JP2004281929A - Resonator type light emitting diode - Google Patents

Resonator type light emitting diode Download PDF

Info

Publication number
JP2004281929A
JP2004281929A JP2003074311A JP2003074311A JP2004281929A JP 2004281929 A JP2004281929 A JP 2004281929A JP 2003074311 A JP2003074311 A JP 2003074311A JP 2003074311 A JP2003074311 A JP 2003074311A JP 2004281929 A JP2004281929 A JP 2004281929A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
protective film
resonator type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003074311A
Other languages
Japanese (ja)
Inventor
Tetsuo Hayakawa
哲生 早川
Vengatesan Balasubramanian
ベンガテサン バラスブラマニアン
Tetsuji Nakamura
哲二 中村
Hirosumi Kato
弘純 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canare Electric Co Ltd
Original Assignee
Canare Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canare Electric Co Ltd filed Critical Canare Electric Co Ltd
Priority to JP2003074311A priority Critical patent/JP2004281929A/en
Publication of JP2004281929A publication Critical patent/JP2004281929A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resonator type light emitting diode (RC-LED) which can avoid deterioration of a luminous characteristic while forming a humidity-resistance protective film and can remarkably reduce the full width at half-maximum of a luminous peak without reducing a luminous intensity. <P>SOLUTION: In the resonator type light emitting diode having distributed Bragg reflection mirrors 2, 6 of a semiconductor material provided at both sides of a luminous layer 4, the thickness of the protective film 7 of an insulating material is set to be an integer multiple of 1/2 of a wavelength of light emitted from the film 7 and passed therethrough. Since the film thickness is optimized, the luminous intensity and the full width at half-maximum can be prevented from being reduced. The protective film 7 is made of a distributed Bragg reflection mirror 7 obtained by laminating two types of insulating materials. Since the two layers of the distributed Bragg reflection mirror 7 are made of silicon oxide and silicon nitride, the protective film can be excellent in humidity resistance. Since the distributed Bragg reflection mirror (DBR) 7 can be located outside between electrodes, its unwanted voltage drop can be avoided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は多重反射層を有した発光ダイオード(LED)に関する。本発明により、半値幅の狭く、ピーク強度の大きい共振器型発光ダイオード(RC−LED)を得ることができる。
【0002】
【従来の技術】
従来、発光ダイオード(LED)は半値幅が大きく、半値幅の狭い発光素子としてはレーザダイオード(LD)が必要であった。現在市販されているLEDは、赤色乃至近赤外の発光ピークに対し半値幅が50nm程度のものがほとんどで、10nmを切るものは市販されていない。半値幅が10nm未満の発光素子が必要な場合はレーザダイオード(LD)を用いている。ところで、VCSELと称される共振器型面発光レーザダイオードや類似の構成のLEDである共振器型発光ダイオード(RC−LED)が有る。共振器型発光ダイオード(RC−LED)はLDとLEDの中間的な存在として注目されている(非特許文献1)。
【0003】
【非特許文献1】
高岡圭児ら、信学技報2000−128、p.51
【0004】
共振器型発光ダイオード(RC−LED)は、発光層、クラッド層を挟んで、p電極側及びn電極側にそれぞれ配置された、2種の半導体材料を積層した分布反射型ミラー(DBR)を有するものである。分布反射型ミラー(DBR)は、発光の真空中での波長をλとすると、各層の膜厚を、その屈折率をnとしてλ/(4n)とし、2種の半導体材料のペアを組ませて多重に積層することで発光層を中心とした共振器を形成する。この共振器に適応した発光波長が強度が強くなり、他の波長の強度が弱くなるものである。
【0005】
【発明が解決しようとする課題】
分布反射型ミラー(DBR)の2種の半導体材料のペア数を多くすれば共振器型発光ダイオード(RC−LED)の発光ピークの半値幅は減少していくが、トレードオフとして、発光強度が急激に弱くなるという問題があった。図7はAlGaAs系の共振器型発光ダイオード(RC−LED)のピーク強度と半値幅について、p−電極側の分布反射型ミラー(DBR)の半導体材料のペア数を、5ペア、10ペア、15ペアとしたものである。10ペアで半値幅(折れ線グラフ)が5.2nmなのに対し15ペアでは4.5nmと半値幅の改善があまり無いにもかかわらず、発光強度(棒グラフ)は半分以下に落ち込んでいる。
【0006】
本発明は共振器型発光ダイオード(RC−LED)において、耐湿性の保護膜を形成しつつ発光特性を劣化させないことを目的とする。また、同じく共振器型発光ダイオード(RC−LED)において、発光強度を落すことなく発光ピークの半値幅を大幅に減少させることを目的とする。
【0007】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に係る発明は、半導体材料からなる分布反射型ミラーを発光層の両側に有し、絶縁材料から成る耐湿性保護膜を有し、当該耐湿性保護膜の膜厚は、発っせられた光のその内部での波長の1/2の整数倍の膜厚であることを特徴とする共振器型発光ダイオードである。また請求項2に係る発明は、絶縁材料は、窒化ケイ素であることを特徴とする。
【0008】
上記の課題を解決するため、請求項3に係る発明は、半導体材料からなる分布反射型ミラーを発光層の両側に有し、更に2種の絶縁材料を積層した分布反射型ミラーを有する共振器型発光ダイオードである。
また、請求項4に記載の発明は、2種の絶縁材料は、酸化ケイ素及び窒化ケイ素であることを特徴とする。ここで「酸化ケイ素」、「窒化ケイ素」のSiとOのモル比、SiとNのモル比は何ら限定されないものとする。また、請求項5に記載の発明は、2種の絶縁材料を積層した分布反射型ミラーは、発光ダイオードを湿度から守る保護膜であることを特徴とする。
【0009】
【作用及び発明の効果】
LEDにおいて絶縁膜は保護膜としての役割を果たすものであるが、以下に示す通り、本願発明者はその膜厚を最適化することで発光強度や発光スペクトルの半値幅を劣化させることのないように構成することが可能であることを見出した。更に、絶縁膜を2種の材料からなる層の積層として、分布反射型ミラー(DBR)としての役割を付加させる。これにより、共振器型発光ダイオード(RC−LED)として発光層を挟んでp電極側及びn電極側にそれぞれ配置された半導体材料からなる分布反射型ミラー(DBR)の効果との相乗効果により、発光強度を落すことなく発光ピークの半値幅を大幅に減少させることができる。また、半導体材料からなる分布反射型ミラー(DBR)が電極間に存在するのに対し、本願発明の2種の絶縁材料を積層した分布反射型ミラー(DBR)は電極間の外側に配置することができることから、所望しない電圧降下を生ずることがない。
【0010】
2種の絶縁材料は、酸化ケイ素及び窒化ケイ素により構成すると良い。窒化ケイ素は耐湿性にも優れているので、共振器型発光ダイオード(RC−LED)の保護膜としての効果を十分果たすことができる。
【0011】
【発明の実施の形態】
本発明は、通常の共振器型発光ダイオード(RC−LED)を基礎としているので、当該周知の共振器型発光ダイオード(RC−LED)の設計事項を全て適用できる。即ち、2つのDBRにはさまれた部分においては光がその部分において1波長、あるいは半波長の整数倍を形成すべき厚さとすべきこと、各DBRにおいては構成する各単層は光がその部分において1/4波長あるいはその奇数倍を形成すべきことを前提に、任意の半導体材料を用いて屈折率に応じて膜厚、積層数を設計すれば良い。本発明の要部たる2種の絶縁材料を積層した分布反射型ミラーについても、構成する各単層は光がその部分において1/4波長あるいはその奇数倍を形成すべきことを前提に、任意の絶縁材料を用いて屈折率に応じて膜厚、積層数を設計すれば良い。酸化ケイ素及び窒化ケイ素を用いる場合、ストイキオメトリックに各層を形成しても良く、またケイ素を過剰又は不足となるよう形成しても良く、それに合わせて変化する屈折率を考慮して膜厚、積層数を設計すれば良い。
【0012】
〔実施例〕
図1は本発明の具体的な各実施例に係る共振器型発光ダイオード(RC−LED)100、200の要部の構成の概略を示す断面図である。共振器型発光ダイオード(RC−LED)の要部100は850nmの波長を発する発光層4を有するものであって表面にn−GaAsバッファを形成したn−GaAs基板1に、膜厚56.8nmのn−Al0.2Ga0.8As層21と、膜厚64.8nmのn−Al0.9Ga0.1As層22との組を25ペア積層したn−DBR2と、膜厚58nmのn−Al0.5Ga0.5As及び膜厚50nmのi−Al0.5Ga0.5Asからなるnクラッド層3と、発光層4と、膜厚50nmのi−Al0.5Ga0.5As及び膜厚58nmのp−Al0.5Ga0.5Asからなるpクラッド層5と、膜厚56.8nmのp−Al0.2Ga0.8As層61と、膜厚64.8nmのp−Al0.9Ga0.1As層62との組を10ペア積層したp−DBR6と、SiNからなる保護膜7とを順に形成したものである。尚、図1においては要部としたため、n型基板1裏面のn電極、n型基板1とn−DBR2の間のn−GaAsバッファ層、p−DBR6上部のp−GaAsコンタクト層及びp電極は省略した。
【0013】
共振器型発光ダイオード(RC−LED)の200の要部の構成は、900nmの波長を発する発光層4を有し、n−DBR2、p−DBR6を構成する層の膜厚を、Al0.2Ga0.8As層(21、61)は60.3nm、Al0.9Ga0.1As層(22、62)は68.7nmとしてペア数をn側32、p側5とし、保護膜7をSiO層71とSiN層72を1組又は2組とした他は同一である。SiO層71とSiN層72の膜厚は、発っせられる光がその各々の内部を通過する際の波長の1/4となるように設計した。
【0014】
〔第1実施例〕
上記構成の要部を有する共振器型発光ダイオード(RC−LED)100を図2(a)のように構成した。即ち、素子中央部にSiNからなる保護膜7の無いp−DBR6上のp−GaAsコンタクト層の露出した領域を形成して電極60を設け、n−GaAs基板1裏面に電極10を設けた。保護膜7の形成面積が大きく、電極パッド形成部分EPは光を透過しない電極パッドを用いたので、発光領域(LA)は保護膜7を形成した部分である。ここにおいて、SiNからなる保護膜7の膜厚について、その内部における発光層4の発する光の波長の1/4倍、1/2倍、3/4倍、1倍となるよう各々共振器型発光ダイオード(RC−LED)100を形成して、発光特性を調べた。また、比較のため、SiNからなる保護膜7を設けない他は同様の構成とした共振器型発光ダイオード(RC−LED)についても同様に発光特性を調べた。その結果を図3に示す。棒グラフが発光強度を示し、折れ線グラフが半値幅を示す。SiNからなる保護膜7の膜厚について、その内部での光の波長の1/4倍、3/4倍の場合には半値幅が9nm前後、発光強度は6(任意単位)以下で、保護膜7を設けない場合の半値幅5.4nm、発光強度6.4(任意単位)よりも劣化することが分かった。一方、SiNからなる保護膜7の膜厚について、その内部での光の波長の1/2倍、1倍の場合には半値幅が5.6nm、5.7nm、発光強度は6.6、6.7(任意単位)で、保護膜7を設けない場合の半値幅5.4nm、発光強度6.4(任意単位)よりも劣化しないことが分かった。このように、共振器型発光ダイオード(RC−LED)において保護膜を形成する際、その膜厚を内部での光の波長の1/2の整数倍とすることで、保護膜を設けない場合の発光特性を劣化させないことが分かった。保護膜として耐湿性に優れた窒化珪素、酸化珪素を用いる際、この設計手法は極めて有用である。
【0015】
〔第2実施例〕
上記構成の要部を有する共振器型発光ダイオード(RC−LED)200を図2(b)のように構成した。即ち、素子中央部に発光領域(LA)を形成し、電極パッド形成部分EPを素子外周部とするため、発光領域(LA)のクラッド層3より上層をエッチングにより外周部と遮断して絶縁膜8を形成し、発光領域(LA)周縁にp電極60が接するようにした上、SiO層71とSiN層72を1組又は2組積層した保護膜7を電極パッド形成部分EP以外に一様に形成した。また、n−GaAs基板1裏面に電極10を設けた。こうして発光特性を調べた。また、比較のため、保護膜7をその内部での光の波長と同等膜厚のSiN層のみとした場合、及び保護膜7を設けない場合についても発光特性を調べた。この結果を図4、図5に示す。棒グラフが発光強度を示し、折れ線グラフが半値幅を示す。図4に示す通り、保護膜7において、SiO層71とSiN層72のペアを1ペアとした場合は、ピーク強度(任意単位)は7.9、半値幅は6.1nmであった。これは保護膜7を形成しない場合のピーク強度(任意単位)6.3、半値幅8.2nmと比較し、大幅な特性向上を示すものである。更に、保護膜7において、SiO層71とSiN層72のペアを2ペアとした場合はピーク強度(任意単位)は8.9、半値幅は5.0nmと、さらなる特性向上が得られた。尚、保護膜7を1層のSiN層とした場合は図5のように保護膜7が無い場合と発光特性に変化は無かった。
【0016】
図6に本実施例の共振器型発光ダイオード(RC−LED)200の発光スペクトルを示す。保護膜7が無いか1層のSiN層とした場合はほとんど同一であって図6の点線で示したスペクトルである。保護膜7をSiO層71とSiN層72のペアとした場合は破線で、SiO層71とSiN層72のペアを2ペアとした場合は実線で示した。図6のように、保護膜7がDBRの役割を果たす場合、その積層が増えるにつれ、発光のピーク以外の成分の強度が抑制されること、即ち発光色の純度が向上することが理解できる。
【0017】
図6の結果は、SiO層71とSiN層72における屈折率が1.46と1.99であって屈折率差が大きい為と考えられる。即ち、例えばp−DBR6を構成するAl0.2Ga0.8As層61とp−Al0.9Ga0.1As層62の屈折率は3.03と3.45であり、屈折率差を有効屈折率で除すると0.13程度なのに対し、保護膜7については屈折率差を有効屈折率で除すると0.3程度と倍以上あるからである。DBRについては屈折率差を有効屈折率で除した値に、反射率の高い波長帯域幅がほぼ比例することが証左となる。
【0018】
このように本発明により、まず共振器型発光ダイオード(RC−LED)の発光特性を劣化させないように保護膜の膜厚を設計することが可能となった。更に、保護膜にDBRとしての機能を加えることで、発光強度が増加し、半値幅が減少し、且つ発光色の純度が向上する。
【図面の簡単な説明】
【図1】本発明の具体的な実施例に係る共振器型発光ダイオード(RC−LED)の構成の概略を示す断面図。
【図2】(a)は本発明の具体的な第1の実施例に係る共振器型発光ダイオード(RC−LED)100の構成を示す断面図、(b)は本発明の具体的な第2の実施例に係る共振器型発光ダイオード(RC−LED)200の構成を示す断面図。
【図3】第1の実施例に係る共振器型発光ダイオード(RC−LED)100の発光特性を比較例と共に示すグラフ図。
【図4】第2の実施例に係る共振器型発光ダイオード(RC−LED)200の発光特性を比較例と共に示すグラフ図。
【図5】比較例の発光特性を示すグラフ図。
【図6】第2の実施例に係る共振器型発光ダイオード(RC−LED)200のスペクトルを比較例と共に示すグラフ図。
【図7】従来の共振器型発光ダイオード(RC−LED)の発光特性を示すグラフ図。
【符号の説明】
100、200 共振器型発光ダイオード(RC−LED)
2 n−DBR
6 p−DBR
7 保護膜(単層又はDBR)
71 SiO
72 SiN
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting diode (LED) having a multiple reflection layer. According to the present invention, a resonator type light emitting diode (RC-LED) having a narrow half width and a high peak intensity can be obtained.
[0002]
[Prior art]
Conventionally, a light emitting diode (LED) has a large half width, and a laser diode (LD) is required as a light emitting element having a narrow half width. At present, most commercially available LEDs have a half-width of about 50 nm with respect to the emission peak of red to near-infrared light, and those having a half width of less than 10 nm are not commercially available. When a light emitting element having a half width of less than 10 nm is required, a laser diode (LD) is used. By the way, there is a cavity type surface emitting laser diode called VCSEL and a cavity type light emitting diode (RC-LED) which is an LED having a similar configuration. A resonator type light emitting diode (RC-LED) has attracted attention as an intermediate between LD and LED (Non-Patent Document 1).
[0003]
[Non-patent document 1]
Keiji Takaoka et al., IEICE Technical Report 2000-128, p. 51
[0004]
A resonator type light emitting diode (RC-LED) includes a distributed reflection type mirror (DBR) in which two kinds of semiconductor materials are stacked on a p-electrode side and an n-electrode side with a light-emitting layer and a cladding layer interposed therebetween. Have In a distributed reflection mirror (DBR), assuming that the wavelength of light emission in vacuum is λ, the thickness of each layer is λ / (4n), where n is the refractive index, and two pairs of semiconductor materials are formed. To form a resonator centered on the light emitting layer. The emission wavelength adapted to the resonator has an increased intensity, and the intensity of the other wavelengths is decreased.
[0005]
[Problems to be solved by the invention]
Increasing the number of pairs of two semiconductor materials of the distributed reflection mirror (DBR) decreases the half-width of the emission peak of the resonator type light emitting diode (RC-LED). There was a problem of sudden weakening. FIG. 7 shows the peak intensity and the half width of the AlGaAs-based resonator type light emitting diode (RC-LED), the number of pairs of the semiconductor material of the distributed reflection type mirror (DBR) on the p-electrode side being 5 pairs, 10 pairs, 15 pairs. Although the half width (line graph) is 5.2 nm for 10 pairs, it is 4.5 nm for 15 pairs, but the emission intensity (bar graph) is reduced to less than half even though the half width is not much improved.
[0006]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a resonator type light emitting diode (RC-LED) that does not deteriorate the light emission characteristics while forming a moisture-resistant protective film. Another object of the present invention is to significantly reduce the half width of the light emission peak without lowering the light emission intensity in a resonator light emitting diode (RC-LED).
[0007]
[Means for Solving the Problems]
In order to solve the above problem, the invention according to claim 1 includes a distributed reflection type mirror made of a semiconductor material on both sides of a light emitting layer, a moisture resistant protective film made of an insulating material, and the moisture resistant protective film. Is a thickness of an integral multiple of half the wavelength of the emitted light inside the cavity type light emitting diode. The invention according to claim 2 is characterized in that the insulating material is silicon nitride.
[0008]
In order to solve the above problem, the invention according to claim 3 has a resonator having a distributed reflection type mirror made of a semiconductor material on both sides of a light emitting layer and further having a distributed reflection type mirror in which two kinds of insulating materials are laminated. Type light emitting diode.
The invention according to claim 4 is characterized in that the two kinds of insulating materials are silicon oxide and silicon nitride. Here, the molar ratio of Si and O and the molar ratio of Si and N in “silicon oxide” and “silicon nitride” are not limited at all. The invention according to claim 5 is characterized in that the distributed reflection type mirror in which two kinds of insulating materials are laminated is a protective film for protecting the light emitting diode from humidity.
[0009]
[Action and effect of the invention]
In an LED, an insulating film plays a role as a protective film. However, as shown below, the present inventor does not deteriorate the emission intensity or the half width of the emission spectrum by optimizing the film thickness. Has been found to be possible. Furthermore, the insulating film is formed by laminating layers made of two kinds of materials, and has a role as a distributed reflection type mirror (DBR). Thereby, a synergistic effect with the effect of a distributed reflection type mirror (DBR) made of a semiconductor material disposed on the p-electrode side and the n-electrode side with a light-emitting layer interposed therebetween as a resonator type light-emitting diode (RC-LED) is obtained. The half width of the emission peak can be significantly reduced without decreasing the emission intensity. In addition, a distributed reflection type mirror (DBR) made of a semiconductor material exists between the electrodes, whereas a distributed reflection type mirror (DBR) in which two kinds of insulating materials of the present invention are laminated is disposed outside between the electrodes. Therefore, an undesirable voltage drop does not occur.
[0010]
The two types of insulating materials are preferably made of silicon oxide and silicon nitride. Since silicon nitride is also excellent in moisture resistance, it can sufficiently serve as a protective film of a resonator type light emitting diode (RC-LED).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Since the present invention is based on a normal resonator type light emitting diode (RC-LED), all the design items of the known resonator type light emitting diode (RC-LED) can be applied. That is, in a portion sandwiched between two DBRs, light should have a thickness that forms an integral multiple of one wavelength or half a wavelength in that portion. It is sufficient to design the film thickness and the number of layers according to the refractive index using an arbitrary semiconductor material on the assumption that a quarter wavelength or an odd multiple thereof should be formed. Regarding the distributed reflection type mirror in which two kinds of insulating materials are laminated, which is a main part of the present invention, each of the constituent monolayers is optional on the assumption that light should form a quarter wavelength or an odd multiple thereof in that portion. The thickness and the number of layers may be designed in accordance with the refractive index using the insulating material described above. In the case of using silicon oxide and silicon nitride, each layer may be formed stoichiometrically, or silicon may be formed to be excessive or insufficient, and in consideration of the refractive index that changes accordingly, the film thickness, The number of layers may be designed.
[0012]
〔Example〕
FIG. 1 is a cross-sectional view schematically showing a configuration of a main part of a resonator type light emitting diode (RC-LED) 100 or 200 according to each specific embodiment of the present invention. A main part 100 of the resonator type light emitting diode (RC-LED) has a light emitting layer 4 emitting a wavelength of 850 nm, and has a film thickness of 56.8 nm on an n-GaAs substrate 1 having an n-GaAs buffer formed on the surface. N-DBR2 obtained by stacking 25 pairs of n-Al 0.2 Ga 0.8 As layer 21 and n-Al 0.9 Ga 0.1 As layer 22 having a thickness of 64.8 nm; An n-cladding layer 3 made of 58 nm n-Al 0.5 Ga 0.5 As and a 50 nm i-Al 0.5 Ga 0.5 As, a light emitting layer 4, and a 50 nm i-Al 0 .5 Ga 0.5 as and a p-cladding layer 5 made of p-Al 0.5 Ga 0.5 as having a thickness of 58nm, p-Al 0.2 Ga 0.8 as layer having a thickness of 56.8Nm 61 And a p-Al 0.9 Ga 0. A p-DBR 6 in which 10 pairs of 1 As layers 62 are stacked, and a protective film 7 made of SiN X are sequentially formed. 1, the n-type substrate 1 has an n-type electrode on the back surface thereof, an n-GaAs buffer layer between the n-type substrate 1 and the n-DBR2, a p-GaAs contact layer and a p-type electrode on the p-DBR6. Was omitted.
[0013]
The configuration of the main part of the resonator type light emitting diode (RC-LED) 200 has a light emitting layer 4 emitting a wavelength of 900 nm, and the thickness of the layers constituting the n-DBR2 and p-DBR6 is set to Al 0. The 2Ga 0.8 As layer (21, 61) is 60.3 nm, the Al 0.9 Ga 0.1 As layer (22, 62) is 68.7 nm, and the number of pairs is 32 on the n side and 5 on the p side. The film 7 is the same except that the SiO x layer 71 and the SiN X layer 72 are one or two sets. The thickness of the SiO x layer 71 and the SiN X layer 72 was designed to be 1 / of the wavelength when the emitted light passes through each of them.
[0014]
[First embodiment]
A resonator type light emitting diode (RC-LED) 100 having a main part of the above configuration was configured as shown in FIG. That is, the exposed region of the p-GaAs contact layer on the p-DBR 6 without the protective film 7 made of SiN X was formed in the central part of the device, the electrode 60 was provided, and the electrode 10 was provided on the back surface of the n-GaAs substrate 1. . Since the formation area of the protection film 7 is large and the electrode pad formation portion EP uses an electrode pad that does not transmit light, the light emitting region (LA) is the portion where the protection film 7 is formed. Here, the thickness of the protective film 7 made of SiN X is set to 1 /, 倍, /, and 1 times the wavelength of the light emitted from the light emitting layer 4 inside the protective film 7. A light emitting diode (RC-LED) 100 was formed, and light emission characteristics were examined. For comparison, a light emitting characteristic of a resonator type light emitting diode (RC-LED) having the same configuration except that the protective film 7 made of SiN X was not provided was similarly examined. The result is shown in FIG. The bar graph shows the emission intensity, and the line graph shows the half width. Regarding the thickness of the protective film 7 made of SiN X , in the case of 光 times and / times the wavelength of light inside the film, the half width is about 9 nm and the emission intensity is 6 (arbitrary unit) or less. It was found that the half value width was 5.4 nm and the light emission intensity was 6.4 (arbitrary unit) when the protective film 7 was not provided. On the other hand, when the thickness of the protective film 7 made of SiN X is 1 / times or 1 times the wavelength of light inside the film, the half width is 5.6 nm or 5.7 nm, and the emission intensity is 6.6. , 6.7 (arbitrary unit), it was found that the half-width at 5.4 nm when the protective film 7 was not provided and the emission intensity was not deteriorated from 6.4 (arbitrary unit). As described above, when a protective film is formed in a resonator type light emitting diode (RC-LED), the thickness is set to an integral multiple of 1 / of the wavelength of light inside, so that the protective film is not provided. It was found that the light-emitting characteristics of the sample did not deteriorate. This design method is extremely useful when using silicon nitride or silicon oxide having excellent moisture resistance as the protective film.
[0015]
[Second embodiment]
A resonator type light emitting diode (RC-LED) 200 having a main part of the above configuration was configured as shown in FIG. That is, the light emitting region (LA) is formed in the central portion of the device, and the electrode pad formation portion EP is set as the device outer peripheral portion. Therefore, the upper layer of the light emitting region (LA) above the cladding layer 3 is cut off from the outer peripheral portion by etching to form an insulating film. 8 is formed so that the p-electrode 60 is in contact with the periphery of the light emitting region (LA), and the protective film 7 in which one or two sets of the SiO x layer 71 and the SiN X layer 72 are laminated is formed in a part other than the electrode pad formation part EP. Formed uniformly. Further, an electrode 10 was provided on the back surface of the n-GaAs substrate 1. Thus, the light emission characteristics were examined. For comparison, the light emission characteristics were also examined when the protective film 7 was made only of the SiN X layer having the same thickness as the wavelength of the light inside and when the protective film 7 was not provided. The results are shown in FIGS. The bar graph shows the emission intensity, and the line graph shows the half width. As shown in FIG. 4, when the protective film 7 has one pair of the SiO X layer 71 and the SiN X layer 72, the peak intensity (arbitrary unit) is 7.9 and the half width is 6.1 nm. . This shows a significant improvement in characteristics as compared with a peak intensity (arbitrary unit) of 6.3 and a half width of 8.2 nm when the protective film 7 is not formed. Further, when the protective film 7 has two pairs of the SiO X layer 71 and the SiN X layer 72, the peak intensity (arbitrary unit) is 8.9, and the half width is 5.0 nm, which further improves the characteristics. Was. When the protective film 7 was a single SiN X layer, there was no change in the light emission characteristics as compared to the case without the protective film 7 as shown in FIG.
[0016]
FIG. 6 shows an emission spectrum of the resonator type light emitting diode (RC-LED) 200 of the present embodiment. In the case where the protective film 7 is not provided or one SiN X layer is used, the spectra are almost the same and are indicated by the dotted lines in FIG. If the protective film 7 was pairs SiO X layer 71 and the SiN X layer 72 by a broken line, the case where the pair of SiO X layer 71 and the SiN X layer 72 and two pairs indicated by a solid line. As shown in FIG. 6, when the protective film 7 plays the role of DBR, it can be understood that as the number of layers increases, the intensity of components other than the emission peak is suppressed, that is, the purity of the emission color improves.
[0017]
It is considered that the result of FIG. 6 is because the refractive indexes of the SiO X layer 71 and the SiN X layer 72 are 1.46 and 1.99, and the refractive index difference is large. That is, for example, the refractive indexes of the Al 0.2 Ga 0.8 As layer 61 and the p-Al 0.9 Ga 0.1 As layer 62 constituting the p-DBR 6 are 3.03 and 3.45, respectively. This is because the difference is about 0.13 when the difference is divided by the effective refractive index, and about 0.3 or more when the difference in the refractive index of the protective film 7 is divided by the effective refractive index. As for the DBR, it is proved that the wavelength bandwidth having a high reflectance is almost proportional to the value obtained by dividing the difference in the refractive index by the effective refractive index.
[0018]
As described above, according to the present invention, it is possible to design the thickness of the protective film so as not to deteriorate the light emitting characteristics of the resonator type light emitting diode (RC-LED). Further, by adding a function as a DBR to the protective film, the emission intensity increases, the half width decreases, and the purity of the emission color improves.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a configuration of a resonator type light emitting diode (RC-LED) according to a specific example of the present invention.
FIG. 2A is a cross-sectional view illustrating a configuration of a resonator type light emitting diode (RC-LED) 100 according to a first specific example of the present invention, and FIG. Sectional drawing which shows the structure of the resonator type light emitting diode (RC-LED) 200 concerning 2nd Example.
FIG. 3 is a graph showing light emission characteristics of a resonator type light emitting diode (RC-LED) 100 according to the first embodiment together with a comparative example.
FIG. 4 is a graph showing light emission characteristics of a resonator type light emitting diode (RC-LED) 200 according to a second embodiment together with a comparative example.
FIG. 5 is a graph showing light emission characteristics of a comparative example.
FIG. 6 is a graph showing a spectrum of a resonator type light emitting diode (RC-LED) 200 according to a second embodiment together with a comparative example.
FIG. 7 is a graph showing light emission characteristics of a conventional resonator light emitting diode (RC-LED).
[Explanation of symbols]
100, 200 Resonator type light emitting diode (RC-LED)
2 n-DBR
6 p-DBR
7 Protective film (single layer or DBR)
71 SiO x layer 72 SiN x layer

Claims (5)

半導体材料からなる分布反射型ミラーを発光層の両側に有し、絶縁材料から成る耐湿性保護膜を有し、当該耐湿性保護膜の膜厚は、発っせられた光のその内部での波長の1/2の整数倍の膜厚であることを特徴とする共振器型発光ダイオード。It has a distributed reflection type mirror made of a semiconductor material on both sides of the light emitting layer, and has a moisture-resistant protective film made of an insulating material. The film thickness of the moisture-resistant protective film is determined by the wavelength of the emitted light. A resonator type light emitting diode having a thickness that is an integral multiple of 1/2 of the above. 前記絶縁材料は、窒化ケイ素であることを特徴とする請求項1に記載の共振器型発光ダイオード。The resonator type light emitting diode according to claim 1, wherein the insulating material is silicon nitride. 半導体材料からなる分布反射型ミラーを発光層の両側に有し、更に2種の絶縁材料を積層した分布反射型ミラーを有する共振器型発光ダイオード。A resonator type light emitting diode having a distributed reflection type mirror made of a semiconductor material on both sides of a light emitting layer and further having a distributed reflection type mirror in which two kinds of insulating materials are laminated. 前記2種の絶縁材料は、酸化ケイ素及び窒化ケイ素であることを特徴とする請求項3に記載の共振器型発光ダイオード。The resonator type light emitting diode according to claim 3, wherein the two kinds of insulating materials are silicon oxide and silicon nitride. 前記2種の絶縁材料を積層した分布反射型ミラーは、発光ダイオードを湿度から守る保護膜であることを特徴とする請求項3又は請求項4に記載の共振器型発光ダイオード。5. The resonator type light emitting diode according to claim 3, wherein the distributed reflection type mirror in which the two kinds of insulating materials are laminated is a protective film for protecting the light emitting diode from humidity.
JP2003074311A 2003-03-18 2003-03-18 Resonator type light emitting diode Pending JP2004281929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074311A JP2004281929A (en) 2003-03-18 2003-03-18 Resonator type light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074311A JP2004281929A (en) 2003-03-18 2003-03-18 Resonator type light emitting diode

Publications (1)

Publication Number Publication Date
JP2004281929A true JP2004281929A (en) 2004-10-07

Family

ID=33289998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074311A Pending JP2004281929A (en) 2003-03-18 2003-03-18 Resonator type light emitting diode

Country Status (1)

Country Link
JP (1) JP2004281929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829137B1 (en) 2005-12-16 2008-05-14 샤프 가부시키가이샤 Nitride Semiconductor Light Emitting Device and Method of Fabricating Nitride Semiconductor Laser Device
CN100411211C (en) * 2006-10-10 2008-08-13 华中科技大学 Monolithic integrated white light diode
JP2009021323A (en) * 2007-07-11 2009-01-29 Dowa Electronics Materials Co Ltd Semiconductor light emitting element
JP2010528479A (en) * 2007-05-30 2010-08-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescent diode chip provided with an angle filter element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829137B1 (en) 2005-12-16 2008-05-14 샤프 가부시키가이샤 Nitride Semiconductor Light Emitting Device and Method of Fabricating Nitride Semiconductor Laser Device
KR100868268B1 (en) * 2005-12-16 2008-11-11 샤프 가부시키가이샤 Nitride Semiconductor Light Emitting Device and Method of Fabricating Nitride Semiconductor Laser Device
CN100411211C (en) * 2006-10-10 2008-08-13 华中科技大学 Monolithic integrated white light diode
JP2010528479A (en) * 2007-05-30 2010-08-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescent diode chip provided with an angle filter element
US8405104B2 (en) 2007-05-30 2013-03-26 Osram Opto Semiconductors Gmbh Luminescent diode chip with luminescence conversion element and angular filter element
JP2009021323A (en) * 2007-07-11 2009-01-29 Dowa Electronics Materials Co Ltd Semiconductor light emitting element

Similar Documents

Publication Publication Date Title
JP5285835B2 (en) Semiconductor device and manufacturing method thereof
US6700914B2 (en) Vertical cavity surface emitting laser device
US9142715B2 (en) Light emitting diode
US6693935B2 (en) Semiconductor laser
JP4626686B2 (en) Surface emitting semiconductor laser
TWI412154B (en) Surface light emitting element
US6501101B2 (en) Light emitting diode
JP2007095758A (en) Semiconductor laser
JP5088498B2 (en) Light emitting device
JP2010192603A (en) Light-emitting device
US8855157B2 (en) Surface emitting laser element
US20090059986A1 (en) Semiconductor light emitting element
JP2004281929A (en) Resonator type light emitting diode
US20050190807A1 (en) Semiconductor laser
US9787059B2 (en) Semiconductor light emitting element
US20070023773A1 (en) Semiconductor light-emitting device
JP4292786B2 (en) Semiconductor laser device
JP4771142B2 (en) Vertical cavity light emitting diode
JP5728411B2 (en) Semiconductor light emitting device
JP2004241462A (en) Light emitting element and epitaxial wafer therefor
WO2023149081A1 (en) Semiconductor laser element
WO2024004677A1 (en) Semiconductor laser element
JP2000174329A (en) Vertical micro resonator light-emitting diode
KR100870949B1 (en) Semiconductor laser device
KR101611479B1 (en) Semiconductor light emitting device