JP2004271617A - Stereoscopic video display device - Google Patents

Stereoscopic video display device Download PDF

Info

Publication number
JP2004271617A
JP2004271617A JP2003058605A JP2003058605A JP2004271617A JP 2004271617 A JP2004271617 A JP 2004271617A JP 2003058605 A JP2003058605 A JP 2003058605A JP 2003058605 A JP2003058605 A JP 2003058605A JP 2004271617 A JP2004271617 A JP 2004271617A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
light
image
driving voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058605A
Other languages
Japanese (ja)
Inventor
Akio Ota
昭雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2003058605A priority Critical patent/JP2004271617A/en
Publication of JP2004271617A publication Critical patent/JP2004271617A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent occurrence of flickering due to frame-by-frame inversion of the polarity of a driving voltage applied to a liquid crystal display unit in a stereoscopic video display device which provides a stereoscopic picture by restricting the travel path of light by a barrier having an opening corresponding to obliquely arranged pixels (10p) of the liquid crystal display unit (10) displaying two pictures having parallax. <P>SOLUTION: The polarity of the driving voltage applied to the liquid crystal display unit is inverted laterally by pixels, longitudinally by pluralities of pixels, and obliquely by specified numbers of pixels. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、立体的な映像を提供する立体映像表示装置に関する。
【0002】
【従来の技術】
視差のある2つの映像を表示して、一方の映像光を左眼に導き他方の映像光を右眼に導くことにより、立体的な映像を提供する立体映像表示装置が提案されている。立体映像を提供するためには、左眼用の映像光が左眼のみに入射し、右眼用の映像光が右眼のみに入射するようにする必要があり、その一法として、光の進路を規制するバリアを用いることが行われている。左眼用の映像と右眼用の映像を並べて表示し、大きなバリアでそれらの映像光の進路を規制することもできるが、そのようにすると左眼用の映像光と右眼用の映像光の進行方向に過大な角度差が生じて、自然な立体映像を提供することは難しい。
【0003】
そこで、左眼用の映像と右眼用の映像を一部分ずつ交互に並べて表示し、両映像の各部分に対応する複数の開口を有するバリアを用いるパララックスバリア方式の立体映像表示装置が知られている。このような立体映像表示装置の構成を図1の断面図に模式的に示す。
【0004】
図1(a)の立体映像表示装置は、液晶表示器10、バリア20、および照明器30より成る。液晶表示器10は、多数の画素10pを有し、左右方向に並ぶ1画素ごとに、左眼用の映像Lと右眼用の映像Rを交互に表示する。バリア20は、表示器10の画素10pと同程度の幅の開口20aを2つの画素10pごとに有し、液晶表示器10からの映像光のうち開口20aに入射するもの以外を遮断する。照明器30(バックライト)は液晶表示器10を背面から照射する照明光を発し、液晶表示器10は、表示した映像によって照明光を変調して映像を表す映像光とする。
【0005】
バリア20の開口20aに対する左眼用の映像Lと右眼用の映像Rの位置には差があり、これにより、開口20a通過後の左眼用の映像Lの映像光の進行方向と右眼用の映像Rの映像光の進行方向に差が生じて、観察者の左眼には左眼用の映像Lの映像光のみが入射し、右眼には右眼用の映像Rの映像光のみが入射する。
【0006】
図1(b)に示すように、バリア20を液晶表示器10と照明器30の間に配置することも可能である。照明器30からの光はバリア20によって進路を規制され、左眼用の映像Lに入射する照明光と右眼用の映像Rに入射する照明光の進行方向には角度差が生じる。この角度差は映像光となった後も保たれ、観察者の左眼には左眼用の映像Lの映像光のみが入射し、右眼には右眼用の映像Rの映像光のみが入射する。
【0007】
バリア20としては開口20aを有する金属板を用いることができる。また、液晶表示器を用いて、バリア20を表示することもできる。すなわち、液晶表示器の一部分を光を透過させる配向として開口20aとし、他の部分を光を遮断する配向として、バリア20を現出する。液晶表示器を用いると、その全体で光を透過させる配向にしてバリア20として機能しない設定とすることも可能であり、立体映像を提供することと、非立体的な通常の映像を提供することを、切り替えることができる。
【0008】
バリア20の正面図を図2(a)に模式的に示す。一般に、開口20aは、バリア20の上端から下端に達する長いストライプ状とされる(例えば、特開2000−78617号)。図2(b)に示すように、液晶表示器10の略1画素分の大きさの開口20bとして、斜め方向に並ぶ画素に対応して階段状に配列することも行われている。なお、この例では、開口20bは、左右方向については4画素に1つの割合で設けられている。
【0009】
液晶表示器は、表示する映像のフレームの切り替え速度を高めるために、通常、1フレームごとに極性が反転する電圧を印加されて駆動される。また、左右方向、上下方向ともに1画素ごとに、極性の異なる駆動電圧を印加される。液晶表示器の駆動電圧の極性を図3に示す。図3において、(a)はnフレーム目の駆動電圧、(b)は(n+1)フレーム目の駆動電圧である。
【0010】
【特許文献1】
特開2000−78617号
【0011】
【発明が解決しようとする課題】
ところが、液晶表示器に駆動電圧を印加する駆動部として特に高性能のものを用いなければ、駆動電圧の大きさが、極性によって、すなわち正であるか負であるかによって、相違する傾向にある。駆動電圧の大きさに差が生じた例を図4に模式的に示す。この例では、正の駆動電圧Vpが負の駆動電圧Vnよりも大きい。駆動電圧の大きさに差があると、直線偏光の偏光面を回転させる画素の能力に変動が生じて、映像光の光量も変動する。
【0012】
このような駆動電圧であっても、図2(a)に示す長いストライプ状の開口20aを有するバリア20を使用するときは、ちらつきのない立体映像を提供することができる。図3に示す駆動電圧の極性と、図2(a)のバリア20を介して左右の眼に入射する映像光を生成する画素の関係を図5に示す。これは、バリア20を液晶表示器10に対して左方に半画素分ずらしたときのものである。後に示す同様の図も、バリアを液晶表示器に対して左方にずらした場合のものである。
【0013】
図5より判るように、左眼にも右眼にも常に、正に印加された画素と負に印加された画素からの光が入射する。したがって、正の駆動電圧を印加された画素と負の駆動電圧を印加された画素からの映像光の光量が平均化され、フレームごとに映像光の光量が変動することがなく、ちらつきが生じない。
【0014】
しかしながら、図2(b)に示した斜め方向に並ぶ開口20bを有するバリア20を使用するときは、ちらつきが生じる。図3に示す駆動電圧の極性と、図2(b)のバリア20を介して左右の眼に入射する映像光を生成する画素の関係を図6に示す。図6(a)より判るように、nフレーム目では、左眼には正の駆動電圧を印加された画素からの映像光のみが入射し、右眼には負の駆動電圧を印加された画素からの映像光のみが入射する。一方、図6(b)より判るように、(n+1)フレーム目では逆に、左眼には負の駆動電圧を印加された画素からの映像光のみが入射し、右眼には正の駆動電圧を印加された画素からの映像光のみが入射する。したがって、フレームが変わるごとに、左眼に入射する映像光の光量と右眼に入射する映像光の光量が変動し、ちらつきが生じる。
【0015】
本発明は、このような問題点に鑑みてなされたもので、液晶表示器の駆動部を特に高性能にしなくても、斜めに並ぶ開口を有するバリアを用いて、ちらつきのない立体映像を提供することが可能な立体映像表示装置を実現することを目的とする。
【0016】
【課題を解決するための手段】
上記目的を達成するために、本発明では、縦横に配列された複数の画素を有し、視差のある複数の映像を横方向に交互に並べて表示する液晶表示器と、液晶表示器の画素に駆動電圧を印加してフレームごとに駆動電圧の極性を反転させる駆動部と、液晶表示器の斜め方向に並ぶ画素に対応して斜め方向に並ぶ複数の開口を有し、開口以外の部分で光を遮断するバリアを備え、バリアによって液晶表示器からの映像光の進路を規制して複数の映像光の進行方向を相違させ、左右の眼に異なる映像の映像光を導いて、立体的な映像を提供する立体映像表示装置において、駆動部が、液晶表示器の斜め方向に並ぶ所定数の画素ごとに正の駆動電圧と負の駆動電圧を交互に印加し、フレームごとに印加する駆動電圧の極性を反転させるものとする。
【0017】
本発明ではまた、縦横に配列された複数の画素を有し、視差のある複数の映像を横方向に交互に並べて表示し、与えられる照明光を表示した映像によって映像光とする液晶表示器と、液晶表示器の画素に駆動電圧を印加してフレームごとに駆動電圧の極性を反転させる駆動部と、液晶表示器に照明光を与える照明器と、液晶表示器の斜め方向に並ぶ画素に対応して斜め方向に並ぶ複数の開口を有し、開口以外の部分で光を遮断するバリアを備え、バリアによって照明器からの照明光の進路を規制して複数の映像を照明する照明光の進行方向を相違させることにより、左右の眼に異なる映像の映像光を導いて、立体的な映像を提供する立体映像表示装置において、駆動部が、液晶表示器の斜め方向に並ぶ所定数の画素ごとに正の駆動電圧と負の駆動電圧を交互に印加し、フレームごとに印加する駆動電圧の極性を反転させるものとする。
【0018】
上記のいずれの立体映像表示装置においても、斜め方向に並ぶ所定数の画素ごとに極性の異なる駆動電圧を印加するため、画素に対して斜め方向に並ぶバリアの開口を介して、観察者の左眼と右眼にはそれぞれ、正の駆動電圧を印加された画素からの映像光と、負の駆動電圧を印加された画素からの映像光が入射し、映像光の光量が常に平均化されて、ちらつきが生じない。駆動電圧の極性を逆にする画素の所定数は、1としてもよいし、2以上としてもよい。
【0019】
【発明の実施の形態】
以下、本発明の一実施形態について図面を参照しながら説明する。図7に本実施形態の立体映像表示装置1の回路構成を模式的に示す。立体映像表示装置1は、光の進路を規制するためのバリアを液晶表示器によって現出する方法を採用しており、映像表示用の液晶表示器10、バリア表示用の液晶表示器40、装置全体の動作を制御する制御部50、映像表示用の液晶表示器10に駆動電圧を印加する駆動部60、およびバリア表示用の液晶表示器40に駆動電圧を印加する駆動部70を備える。なお、立体映像表示装置1は、液晶表示器40が表示したバリアによって映像光の進路を規制する図1(a)の構成と、液晶表示器40が表示したバリアによって照明光の進路を規制する図1(b)の構成の、いずれにも適用可能である。
【0020】
制御部50は、提供する映像を表す映像信号を駆動部60に与え、駆動部60は、その映像信号に応じて液晶表示器10に駆動電圧を印加する。制御部50は、立体的な映像を提供するときは、視差のある左眼用の映像と右眼用の映像を表す映像信号を駆動部60に与えるとともに、図2(b)に示す斜め方向に並ぶ開口20bを含むバリア20を表す映像信号を駆動部70に与える。また、非立体的な通常の映像を提供するときは、単一の映像を表す映像信号を駆動部60に与えるとともに、バリアを表さない(光を全て透過させる)映像信号を駆動部70に与える。
【0021】
駆動部60、70は、液晶表示器10、40の画素に、液晶表示器10が表示する映像の1フレームごとに極性が反転する駆動電圧を印加する。駆動部60が映像表示用の液晶表示器10の各画素10pに印加する駆動電圧の極性を図8に示す。図8において、(a)はnフレーム目の駆動電圧を表し、(b)は(n+1)フレーム目の駆動電圧を表す。図8に示すように、駆動部60が液晶表示器10に印加する駆動電圧の極性は、横方向については1画素ごとに反転し、縦方向については2画素ごとに反転し、バリア20の開口20bの列に対応する斜め方向については2画素ごとに反転する。
【0022】
図8に示す液晶表示器10の駆動電圧の極性と、液晶表示器40が表示するバリア20を介して左右の眼に入射する映像光を生成する画素の関係を図9に示す。図9において、(a)はnフレーム目のものであり、(b)は(n+1)フレーム目のものである。なお、前述のように、バリア20は、液晶表示器10に対して左方にずらして配置されている。
【0023】
図9(a)より判るように、nフレーム目では、左眼には正の駆動電圧を印加された2画素と負の駆動電圧を印加された2画素とが交互に並ぶ画素の列からの光が入射し、右眼にも正の駆動電圧を印加された2画素と負の駆動電圧を印加された2画素とが交互に並ぶ画素の列からの光が入射する。図9(b)より判るように、(n+1)フレーム目も同様に、左眼には正の駆動電圧を印加された2画素と負の駆動電圧を印加された2画素とが交互に並ぶ画素の列からの光が入射し、右眼にも正の駆動電圧を印加された2画素と負の駆動電圧を印加された2画素とが交互に並ぶ画素の列からの光が入射する。
【0024】
したがって、駆動部60からの駆動電圧に極性による差があったとしても、正の駆動電圧を印加された画素からの映像光の光量と負の駆動電圧を印加された画素からの映像光の光量は、常に平均化されることになり、フレームが変わるごとに映像光の光量が変動するという事態は発生せず、ちらつきは生じない。
【0025】
駆動部60が映像表示用の液晶表示器10の各画素10pに印加する他の駆動電圧の極性を図10に示す。図10において、(a)はnフレーム目の駆動電圧を表し、(b)は(n+1)フレーム目の駆動電圧を表す。図10に示すように、駆動部60が液晶表示器10に印加する駆動電圧の極性は、横方向については1画素または2画素ごとに反転し、縦方向については4画素ごとに反転し、バリア20の開口20bの列に対応する斜め方向については1画素ごとに反転する。
【0026】
図10に示す液晶表示器10の駆動電圧の極性と、液晶表示器40が表示するバリア20を介して左右の眼に入射する映像光を生成する画素の関係を図11に示す。図11において、(a)はnフレーム目のものであり、(b)は(n+1)フレーム目のものである。
【0027】
図11(a)より判るように、nフレーム目では、左眼には正の駆動電圧を印加された1画素と負の駆動電圧を印加された1画素とが交互に並ぶ画素の列からの光が入射し、右眼にも正の駆動電圧を印加された1画素と負の駆動電圧を印加された1画素とが交互に並ぶ画素の列からの光が入射する。図11(b)より判るように、(n+1)フレーム目も同様に、左眼には正の駆動電圧を印加された1画素と負の駆動電圧を印加された1画素とが交互に並ぶ画素の列からの光が入射し、右眼にも正の駆動電圧を印加された1画素と負の駆動電圧を印加された1画素とが交互に並ぶ画素の列からの光が入射する。
【0028】
したがって、駆動部60からの駆動電圧に極性による差があったとしても、正の駆動電圧を印加された画素からの映像光の光量と負の駆動電圧を印加された画素からの映像光の光量は、常に平均化されることになり、フレームが変わるごとに映像光の光量が変動するという事態は発生せず、ちらつきは生じない。この駆動電圧の極性では、図8に示す駆動電圧の極性よりも、各フレームにおける映像の微小な部分ごとの映像光の光量差も軽減され、一層高品位の立体映像を提供することができる。
【0029】
なお、斜め方向に並ぶ画素の駆動電圧の極性を何画素ごとに反転させるかは、バリア20の開口20bを横方向について何画素に1開口の割合で現出するかに応じて定めればよい。また、本実施形態では、立体映像の提供と非立体的な通常の映像の提供を切り替え得るようにするために、液晶表示器40によってバリア20を現出するようにしたが、本発明は、例えば開口20bを有する金属板をバリア20として用いて常に立体映像を提供する立体映像表示装置にも有用である。
【0030】
【発明の効果】
本発明によれば、液晶表示器に極性の反転する駆動電圧を印加する駆動部を特に高性能としなくても、ちらつきのない立体映像を提供することができる。
【図面の簡単な説明】
【図1】バリアによって光の進路を規制する立体映像表示装置の一般的な構成を模式的に示す断面図。
【図2】立体映像表示装置に用いられるバリアを模式的に示す正面図。
【図3】液晶表示器に印加される従来の駆動電圧の極性を示す図。
【図4】極性によって大きさに差が生じた駆動電圧の例を模式的に示す図。
【図5】図3の駆動電圧の極性と、図2(a)のバリアを介して左右の眼に入射する映像光を生成する画素の関係を示す図。
【図6】図3の駆動電圧の極性と、図2(b)のバリアを介して左右の眼に入射する映像光を生成する画素の関係を示す図。
【図7】本発明の一実施形態である立体映像表示装置の回路構成を模式的に示す図。
【図8】上記立体映像表示装置の駆動部が映像表示用の液晶表示器の各画素に印加する駆動電圧の極性を示す図。
【図9】図8の駆動電圧の極性と、バリア表示用の液晶表示器が表示するバリアを介して左右の眼に入射する映像光を生成する画素の関係を示す図。
【図10】上記立体映像表示装置の駆動部が映像表示用の液晶表示器の各画素に印加する他の駆動電圧の極性を示す図。
【図11】図10の駆動電圧の極性と、バリア表示用の液晶表示器が表示するバリアを介して左右の眼に入射する映像光を生成する画素の関係を示す図。
【符号の説明】
1 立体映像表示装置
10 映像表示用液晶表示器
10p 画素
20 バリア
20a 開口
30 照明器
40 バリア表示用液晶表示器
50 制御部
60 映像表示用駆動部
70 バリア表示用駆動部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stereoscopic video display device that provides a stereoscopic video.
[0002]
[Prior art]
2. Description of the Related Art There has been proposed a stereoscopic video display device that displays two videos having parallax, and guides one video light to the left eye and guides the other video light to the right eye, thereby providing a stereoscopic video. In order to provide a stereoscopic image, it is necessary to make the image light for the left eye enter only the left eye and the image light for the right eye to enter only the right eye. It has been practiced to use barriers that regulate the course. The left-eye image and right-eye image can be displayed side by side, and the path of the image light can be regulated by a large barrier. However, in this case, the left-eye image light and the right-eye image light can be controlled. It is difficult to provide a natural stereoscopic image because an excessive angle difference occurs in the traveling direction of the camera.
[0003]
Therefore, a parallax barrier-type stereoscopic image display device that displays a left-eye image and a right-eye image alternately and partially and displays the images using a barrier having a plurality of openings corresponding to respective portions of both images is known. ing. The configuration of such a stereoscopic video display device is schematically shown in the cross-sectional view of FIG.
[0004]
The stereoscopic image display device shown in FIG. 1A includes a liquid crystal display 10, a barrier 20, and an illuminator 30. The liquid crystal display 10 has a large number of pixels 10p, and alternately displays a left-eye image L and a right-eye image R for each pixel arranged in the left-right direction. The barrier 20 has an opening 20a of the same width as the pixel 10p of the display 10 for every two pixels 10p, and blocks the image light from the liquid crystal display 10 other than the light that enters the opening 20a. The illuminator 30 (backlight) emits illuminating light that illuminates the liquid crystal display 10 from behind, and the liquid crystal display 10 modulates the illuminating light with the displayed image to be image light representing the image.
[0005]
There is a difference between the positions of the left-eye image L and the right-eye image R with respect to the opening 20a of the barrier 20, and accordingly, the traveling direction of the image light of the left-eye image L after passing through the opening 20a and the right eye There is a difference in the traveling direction of the image light of the image R for use, and only the image light of the image L for the left eye is incident on the left eye of the observer, and the image light of the image R for the right eye is applied to the right eye. Only incident.
[0006]
As shown in FIG. 1B, the barrier 20 can be disposed between the liquid crystal display 10 and the illuminator 30. The path of the light from the illuminator 30 is regulated by the barrier 20, and an angle difference occurs between the traveling direction of the illumination light incident on the left-eye image L and the traveling direction of the illumination light incident on the right-eye image R. This angle difference is maintained even after the image light is formed, and only the image light of the image L for the left eye is incident on the left eye of the observer, and only the image light of the image R for the right eye is incident on the right eye. Incident.
[0007]
As the barrier 20, a metal plate having an opening 20a can be used. Further, the barrier 20 can be displayed using a liquid crystal display. That is, the opening 20a is formed so that a part of the liquid crystal display transmits light, and the barrier 20 is exposed while the other part is aligned so as to block light. When a liquid crystal display is used, it is possible to set the orientation so that light is transmitted as a whole and not to function as the barrier 20, to provide a stereoscopic image and to provide a non-stereoscopic normal image. Can be switched.
[0008]
A front view of the barrier 20 is schematically shown in FIG. In general, the opening 20a is formed in a long stripe shape extending from the upper end to the lower end of the barrier 20 (for example, JP-A-2000-78617). As shown in FIG. 2B, the openings 20b each having a size of approximately one pixel of the liquid crystal display 10 are arranged in a stepwise manner corresponding to pixels arranged in an oblique direction. In this example, the opening 20b is provided at a ratio of one for every four pixels in the left-right direction.
[0009]
The liquid crystal display is usually driven by applying a voltage whose polarity is inverted every frame in order to increase the switching speed of a frame of a video to be displayed. In addition, drive voltages having different polarities are applied to each pixel in the horizontal direction and the vertical direction. FIG. 3 shows the polarity of the driving voltage of the liquid crystal display. In FIG. 3, (a) shows the drive voltage of the nth frame, and (b) shows the drive voltage of the (n + 1) th frame.
[0010]
[Patent Document 1]
JP 2000-78617 A
[Problems to be solved by the invention]
However, unless a particularly high-performance drive unit is used as a drive unit that applies a drive voltage to the liquid crystal display, the magnitude of the drive voltage tends to differ depending on the polarity, that is, whether the drive voltage is positive or negative. . FIG. 4 schematically shows an example in which a difference occurs in the magnitude of the driving voltage. In this example, the positive drive voltage Vp is higher than the negative drive voltage Vn. If there is a difference in the magnitude of the drive voltage, the ability of the pixel to rotate the plane of polarization of linearly polarized light varies, and the amount of image light also varies.
[0012]
Even with such a drive voltage, when the barrier 20 having the long striped openings 20a shown in FIG. 2A is used, a flicker-free stereoscopic image can be provided. FIG. 5 shows the relationship between the polarity of the drive voltage shown in FIG. 3 and the pixels that generate the video light incident on the left and right eyes via the barrier 20 in FIG. This is when the barrier 20 is shifted to the left by half a pixel with respect to the liquid crystal display 10. A similar diagram shown later also shows the case where the barrier is shifted to the left with respect to the liquid crystal display.
[0013]
As can be seen from FIG. 5, the light from the positively applied pixel and the light from the negatively applied pixel always enter the left and right eyes. Therefore, the light amounts of the image light from the pixels to which the positive drive voltage is applied and the pixels to which the negative drive voltage is applied are averaged, and the light amount of the image light does not fluctuate for each frame and no flicker occurs. .
[0014]
However, when the barrier 20 having the openings 20b arranged in the oblique direction shown in FIG. 2B is used, flicker occurs. FIG. 6 shows the relationship between the polarity of the drive voltage shown in FIG. 3 and the pixels that generate the video light incident on the left and right eyes via the barrier 20 in FIG. As can be seen from FIG. 6A, in the n-th frame, only the video light from the pixel to which the positive drive voltage is applied enters the left eye, and the pixel to which the negative drive voltage is applied to the right eye. Only the image light from On the other hand, as can be seen from FIG. 6B, in the (n + 1) th frame, only the video light from the pixel to which the negative drive voltage is applied is incident on the left eye, and the positive drive is applied on the right eye. Only the image light from the pixel to which the voltage is applied enters. Therefore, every time the frame changes, the light amount of the image light incident on the left eye and the light amount of the image light incident on the right eye fluctuate, and flicker occurs.
[0015]
The present invention has been made in view of such a problem, and provides a flicker-free stereoscopic image by using a barrier having an obliquely arranged opening without making a driving unit of a liquid crystal display particularly high-performance. It is an object of the present invention to realize a stereoscopic image display device capable of performing the above-mentioned operations.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a liquid crystal display having a plurality of pixels arranged vertically and horizontally and displaying a plurality of images having parallax alternately in a horizontal direction, and a pixel of the liquid crystal display. It has a driving unit that applies a driving voltage to invert the polarity of the driving voltage for each frame, and a plurality of openings that are arranged in an oblique direction corresponding to pixels that are arranged in an oblique direction on a liquid crystal display. A barrier that blocks the light, the barrier regulates the path of the image light from the liquid crystal display to make the traveling directions of the multiple image lights different, and guides the image light of different images to the left and right eyes to produce a three-dimensional image. In the three-dimensional image display device that provides, the driving unit alternately applies a positive driving voltage and a negative driving voltage for each of a predetermined number of pixels arranged in an oblique direction of the liquid crystal display, and the driving voltage applied for each frame. The polarity is reversed.
[0017]
The present invention also has a plurality of pixels arranged vertically and horizontally, a plurality of images having a parallax are alternately arranged and displayed in the horizontal direction, and a liquid crystal display that is provided with illumination light as image light by the displayed image. , A driving unit that applies a driving voltage to the pixels of the liquid crystal display to invert the polarity of the driving voltage for each frame, an illuminator that applies illumination light to the liquid crystal display, and a pixel that is arranged diagonally in the liquid crystal display It has a plurality of openings that are arranged diagonally and has a barrier that blocks light at portions other than the openings, and the barrier regulates the course of the illumination light from the illuminator and illuminates a plurality of images. In a stereoscopic video display device that provides video images of different images to the left and right eyes by providing different directions to provide a stereoscopic image, the driving unit is configured to drive a predetermined number of pixels arranged in a diagonal direction of the liquid crystal display. Positive drive voltage and negative Applying a dynamic voltage alternately, and which reverses the polarity of the drive voltage applied to each frame.
[0018]
In any of the above three-dimensional image display devices, since a driving voltage having a different polarity is applied to each of a predetermined number of pixels arranged in an oblique direction, the viewer's left side is opened through a barrier opening arranged in an oblique direction to the pixels. The image light from the pixel to which the positive drive voltage is applied and the image light from the pixel to which the negative drive voltage is applied enter the eye and the right eye, respectively, and the amount of the image light is always averaged. No flickering occurs. The predetermined number of pixels for which the polarity of the drive voltage is reversed may be one, or may be two or more.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 7 schematically shows a circuit configuration of the stereoscopic video display device 1 of the present embodiment. The stereoscopic image display device 1 employs a method in which a barrier for regulating the path of light is exposed by a liquid crystal display, and the liquid crystal display 10 for image display, the liquid crystal display 40 for barrier display, and the device. The control unit 50 includes a control unit 50 that controls the entire operation, a driving unit 60 that applies a driving voltage to the liquid crystal display 10 for displaying images, and a driving unit 70 that applies a driving voltage to the liquid crystal display 40 for displaying barriers. The three-dimensional image display device 1 controls the path of the image light by the barrier displayed by the liquid crystal display 40, and the configuration of FIG. 1A that restricts the path of the illumination light by the barrier displayed by the liquid crystal display 40. The present invention can be applied to any of the configurations shown in FIG.
[0020]
The control unit 50 supplies a video signal representing a video to be provided to the driving unit 60, and the driving unit 60 applies a driving voltage to the liquid crystal display 10 according to the video signal. When providing a stereoscopic image, the control unit 50 supplies the driving unit 60 with an image signal representing a left-eye image and a right-eye image having parallax to the driving unit 60, and also outputs the image signal in the oblique direction shown in FIG. Is supplied to the drive unit 70 representing the barrier 20 including the openings 20b arranged in the same direction. When providing a non-stereoscopic normal image, an image signal representing a single image is supplied to the driving unit 60, and an image signal not showing a barrier (all light is transmitted) is supplied to the driving unit 70. give.
[0021]
The driving units 60 and 70 apply a driving voltage whose polarity is inverted for each frame of the image displayed by the liquid crystal display 10 to the pixels of the liquid crystal displays 10 and 40. FIG. 8 shows the polarity of the drive voltage applied by the drive unit 60 to each pixel 10p of the liquid crystal display 10 for displaying images. In FIG. 8, (a) represents the drive voltage of the nth frame, and (b) represents the drive voltage of the (n + 1) th frame. As shown in FIG. 8, the polarity of the drive voltage applied to the liquid crystal display 10 by the drive unit 60 is inverted every pixel in the horizontal direction and every two pixels in the vertical direction. In the diagonal direction corresponding to the column of 20b, the inversion is performed every two pixels.
[0022]
FIG. 9 shows the relationship between the polarity of the driving voltage of the liquid crystal display 10 shown in FIG. 8 and the pixels that generate the image light incident on the left and right eyes via the barrier 20 displayed by the liquid crystal display 40. In FIG. 9, (a) is for the n-th frame, and (b) is for the (n + 1) -th frame. Note that, as described above, the barrier 20 is arranged to be shifted leftward with respect to the liquid crystal display 10.
[0023]
As can be seen from FIG. 9 (a), in the n-th frame, the left eye has two pixels to which a positive drive voltage has been applied and two pixels to which a negative drive voltage has been applied. Light is incident, and light from a column of pixels in which two pixels to which a positive driving voltage is applied and two pixels to which a negative driving voltage is applied alternately enters the right eye. As can be seen from FIG. 9B, similarly, in the (n + 1) th frame, two pixels to which a positive drive voltage is applied and two pixels to which a negative drive voltage is applied are alternately arranged on the left eye. And light from the column of pixels in which two pixels to which a positive driving voltage is applied and two pixels to which a negative driving voltage is applied are alternately arranged also enters the right eye.
[0024]
Therefore, even if there is a difference due to the polarity in the drive voltage from the drive unit 60, the light amount of the image light from the pixel to which the positive drive voltage is applied and the light amount of the image light from the pixel to which the negative drive voltage is applied Are always averaged, and the situation where the amount of video light fluctuates every time a frame changes does not occur, and no flicker occurs.
[0025]
FIG. 10 shows the polarity of another drive voltage applied to each pixel 10p of the liquid crystal display 10 for displaying images by the drive unit 60. In FIG. 10, (a) represents the drive voltage of the n-th frame, and (b) represents the drive voltage of the (n + 1) -th frame. As shown in FIG. 10, the polarity of the drive voltage applied to the liquid crystal display 10 by the drive unit 60 is inverted every one pixel or two pixels in the horizontal direction, and every four pixels in the vertical direction. In the diagonal direction corresponding to the row of the 20 openings 20b, the direction is inverted for each pixel.
[0026]
FIG. 11 shows the relationship between the polarity of the driving voltage of the liquid crystal display 10 shown in FIG. 10 and the pixels that generate image light that enters the left and right eyes via the barrier 20 displayed by the liquid crystal display 40. In FIG. 11, (a) is for the n-th frame, and (b) is for the (n + 1) -th frame.
[0027]
As can be seen from FIG. 11 (a), in the n-th frame, the left eye has one pixel to which a positive drive voltage is applied and one pixel to which a negative drive voltage is applied. Light is incident, and light from a pixel row in which one pixel to which a positive driving voltage is applied and one pixel to which a negative driving voltage is applied alternately enters the right eye. As can be seen from FIG. 11B, similarly, in the (n + 1) th frame, one pixel to which a positive drive voltage is applied and one pixel to which a negative drive voltage is applied are alternately arranged on the left eye. , And light from the column of pixels in which one pixel to which a positive drive voltage is applied and one pixel to which a negative drive voltage is applied alternately enters the right eye.
[0028]
Therefore, even if there is a difference due to the polarity in the drive voltage from the drive unit 60, the light amount of the image light from the pixel to which the positive drive voltage is applied and the light amount of the image light from the pixel to which the negative drive voltage is applied Are always averaged, and the situation where the amount of video light fluctuates every time a frame changes does not occur, and no flicker occurs. With the polarity of the driving voltage, the difference in the amount of image light for each minute portion of the image in each frame is reduced as compared with the polarity of the driving voltage shown in FIG. 8, and a higher quality stereoscopic image can be provided.
[0029]
The number of pixels in which the polarity of the drive voltage of the pixels arranged in the oblique direction is inverted may be determined according to the number of pixels in the horizontal direction in which the opening 20b of the barrier 20 appears in the horizontal direction. . Further, in the present embodiment, the barrier 20 is made to appear by the liquid crystal display 40 so that the provision of the stereoscopic image and the provision of the non-stereoscopic normal image can be switched. For example, the present invention is also useful for a stereoscopic image display device that always provides a stereoscopic image using a metal plate having an opening 20 b as the barrier 20.
[0030]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, a flicker-free stereoscopic image can be provided without making the drive part which applies the drive voltage which reverses polarity to a liquid crystal display especially high performance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a general configuration of a three-dimensional image display device that regulates a light path by a barrier.
FIG. 2 is a front view schematically showing a barrier used in the stereoscopic image display device.
FIG. 3 is a diagram showing the polarity of a conventional driving voltage applied to a liquid crystal display.
FIG. 4 is a diagram schematically illustrating an example of a driving voltage having a difference in magnitude depending on polarity.
FIG. 5 is a diagram illustrating a relationship between the polarity of the driving voltage in FIG. 3 and pixels that generate video light incident on the left and right eyes via the barrier in FIG.
FIG. 6 is a diagram illustrating a relationship between the polarity of the driving voltage in FIG. 3 and pixels that generate video light incident on the left and right eyes via the barrier in FIG. 2B.
FIG. 7 is a diagram schematically showing a circuit configuration of a stereoscopic video display device according to an embodiment of the present invention.
FIG. 8 is a diagram showing the polarity of a driving voltage applied to each pixel of a liquid crystal display for displaying an image by a driving unit of the stereoscopic image display device.
FIG. 9 is a diagram illustrating a relationship between the polarity of the driving voltage in FIG. 8 and pixels that generate image light incident on the left and right eyes via the barrier displayed by the barrier display liquid crystal display.
FIG. 10 is a diagram showing the polarity of another driving voltage applied to each pixel of the liquid crystal display for displaying an image by the driving unit of the stereoscopic image display device.
11 is a diagram showing the relationship between the polarity of the driving voltage shown in FIG. 10 and pixels that generate video light incident on the left and right eyes via the barrier displayed by the barrier display liquid crystal display.
[Explanation of symbols]
Reference Signs List 1 stereoscopic image display device 10 image display liquid crystal display 10p pixel 20 barrier 20a opening 30 illuminator 40 barrier display liquid crystal display 50 control unit 60 image display drive unit 70 barrier display drive unit

Claims (2)

縦横に配列された複数の画素を有し、視差のある複数の映像を横方向に交互に並べて表示する液晶表示器と、液晶表示器の画素に駆動電圧を印加してフレームごとに駆動電圧の極性を反転させる駆動部と、液晶表示器の斜め方向に並ぶ画素に対応して斜め方向に並ぶ複数の開口を有し、開口以外の部分で光を遮断するバリアを備え、バリアによって液晶表示器からの映像光の進路を規制して複数の映像光の進行方向を相違させ、左右の眼に異なる映像の映像光を導いて、立体的な映像を提供する立体映像表示装置において、
駆動部が、液晶表示器の斜め方向に並ぶ所定数の画素ごとに正の駆動電圧と負の駆動電圧を交互に印加し、フレームごとに印加する駆動電圧の極性を反転させることを特徴とする立体映像表示装置。
A liquid crystal display having a plurality of pixels arranged vertically and horizontally and displaying a plurality of images having parallax alternately in a horizontal direction, and a driving voltage applied to the pixels of the liquid crystal display to drive the driving voltage for each frame. A drive unit for inverting the polarity, a plurality of openings arranged in an oblique direction corresponding to the pixels arranged in the oblique direction of the liquid crystal display, and a barrier for blocking light in portions other than the openings, and the liquid crystal display by the barrier In a stereoscopic video display device that regulates the course of the video light from and makes the traveling directions of a plurality of video lights different, guides the video light of different video to the left and right eyes, and provides a stereoscopic video,
The driving unit alternately applies a positive driving voltage and a negative driving voltage for each of a predetermined number of pixels arranged in an oblique direction of the liquid crystal display, and inverts the polarity of the driving voltage applied for each frame. 3D image display device.
縦横に配列された複数の画素を有し、視差のある複数の映像を横方向に交互に並べて表示し、与えられる照明光を表示した映像によって映像光とする液晶表示器と、液晶表示器の画素に駆動電圧を印加してフレームごとに駆動電圧の極性を反転させる駆動部と、液晶表示器に照明光を与える照明器と、液晶表示器の斜め方向に並ぶ画素に対応して斜め方向に並ぶ複数の開口を有し、開口以外の部分で光を遮断するバリアを備え、バリアによって照明器からの照明光の進路を規制して複数の映像を照明する照明光の進行方向を相違させることにより、左右の眼に異なる映像の映像光を導いて、立体的な映像を提供する立体映像表示装置において、
駆動部が、液晶表示器の斜め方向に並ぶ所定数の画素ごとに正の駆動電圧と負の駆動電圧を交互に印加し、フレームごとに印加する駆動電圧の極性を反転させることを特徴とする立体映像表示装置。
A liquid crystal display having a plurality of pixels arranged vertically and horizontally, displaying a plurality of images having parallax alternately in a horizontal direction, and providing a given illumination light as image light by the displayed image, and a liquid crystal display. A driving unit that applies a driving voltage to the pixels to invert the polarity of the driving voltage for each frame, an illuminator that applies illumination light to the liquid crystal display, and an oblique direction corresponding to the pixels arranged in the oblique direction of the liquid crystal display It has a plurality of openings arranged side by side, and has a barrier that blocks light at a portion other than the openings, and regulates the path of the illumination light from the illuminator by the barrier so that the traveling directions of the illumination light for illuminating a plurality of images are different. In the stereoscopic image display device that guides the image light of different images to the left and right eyes to provide a three-dimensional image,
The driving unit alternately applies a positive driving voltage and a negative driving voltage for each of a predetermined number of pixels arranged in an oblique direction of the liquid crystal display, and inverts the polarity of the driving voltage applied for each frame. 3D image display device.
JP2003058605A 2003-03-05 2003-03-05 Stereoscopic video display device Pending JP2004271617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058605A JP2004271617A (en) 2003-03-05 2003-03-05 Stereoscopic video display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058605A JP2004271617A (en) 2003-03-05 2003-03-05 Stereoscopic video display device

Publications (1)

Publication Number Publication Date
JP2004271617A true JP2004271617A (en) 2004-09-30

Family

ID=33121678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058605A Pending JP2004271617A (en) 2003-03-05 2003-03-05 Stereoscopic video display device

Country Status (1)

Country Link
JP (1) JP2004271617A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094027A (en) * 2005-09-29 2007-04-12 Sanyo Epson Imaging Devices Corp Electro-optic device and driving method thereof
KR100859694B1 (en) * 2007-04-12 2008-09-23 삼성에스디아이 주식회사 2d/3d liquid display device and the driving method thereof
JP2009075392A (en) * 2007-09-21 2009-04-09 Seiko Epson Corp Electro-optical device and method for driving the same, and electronic apparatus
US7800703B2 (en) 2005-12-13 2010-09-21 Koninklijke Philips Electronics N.V. Display device
KR101145147B1 (en) 2012-02-10 2012-05-14 엘지디스플레이 주식회사 Stereoscopic 3D display apparatus and driving method thereof
JP2012103384A (en) * 2010-11-09 2012-05-31 Seiko Epson Corp Electro-optical device and electronic apparatus
WO2012131887A1 (en) * 2011-03-29 2012-10-04 株式会社 東芝 Three-dimensional image display device
CN103439824A (en) * 2013-08-30 2013-12-11 京东方科技集团股份有限公司 Array substrate, pixel driving method and display device
JP2014500970A (en) * 2010-10-01 2014-01-16 サムスン エレクトロニクス カンパニー リミテッド 3D display device using barrier and driving method thereof
US9049436B2 (en) 2011-11-30 2015-06-02 Samsung Display Co., Ltd. Three dimensional image display device using binocular parallax
WO2015131409A1 (en) * 2014-03-03 2015-09-11 深圳市华星光电技术有限公司 Liquid crystal display panel and liquid crystal display device
WO2015131410A1 (en) * 2014-03-03 2015-09-11 深圳市华星光电技术有限公司 Liquid crystal display panel and active shutter 3d liquid crystal display device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094027A (en) * 2005-09-29 2007-04-12 Sanyo Epson Imaging Devices Corp Electro-optic device and driving method thereof
US7800703B2 (en) 2005-12-13 2010-09-21 Koninklijke Philips Electronics N.V. Display device
KR100859694B1 (en) * 2007-04-12 2008-09-23 삼성에스디아이 주식회사 2d/3d liquid display device and the driving method thereof
US8040307B2 (en) 2007-04-12 2011-10-18 Samsung Mobile Display Co., Ltd. 2D/3D liquid crystal display device and method for driving the same
JP2009075392A (en) * 2007-09-21 2009-04-09 Seiko Epson Corp Electro-optical device and method for driving the same, and electronic apparatus
US9716877B2 (en) 2010-10-01 2017-07-25 Samsung Electronics Co., Ltd. 3D display device using barrier and driving method thereof
JP2014500970A (en) * 2010-10-01 2014-01-16 サムスン エレクトロニクス カンパニー リミテッド 3D display device using barrier and driving method thereof
JP2012103384A (en) * 2010-11-09 2012-05-31 Seiko Epson Corp Electro-optical device and electronic apparatus
US9123305B2 (en) 2010-11-09 2015-09-01 Seiko Epson Corporation Electro-optical apparatus and electronics device
CN102822724A (en) * 2011-03-29 2012-12-12 株式会社东芝 Three-dimensional image display apparatus
JP5342017B2 (en) * 2011-03-29 2013-11-13 株式会社東芝 3D image display device
WO2012131887A1 (en) * 2011-03-29 2012-10-04 株式会社 東芝 Three-dimensional image display device
US9237335B2 (en) 2011-03-29 2016-01-12 Kabushiki Kaisha Toshiba Three-dimensional image display apparatus
US9049436B2 (en) 2011-11-30 2015-06-02 Samsung Display Co., Ltd. Three dimensional image display device using binocular parallax
KR101145147B1 (en) 2012-02-10 2012-05-14 엘지디스플레이 주식회사 Stereoscopic 3D display apparatus and driving method thereof
CN103439824A (en) * 2013-08-30 2013-12-11 京东方科技集团股份有限公司 Array substrate, pixel driving method and display device
WO2015027614A1 (en) * 2013-08-30 2015-03-05 京东方科技集团股份有限公司 Array substrate, pixel drive method and display device
US9824643B2 (en) 2013-08-30 2017-11-21 Boe Technology Group Co., Ltd. Array substrate, pixel driving method thereof and display device
WO2015131410A1 (en) * 2014-03-03 2015-09-11 深圳市华星光电技术有限公司 Liquid crystal display panel and active shutter 3d liquid crystal display device
WO2015131409A1 (en) * 2014-03-03 2015-09-11 深圳市华星光电技术有限公司 Liquid crystal display panel and liquid crystal display device

Similar Documents

Publication Publication Date Title
US7646537B2 (en) High-resolution field sequential autostereoscopic display
JP5426067B2 (en) Two-dimensional stereoscopic display device
JP6073218B2 (en) 3D image display apparatus and driving method thereof
KR100859694B1 (en) 2d/3d liquid display device and the driving method thereof
US8049710B2 (en) Multi-view autostereoscopic display with improved resolution
KR100677637B1 (en) High resolution autostereoscopic display
KR101244910B1 (en) Time sharing type autostereoscopic display apparatus and method for driving the same
JP4644594B2 (en) 3D image display device
JP5185145B2 (en) Stereoscopic image display apparatus and stereoscopic image display method
US20060012676A1 (en) Stereoscopic image display
KR20080056592A (en) Auto stereoscopic display
JPH0915532A (en) Stereoscopic image display method and stereoscopic image display device using the method
CN101978306A (en) Autostereoscopic display with fresnel lens element
KR20040103724A (en) Display device capable of displaying 2-dimensional and 3-dimensional images
JP2007072217A (en) Stereoscopic image display apparatus
KR102420041B1 (en) Display device and method thereof
JP4495982B2 (en) Stereoscopic image display device and light deflection element
JP2004271617A (en) Stereoscopic video display device
JP2002296540A (en) Stereoscopic image display device without spectacles
JP2840012B2 (en) 3D display device
JP2005091447A (en) Stereoscopic display device
TW201303846A (en) Electro-optical device and electronic apparatus
JPH10186277A (en) Method of displaying stereo image and stereo image display device using it
KR101650380B1 (en) apparatus for displaying 3D image
JP2004264760A (en) Stereoscopic image display device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227