavy metals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は廃棄物のガス化残渣からの有価物回収方法に係り、特に、廃棄物、すなわち粗大ゴミ、不燃ごみ、産業廃棄物などから生成したガス化残渣に含まれる銅(Cu)、亜鉛(Zn)、鉛(Pb)等の重金属類を効果的に回収する技術に関する。
【0002】
【従来の技術】
一般に、粗大ごみ、不燃ごみ、産業廃棄物などと称される廃棄物には、Cu、Zn、Pb等の重金属類が含まれているものが多々ある。これらの重金属類は、目視されるときは手選別によって回収されることもあるが、例えばゴムや樹脂などとの複合物として廃棄物中に存在することが多く、そのまま焼却処理されるのが通常である。
【0003】
これらの重金属類は、有害物質として環境汚染の原因の一つでもあるため、ごみ処理技術には、一例として、鉄やアルミニウムを回収した後の破砕ごみを熱分解した後、熱分解残渣を高性能な溶融炉で溶融し、ごみに含まれている重金属類を溶融スラグ中に閉じ込めるという方法が採用されている。
【0004】
しかしながら、これらの重金属類は、それぞれ資源として有用な金属であり、ごみ中から取り出して有価物としてリサイクルし再利用することが期待されている。特許文献1には次のような手順で金属類を回収する技術が開示されている。(特許文献1参照)。
【0005】
▲1▼ 廃棄物を最大粒径が約150mmになるように粗粉砕する
▲2▼ 磁選機により鉄系金属を回収する
▲3▼ 乾燥炉で100〜150℃に加熱し、含水率10%程度に乾燥する
▲4▼ 熱分解炉で400〜500℃に加熱して熱分解する
▲5▼ 熱分解残渣を冷却装置で100℃以下に冷却する
▲6▼ 熱分解残渣をロールミル、ハンマーミル、ボールミル等で粉砕する
▲7▼ 粉砕した残渣を振動篩などにより、粒径10mm以上、1〜10mm、1mm以下の3種に分級する。
【0006】
特許文献1の段落〔0015〕〔0016〕には、廃棄物性状に合わせて粉砕器を適当に選択することにより、大半の金属類を粒径10mm以上、ほぼ全ての非金属不燃物類と可燃物を粒径10mm以下とするとともに、大半の可燃物の粒径を1mm以下にできると記載されている。
【0007】
【特許文献1】
特開2000−88219号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載の例は、次のような相違点および問題点を含んでいる。▲1▼あらかじめ、銅、鉛、亜鉛を回収する目的で、プロセスフローが組まれていないため、これらの有価金属がチャー側に他の成分といっしょに回収されてしまう。▲2▼チャー側に回収されたこれらの有価金属は燃焼溶融炉でスラグ化されるため、これらの有価金属を分離して回収することが非常に困難である。▲3▼よって本発明では、これらの有価金属をその粗粒分布に着目して効率よく分離回収することに成功した。
【0009】
本発明の目的は、廃棄物(粗大ゴミ、不燃ごみ、産業廃棄物等)を熱分解した後のガス化残渣から、これら銅、鉛、亜鉛等の有価金属を効率的に回収することである。
【0010】
【課題を解決するための手段】
上記目的は、廃棄物を大きさ50〜150mmに破砕する工程と、該破砕した廃棄物から鉄およびアルミを除去回収する工程と、該鉄およびアルミを除去した廃棄物を熱分解反応器に投入し、約450度で間接加熱して分解ガスとガス化残渣とに熱分解する工程と、該ガス化残渣を約30〜80℃に冷却する工程と、該冷却したガス化残渣中から大きさ1mm以下の熱分解カーボンを除去する工程と、該熱分解カーボンを除去したガス化残渣から、大きさ1〜6mmの残渣を選別する工程と、を備えたガス化残渣からの有価物回収方法によって達成される。
【0011】
本発明者らは、廃棄物を破砕し、鉄やアルミニウムを選別回収した後、熱分解反応器に投入して生成したガス化残渣を分析した結果、一定範囲の大きさのガス化残渣中にCu、Zn、Pb等の有価物が偏在しているのを見い出した。これは、ゴムや樹脂など金属以外のものに被覆されたり合体したりして、複合物として廃棄物中に存在していたこれらの重金属類が、熱分解反応によって被覆物のない無垢な金属または合金としてガス化残渣中に含まれることになったからであると思われる。
【0012】
【発明の実施の形態】
本発明の実施形態の概要は、ごみなどの廃棄物を破砕し、鉄およびアルミを選別除去し、次いで熱分解した後のガス化残渣から、特定範囲の大きさの残渣物を選別することにより、該範囲中に偏在するCu、Pb、Zn等の有価物を効率的に回収するようにしたものである。
【0013】
以下、本発明の一実施形態を、図面を参照して説明する。図1は本発明の一実施形態を示すフローである。なお、本発明が対象とするごみは、いわゆる生ごみを除く粗大ごみや不燃ごみなどの廃棄物で、焼却炉に直接投入して燃やすごみ以外のごみの殆どを対象にできる。
【0014】
ここで、本発明が対象とするごみの種類を定義すると、▲1▼ 粗大ごみとは、自治体が回収する家電、家具などの粗大ごみ、▲2▼ 不燃ごみとは、自治体が回収するビンやカン類などの焼却に不適なごみとなり、これらのごみを本発明の対象として処理できる。ここでは、これらのごみを廃棄物と称することにする。
【0015】
まず、本発明者らが実施した実験およびその結果を説明する。ある自治体ごみ処理施設において粗大ごみおよぴ不燃ごみを破砕し、それぞれから磁選機により鉄を除去した、破砕粗大ごみ試料(A1と称す)と、破砕不燃ごみ試料(B1と称す)を採取した。
【0016】
A1およびB1のそれぞれの一部を、ロータリーキルン式加熱炉(直径0.25m、長さ2m、加熱温度450℃、滞留時間60分、酸素濃度2%以下)で間接的に加熱し、分解ガスとガス化残渣とに熱分解した。以下ではA1のガス化残渣をA2、B1のガス化残渣をB2と略称する。A1は7kg(含水率11.7%)、B1は6kg(含水率10.8%)を熱分解し、それぞれ1.73kgのA2と、2.30kgのB2が得られた。
【0017】
これらの試料A1、A2、B1、B2を、手ふるいにより、大きさ1mm以下、1〜5.66mm、5.66mm以上の3種類に選別した。また、5.66mm以上の試料の物理組成は、木・紙、プラスチック、鉄、非鉄、ガラス、石、炭等が測定された。
【0018】
表1に、熱分解前後の粒度分布および物理組成を示す。5.66mm以上に含まれていた木・紙、プラスチックは、熱分解によりその割合が減少し、5.66mm以下の小粒径分および鉄の割合が多くなっている。
【0019】
【表1】

Figure 2004290733
【0020】
次いで、3種類にふるい分けした各試料について、銅(Cu)、亜鉛(Zn)、鉛(Pb)の含有量を測定した。各試料は前処理として、電気炉で600℃、2時間強熱し、残渣をHNO:HCl=1:1の混酸で酸分解後、原子吸光光度計を用いて含有量を測定した。ただし、5.66mm以上に含まれた鉄および非鉄金属の粒子は、蛍光X線分析装置を用いて金属含有量の分析を行なった。
【0021】
図1に、A1およびA2における粒径別Cu含有量の分布を、図2に、B1およびB2における粒径別Cu含有量の分布を示す。図1に示すように、粗大ごみでは、熱分解前には5.66〜16mmに多く見られたCuが、熱分解後は、1〜5.66mmの範囲に偏在していることがわかる。
【0022】
また、不燃ごみでは、図2に示すように、熱分解前には、5.66mm以上に広く散在していたCuが、熱分解後は、2〜5.66mmに顕著に集中して存在していることがわかる。なお、粗大ごみおよび不燃ごみ共に、1mm以下では熱分解前後で殆ど含有量の変化はない。
【0023】
図3に、A1およびA2における粒径別Zn含有量の分布を、図4に、B1およびB2における粒径別Zn含有量の分布を示す。図3に示すように、粗大ごみでは、熱分解前後で存在範囲は変化せず、5.66〜16mmの範囲に存在している。しかし、不燃ごみでは、図4に示すように、熱分解前に5.66〜16mmに集中していたものが、熱分解後は、2mm以下に偏在していることがわかる。
【0024】
図5に、A1およびA2における粒径別Pb含有量の分布を、図6に、B1およびB2における粒径別Pb含有量の分布を示す。粗大ごみでは、熱分解前には5.66〜16mmの範囲に存在しているが、熱分解後は、0.5〜5.66mmに偏在している。また、不燃ごみでは、熱分解前には、平均的に散在していたものが、熱分解後は、1〜2mmを中心に、0.5〜2mmに偏在している。
【0025】
以上の実験から、粗大ごみおよび不燃ごみのガス化残渣には、1〜6mmの範囲にCuが偏在していることがわかった。また、Znは、特に不燃ごみにおいて、1〜2mmに集中していることがわかった。また、Pbは、粗大ごみでは、0.5〜5.66mmに、不燃ごみでは、0.25〜2mmの範囲に偏在していることがわかった。
【0026】
したがって、それぞれの粒径範囲のガス化残渣を選別するという単純な作業によって、容易にかつ効率的に、これらの重金属類を有価物として回収できる。また、一方では、これらの重金属類を回収することによって、環境汚染等の原因となる物質を除去できることにもなる。
【0027】
次に、本発明の一実施形態を、図7のフローを参照して説明する。まず、破砕工程(S1)では、廃棄物を50〜150mmの大きさに破砕する。本例では、回転するハンマと衝撃板とによる衝撃や、回転刃により廃棄物を砕く高速もしくは低速回転式の破砕機が好ましい。ただし、せん断式破砕機を使用することも可能である。
【0028】
次に、鉄およびアルミニウムの選別工程(S2)では、破砕した廃棄物の中から、永久磁石または電磁石の磁力を用いた磁選機によってまず鉄を選別する。次に、鉄を取り除いた廃棄物中のアルミニウムに、電磁作用でうず電流を発生させ、磁束との相互作用でアルミニウムに偏向力を与えて選別する。
【0029】
次の熱分解工程(S3)では、破砕され、鉄およびアルミニウムを除去した廃棄物を、低酸素で、かつ若干負圧にした雰囲気で、約300〜600℃、通常約450℃で間接加熱していわゆる蒸し焼きにすると、ごみ中の水分が蒸発した分解ガスと熱分解残留物であるガス化残渣とに分解する。本例では横型回転ドラム式の熱分解反応器を使用する。
【0030】
このガス化残渣の組成は、廃棄物の種類によって種々異なるが、日本国内の都市ごみの場合、本発明者らの知見によれば、
大部分が比較的細粒の可燃分 10〜60%
比較的細粒の灰分 5〜40%
粗粒金属成分 7〜50%
粗粒瓦礫、陶器、コンクリート等 10〜60%
より構成されていることが判明している。
【0031】
次に、冷却工程(S4)では、熱分解工程で約450℃の比較的高温でガス化残渣が排出され、冷却装置により約60℃に冷却される。冷却装置としては横型回転ドラム式の間接冷却方式が好適である。後段の選別工程におけるガス化残渣の取り扱いや、また、ガス化残渣中に含まれる熱分解カーボンは高カロリーの燃料として利用できることを考慮すれば、乾燥を維持する間接冷却方式が好ましい。
【0032】
次に、一次選別工程(S5)で、熱分解カーボンを選別回収する。ごみ中の可燃物は熱分解工程を経ると、殆どの可燃物が粒径1mm以下の熱分解カーボン、あるいはチャーとも呼ばれる炭化物となる。この熱分解カーボンは高カロリーの燃料として利用される。
【0033】
次に、二次選別工程(S6)で有価物を選別する。本発明者らの分析によれば、前述のとおり、銅、亜鉛、鉛等の有価物は、大きさ1〜6mm範囲のガス化残渣中に偏在しており、6mm目篩を採用することにより、本発明が目的とする有価物リッチの残渣を得ることができる。
【0034】
なお、上記選別に使用する篩は、振動篩、回転篩などが好適であるが、本発明はこれに限定されない。例えば風力分級式で、個々の有価物に適した風速を採用することにより、目的とする重金属を選別することもできる。また、遠心式、磁選式等の分別機を使用してもよい。
【0035】
次に、有価物リッチの残渣を回収した残りの篩目6mmを超えるガス化残渣は、主としてガレキ、ガラス、陶器等であり、種々の処理方法があるが、本実施形態では、非金属不燃物処理工程(S7)において、例えば、ロール式、チューブミル式、ロッドミル式、ボールミル式等の粉砕機を用いて、粒径1mm以下に微粉砕し、熱分解カーボンとともに、燃焼溶融炉で内で1300℃程度の高温域で燃焼溶融して溶融スラグとする。
【0036】
なお、上記フローは一例で、鉄およびアルミニウムの選別を熱分解前に行なっているが、これを熱分解後のガス化残渣に対して実施してもよい。また、上記フローでは、粗大および不燃ごみ等を含む廃棄物一般について、大きさ1〜6mmのガス化残渣を選別することにより、Cu、Zn、Pb等の有価物を多量に回収できるが、さらに、ごみや重金属の種別に応じて、含有率の高い有価物を、単に篩目を選別するという単純な作業で、容易にかつ効率的に回収できる。
【0037】
例えば、不燃ごみを集約して扱った場合、粒径0.25〜2mmのガス化残渣を集中して選別することによりZnおよびPbを選択的に回収できる。同様に、粗大ごみを集約して扱った場合、粒径0.5〜5.66mmのガス化残渣を集中して選別することによりPbを選択的に回収できる。
【0038】
【発明の効果】
本発明によれば、廃棄物を熱分解したガス化残渣を、単に篩目を選択して選別するという極めて単純な作業で、廃棄物中に含まれる銅、亜鉛、鉛等の有価物を選択的に回収できる。
【図面の簡単な説明】
【図1】本発明における粗大ごみの熱分解工程前後の粒径別Cu含有量の分布図。
【図2】本発明における不燃ごみの熱分解工程前後の粒径別Cu含有量の分布図。
【図3】本発明における粗大ごみの熱分解工程前後の粒径別Zn含有量の分布図。
【図4】本発明における不燃ごみの熱分解工程前後の粒径別Zn含有量の分布図。
【図5】本発明における粗大ごみの熱分解工程前後の粒径別Pb含有量の分布図。
【図6】本発明における不燃ごみの熱分解工程前後の粒径別Pb含有量の分布図。
【図7】本発明の一実施形態を示すフロー図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for recovering valuable resources from gasification residues of waste, and particularly to copper (Cu), zinc (Zinc) contained in gasification residues generated from waste, that is, oversized garbage, non-combustible garbage, industrial waste, and the like. The present invention relates to a technique for effectively recovering heavy metals such as Zn) and lead (Pb).
[0002]
[Prior art]
In general, there are many wastes referred to as oversized refuse, non-combustible refuse, and industrial waste that contain heavy metals such as Cu, Zn, and Pb. These heavy metals can be collected by hand when they are visually inspected.However, they are often present in wastes as a composite with rubber or resin, for example, and are usually incinerated as they are. It is.
[0003]
Since these heavy metals are one of the causes of environmental pollution as harmful substances, waste treatment technologies include, for example, pyrolysis of crushed refuse after collecting iron and aluminum, A method of melting in a high-performance melting furnace and confining heavy metals contained in refuse in molten slag is adopted.
[0004]
However, these heavy metals are useful metals as resources, respectively, and are expected to be taken out of garbage, recycled as valuable resources, and reused. Patent Document 1 discloses a technique for recovering metals by the following procedure. (See Patent Document 1).
[0005]
{Circle around (1)} Roughly pulverize waste to a maximum particle size of about 150 mm. {2} Recover ferrous metals with a magnetic separator. {3} Heat to 100-150 ° C. in a drying furnace, water content about 10%. (4) Heat to 400-500 ° C in a pyrolysis furnace for pyrolysis. (5) Cool the pyrolysis residue to 100 ° C or less with a cooling device. (6) Roll the residue, roll hammer mill, ball mill. {Circle around (7)} The crushed residue is classified into three types with a particle size of 10 mm or more, 1 to 10 mm, and 1 mm or less using a vibration sieve or the like.
[0006]
In paragraphs [0015] and [0016] of Patent Document 1, most of the metals are made to have a particle diameter of 10 mm or more and almost all of the non-metal incombustibles are combustible by appropriately selecting a pulverizer according to the properties of the waste. It is described that the particle size of the combustible material can be reduced to 1 mm or less while the particle size of the combustible material can be reduced to 10 mm or less.
[0007]
[Patent Document 1]
JP 2000-88219 A
[Problems to be solved by the invention]
However, the example described in Patent Literature 1 includes the following differences and problems. {Circle around (1)} Since no process flow has been set up in advance for the purpose of recovering copper, lead and zinc, these valuable metals are recovered together with other components on the char side. (2) Since these valuable metals collected on the char side are converted into slag in the combustion melting furnace, it is very difficult to separate and collect these valuable metals. {Circle around (3)} Thus, the present invention succeeded in efficiently separating and recovering these valuable metals by focusing on their coarse particle distribution.
[0009]
An object of the present invention is to efficiently recover valuable metals such as copper, lead, and zinc from gasification residues after pyrolysis of wastes (oversized garbage, incombustible garbage, industrial waste, and the like). .
[0010]
[Means for Solving the Problems]
The object is to crush the waste to a size of 50 to 150 mm, to remove and recover iron and aluminum from the crushed waste, and to put the waste from which the iron and aluminum have been removed into a pyrolysis reactor. A step of indirect heating at about 450 ° C. to thermally decompose into a decomposition gas and a gasification residue; a step of cooling the gasification residue to about 30 to 80 ° C .; A step of removing pyrolytic carbon of 1 mm or less, and a step of selecting a residue having a size of 1 to 6 mm from the gasification residue from which the pyrolytic carbon has been removed; Achieved.
[0011]
The present inventors crushed waste, after selectively collecting iron and aluminum, analyzed the gasification residue generated by throwing it into a pyrolysis reactor, and found that the gasification residue in a certain range of size It was found that valuable resources such as Cu, Zn, and Pb were unevenly distributed. This is because these heavy metals, which were coated or coalesced with materials other than metals such as rubber and resin, and were present in the waste as a composite, were converted to solid metals or uncoated metals by thermal decomposition reaction. This is probably because the alloy was contained in the gasification residue.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The outline of an embodiment of the present invention is to crush waste such as garbage, sort and remove iron and aluminum, and then, from the gasification residue after pyrolysis, to sort residue in a specific range of size. , In which valuable materials such as Cu, Pb and Zn unevenly distributed in the range are efficiently collected.
[0013]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing an embodiment of the present invention. The garbage targeted by the present invention is waste such as bulky garbage and non-burnable garbage other than so-called garbage, and can cover almost all garbage other than refuse which is directly injected into an incinerator and burned.
[0014]
Here, when the type of garbage targeted by the present invention is defined, (1) oversized garbage is oversized garbage such as home appliances and furniture collected by the municipalities, and (2) non-combustible garbage is bins collected by the municipalities. The waste becomes unsuitable for incineration of cans and the like, and the waste can be treated as an object of the present invention. Here, these wastes are referred to as waste.
[0015]
First, an experiment conducted by the present inventors and the results thereof will be described. A municipal solid waste treatment facility crushed oversized and incombustible waste, and iron was removed from each of them by a magnetic separator. A crushed oversized waste sample (referred to as A1) and a crushed incombustible waste sample (referred to as B1) were collected. .
[0016]
A part of each of A1 and B1 is indirectly heated in a rotary kiln type heating furnace (diameter 0.25 m, length 2 m, heating temperature 450 ° C., residence time 60 minutes, oxygen concentration 2% or less), and decomposition gas and Pyrolyzed to gasification residue. Hereinafter, the gasification residue of A1 is abbreviated as A2, and the gasification residue of B1 is abbreviated as B2. 7 kg (water content 11.7%) of A1 and 6 kg (water content 10.8%) of B1 were pyrolyzed to obtain 1.73 kg of A2 and 2.30 kg of B2, respectively.
[0017]
These samples A1, A2, B1, and B2 were sorted by hand sieve into three types having a size of 1 mm or less, 1 to 5.66 mm, and 5.66 mm or more. As for the physical composition of the sample of 5.66 mm or more, wood, paper, plastic, iron, non-ferrous, glass, stone, charcoal and the like were measured.
[0018]
Table 1 shows the particle size distribution and physical composition before and after thermal decomposition. The proportion of wood, paper, and plastic contained at 5.66 mm or more is reduced by thermal decomposition, and the proportion of small particle size of 5.66 mm or less and the proportion of iron are increased.
[0019]
[Table 1]
Figure 2004290733
[0020]
Next, the content of copper (Cu), zinc (Zn), and lead (Pb) was measured for each of the three types of samples. As a pretreatment, each sample was ignited at 600 ° C. for 2 hours in an electric furnace, the residue was acid-decomposed with a mixed acid of HNO 3 : HCl = 1: 1, and the content was measured using an atomic absorption spectrophotometer. However, the iron and non-ferrous metal particles contained in 5.66 mm or more were analyzed for metal content using an X-ray fluorescence analyzer.
[0021]
FIG. 1 shows the distribution of the Cu content by particle size in A1 and A2, and FIG. 2 shows the distribution of the Cu content by particle size in B1 and B2. As shown in FIG. 1, it can be seen that in bulky refuse, Cu, which was often found in 5.66 to 16 mm before pyrolysis, was unevenly distributed in the range of 1 to 5.66 mm after pyrolysis.
[0022]
Further, in the non-combustible waste, as shown in FIG. 2, Cu which was widely scattered over 5.66 mm before the pyrolysis was remarkably concentrated at 2 to 5.66 mm after the pyrolysis. You can see that it is. In addition, when the size of the bulky waste and the non-burnable waste is 1 mm or less, there is almost no change in the content before and after thermal decomposition.
[0023]
FIG. 3 shows the distribution of the Zn content by particle size in A1 and A2, and FIG. 4 shows the distribution of the Zn content by particle size in B1 and B2. As shown in FIG. 3, in the case of oversized refuse, the existing range does not change before and after thermal decomposition, and exists in the range of 5.66 to 16 mm. However, as shown in FIG. 4, the non-combustible refuse was concentrated at 5.66 to 16 mm before the pyrolysis, but was unevenly distributed at 2 mm or less after the pyrolysis.
[0024]
FIG. 5 shows the distribution of the Pb content by particle size in A1 and A2, and FIG. 6 shows the distribution of the Pb content by particle size in B1 and B2. The oversized garbage is present in the range of 5.66 to 16 mm before pyrolysis, but is unevenly distributed in 0.5 to 5.66 mm after pyrolysis. In addition, non-combustible refuse, which was scattered on average before thermal decomposition, is unevenly distributed in 0.5 to 2 mm centering on 1 to 2 mm after thermal decomposition.
[0025]
From the above experiments, it was found that Cu was unevenly distributed in the range of 1 to 6 mm in the gasification residue of oversized refuse and noncombustible refuse. In addition, it was found that Zn was concentrated to 1 to 2 mm particularly in noncombustible waste. In addition, it was found that Pb was unevenly distributed in the range of 0.5 to 5.66 mm in the case of bulky waste and in the range of 0.25 to 2 mm in the case of non-burnable waste.
[0026]
Therefore, these simple heavy metals can be easily and efficiently recovered as valuable resources by a simple operation of selecting gasification residues having respective particle size ranges. On the other hand, by collecting these heavy metals, it is possible to remove substances that cause environmental pollution and the like.
[0027]
Next, an embodiment of the present invention will be described with reference to the flowchart of FIG. First, in the crushing step (S1), the waste is crushed to a size of 50 to 150 mm. In this example, a high-speed or low-speed rotary crusher that crushes waste by a rotating hammer and an impact plate or a rotary blade is preferable. However, it is also possible to use a shear crusher.
[0028]
Next, in the iron and aluminum sorting step (S2), iron is first sorted out of the crushed waste by a magnetic separator using the magnetic force of a permanent magnet or an electromagnet. Next, an eddy current is generated by electromagnetic action in the aluminum in the waste from which iron has been removed, and a deflection force is applied to the aluminum by interaction with the magnetic flux to sort the aluminum.
[0029]
In the next pyrolysis step (S3), the crushed waste from which iron and aluminum have been removed is indirectly heated at about 300 to 600 ° C., usually about 450 ° C., in an atmosphere of low oxygen and slightly negative pressure. In the case of so-called steaming, the moisture in the garbage is decomposed into evaporated decomposition gas and gasification residue which is a pyrolysis residue. In this example, a horizontal rotary drum type pyrolysis reactor is used.
[0030]
The composition of this gasification residue varies depending on the type of waste, but in the case of municipal solid waste in Japan, according to the findings of the present inventors,
Most of the combustibles are relatively fine granules 10-60%
Relatively fine ash 5-40%
Coarse metal component 7-50%
Coarse rubble, pottery, concrete, etc. 10-60%
Has been found to be composed of
[0031]
Next, in the cooling step (S4), the gasification residue is discharged at a relatively high temperature of about 450 ° C. in the pyrolysis step, and is cooled to about 60 ° C. by the cooling device. As the cooling device, a horizontal rotary drum type indirect cooling system is preferable. Considering the handling of the gasification residue in the subsequent sorting step and the fact that the pyrolytic carbon contained in the gasification residue can be used as a high-calorie fuel, an indirect cooling system that maintains drying is preferable.
[0032]
Next, in a primary sorting step (S5), the pyrolytic carbon is sorted and collected. When the combustibles in the refuse undergo the pyrolysis step, most of the combustibles become pyrolytic carbon having a particle size of 1 mm or less, or char also called char. This pyrolytic carbon is used as a high calorie fuel.
[0033]
Next, valuables are sorted in a secondary sorting step (S6). According to the analysis of the present inventors, as described above, valuable resources such as copper, zinc, and lead are unevenly distributed in gasification residues having a size in the range of 1 to 6 mm, and by employing a 6 mm mesh sieve. Thus, a valuable substance-rich residue intended by the present invention can be obtained.
[0034]
In addition, a vibrating sieve, a rotating sieve, or the like is suitable as the sieve used for the above-described sorting, but the present invention is not limited thereto. For example, a target heavy metal can be selected by adopting a wind classification method using a wind speed suitable for each valuable material. Further, a centrifugal separator, a magnetic separator or the like may be used.
[0035]
Next, the remaining gasification residue exceeding 6 mm in which the valuable material-rich residue is collected is mainly rubble, glass, pottery, etc., and there are various treatment methods. In this embodiment, the non-metal incombustible material is used. In the processing step (S7), for example, using a mill such as a roll mill, a tube mill mill, a rod mill mill, a ball mill mill, or the like, finely pulverize to a particle size of 1 mm or less and, together with pyrolytic carbon, 1300 in a combustion melting furnace. Combustion and melting in a high temperature range of about ° C to form molten slag.
[0036]
Note that the above flow is an example, and the separation of iron and aluminum is performed before the thermal decomposition, but this may be performed on the gasification residue after the thermal decomposition. Further, in the above-mentioned flow, a large amount of valuable materials such as Cu, Zn, and Pb can be recovered by sorting gasification residues having a size of 1 to 6 mm for general waste including coarse and non-combustible waste. In addition, valuable materials having a high content can be easily and efficiently recovered by a simple operation of simply screening sieves according to the types of garbage and heavy metals.
[0037]
For example, when incombustible waste is collectively handled, Zn and Pb can be selectively recovered by intensively sorting gasification residues having a particle size of 0.25 to 2 mm. Similarly, when bulky refuse is handled collectively, Pb can be selectively recovered by intensively sorting gasification residues having a particle size of 0.5 to 5.66 mm.
[0038]
【The invention's effect】
According to the present invention, a gasification residue obtained by thermally decomposing a waste is selected by simply selecting a sieve to select valuable resources such as copper, zinc, and lead contained in the waste. Can be collected.
[Brief description of the drawings]
FIG. 1 is a distribution diagram of Cu content by particle size before and after a pyrolysis step of bulky waste in the present invention.
FIG. 2 is a distribution diagram of Cu content by particle size before and after a pyrolysis step of non-combustible waste in the present invention.
FIG. 3 is a distribution diagram of Zn content by particle size before and after a pyrolysis step of bulky waste in the present invention.
FIG. 4 is a distribution diagram of Zn content by particle size before and after a pyrolysis step of incombustible waste in the present invention.
FIG. 5 is a distribution diagram of Pb content by particle size before and after the pyrolysis step of bulky waste in the present invention.
FIG. 6 is a distribution diagram of Pb content by particle size before and after the pyrolysis step of non-combustible waste in the present invention.
FIG. 7 is a flowchart showing an embodiment of the present invention.

Claims (2)

廃棄物を破砕し、鉄およびアルミを除去した後、該破砕した廃棄物を熱分解して分解ガスとガス化残渣とを生成し、該ガス化残渣のうち一定範囲の大きさのガス化残渣を選別することにより、該ガス化残渣中の有価物である銅、亜鉛、鉛の少なくとも1種以上を回収することを特徴とするガス化残渣からの有価物回収方法。After crushing the waste and removing iron and aluminum, the crushed waste is thermally decomposed to generate a cracked gas and a gasification residue, and a gasification residue having a certain size in the gasification residue. And recovering at least one of copper, zinc, and lead, which are valuable resources in the gasification residue, by sorting the gaseous residues. 廃棄物を大きさ50〜150mmに破砕する工程と、該破砕した廃棄物から鉄およびアルミを除去回収する工程と、該鉄およびアルミを除去した廃棄物を熱分解反応器に投入し、約450度で間接加熱して分解ガスとガス化残渣とに熱分解する工程と、該ガス化残渣を約30〜80℃に冷却する工程と、該冷却したガス化残渣中から大きさ1mm以下の熱分解カーボンを除去する工程と、該熱分解カーボンを除去したガス化残渣から、大きさ1〜6mmのガス化残渣を選別する工程と、を備えたガス化残渣からの有価物回収方法。A step of crushing the waste to a size of 50 to 150 mm; a step of removing and recovering iron and aluminum from the crushed waste; Indirectly heating at a temperature to thermally decompose into a decomposed gas and a gasification residue; cooling the gasification residue to about 30 to 80 ° C .; A method for recovering valuable substances from a gasification residue, comprising: a step of removing pyrolytic carbon; and a step of selecting a gasification residue having a size of 1 to 6 mm from the gasification residue from which the pyrolytic carbon has been removed.
JP2003083169A 2003-03-25 2003-03-25 Method for recovering valuable matter from gasified residue Withdrawn JP2004290733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083169A JP2004290733A (en) 2003-03-25 2003-03-25 Method for recovering valuable matter from gasified residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083169A JP2004290733A (en) 2003-03-25 2003-03-25 Method for recovering valuable matter from gasified residue

Publications (1)

Publication Number Publication Date
JP2004290733A true JP2004290733A (en) 2004-10-21

Family

ID=33398712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083169A Withdrawn JP2004290733A (en) 2003-03-25 2003-03-25 Method for recovering valuable matter from gasified residue

Country Status (1)

Country Link
JP (1) JP2004290733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508825A (en) * 2008-11-14 2012-04-12 テラ ノバ Method for recovering metals from electronic waste containing plastic materials
CN110919913A (en) * 2019-12-17 2020-03-27 益阳宏伟有色金属有限公司 Method for extracting aluminum powder from waste plastic oil residue

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508825A (en) * 2008-11-14 2012-04-12 テラ ノバ Method for recovering metals from electronic waste containing plastic materials
CN110919913A (en) * 2019-12-17 2020-03-27 益阳宏伟有色金属有限公司 Method for extracting aluminum powder from waste plastic oil residue

Similar Documents

Publication Publication Date Title
Chang et al. Comparative evaluation of RDF and MSW incineration
JP4823175B2 (en) Incineration ash treatment system
Biganzoli et al. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces
Chang et al. The assessment of reuse potential for municipal solid waste and refuse-derived fuel incineration ashes
Biganzoli et al. Aluminium mass balance in waste incineration and recovery potential from the bottom ash: a case study
SK286010B6 (en) Process for treatment of multicomponent composite and combined materials based mostly on waste of electronic and electric equipment and using of components separated by this way
JPH06320137A (en) Treatment of burned ash of shredder dust
JP2004290733A (en) Method for recovering valuable matter from gasified residue
JP4351352B2 (en) Method for recovering nonferrous metal resources in waste
JPH0975853A (en) Treatment method for shredder dust incineration ash
JP5172196B2 (en) Incineration ash particle sorting method
JP3922676B2 (en) Incineration residue treatment method and method for producing aggregate and solidified material using incineration residue
KR20010021279A (en) Method for processing furnace-bottom residue produced in gasification and slagging combustion furnace
JP2020146655A (en) Method and apparatus for treating incineration ash
JP7101637B2 (en) Combustible waste treatment equipment and treatment method
JP2002119820A (en) Waste incineration waste gas and treatment method for dust
JPH1061924A (en) Method and device for separating pyrolysis residue in waste treating device
JP2023102140A (en) Method for recovering noble metal from incineration ash using cement production facility
KR100444361B1 (en) Separation of Chlorine Containing Materials from Shredder Dust of Old Car by Electrostatic Separation Method
JP2002192118A (en) Treating method and device for waste material
Multaharju Pre-Treatment of Southeast Asian Waste for Circulating Fluidized Bed Boiler: Analyzing Biological-Mechanical Pre-Treatment Modification Effects on Boiler
JP2002102835A (en) Method and apparatus for treating dust produced from waste incineration
JP5191752B2 (en) Method for reducing chlorine in waste car shredder dust and method for using waste car shredder dust
JPH11173521A (en) Waste treating device
DE19632731C2 (en) Process for the thermal treatment or recycling of waste materials containing organic components

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606