JP2004282929A - Charging method and charging device for battery - Google Patents

Charging method and charging device for battery Download PDF

Info

Publication number
JP2004282929A
JP2004282929A JP2003072446A JP2003072446A JP2004282929A JP 2004282929 A JP2004282929 A JP 2004282929A JP 2003072446 A JP2003072446 A JP 2003072446A JP 2003072446 A JP2003072446 A JP 2003072446A JP 2004282929 A JP2004282929 A JP 2004282929A
Authority
JP
Japan
Prior art keywords
charging
battery
pulse
time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003072446A
Other languages
Japanese (ja)
Inventor
Fumiya Sato
文哉 佐藤
Original Assignee
Sony Corp
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, ソニー株式会社 filed Critical Sony Corp
Priority to JP2003072446A priority Critical patent/JP2004282929A/en
Publication of JP2004282929A publication Critical patent/JP2004282929A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging method and a charging device for a battery that can shorten a charging time. <P>SOLUTION: After conducting constant current charging (step S101), the charging is transitted to constant voltage charging when a charging current value (mA) reaches a preset constant voltage charging transition value (step S102; Y), and the constant voltage charging is conducted (step S103). When the charging current value (mA) reaches a pulse charging transition value that is set in a range of not less than 30% and not more than 80% of a value obtained by dividing a theoretical discharging capacity (mAh) of the battery by 1(h) (step S104; Y), the charging is transitted to pulse charging, and the pulse charging is conducted (step S105). During the off-time of the pulse charging, discharging is conducted with the current value (mA) that is set in a range of not less than 1% and not more than 10% of a value obtained by dividing the theoretical discharging capacity (mAh) of the battery by 1(h) (step S106). At the off-time of the pulse charging, the charging is finished when a time that a battery voltage is not less than a transition voltage set in a range of not less than 4.23V and not more than 4.3V reaches the longest off-time that is set in a range of not less than 1 sec. and not more than 10 sec. (step S107; Y). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えばリチウム二次電池を充電する際に好ましく用いることができる電池の充電方法および充電装置に関する。
【0002】
【従来の技術】
近年、携帯電話あるいはラップトップコンピュータ等の携帯型電子機器が多く登場し、その小型化および軽量化が図られている。それに伴い、これらの電子機器の携帯型電源として、リチウム二次電池が注目されている。
【0003】
近年では、このリチウム二次電池は、特許文献1に記載されているように、パルス充電を用て次のようにして充電するのが一般的である。まず、リチウム電池の理論放電容量(mAh)を1(h)で割った値の約60%〜約100%の一定の電流値(mA)で定電流充電する。次いで、電池電圧が4.20Vに到達したときにパルス充電に移行する。パルス充電では、例えば、最大電圧は、4.24V〜4.4V、最大電流はリチウム電池の理論放電容量(mAh)を1(h)で割った値の約60%〜約100%の値(mA)、オン時間は5秒、オフ時間は0.1秒とし、オフ時間における電圧が4.200V以下に到達したときは、再度、オン時間に切り換え、オフ時間の電圧が4.201V以上の状態が、約5秒間以上続いた場合、充電を終了する。
【0004】
【特許文献1】
特開平8−45550号公報
【0005】
【発明が解決しようとする課題】
しかしながら、この充電方法では、短時間での充電が難しかった。
【0006】
本発明はかかる問題点に鑑みてなされたもので、その目的は、充電時間を短縮することができる電池の充電方法および充電装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明による充電方法は、パルス充電を用いるものであって、パルス充電中に、電池の理論放電容量(mAh)を1(h)で割った値の1%以上10%以下の範囲内の電流値(mA)で電池を放電するものである。
【0008】
本発明による充電装置は、電池に対してパルス充電を行うパルス充電手段と、電池の理論放電容量(mAh)を1(h)で割った値の1%以上10%以下の範囲内の電流値(mA)で電池を放電させるための抵抗器と、パルス充電中に電池と抵抗器との間に閉回路を形成するスイッチ素子とを備えたものである。
【0009】
本発明による電池の充電方法および充電装置では、パルス充電中に、電池の理論放電容量(mAh)を1(h)で割った値の1%以上10%以下の電流値(mA)で電池が放電される。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0011】
図1は、本発明の一実施の形態に係る電池の充電装置の概要構成を表すものである。この充電装置10は、例えば、電池パック20の内部に保護回路部などと共に収容された1個または複数個のリチウム二次電池を充電するためのものであり、例えば、コンセント11と、外部端子12と、電源回路部13と、充電制御回路部14と、抵抗器15と、スイッチ素子16とを備えており、コンセント11により図示しない家庭用交流電源などの電源に接続され、外部端子12により電池パック20の外部端子21に接続されるようになっている。なお、リチウム二次電池とは、リチウムイオン二次電池あるいはリチウム金属二次電池などのリチウム(Li)を反応種に用いるもの広くを指す。
【0012】
電源回路部13は、例えば、電源から供給される電源電圧を所定の直流電圧に変換し、その電圧を安定的に充電制御回路部14に供給するものであり、いわゆるAC−DCコンバータにより構成されている。
【0013】
充電制御回路部14は、リチウム二次電池に対する充電を制御するものであり、定電流充電手段と、定電圧充電移行制御手段と、定電圧充電手段と、パルス充電移行制御手段と、パルス充電手段と、充電終了制御手段とを備えている。
【0014】
定電流充電手段は、リチウム二次電池に対して定電流充電を行うものであり、例えば、リチウム二次電池の理論放電容量(mAh)を1(h)で割った値の50%以上200%以下の範囲内の一定の電流値(mA)で充電を行うようにするものである。
【0015】
定電圧充電移行制御手段は、定電流充電において、電池電圧が予め設定された定電圧充電移行値、例えば、4.2(V)に達したときに、定電流充電から定電圧充電に移行させるものである。
【0016】
定電圧充電手段は、電池に対して定電圧充電を行うものであり、例えば、4.2(V)の一定の電圧で充電を行うようにするものである。
【0017】
パルス充電移行制御手段は、定電圧充電において、充電電流値(mA)が予め設定された所定のパルス充電移行値に達したときに、パルス充電に移行させるものである。定電圧充電を続けるよりもその途中でパルス充電に移行した方が、充電を効率的に行うことができるからである。
【0018】
図2は、最初から最後までリチウム二次電池に対してパルス充電を行ったときの充電特性と、定電流充電に続き定電圧充電を行ったときの充電特性とを比較して表すものである。図2から分かるように、定電圧充電は充電時間に従い充電電流値が急速に小さくなり、充電効率が急速に低下してしまうのに対して、パルス充電は、定電圧充電に比べて平均充電電流値の低下が小さいので、最初は定電圧充電の充電電流値の方が大きいが、途中でパルス充電の平均充電電流値の方が大きくなっている。すなわち、定電圧充電の充電電流値よりもパルス充電の充電電流値の方が大きくなるあたり、例えば図2でいうと、充電電流値がリチウム二次電池の理論放電容量を1(h)で割った値の60%程度になった時点でパルス充電に移行した方が充電効率が高いことが分かる。
【0019】
パルス充電移行値は、リチウム二次電池の理論放電容量(mAh)を1(h)で割った値の30%以上80%以下の範囲内に設定されることが好ましい。この範囲内において充電時間を短くすることができるからである。
【0020】
パルス充電手段は、電池に対してパルス充電を行うものであり、リチウム二次電池に対して電流を断続的に与えるようになっている。例えば図3に示したように、パルス充電時の出力電流値およびオン時間TONは一定、オフ時間TOFF は予め設定されたオフ最短時間TSOFFとオフ最長時間TLOFFとの間において、電池電圧が予め設定された遷移電圧よりも小さくなるまでと設定されている。オフ最短時間TSOFFは電池電圧が遷移電圧より小さくてもその間はオフとする時間であり、オフ最長時間TLOFFは電池電圧が遷移電圧以上であってもそれを経過したらオンに切り替える時間である。具体的には、例えば、オン時間TONは5秒、オフ最短時間TSOFFは0.1秒にそれぞれ設定されている。また、このパルス充電手段は、例えば最大で4.25V以上4.40V以下の範囲内の電圧をリチウム二次電池に印加し、例えば最大でリチウム二次電池の理論放電容量(mAh)を1(h)で割った値の50%以上200%以下の範囲内の電流値(mA)をリチウム二次電池に与えるようになっている。
【0021】
充電終了制御手段は、パルス充電のオフ時間TOFF に、電池電圧が遷移電圧以上である時間Tがオフ最長時間TLOFF以上となった時に充電を終了させるものである。遷移電圧は、例えば4.23V以上4.3V以下の範囲内に設定されることが好ましく、オフ最長時間TLOFFは、例えば1秒以上10秒以下の範囲内に設定されることが好ましい。遷移電圧が低すぎると、または、オフ最長時間TLOFFが短すぎると、リチウム二次電池の放電容量が小さくなってしまい、遷移電圧が高すぎると、または、オフ最長時間TLOFFが長すぎると、充電に要する時間が長くなってしまうからである。
【0022】
抵抗器15は、例えば、外部端子12と並列に接続されており、パルス充電のオフ時間TOFF にリチウム二次電池を放電させることにより、リチウム二次電池内における活物質を活性化させ、充電電流が多くなるようにするためのものである。この抵抗器15は、具体的には、リチウム二次電池の理論放電容量(mAh)を1(h)で割った値の1%以上10%以下の範囲内の電流値(mA)でリチウム二次電池を放電させるようになっている。すなわち、数1で表される抵抗値を有している。10%よりも大きいと、充電が終了しない不具合が生じる可能性があり、一方、1%よりも小さいと、充電時間が長くなってしまう可能性があるからである。
【0023】
【数1】
R=V/{(C/1)×α}
式中、Rは抵抗値(Ω)を表し、Vは電池の定格充電電圧(V)を表し、Cは電池の理論放電容量(Ah)を表し、αは係数0.01〜0.10を表す。
【0024】
この抵抗器15は、ポジスタにより構成することが好ましい。電池パック20の外部端子21と並列に接続されている抵抗器15には、例えば、充電器が故障した場合、異常に高い電圧が印加される可能性があるが、ポジスタは、異常に高い電圧が印加されると、抵抗値が増大し、放電電流を小さく変化させる特性を有するため、異常に高温になったり、破壊したりする不具合が少ないからである。
【0025】
スイッチ素子16は、抵抗器15と直列に接続されており、パルス充電のオフ時間に電池パック20と抵抗器15との間に閉回路を形成するようになっている。なお、それ以外、すなわち定電流充電時、定電圧充電時、パルス充電のオン時間TONおよび充電終了後には電池パック20と抵抗器15との間に開回路を形成するようになっている。
【0026】
図4は、図1に示した充電装置10を用いて電池を充電する方法を表すものである。まず、この充電装置10のコンセント11を電源に接続し充電装置10に電池パック20を接続すると、電源回路部13により、電源から供給される電源電圧は所定の直流電圧に変換され、充電制御回路部14に供給される。
【0027】
充電制御回路部14では、まず、定電流充電手段により、リチウム二次電池に対して定電流充電を行う(ステップS101)。その際、定電圧充電移行制御手段により電池電圧を監視し、電池電圧が定電圧充電移行値に達した時点で(ステップS102)、定電圧充電に移行する。次いで、定電圧充電手段により定電圧充電を行う(ステップS103)。その際、パルス充電移行制御手段により充電電流を監視し、充電電流値が予め設定されたパルス充電移行値に到達した時点で(ステップS104;YorN)、パルス充電に移行する。
【0028】
パルス充電に移行すると、パルス充電手段によりリチウム二次電池に対してパルス充電を行う(ステップS105)。その際、パルス充電のオフ時間TOFF にはスイッチ素子16により電池パック20と抵抗器15との間に閉回路を形成し、抵抗器15を介してリチウム二次電池を放電する(ステップS106)。
【0029】
また、オフ時間TOFF の放電時に、充電終了制御手段により電池電圧と予め設定された遷移電圧とを比較し(ステップS107;YorN)、電池電圧が遷移電圧以上である時間Tがオフ最長時間TLOFF以上となった時点で(ステップS107,Y)、充電制御回路部14により充電電流を遮断し、充電を終了する。一方、電池電圧が遷移電圧以上の時間がオフ最長時間TLOFF未満であれば(ステップS106,Y)、パルス充電を続ける(ステップS105)。
【0030】
充電が終了したのち、電池パック20を充電装置10から取り外すと共に、コンセント11を電源から取り外す。
【0031】
このように本実施の形態では、パルス充電のオフ時間に、リチウム二次電池の理論放電容量(mAh)を1(h)で割った値の1%以上10%以下の範囲内の電流値(mA)でリチウム二次電池を放電するようにしたので、リチウム二次電池内の活物質を活性化させることができる。よって、充電電流を増大させることができ、充電時間を短縮することができると共に、電池の放電容量を増大させることもできる。従って、充電装置10の電源オン時間を短縮することができ、それにより、電力消費量を低減することができ、地球環境影響を改善することができる。
【0032】
特に、パルス充電に移行する前に、定電圧充電を、パルス充電移行値に達するまで行うようにすれば、充電電流をより増大させることができ、充電時間をより短縮することができる。
【0033】
また、パルス充電のオフ時間に、電池電圧が遷移電圧以上である時間がオフ最長時間以上となった時に充電を終了するようにすれば、より効率的に充電を行うことができる。
【0034】
【実施例】
更に、本発明の具体的な実施例について詳細に説明する。
【0035】
実施例1〜8として、実施の形態において説明した充電装置10および充電方法を用いて、リチウムイオン二次電池を充電した。その際、リチウムイオン二次電池の理論放電容量に対するパルス充電移行値の割合を実施例1〜8で表1に示したように変化させた。なお、定電流充電時にはリチウムイオン二次電池に対して1100mAの電流を与え、定電圧充電移行値は4.25Vに設定した。抵抗器15としては、220Ωの抵抗を有するポジスタを用い、パルス充電時にリチウムイオン二次電池の理論放電容量(mAh)を1(h)で割った値の約1.7%の電流値(mA)で放電した。パルス充電時のオン時間TONは0.99秒、オフ最短時間TSOFFは0.01秒、オフ最長時間TLOFFは5秒に設定した。表1および図5に実施例1〜8の充電時間、パルス充電に移行するまでの時間(パルス充電移行時間)、および、充電後の電池の放電容量を示すと共に、図6〜図13に、実施例1〜8の充電特性をそれぞれ示す。
【0036】
【表1】
【0037】
また、本実施例に対する比較例1として、220Ωの抵抗を有する抵抗器を用い、1120mAの定電流で電池電圧が4.25Vに達するまで定電流充電を行ったのち、4.25Vの定電圧で充電電流が74mAに達するまで定電圧充電を行った。また、本実施例に対する比較例2として、抵抗器を用いず、1100mAの定電流で電池電圧が4.25Vに達するまで定電流充電を行ったのち、4.25Vの定電圧で充電電流が54mAに達するまで定電圧充電を行った。表1に比較例1,2の充電時間および充電後のリチウムイオン二次電池の放電容量を合わせて示すと共に、図14に比較例1の充電特性を示し、図15に比較例2の充電特性を示す。
【0038】
図6〜15および表1から分かるように、実施例1〜8によれば、比較例1,2に比べて、充電時間を短縮することができ、放電容量については1060mAh程度と大きくすることができた。すなわち、パルス充電時に放電を行うようにすれば、充電時間を短縮することができると共に、リチウムイオン二次電池の放電容量を大きくすることができることが分かった。
【0039】
また、表1および図5から分かるように、充電時間は、パルス充電移行値が増大するほど短くなり、極大値を示したのち長くなる傾向が見られた。また、放電容量は、パルス充電移行値が増大するほど大きくなり、極大値を示したのち小さくなる傾向が見られた。すなわち、パルス充電移行値(mA)は、リチウムイオン二次電池の理論放電容量(mAh)を1(h)で割った値の30%以上80%以下の範囲内とすることが好ましいことが分かった。
【0040】
以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態および実施例では、本発明をリチウム二次電池に適用する場合について説明したが、本発明は、他の電池についても適用することができる。
【0041】
【発明の効果】
以上説明したように、本発明の電池の充電方法および充電装置によれば、パルス充電中に、電池の理論放電容量(mAh)を1(h)で割った値の1%以上10%以下の範囲内の電流値(mA)で電池を放電するようにしたので、電池内の活物質を活性化させることができる。よって、充電電流を増大させることができ、充電時間を短縮することができると共に、電池の放電容量を増大させることもできる。
【0042】
特に、パルス充電に移行する前に、定電圧充電を、パルス充電移行値に達するまで行うようにすれば、充電電流をより増大させることができ、充電時間をより短縮することができる。
【0043】
また、パルス充電のオフ時間に、電池電圧が遷移電圧以上である時間が、オフ最長時間以上となった時に充電を終了するようにすれば、より効率的に充電を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る電池の充電装置の概要構成を表す模式図である。
【図2】定電流定電圧充電およびパルス充電の充電特性を表す特性図である。
【図3】パルス充電の出力電流を表す特性図である。
【図4】図1に示した充電装置を用いて電池を充電する方法を表す流れ図である。
【図5】本発明の実施例1〜8に係るパルス充電移行電流と、パルス充電移行時間,充電時間および放電時間との関係を表す特性図である。
【図6】本発明の実施例1に係る充電特性を表す特性図である。
【図7】本発明の実施例2に係る充電特性を表す特性図である。
【図8】本発明の実施例3に係る充電特性を表す特性図である。
【図9】本発明の実施例4に係る充電特性を表す特性図である。
【図10】本発明の実施例5に係る充電特性を表す特性図である。
【図11】本発明の実施例6に係る充電特性を表す特性図である。
【図12】本発明の実施例7に係る充電特性を表す特性図である。
【図13】本発明の実施例8に係る充電特性を表す特性図である。
【図14】比較例1に係る充電特性を表す特性図である。
【図15】比較例2に係る充電特性を表す特性図である。
【符号の説明】
10…充電装置、11…コンセント、12,21…外部端子、13…電源回路部、14…充電制御回路部、15…抵抗器、16…スイッチ素子、20…電池パック、TON…オン時間、TOFF …オフ時間、TSOFF…オフ最短時間、TLOFF…オフ最長時間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery charging method and a charging device that can be preferably used, for example, when charging a lithium secondary battery.
[0002]
[Prior art]
In recent years, many portable electronic devices such as a mobile phone and a laptop computer have appeared, and their size and weight have been reduced. Accordingly, lithium secondary batteries have attracted attention as portable power supplies for these electronic devices.
[0003]
In recent years, as described in Patent Literature 1, this lithium secondary battery is generally charged using pulse charging as follows. First, the lithium battery is charged at a constant current at a constant current value (mA) of about 60% to about 100% of a value obtained by dividing the theoretical discharge capacity (mAh) by 1 (h). Next, when the battery voltage reaches 4.20 V, the process shifts to pulse charging. In the pulse charging, for example, the maximum voltage is 4.24 V to 4.4 V, and the maximum current is a value of about 60% to about 100% of a value obtained by dividing the theoretical discharge capacity (mAh) of the lithium battery by 1 (h) ( mA), the on-time is 5 seconds, and the off-time is 0.1 second. When the voltage during the off-time reaches 4.200 V or less, the circuit is switched to the on-time again, and the voltage during the off-time is 4.201 V or more. If the state continues for about 5 seconds or more, charging is terminated.
[0004]
[Patent Document 1]
JP-A-8-45550
[Problems to be solved by the invention]
However, in this charging method, charging in a short time was difficult.
[0006]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a battery charging method and a battery charging device that can reduce a charging time.
[0007]
[Means for Solving the Problems]
The charging method according to the present invention uses pulse charging. During the pulse charging, a current within a range of 1% to 10% of a value obtained by dividing a theoretical discharge capacity (mAh) of a battery by 1 (h) is used. The battery is discharged at a value (mA).
[0008]
A charging device according to the present invention includes a pulse charging unit that performs pulse charging on a battery, and a current value within a range of 1% to 10% of a value obtained by dividing a theoretical discharging capacity (mAh) of the battery by 1 (h). A resistor for discharging the battery at (mA) and a switch element for forming a closed circuit between the battery and the resistor during pulse charging.
[0009]
In the battery charging method and the battery charging device according to the present invention, during the pulse charging, the battery is charged at a current value (mA) of 1% or more and 10% or less of a value obtained by dividing the theoretical discharge capacity (mAh) of the battery by 1 (h). Discharged.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 shows a schematic configuration of a battery charger according to an embodiment of the present invention. The charging device 10 is for charging, for example, one or a plurality of lithium secondary batteries housed inside a battery pack 20 together with a protection circuit and the like. , A power supply circuit unit 13, a charge control circuit unit 14, a resistor 15, and a switch element 16. The power supply circuit unit 13 is connected to a power supply such as a household AC power supply (not shown) via an outlet 11, and a battery The external terminal 21 of the pack 20 is connected. Note that a lithium secondary battery widely refers to a lithium ion secondary battery or a lithium metal secondary battery that uses lithium (Li) as a reactive species.
[0012]
The power supply circuit unit 13 converts, for example, a power supply voltage supplied from a power supply to a predetermined DC voltage and stably supplies the voltage to the charge control circuit unit 14, and is configured by a so-called AC-DC converter. ing.
[0013]
The charge control circuit unit 14 controls charging of the lithium secondary battery, and includes a constant current charging unit, a constant voltage charging transition control unit, a constant voltage charging unit, a pulse charging transition control unit, and a pulse charging unit. And charge termination control means.
[0014]
The constant current charging means performs constant current charging of the lithium secondary battery, and is, for example, 50% or more and 200% of a value obtained by dividing the theoretical discharge capacity (mAh) of the lithium secondary battery by 1 (h). The charging is performed at a constant current value (mA) within the following range.
[0015]
The constant voltage charging transition control means transitions from constant current charging to constant voltage charging when the battery voltage reaches a preset constant voltage charging transition value, for example, 4.2 (V), in constant current charging. Things.
[0016]
The constant voltage charging means charges the battery at a constant voltage, and charges the battery with a constant voltage of 4.2 (V), for example.
[0017]
The pulse charge shift control means shifts to pulse charge when the charging current value (mA) reaches a predetermined pulse charge shift value in constant voltage charging. This is because charging can be performed more efficiently when switching to pulse charging on the way than during constant voltage charging.
[0018]
FIG. 2 shows a comparison between the charging characteristics when pulse charging is performed on the lithium secondary battery from the beginning to the end and the charging characteristics when constant voltage charging is performed after constant current charging. . As can be seen from FIG. 2, the charging current value of the constant voltage charging rapidly decreases according to the charging time, and the charging efficiency decreases rapidly. On the other hand, the average charging current of the pulse charging is lower than that of the constant voltage charging. Since the value decrease is small, the charging current value of the constant voltage charging is initially larger, but the average charging current value of the pulse charging is larger in the middle. That is, when the charging current value of the pulse charging becomes larger than the charging current value of the constant voltage charging, for example, in FIG. 2, the charging current value is obtained by dividing the theoretical discharge capacity of the lithium secondary battery by 1 (h). It can be seen that the charging efficiency is higher when the operation is shifted to the pulse charging when the value becomes about 60% of the calculated value.
[0019]
The pulse charge transfer value is preferably set within a range of 30% or more and 80% or less of a value obtained by dividing the theoretical discharge capacity (mAh) of the lithium secondary battery by 1 (h). This is because the charging time can be shortened within this range.
[0020]
The pulse charging means performs pulse charging of the battery, and is configured to intermittently supply current to the lithium secondary battery. For example, as shown in FIG. 3, the output current value and ON time T ON for Pulse charging constant, between the off time T OFF is preset off shortest time T SOFF and OFF maximum time T LOFF, battery It is set so that the voltage becomes lower than the preset transition voltage. Off shortest time T SOFF is the time the battery voltage to turn off the meantime be smaller than the transition voltage, off-the maximum time T LOFF is the time switched on after the lapse it even battery voltage transition voltage or higher . Specifically, for example, the ON time T ON is set to 5 seconds, and the OFF minimum time T SOFF is set to 0.1 seconds. The pulse charging means applies a voltage in the range of, for example, 4.25 V or more and 4.40 V or less to the lithium secondary battery, and for example, sets the theoretical discharge capacity (mAh) of the lithium secondary battery to 1 (Max). The current value (mA) within the range of 50% or more and 200% or less of the value divided by h) is given to the lithium secondary battery.
[0021]
The charge termination control means terminates the charge when the time T during which the battery voltage is equal to or higher than the transition voltage becomes equal to or greater than the maximum off-time TLOFF during the pulse charging off time TOFF . Transition voltage is, for example, it is preferable to set within 4.3V below the range of 4.23V, off-the maximum time T LOFF, for example is preferably set in the range 10 seconds or less than 1 second. If the transition voltage is too low, or if the maximum off-time TLOFF is too short, the discharge capacity of the lithium secondary battery will decrease. If the transition voltage is too high, or if the maximum off-time TLOFF is too long. This is because the time required for charging becomes longer.
[0022]
The resistor 15 is connected, for example, in parallel with the external terminal 12, and activates an active material in the lithium secondary battery by discharging the lithium secondary battery during the pulse charging off time T OFF to charge the lithium secondary battery. This is to increase the current. Specifically, the resistor 15 has a lithium secondary battery with a current value (mA) within a range of 1% to 10% of a value obtained by dividing the theoretical discharge capacity (mAh) of the lithium secondary battery by 1 (h). The next battery is discharged. That is, it has a resistance value represented by Expression 1. If it is larger than 10%, a problem that charging is not completed may occur. On the other hand, if it is smaller than 1%, the charging time may be long.
[0023]
(Equation 1)
R = V / {(C / 1) × α}
In the formula, R represents a resistance value (Ω), V represents a rated charge voltage (V) of the battery, C represents a theoretical discharge capacity (Ah) of the battery, and α represents a coefficient of 0.01 to 0.10. Represent.
[0024]
This resistor 15 is preferably made of a posistor. An abnormally high voltage may be applied to the resistor 15 connected in parallel with the external terminal 21 of the battery pack 20 when, for example, the charger fails, but the posistor operates at an abnormally high voltage. Is applied, the resistance value increases, and the discharge current has a characteristic of changing the discharge current to a small value.
[0025]
The switch element 16 is connected in series with the resistor 15, and forms a closed circuit between the battery pack 20 and the resistor 15 during the off time of the pulse charging. In addition, an open circuit is formed between the battery pack 20 and the resistor 15 at other times, that is, at the time of the constant current charging, the constant voltage charging, the ON time T ON of the pulse charging, and after the charging is completed.
[0026]
FIG. 4 illustrates a method of charging a battery using the charging device 10 illustrated in FIG. First, when the outlet 11 of the charging device 10 is connected to a power source and the battery pack 20 is connected to the charging device 10, the power source voltage supplied from the power source is converted into a predetermined DC voltage by the power source circuit unit 13, and the charging control circuit It is supplied to the unit 14.
[0027]
In the charging control circuit unit 14, first, constant current charging is performed on the lithium secondary battery by the constant current charging unit (step S101). At this time, the battery voltage is monitored by the constant voltage charge transfer control means, and when the battery voltage reaches the constant voltage charge transfer value (step S102), the process shifts to constant voltage charge. Next, constant voltage charging is performed by the constant voltage charging means (step S103). At this time, the charging current is monitored by the pulse charging transition control means, and when the charging current value reaches a preset pulse charging transition value (Step S104; YorN), the pulse charging is started.
[0028]
When shifting to pulse charging, pulse charging is performed on the lithium secondary battery by pulse charging means (step S105). At this time, a closed circuit is formed between the battery pack 20 and the resistor 15 by the switch element 16 during the pulse charging off time T OFF , and the lithium secondary battery is discharged via the resistor 15 (step S106). .
[0029]
Further, at the time of discharging during the off time T OFF, the battery voltage is compared with a preset transition voltage by the charge termination control means (Step S107; YorN), and the time T during which the battery voltage is equal to or higher than the transition voltage is the maximum off time T When LOFF or more (step S107, Y), the charging control circuit 14 cuts off the charging current and ends the charging. On the other hand, if the time during which the battery voltage is equal to or higher than the transition voltage is less than the maximum off-time TLOFF (step S106, Y), pulse charging is continued (step S105).
[0030]
After the charging is completed, the battery pack 20 is removed from the charging device 10 and the outlet 11 is removed from the power supply.
[0031]
As described above, in this embodiment, the current value (1% to 10%) of the value obtained by dividing the theoretical discharge capacity (mAh) of the lithium secondary battery by 1 (h) during the off-time of the pulse charge ( Since the lithium secondary battery is discharged at mA), the active material in the lithium secondary battery can be activated. Therefore, the charging current can be increased, the charging time can be reduced, and the discharge capacity of the battery can be increased. Therefore, the power-on time of the charging device 10 can be shortened, whereby the power consumption can be reduced and the influence on the global environment can be improved.
[0032]
In particular, if the constant voltage charging is performed until the pulse charging transition value is reached before the transition to the pulse charging, the charging current can be further increased, and the charging time can be further reduced.
[0033]
If the battery voltage is equal to or higher than the transition voltage during the off-time of the pulse charging, and the charging is terminated when the off-time is equal to or longer than the maximum off-time, charging can be performed more efficiently.
[0034]
【Example】
Further, specific examples of the present invention will be described in detail.
[0035]
As Examples 1 to 8, the lithium ion secondary battery was charged using the charging device 10 and the charging method described in the embodiment. At that time, the ratio of the pulse charge transfer value to the theoretical discharge capacity of the lithium ion secondary battery was changed as shown in Table 1 in Examples 1 to 8. At the time of constant current charging, a current of 1100 mA was applied to the lithium ion secondary battery, and the constant voltage charging transition value was set to 4.25V. As the resistor 15, a posistor having a resistance of 220Ω is used, and a current value (mA) of about 1.7% of a value obtained by dividing the theoretical discharge capacity (mAh) of the lithium ion secondary battery by 1 (h) during pulse charging. ). Pulse on-time T ON at the time of charging is 0.99 seconds, off the shortest time T SOFF is 0.01 seconds, off the longest time T LOFF was set to 5 seconds. Table 1 and FIG. 5 show the charging times of Examples 1 to 8, the time until shifting to pulse charging (pulse charging shifting time), and the discharge capacity of the battery after charging, and FIGS. The charging characteristics of Examples 1 to 8 are respectively shown.
[0036]
[Table 1]
[0037]
Further, as Comparative Example 1 with respect to the present embodiment, a constant current charging was performed at a constant current of 1120 mA until the battery voltage reached 4.25 V using a resistor having a resistance of 220 Ω, and then a constant voltage of 4.25 V was applied. Constant voltage charging was performed until the charging current reached 74 mA. Further, as Comparative Example 2 with respect to the present embodiment, constant current charging was performed at a constant current of 1100 mA until the battery voltage reached 4.25 V without using a resistor, and then a charging current of 54 mA was performed at a constant voltage of 4.25 V. Until constant voltage was reached. Table 1 also shows the charging time of Comparative Examples 1 and 2, and the discharge capacity of the lithium ion secondary battery after charging. FIG. 14 shows the charging characteristics of Comparative Example 1, and FIG. 15 shows the charging characteristics of Comparative Example 2. Is shown.
[0038]
As can be seen from FIGS. 6 to 15 and Table 1, according to Examples 1 to 8, the charging time can be reduced as compared with Comparative Examples 1 and 2, and the discharge capacity can be increased to about 1060 mAh. did it. In other words, it has been found that when discharging is performed at the time of pulse charging, the charging time can be shortened and the discharge capacity of the lithium ion secondary battery can be increased.
[0039]
In addition, as can be seen from Table 1 and FIG. 5, the charging time tended to be shorter as the pulse charging transition value increased, to have a maximum value, and then to be longer. In addition, the discharge capacity tended to increase as the pulse charge transfer value increased, showed a maximum value, and then decreased. That is, it is found that the pulse charge transfer value (mA) is preferably in the range of 30% to 80% of a value obtained by dividing the theoretical discharge capacity (mAh) of the lithium ion secondary battery by 1 (h). Was.
[0040]
As described above, the present invention has been described with reference to the embodiment and the example. However, the present invention is not limited to the above-described embodiment and example, and can be variously modified. For example, in the above embodiments and examples, the case where the present invention is applied to a lithium secondary battery has been described. However, the present invention can be applied to other batteries.
[0041]
【The invention's effect】
As described above, according to the battery charging method and the battery charging device of the present invention, during pulse charging, 1% to 10% of a value obtained by dividing the theoretical discharge capacity (mAh) of the battery by 1 (h). Since the battery is discharged at a current value (mA) within the range, the active material in the battery can be activated. Therefore, the charging current can be increased, the charging time can be reduced, and the discharge capacity of the battery can be increased.
[0042]
In particular, if the constant voltage charging is performed until the pulse charging transition value is reached before the transition to the pulse charging, the charging current can be further increased, and the charging time can be further reduced.
[0043]
Further, if the battery voltage is equal to or higher than the transition voltage during the off-time of the pulse charging and the charging is terminated when the off-time is equal to or longer than the maximum off-time, charging can be performed more efficiently.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a schematic configuration of a battery charging device according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram illustrating charging characteristics of constant current constant voltage charging and pulse charging.
FIG. 3 is a characteristic diagram showing an output current of pulse charging.
4 is a flowchart illustrating a method of charging a battery using the charging device illustrated in FIG.
FIG. 5 is a characteristic diagram illustrating a relationship between a pulse charging transition current and pulse charging transition time, charging time, and discharging time according to Examples 1 to 8 of the present invention.
FIG. 6 is a characteristic diagram illustrating charging characteristics according to the first embodiment of the present invention.
FIG. 7 is a characteristic diagram illustrating charging characteristics according to a second embodiment of the present invention.
FIG. 8 is a characteristic diagram illustrating charging characteristics according to a third embodiment of the present invention.
FIG. 9 is a characteristic diagram illustrating charging characteristics according to Example 4 of the present invention.
FIG. 10 is a characteristic diagram illustrating charging characteristics according to Example 5 of the present invention.
FIG. 11 is a characteristic diagram illustrating charging characteristics according to Example 6 of the present invention.
FIG. 12 is a characteristic diagram illustrating charging characteristics according to Example 7 of the present invention.
FIG. 13 is a characteristic diagram illustrating charging characteristics according to Example 8 of the present invention.
FIG. 14 is a characteristic diagram illustrating charging characteristics according to Comparative Example 1.
FIG. 15 is a characteristic diagram illustrating charging characteristics according to Comparative Example 2.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Charging device, 11 ... Outlet, 12, 21 ... External terminal, 13 ... Power supply circuit part, 14 ... Charge control circuit part, 15 ... Resistor, 16 ... Switch element, 20 ... Battery pack, TON ... ON time, T oFF ... off time, T SOFF ... off the shortest time, T LOFF ... off the longest time

Claims (12)

  1. パルス充電を用いる電池の充電方法であって、
    パルス充電中に、電池の理論放電容量(mAh)を1(h)で割った値の1%以上10%以下の範囲内の電流値(mA)で電池を放電することを特徴とする電池の充電方法。
    A battery charging method using pulse charging,
    Discharging the battery with a current value (mA) in a range of 1% to 10% of a value obtained by dividing the theoretical discharge capacity (mAh) of the battery by 1 (h) during the pulse charging; Charging method.
  2. パルス充電のオフ時間に電池を放電することを特徴とする請求項1記載の電池の充電方法。The method for charging a battery according to claim 1, wherein the battery is discharged during the off time of the pulse charging.
  3. パルス充電に移行する前に、定電圧充電を、充電電流値(mA)が電池の理論放電容量(mAh)を1(h)で割った値の30%以上80%以下の範囲内に設定されたパルス充電移行値に達するまで行うことを特徴とする請求項1記載の電池の充電方法。Before shifting to the pulse charge, the constant voltage charge is set so that the charge current value (mA) is in a range of 30% to 80% of a value obtained by dividing the theoretical discharge capacity (mAh) of the battery by 1 (h). 2. The battery charging method according to claim 1, wherein the charging is performed until the pulse charging transition value is reached.
  4. 定電圧充電を行う前に、定電流充電を、電池電圧が所定の定電圧充電移行値に達するまで行うことを特徴とする請求項3記載の電池の充電方法。4. The battery charging method according to claim 3, wherein the constant current charging is performed until the battery voltage reaches a predetermined constant voltage charging transition value before performing the constant voltage charging.
  5. パルス充電のオフ時間に、電池電圧が4.23V以上4.3V以下の範囲内に設定された遷移電圧以上である時間が、1秒以上10秒以下の範囲内に設定されたオフ最長時間以上となった時に充電を終了することを特徴とする請求項1記載の電池の充電方法。During the off time of the pulse charge, the time during which the battery voltage is equal to or higher than the transition voltage set within the range of 4.23 V or more and 4.3 V or less is equal to or longer than the longest off time set within the range of 1 second to 10 seconds. The method for charging a battery according to claim 1, wherein the charging is terminated when the following condition is satisfied.
  6. リチウム二次電池を充電することを特徴とする請求項1記載の電池の充電方法。The method for charging a battery according to claim 1, wherein the lithium secondary battery is charged.
  7. 電池に対してパルス充電を行うパルス充電手段と、
    電池の理論放電容量(mAh)を1(h)で割った値の1%以上10%以下の範囲内の電流値(mA)で電池を放電させるための抵抗器と、
    パルス充電中に電池と前記抵抗器との間に閉回路を形成するスイッチ素子と
    を備えたことを特徴とする充電装置。
    Pulse charging means for performing pulse charging on the battery;
    A resistor for discharging the battery at a current value (mA) within a range of 1% to 10% of a value obtained by dividing the theoretical discharge capacity (mAh) of the battery by 1 (h);
    A charging device comprising: a switch element that forms a closed circuit between a battery and the resistor during pulse charging.
  8. 前記抵抗器として、ポジスタを備えたことを特徴とする請求項7記載の充電装置。The charging device according to claim 7, further comprising a posistor as the resistor.
  9. 電池に対して定電圧充電を行う定電圧充電手段と、
    定電圧充電中に、充電電流値(mA)が電池の理論放電容量(mAh)を1(h)で割った値の30%以上80%以下の範囲内に設定されたパルス充電移行値に達したとき、パルス充電に移行するパルス充電移行制御手段と
    を備えたことを特徴とする請求項7記載の充電装置。
    Constant voltage charging means for performing constant voltage charging on the battery,
    During constant voltage charging, the charging current value (mA) reaches a pulse charging transition value set within a range of 30% or more and 80% or less of a value obtained by dividing the theoretical discharging capacity (mAh) of the battery by 1 (h). 8. The charging apparatus according to claim 7, further comprising: a pulse charging transition control unit that shifts to pulse charging when the charging is performed.
  10. 電池に対して定電流充電を行う定電流充電手段と、
    電池電圧が所定の定電圧充電移行値に達したとき、定電圧充電に移行する定電圧充電移行制御手段と
    を備えたことを特徴とする請求項9記載の充電装置。
    Constant current charging means for performing constant current charging on the battery;
    10. The charging device according to claim 9, further comprising: constant voltage charging transition control means for shifting to constant voltage charging when the battery voltage reaches a predetermined constant voltage charging transition value.
  11. パルス充電のオフ時間に、電池電圧が4.23V以上4.3V以下の範囲内に設定された遷移電圧以上である時間が、1秒以上10秒以下の範囲内に設定されたオフ最長時間以上となった時に充電を終了する充電終了制御手段を備えたことを特徴とする請求項7記載の充電装置。During the off time of the pulse charge, the time during which the battery voltage is equal to or higher than the transition voltage set within the range of 4.23 V or more and 4.3 V or less is equal to or longer than the longest off time set within the range of 1 second to 10 seconds. 8. The charging device according to claim 7, further comprising a charge termination control unit for terminating the charging when the condition becomes.
  12. リチウム二次電池を充電するものであることを特徴とする請求項7記載の充電装置。The charging device according to claim 7, wherein the charging device charges a lithium secondary battery.
JP2003072446A 2003-03-17 2003-03-17 Charging method and charging device for battery Pending JP2004282929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072446A JP2004282929A (en) 2003-03-17 2003-03-17 Charging method and charging device for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072446A JP2004282929A (en) 2003-03-17 2003-03-17 Charging method and charging device for battery

Publications (1)

Publication Number Publication Date
JP2004282929A true JP2004282929A (en) 2004-10-07

Family

ID=33288638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072446A Pending JP2004282929A (en) 2003-03-17 2003-03-17 Charging method and charging device for battery

Country Status (1)

Country Link
JP (1) JP2004282929A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210694A (en) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd Charging method of battery pack
US7791317B2 (en) 2006-08-01 2010-09-07 Sony Corporation Battery pack and method of calculating deterioration level thereof
CN102148410A (en) * 2010-02-09 2011-08-10 新普科技股份有限公司 Method for charging battery
JP2013055845A (en) * 2011-09-06 2013-03-21 Nippon Signal Co Ltd:The Charging system
CN104362402A (en) * 2014-09-19 2015-02-18 杭州浙畅电力设备有限公司 Stepped constant current charging-discharging method
CN105305514A (en) * 2014-06-23 2016-02-03 中兴通讯股份有限公司 Method and device for charging battery
CN105984356A (en) * 2015-03-20 2016-10-05 福特全球技术公司 Battery charge strategy using discharge cycle
CN106208204A (en) * 2016-07-29 2016-12-07 深圳市金立通信设备有限公司 A kind of method for charging batteries and terminal
KR101776517B1 (en) * 2016-07-22 2017-09-08 현대자동차주식회사 Method and system for charging battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791317B2 (en) 2006-08-01 2010-09-07 Sony Corporation Battery pack and method of calculating deterioration level thereof
JP2008210694A (en) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd Charging method of battery pack
CN102148410A (en) * 2010-02-09 2011-08-10 新普科技股份有限公司 Method for charging battery
JP2013055845A (en) * 2011-09-06 2013-03-21 Nippon Signal Co Ltd:The Charging system
CN105305514A (en) * 2014-06-23 2016-02-03 中兴通讯股份有限公司 Method and device for charging battery
CN104362402A (en) * 2014-09-19 2015-02-18 杭州浙畅电力设备有限公司 Stepped constant current charging-discharging method
CN105984356A (en) * 2015-03-20 2016-10-05 福特全球技术公司 Battery charge strategy using discharge cycle
CN105984356B (en) * 2015-03-20 2021-01-22 福特全球技术公司 Battery charging strategy using discharge cycles
KR101776517B1 (en) * 2016-07-22 2017-09-08 현대자동차주식회사 Method and system for charging battery
CN106208204A (en) * 2016-07-29 2016-12-07 深圳市金立通信设备有限公司 A kind of method for charging batteries and terminal

Similar Documents

Publication Publication Date Title
TWI687021B (en) Adaptive battery charging method, charging device, computer program and computer readable storage medium
US9054596B2 (en) Device for synchronous DC-DC conversion and synchronous DC-DC converter
JP3854067B2 (en) Method and apparatus for adjusting terminal voltage of battery
US6835491B2 (en) Battery having a built-in controller
US6917184B2 (en) Li-ion/Li-polymer battery charger configured to be DC-powered from multiple types of wall adapters
JP5439000B2 (en) Battery assembly system and battery protection device
JP5502282B2 (en) How to charge the battery pack
KR200185261Y1 (en) A power supply control circuit for digital electronic device
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
JP3826929B2 (en) Battery pack
Barsukov Battery cell balancing: What to balance and how
TWI241762B (en) An intelligent fast battery charger
JP3699082B2 (en) Switching power supply circuit
JP3183420U (en) Portable wireless charger
EP2195902B1 (en) Circuit arrangement with multiple batteries
KR102222603B1 (en) Feedback control for efficient fast battery charging
EP2413463A1 (en) Battery heating circuit
JP3926699B2 (en) Secondary battery charging device and charging method thereof
CN100474732C (en) Power supply apparatus
US6765370B2 (en) System and method for bi-directional power conversion in a portable device
JP6696044B2 (en) Battery management circuit, device to be charged and power management method
CN1248351C (en) Battery having a built-in controller to extend service run time
TWI436549B (en) Advanced rechargable battery system and vehicle having the same, and charging method thereof
US8575889B2 (en) Method and apparatus for controlling the transfer of electric power to an electronic device supplied by a battery
JP2009291066A (en) Method and apparatus for implementing unregulated dormant mode in power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605